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ON THE AREA OF THE GRAPH OF A PIECEWISE SMOOTH MAP
FROM THE PLANE TO THE PLANE WITH A CURVE DISCONTINUITY
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Abstract. In this paper we provide an estimate from above for the value of the relaxed area functional
A(u, Ω) for an R

2-valued map u defined on a bounded domain Ω of the plane and discontinuous on a
C2 simple curve Ju ⊂ Ω, with two endpoints. We show that, under certain assumptions on u, A(u, Ω)
does not exceed the area of the regular part of u, with the addition of a singular term measuring the
area of a disk-type solution Σmin of the Plateau’s problem spanning the two traces of u on Ju. The
result is valid also when Σmin has self-intersections. A key element in our argument is to show the
existence of what we call a semicartesian parametrization of Σmin, namely a conformal parametrization
of Σmin defined on a suitable parameter space, which is the identity in the first component. To prove
our result, various tools of parametric minimal surface theory are used, as well as some results from
Morse theory.
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1. Introduction

Given a bounded open set Ω ⊂ R
2 = R

2
(x,y) and a map v = (v1, v2) : Ω → R

2 = R
2
(ξ,η) of class C1, the area

A(v, Ω) of the graph of v in Ω is given by

A(v, Ω) =
∫

Ω

|M(∇v)| dxdy,

where |·| denotes the euclidean norm, ∇v is the Jacobian matrix of v and M(∇v) is the vector whose components
are the determinants of all minors4 of ∇v, hence

|M(∇v)| =
√

1 + |∇v1|2 + |∇v2|2 + (∂xv1∂yv2 − ∂yv1∂xv2)
2.
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The polyconvex [3] functional A(v, Ω) measures the area of the graph of v, a smooth two-codimensional surface
in R

4 = R
2
(x,y) × R

2
(ξ,η). When considering the perspective of the direct method of the calculus of variations, it

is important to assign a reasonable notion of area also to the graph of a nonsmooth map, namely to extend the
functional A(·, Ω) out of C1(Ω; R2) in a natural way. We agree in defining this extended area as the L1(Ω; R2)-
lower semicontinuous envelope A(·, Ω) (or relaxed functional for short) of A(·, Ω), i.e.,

A(v, Ω) := inf
{

lim inf
ε→0+

A(vε, Ω)
}

(1.1)

where the infimum is taken over all sequences5 (vε) ⊂ C1(Ω; R2) converging to v in L1(Ω; R2). The interest of
definition (1.1) is clearly seen in the scalar case6, where this notion of extended area is useful for solving non-
parametric minimal surface problems, under various type of boundary conditions (see for instance [7,8,12]). We
recall that in the scalar case A(·, Ω) happens to be convex, and A(·, Ω) is completely characterized: its domain
is the space BV(Ω) of functions with bounded variation in Ω, and its expression is suitably given in integral
form.

The analysis of the properties of A(v, Ω) for maps v from an open subset of the plane to the plane is much
more difficult [7]; geometrically, the problem is to understand which could be the most “economic” way, in terms
of two-dimensional area in R

4, of approximating a nonsmooth two-codimensional graph of a map v of bounded
variation, with graphs of smooth maps, where the approximation takes place in L1(Ω; R2). It is the aim of
the present paper to address this problem for discontinuous maps v of class BV(Ω; R2), having a C2-curve of
discontinuity and satisfying suitable additional properties.

In [1] Acerbi and Dal Maso studied the relaxation of certain polyconvex functionals in arbitrary dimension
and codimension. In particular, they proved that A(·, Ω) = A(·, Ω) on C1(Ω; R2), and that for p ∈ [2,+∞],

A(v, Ω) =
∫

Ω

|M(∇v)| dxdy, v ∈W 1,p(Ω; R2),

and the exponent 2 is optimal. They also proved that the domain of A(·, Ω) is contained in BV(Ω; R2), and

A(v, Ω) ≥
∫

Ω

|M(∇v)| dxdy + |Dsv|(Ω), v ∈ BV(Ω; R2), (1.2)

where ∇v and Dsv denote the absolutely continuous and the singular part of the distributional gradient Dv of
v, respectively. In addition, if v ∈ BV(Ω; {α1, . . . , αm}) where α1, . . . , αm are vectors of R

2, and denoting by
L2 and H1 the Lebesgue measure and the one-dimensional Hausdorff measure in R

2 respectively,

A(v, Ω) = L2(Ω) +
∑

k, l ∈ {1, . . . , m}
k < l

|αk − αl|H1(Jkl), (1.3)

provided ∂Ω and the jump curves Jkl forming the jump set Jv of v are smooth enough and that v takes locally
only two vectors around Jkl. Finally, and maybe more interestingly, it is proven in ([1], Sect. 4) that the relaxed
area is not subadditive with respect to Ω, thus in particular it does not admit an integral representation with
a density depending locally on v: in this sense it is non-local. The non-subadditivity of A(v, ·), conjectured by
De Giorgi in [4], concerns the triple junction map utr, which is a map defined on the unit disk of the source plane,
and assumes as values three non-collinear vectors on three circular congruent sectors. The proof given in [1] does
not supply the precise value of A(utr, Ω), however it provides a nontrivial lower bound and an upper bound.
The upper bound was refined in [2], where the authors exhibited an approximating sequence (conjectured

5For notational simplicity, we denote a sequence of functions (or functionals, or points) with a continuous parameter; the notation
(vε) denotes a sequence (vεh ), where h ∈ N and εh → 0+ as h → +∞. A subsequence of (vε) is a subsequence of (vεh ).

6Namely, for functions v : Ω → R.
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to be optimal7, at least under symmetry assumptions) constructed by solving three (similar) Plateau-type
problems coupled at the triple point8. The singular contribution concentrated over the triple point arising in
this construction, consists of a term penalizing the length of the Steiner-graph connecting the three values in
the target space R

2. If the construction of [2] were optimal, it would shed some light on the non-subadditivity
phenomenon addressed in [1, 4].

The question arises as to whether the non subadditivity is due to the special form of the triple junction map
utr, or whether it can be obtained for other qualitatively different maps v. We are not yet able to answer this
question, which nevertheless can be considered as the main motivation of the present paper. In this direction,
our idea is to study the properties of A(·, Ω), for maps generalizing those in (1.3), with no triple or multiple
junctions. Namely, we are interested in A(u, Ω), where u is regular enough in Ω \ Ju, and the jump set Ju is
a C2 simple curve compactly contained9 in Ω. It is worth anticipating that we are concerned here only with an
estimate from above of the value of the relaxed area, and we shall not face the problem of the estimate from
below. Nevertheless, we believe our construction of the recovery sequence to be optimal, at least for a reasonably
large class of maps.

Referring to the next sections for the details, we now briefly sketch the main results and the ideas of the
present paper. Suppose that u ∈ BV(Ω; R2) is a vector valued map regular enough in Ω \ Ju, and let us
parametrize Ju with a map α : t ∈ [a, b] → α(t) ∈ Ju. Denote by u± the two traces of u on Ju, and let γ±,
defined in [a, b], be the composition of u± with the parametrization α. Let us define Γ as the union of the
graphs of γ+ and γ−. Our assumptions ensure that Γ is a rectifiable, simple and closed space curve, with a
special structure, due to the fact that it is union of graphs of two vector maps defined in the same interval [a, b]
(Def. 2.1). Finally, let us denote by Σmin an area minimizing solution of the Plateau’s problem for Γ , in the
class of surfaces spanning Γ and having the topology of the disk [5]. Suppose that Σmin admits what we call
a semicartesian parametrization (Def. 2.2), namely a global parametrization whose first component coincides
with the parameter t ∈ [a, b]. Our first result reads as follows.

Theorem 1.1. Under the above assumptions, there exists a sequence (uε) of sufficiently regular10 maps con-
verging to u in L1(Ω; R2) such that

lim
ε→0+

A(uε, Ω) =
∫

Ω\Ju

|M(∇u)| dxdy + H2(Σmin).

In particular

A(u, Ω) ≤
∫

Ω\Ju

|M(∇u)| dxdy + H2(Σmin). (1.4)

Under the hypothesis that there exists a semicartesian parametrization

X(t, s) = (t,X2(t, s), X3(t, s))

of Σmin defined on a plane domain D ⊂ R
2
(t,s), the key point of the construction stands in the definition of

uε in a suitable neighborhood of the jump Ju. For (x, y) in this neighbourhood we define the pair of functions
(t(x, y), s(x, y)) ∈ D corresponding to the parametrization of the nearest point on Ju to (x, y), and to the signed
distance from Ju, respectively. Next, we define

uε(x, y) :=
(
X2

(
t(x, y),

s(x, y)
ε

)
, X3

(
t(x, y),

s(x, y)
ε

))
(1.5)

7In the sense that equality should hold in (1.2) along the above mentioned sequence.
8The construction of [2] is intrinsically four-dimensional and cannot be reduced to a three-dimensional construction.
9 As one can deduce from our proofs, the case when Ju ∩ ∂Ω �= ∅ requires a separate study, leading to a Plateau-type problem

with partial free boundary, and will be investigated elsewhere. Also, the case when Ju ⊂ Ω is a closed simple curve is out of the
scope of the present paper, since it could lead to the study of minimal immersions in S1 × R2 of a set with the topology of an
annulus.

10 (uε) ⊂ Lip(Ω; R2) in Theorem 3.3, and (uε) ⊂ W 1,2(Ω; R2) in Theorem 4.3.
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for (x, y) such that
(
t(x, y), s(x,y)

ε

)
∈ D. Note carefully that, in this way, the definition of uε cannot be reduced

to a one-dimensional profile, being intrinsically two-dimensional. The explicit computation (Step 9 of the Proof
of Thm. 3.3) of the area of the graph of uε localized in this region is the source of the term

H2(Σmin)

appearing in (1.4).
It is interesting to comment on the role of the term

(∂xuε1∂yuε2 − ∂yuε1∂xuε2)
2 (1.6)

in the details of the computation. If X is semicartesian, the area of Σmin is given by∫
D

√
|∂sX2|2 + |∂sX3|2 + (∂tX2∂sX3 − ∂sX2∂tX3)2 dt ds.

The sum of the first two addenda under the square root is obtained, in the limit, from |∇uε1|2 + |∇uε2|2, while
the last addendum is originated in the limit exactly by (1.6).

Various technical difficulties are present in the estimate of A(uε, ·) outside of the above mentioned neigh-
bourhood of Ju. Far from Ju we set uε := u, while in a (small) intermediate neighbourhood the map uε is
suitably defined in such a way that the corresponding contribution of the area is negligible. The technical point
behind this construction is to guarantee that uε is sufficiently smooth. In Theorem 3.3 we study the case in
which Σmin is the graph of a map defined on a two-dimensional convex domain, the so-called non-parametric
case; here an approximating argument leads to the Lipschitz regularity of uε in Ω. In Theorem 4.3, instead, we
study a more general situation, managing in building a sequence (uε) in W 1,2(Ω; R2). In this case we need to
modify the domain of the semicartesian parametrization, in order to gain the L1 integrability of the gradients
of uε and to make a further regularization near the crack tips, that is the endpoints of Ju, (see Steps 1 and 2
of Thm. 4.3).

Several other comments are in order concerning Theorem 1.1. First of all, and as already mentioned, our
result provides only an estimate from above of the value of A(u, Ω). Only if Γ is contained in a plane, we are
able to prove that inequality (1.4) is actually an equality11, so that (uε) becomes a recovery sequence. This
case is a slight generalization of the piecewise constant case (1.3) considered in [1], and seems not enough for
answering the non-subadditivity question on A.

After this remark, we come back to the important issue of the semicartesian parametrization. First of all, a
semicartesian parametrization represents an intermediate situation between the non-parametric case, and the
general case in which Σmin is just an area-minimizing surface spanning Γ and having the topology of the disk.
We stress that the assumptions on Γ that ensure the existence of a semicartesian parametrization of Σmin are
not so restrictive12; for example the analytic curves displayed in Figures 1a and b satisfy the hypotheses of
Theorem 1.2 below, and thus the corresponding Σmin admit a semicartesian parametrization and Theorem 4.3
applies. Observe that the surface Σmin in Figure 1a (area-minimizing with the topology of the disk) has self-
intersections13. In this case the map uε defined in (1.5) is not injective; of course, the source of this phenomenon
is due to the the fact that graph(u) has codimension two, and it does not arise in the scalar case.

11 We believe the sequence (uε) to be a recovery sequence much more generally, at least when the jump of u is far enough
from ∂Ω in comparison with its length, and Σmin can be identified with the support of the “vertical component” of a cartesian
current [7] obtained by minimizing the mass among all cartesian currents coinciding with the graph of u out of the jump. In this
respect, we observe that the precise knowledge of several qualitative properties of Σmin is required in order to prove Theorems 1.1
and 1.2. For this reason generalizing the proof using an area-mininizing cartesian current seems not to be easy.

12 Roughly speaking, we can say (as we shall prove) that the special structure of Γ as union of two graphs, “propagates” into
Σmin, ensuring the existence of a semicartesian parametrization.

13It is possible to find smooth embedded surfaces spanning the same boundary with non zero-genus and lower area, see for
example ([11], Figs. 8.1.1 and 8.1.2). Nevertheless our argument seems to be hardly generalizable to surfaces not of disk-type.
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Figure 1. (a) An example of Σmin with self-intersections admitting a semicartesian
parametrization. We also plot the intersection of Σmin with the plane {t = 0}: this is a non-
simple curve connecting (0, γ−(0)) and (0, γ+(0)). (b) An other analytic curve Γ leading to a
Σmin admitting a semicartesian parametrization. In this case γ− is approximatively constant
in [a + δ, b − δ] for some small δ > 0, so that its graph Γ− is almost a segment (we cannot
require constancy due to analyticity). The graph Γ+ of γ+ is, instead, an helix around Γ−. It
is clear that this situation is very far from the non-parametric case. The qualitative properties
of Γ in correspondence to the points a and b are not arbitrary, and will be discussed in detail
in the next sections (see also the assumptions in Thm. 1.2).

Let us now inspect the delicate problem of the existence of a domain D ⊂ R
2
(t,s) and a semicartesian

parametrization X : D → R
3. Besides the non-parametric case, in this paper we exhibit other sufficient condi-

tions for the existence of a semicartesian parametrization, and we refer to Theorem 5.2 for all details.

Theorem 1.2. Suppose that Γ admits a parametrization which is analytic, and nondegenerate in the sense
of (5.1) at the junctions between γ− and γ+. Then Σmin admits a semicartesian parametrization.

Before commenting on the proof, which represents maybe the most technical part of the present paper, we
want to briefly discuss Figure 1a, since it is a sort of prototypical example in our work. The boundary of the
represented surface satisfies all hypotheses of Theorem 1.2. It is built as the union of the graphs of two analytic
maps γ± : [a, b] → R

2
(ξ,η). We take the graph of γ− arbitrarily close to the (planar) half-circle starting from

the south pole S and ending at the north pole N . The graph of γ+ is the remaining part of the boundary. We
take γ− and γ+ so that they join in an analytic way. We stress that for t ∈ (a, b) the intersection of the plane
{t = t} with Γ is just the set of two points {(t, γ−(t)), (t, γ+(t))}, while the intersection with the surface Σmin

is a connected, possibly non-simple, curve14. Moreover, near the two poles, Γ is essentially a circumference,
and this implies, as we shall see later (Step 4 in the Proof of Thm. 6.1) that the nondegeneracy assumption
mentioned in the statement of Theorem 1.2 is satisfied.

The analyticity of Γ in Theorem 1.2 is a strong assumption: indeed it forces u to have a rather rigid structure,
in particular near the crack tips, and it also implies that the traces u− and u+ cannot be independent. As we
shall clarify below, the reason for which we require analyticity is that we need to exclude branch points and
boundary branch points on Σmin. Finding sufficient conditions on Γ ensuring the existence of a semicartesion
parametrization of Σmin, without assuming analyticity, requires further investigation.

14The surface in ([11], Fig. 8.1.2) mentioned in footnote (10) does not satisfy this property.
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Roughly speaking, the Proof of Theorem 1.2 runs as follows. First we need to guarantee that no plane
orthogonal to the t-axis is tangent to Σmin since, under this transversality condition, a classical result provides
a local semicartesian parametrization (Thms. 6.1 and A.9). Let us consider a conformal parametrization Y of
Σmin defined on the unit disk B; thanks to the analyticity of Γ , it is possible to extend Σmin to a minimal
surface Σext, parametrized on Bext, an open set containing B, by an analytic map Y ext = (Y ext

1 , Y ext
2 , Y ext

3 )
coinciding with Y on B. Now, we define a height function h, defined on Bext and returning for each point (u, v)
the t−coordinate of its image through Y ext, that is

h : Bext → Rt,

h(u, v) := Y ext
1 (u, v).

We observe that the tangent plane to Σext at Y ext(u, v) is orthogonal to the t-axis if and only if (u, v) is a
critical point for h. Thus in order to get the desired transversality property, we need to exclude the presence
of critical points of h on B, except for a minimum and a maximum on ∂B, which exist since h is continuous.
Internal maxima and minima are excluded by a geometric argument, and saddle points are excluded by using
a Morse relation for closed domains (see Appendix B). In this step, proven in Theorem 6.1, the analyticity of
Γ is once more crucial, because it prevents Σmin to have boundary and internal branch points; this regularity
and the nondegeneracy hypotheses on the parametrization of Γ imply that h is a Morse function satisfying the
requirements of Theorem B.1.

In this way we have obtained the existence of a local semicartesian parametrization. Using the simple con-
nectedness of Σmin, it is finally possible to globalize the argument, and provide a semicartesian parametrization
(Sect. 6.2). We notice here that several properties of the (a priori unknown) parameter domain D can be proven,
as shown in Section 6.3: in particular, it turns out that ∂D is union of the graphs of two functions σ±, which are
locally Lipschitz (but not Lipschitz) with a local Lipschitz constant controlled by the Lipschitz constant of γ±.
We refer to Section 6 for the details of the proofs, but it is clear that the analyticity assumption is fundamental
in most of the arguments.

The plan of the paper is the following. In Section 2 we fix some notation and we give the definition of
semicartesian parametrization. In Section 3 we prove Theorem 1.1 for maps whose associated Plateau’s problem
admits a non-parametric solution. In Section 4 we provide a generalization of this result for possibly self-
intersecting area-minimizing surfaces, underlying that what is really important is that the solution of the
Plateau’s problem admits a semicartesian parametrization. In Section 5 we give some sufficient conditions on
u for the existence of a semicartesian parametrization of Σmin, see Theorem 5.2, the proof of which is given in
Section 6 and is the most technical part of the paper. In Section 6.3 and Appendix B we collect some classical
results of minimal surfaces and Morse Theory needed in our proofs.

2. Notation

If n ≥ 2, we denote by ·, | · | the euclidean scalar product and norm in R
n, respectively, and by E and int(E)

the closure and the interior part of a set E ⊆ R
n. H2 is the two dimensional Hausdorff measure in R

n and L2

is the Lebesgue measure in R
2. B ⊂ R

2 = R
2
(u,v) is the open unit disk and ∂B is its boundary. We choose an

arc-length parametrization
b : θ ∈ [0, 2π) → b(θ) ∈ ∂B, (2.1)

and take θs, θn ∈ [0, 2π), with θs < θn, so that

b(θs) = (0,−1), b(θn) = (0, 1).

For a differentiable map Y : B → R
3, the components are denoted by Y = (Y1, Y2, Y3), and the partial derivatives

by Yu = ∂uY = (∂uY1, ∂uY2, ∂uY3) and Yv = ∂vY = (∂vY1, ∂vY2, ∂vY3).
Ω is a bounded open subset of the source space R

2
(x,y), while the target space is denoted by R

2
(ξ,η). When no

confusion is possible, we often write R
2 in place of the source or of the target space.
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As in the introduction, if v ∈ BV(Ω; R2) we denote by ∇v and Dsv the absolutely continuous and the
singular part of the distributional gradient of v, respectively. The symbol Ju denotes a regular curve inside Ω
where the map u jumps (see hypotheses (u1)−(u3) in Sect. 3.1), and is defined pointwise everywhere.

With D(Ω; R2) we denote the subset of BV(Ω; R2) on which the relaxed area functional admits the following
integral representation:

A(v, Ω) =
∫

Ω

|M (∇v) | dxdy < +∞. (2.2)

As we have already noticed in the introduction, W 1,p(Ω; R2) is contained in D(Ω; R2) for every p ∈ [2,+∞]. In
Section A.2 we report the characterization of D(Ω; R2) given in [1] and we prove that the functional A can be
obtained also by relaxing from D(Ω; R2).

Now, we give the useful definition of semicartesian parametrization.

Definition 2.1 (Union of two graphs). A closed simple rectifiable curve Γ ⊂ R
3 = Rt × R

2
(ξ,η) is said to be

union of two graphs if there exists an interval [a, b] ⊂ Rt such that Γ is the union of the graphs of two continuous
maps γ± ∈ C([a, b]; R2) ∩ Liploc((a, b); R

2). That is, Γ = Γ+ ∪ Γ− where

Γ± = {(t, ξ, η) : t ∈ [a, b], (ξ, η) = γ±(t)}.

When necessary, we shall say that Γ is union of the graphs of γ±.

Definition 2.2 (Semicartesian parametrization). A disk-type surface Σ in R
3 (possibly with self intersections)

is said to admit a semicartesian parametrization if Σ = X(D), where

− D ⊂ R
2
(t,s) is given by

D = {(t, s) : t ∈ [a, b], σ−(t) ≤ s ≤ σ+(t)}, (2.3)

with σ± ∈ Liploc((a, b)) satisfying

σ−(a) = 0 = σ+(a),
σ−(b) = σ+(b),
σ− < σ+ in (a, b); (2.4)

− X ∈W 1,2(D; R3) has the following form:

X(t, s) = (t,X2(t, s), X3(t, s)) a.e. (t, s) ∈ D. (2.5)

Sometimes we refer to a semicartesian parametrization as to a global semicartesian parametrization; on the
other hand, a local semicartesian parametrization is a W 1,2 map of the form (2.5), defined in a neighourhood
of a point.

3. Non-parametric case: Graph over a convex domain

As explained in the introduction, our aim is to estimate from above the area of the graph of a discontinuous
map with a curve discontinuity compactly contained in Ω. In this section we study a case which leads to consider
a non-parametric Plateau’s problem over a convex domain.

3.1. Hypotheses on u and statement in the non-parametric case

Let Ω ⊂ R
2 = R

2
(x,y) be a bounded connected open Lipschitz set and assume that

u = (u1, u2) : Ω → R
2 = R

2
(ξ,η)
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satisfies the following properties (u1)−(u4):

(u1) u ∈ BV(Ω; R2) ∩ L∞(Ω; R2) and Ju is a non-empty simple curve of class C2 (not reduced to a point)
contained in Ω, that we call the jump of u. We shall write

Ju = α([a, b]),

where a and b are two real numbers with a < b, and

α : t ∈ [a, b] ⊂ R = Rt → α(t) ∈ Ju

is an arc-length parametrization of Ju of class C2. Note that we are assuming that if t1, t2 ∈ [a, b], t1 �= t2
then α(t1) �= α(t2), and moreover

Ju ∩ ∂Ω = ∅.
In particular, the two distinct crack tips are Ju \ Ju = {α(a), α(b)} ⊂ Ω (see Fig. 2a).

(u2) u ∈ W 1,∞ (Ω \ Ju; R2
)
.

As a consequence of (u1) and (u2), u is also locally Lipschitz in Ω \ Ju. Moreover, we can split Ω into two
Lipschitz connected open sets Ω+ and Ω− so that Ju ∈ ∂Ω±; thus there exist the traces of u on Ju on both
sides of the jump, denoted by u±, and the maps γ− and γ+, defined by

γ−(t) = γ−[u](t) = (γ−1 (t), γ−2 (t)) := u−(α(t)) ∈ R
2,

γ+(t) = γ+[u](t) = (γ+
1 (t), γ+

2 (t)) := u+(α(t)) ∈ R
2,

t ∈ [a, b],

belong to Lip ([a, b],R2).
Notice that

γ−(a) = γ+(a), γ−(b) = γ+(b). (3.1)

(u3) There exists a finite set of points t0 := a < t1 < · · · < tm < tm+1 = b of [a, b] such that γ± ∈ C2([ti, ti+1])
curve for any i = 0, . . . ,m. Moreover we require

γ−(t) �= γ+(t), t ∈ (a, b). (3.2)

In order to state our last assumption (u4), we denote by Γ± = Γ±[u] the graphs of the maps γ±,

Γ− = Γ−[u] := {(t, ξ, η) ∈ [a, b] × R
2 : (ξ, η) = γ−(t)},

Γ+ = Γ+[u] := {(t, ξ, η) ∈ [a, b] × R
2 : (ξ, η) = γ+(t)},

and we set
Γ = Γ [u] := Γ− ∪ Γ+. (3.3)

In view of assumptions (u2) and (u3), Γ ⊂ R
3 is a closed, simple, Lipschitz and piecewise C2 curve obtained as

union of two curves; moreover (a, γ+(a)) and (b, γ+(b)) (coinciding with (a, γ−(a)) and (b, γ−(b)) respectively)
are nondifferentiability points of Γ . The next assumption requires introducing the projection on a plane spanned
by t and one of the two coordinates, say ξ, in the target space R

2
(ξ,η). We suppose that:

(u4) the orthogonal projection of Γ on the plane R
2
(t,ξ) is the boundary of a closed convex set K with non-empty

interior. In particular, without loss of generality,

γ−1 (t) < γ+
1 (t) , t ∈ (a, b),

and we assume that γ−1 is convex and γ+
1 is concave. Moreover thanks to hypothesis (u3),

γ±1 ∈ Lip([a, b])

and therefore (a, γ−1 (a)) and (b, γ−1 (b)) are nondifferentiability points of ∂K.
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Figure 2. (a) The open set Ω, the arc-length parametrization of the jump of the map u. Notice
that the closure of the jump is contained in Ω. (b) The Lipschitz curve Γ , union of the graphs
on [a, b] of the vector valued functions γ− and γ+. K is a closed convex set in R

2
(t,ξ), having non

empty interior, and Σmin is the area-minimizing surface spanning Γ . We observe that ∂K is not
differentiable at (a, γ+

1 (a)) and (b, γ+
1 (b)), and Γ is not differentiable at (a, γ+(a)), (b, γ+(b)).

Summarizing, ∂K = graph(γ−1 ) ∪ graph(γ+
1 ) is of class C2 up to a finite set of points containing (a, γ−1 (a)) and

(b, γ−1 (b)). In particular, ∂K is not of class C2.

Remark 3.1. The hypothesis that Γ has corners in (a, γ−(a)) and (b, γ−(b)) is related to the regularity as-
sumptions made on u in (u2): requiring that Γ is differentiable at (a, γ−(a)) and (b, γ−(b)) would prevent u to
belong to W 1,∞ (Ω \ Ju; R2

)
. On the other hand, it is useful to require u ∈ W 1,∞ (Ω \ Ju; R2

)
: indeed, in this

case, we can infer (see the Proof of Thm. 3.3, for example Step 8) that the approximating maps uε are Lipschitz
and thus in particular that they can be used to estimate A(u, Ω). In Section 4 we manage in weakening this
requirement (compare condition (ũ2)).

Before stating our first result, we need the following definition (for further details, see Sect. 6.3).

Definition 3.2. We denote by Σmin ⊂ R
3 = Rt × R

2
(ξ,η) an area-minimizing surface of disk-type spanning Γ ,

that is the image of the unit disk through a solution of the Plateau’s problem (A.1) for Γ .

Now we are in a position to state our first theorem.

Theorem 3.3. Suppose that u satisfies assumptions (u1)–(u4). Then there exists a sequence

(uε)ε ⊂ Lip(Ω; R2) (3.4)

converging to u in L1(Ω; R2) as ε→ 0+ such that

lim
ε→0+

A(uε, Ω) = A(u, Ω \ Ju) + H2(Σmin) =
∫

Ω

|M(∇u)| dxdy + H2(Σmin). (3.5)

In particular

A(u, Ω) ≤
∫

Ω

|M(∇u)| dxdy + H2(Σmin). (3.6)
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3.2. Proof of Theorem 3.3

The Proof of Theorem 3.3 is rather long, and we split it into several steps.

Step 1. Definition of the function z and representation of the surface Σmin.
Since Γ in (3.3) admits a convex one-to-one parallel projection, we can apply Theorem A.12. In particular, there
exists a scalar function z ∈ Cω(int(K)) ∩ C(K) such that

Σmin =
{
(t, ξ, η) ∈ Rt × R

2
(ξ,η) : (t, ξ) ∈ K, η = z(t, ξ)

}
= graph(z),

where z solves ⎧⎪⎨⎪⎩div

(
∇z√

1 + |∇z|2

)
= 0 in int(K),

z = φ on ∂K,

(3.7)

and
φ(t, γ±1 (t)) = γ±2 (t), t ∈ [a, b].

Remark 3.4. It is worthwhile to stress the different role played in (3.7) by the two components of the traces
γ± : the first components γ±1 determine the boundary of the domain K where we solve the non-parametric
Plateau’s problem, the Dirichlet condition of which is given by the second components γ±2 (see Fig. 2b).

Remark 3.5. Σmin is the unique area-minimizing surface among all graph-like surfaces on int(K) satisfying
the Dirichlet condition in (3.7).

Due to the presence of nondifferentiability points in ∂K (corners of K) and to the fact that the boundary
datum φ is just Lipschitz, we cannot directly infer from Theorem A.13 that z ∈ Lip(K). Since the Lipschitz
regularity of z is strictly related to the Lipschitz regularity of uε, in order to ensure inclusion (3.4) a smoothing
argument is required (see Fig. 3).

Step 2. Smoothing of ∂K and γ±2 : definition of the function zμ and of the surface Σμ
min.

For a suitable μ > 0 small enough, let us define a sequence (Kμ)μ∈(0,μ) of sets with the following properties:

− each Kμ is convex, closed, with non-empty interior and is contained in int(K);
− ⋃

μ∈(0,μ)Kμ = int(K);
− μ1 < μ2 implies Kμ1 ⊃ Kμ2 ;
− ∂Kμ ∈ C2;

see Figure 3a.
In order to apply Theorem A.13, we need not only to smoothen the set K, but also the Dirichlet condition

γ±2 at the same time. Firstly we observe that since both K and Kμ are convex sets and Kμ ⊂ K, there exist a
point O ∈ Kμ and a projection πμ acting as follows:

πμ : ∂Kμ → ∂K

p→ πμ(p),

where πμ(p) is the unique point of ∂K lying on the half-line rising from O and passing through p.
Now, using this projection and again the fact that γ±2 are Lipschitz and piecewise C2, for every μ ∈ (0, μ) we

can define a function φμ with the following properties:

− φμ : ∂Kμ → R is of class C2;
− the Hausdorff distance between the graph of φμ and Γ is less than μ;
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Figure 3. (a) The domain Kμ approximating K and the action of the projection map πμ.
(b) the graph of the boundary value function φμ, approximating the space curve Γ .

− there holds ∣∣φμ(p) − γ±2 (πμ(p))
∣∣

|p− πμ(p)| ≤ C, p ∈ ∂Kμ, (3.8)

where C is a positive constant independent of μ.
For any μ ∈ (0, μ) let us denote by zμ the solution to⎧⎪⎨⎪⎩div

(
∇zμ√

1 + |∇zμ|2

)
= 0 in int(Kμ),

zμ = φμ on ∂Kμ.

Theorem A.13 yields
zμ ∈ Lip(Kμ) ∩ Cω(int(Kμ)).

We denote by Σμ
min the graph of zμ. Applying ([14], Sect. 305) it follows15

lim
μ→0+

H2(Σμ
min) = H2(Σmin). (3.9)

In order to assert that the maps uε in Step 6 are Lipschitz continuous, in particular close to the crack tips
of Ju, we need to extend zμ to K.

Step 3. Extension of zμ on K: definition of the extended surface Σ̂μ.
We consider again the projection πμ defined in the previous step and we observe that for every point (t, ξ) ∈ K\Kμ

there exist a unique p ∈ ∂Kμ and ρ ∈ (0, 1] such that

(t, ξ) = ρp+ (1 − ρ)πμ(p).

Thus we extend zμ to K defining

ẑμ(t, ξ) :=

{
ρφμ(p) + (1 − ρ)φ(πμ(p)), (t, ξ) ∈ K \Kμ,

zμ(t, ξ), (t, ξ) ∈ Kμ.

15An argument leading to an equality of the type (3.9) in a nonsmooth situation was proved in [2].
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Notice that
ẑμ = z on ∂K. (3.10)

We denote by Σ̂μ the graph of ẑμ on K. Inequality (3.8) gives a uniform control of the gradient of ẑμ on K \Kμ,
which implies that

lim
μ→0+

H2(ẑμ(K \Kμ)) = 0.

Thus from (3.9)
lim

μ→0+
H2(Σ̂μ) = H2(Σmin). (3.11)

Remark 3.6. By construction, we have that ẑμ is Lipschitz continuous.

Step 4. Definition of the parameter space D.
For our goals, it is convenient to choose a parameter space D different from K, for parametrizing Σmin and Σ̂μ.
Set

σ(t) :=
γ+
1 (t) − γ−1 (t)

2
, t ∈ [a, b].

Let D ⊂ R
2
(t,s) be defined as follows:

D := {(t, s) : t ∈ [a, b], |s| ≤ σ(t)} ,
which has the same qualitative properties of K. In particular ∂D = graph(σ) ∪ graph(−σ), and D has two
angles in correspondence of t = a and t = b (same angles as the corresponding ones of K). We notice that the
segment (a, b) × {0} is contained in int(D), see Figure 4.

Step 5. Definition of the maps X and Xμ.
The construction of the function uε in the statement of the theorem is mainly based on the maps

X : D → R
3, Xμ : D → R

3,

defined as follows: for any (t, s) ∈ D

X(t, s) :=
(
t, s+

γ+
1 (t) + γ−1 (t)

2
, z

(
t, s+

γ+
1 (t) + γ−1 (t)

2

))
=(t,X2(t, s), X3(t, s)),

Xμ(t, s) :=
(
t, s+

γ+
1 (t) + γ−1 (t)

2
, ẑμ

(
t, s+

γ+
1 (t) + γ−1 (t)

2

))
=(t,Xμ2(t, s), Xμ3(t, s)).

(3.12)

Remark 3.7. We stress that the maps X and Xμ are semicartesian. In particular, where they are differentiable,
their gradient never vanishes on D. Observe also that, from Remark 3.6, it follows

Xμ ∈ Lip(D; R3). (3.13)

Step 6. Definition of the map uε.
For the definition of uε we need some preparation. Denote by ⊥ the counterclockwise rotation of π/2 in R

2
(x,y).

Hypothesis (u1) implies that there exists δ > 0 and a closed set contained in Ω and containing Ju of the form
Λ(R), where R := [a, b] × [−δ, δ] and

Λ(t, s) := α(t) + sα̇(t)⊥, (t, s) ∈ R,
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s

α(t)

t t

Figure 4. We display the domain D = D+ ∪D− obtained by symmetrizing K. It is contained
in the rectangle R = [a, b]× [−δ, δ] on which it is defined the diffeomorphism Λ; Λ([a, b]× {0})
is exactly the closure Ju of the discontinuity curve.

is a diffeomorphism of class C1(R;Λ(R)), see Figure 4. If Λ−1 : Λ(R) → R is the inverse of Λ, we have

Λ−1(x, y) = (t(x, y), s(x, y)),

where

− s(x, y) = d(x, y) is the distance of (x, y) from Ju on the side of Ju corresponding to the trace u+, and minus
the distance of (x, y) from Ju on the other side,

− t(x, y) is so that α(t(x, y)) = (x, y) − d(x, y)∇d(x, y) is the unique point on Ju nearest to (x, y).

Since Ju is of class C2, we have that d is of class C2 on Λ(R)16 and t is of class C1 on Λ(R).
We can always suppose

D \ ((a, 0) ∪ (b, 0)) ⊂ int(R), (3.14)

since, if not, we choose c ∈ (0, 1) so that Dc := {(t, s) ∈ R
2 : (t, s/c) ∈ D} ⊂ R, and we prove the result with

Dc in place of D and Xc(t, s) := X(t, s/c) in place of X(t, s).
Set R+ := [a, b] × (0, δ], R− := [a, b] × [−δ, 0), and

D+ := D ∩R+, D− := D ∩R−.

For any ε ∈ (0, 1) let
Dε := {(t, s) ∈ R

2 : (t, s/ε) ∈ D},
and

D±
ε := {(t, s) ∈ R

2 : (t, s/ε) ∈ D±},
so that

int(Dε) ⊃ (a, b) × {0}.
We set Rε := [a, b]× (−εδ, εδ) and R+

ε := [a, b]× (0, εδ], R−
ε := [a, b]× [−εδ, 0). From (3.14), we have Dε ⊂ Rε.

We are now in a position to define the sequence (uε) ⊂ Lip(Ω; R2). We do this in three steps as follows:

− outer region. If (x, y) ∈ Ω \ Λ(Rε)
uε(x, y) := u(x, y); (3.15)

16It is sufficient to slightly extend Ju and consider d on a small enough tubolar neighborhood of the extension.
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Φ+
ε

Figure 5. The action of the map T+
ε . Any oblique small segment on the top left is mapped in

the parallel longer segment reaching the fracture, on the top right.

− opening the fracture: intermediate region. If (x, y) ∈ Λ(R±
ε \D±

ε )

uε(x, y) := u(T±
ε (x, y)), (3.16)

where T±
ε := Λ ◦ Φ±

ε ◦ Λ−1 with

Φ+
ε : R+

ε \D+
ε → R+

ε , Φ+
ε (t, s) :=

(
t,
s− εσ(t)
δ − σ(t)

δ

)
,

Φ−
ε : R−

ε \D−
ε → R−

ε , Φ−
ε (t, s) :=

(
t,
s+ εσ(t)
δ − σ(t)

δ

)
.

Notice that T±
ε is the identity on ∂R±

ε \ ([a, b] × {0}), see Figure 5.

− opening the fracture: inner region. If (x, y) ∈ Λ(Dε)

uε(x, y) :=
(
Xμε2

(
t(x, y),

d(x, y)
ε

)
, Xμε3

(
t(x, y),

d(x, y)
ε

))
, (3.17)

for a suitable choice of the sequence (με)ε converging to 0 as ε → 0+, that will be selected later17.

Remark 3.8. We have
uε ∈ Lip(Ω; R2). (3.18)

Indeed

− by assumption (u2) it follows u ∈W 1,∞(Ω \ Λ(Rε); R2), hence uε ∈ W 1,∞(Ω \ Λ(Rε); R2);
− in Λ(Dε) the regularity of uε is the same as the Lipschitz regularity of Xμε , see (3.13);
− in Λ(Rε \Dε), uε is defined as the composition of u ∈W 1,∞ (Ω \ Ju; R2

)
and a Lipschitz deformation.

Since by construction uε is continuous (remember (3.10)), inclusion (3.18) follows.

17See the conclusion of Step 9.
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Remark 3.9. We have
sup

ε∈(0,1]

‖uε‖L∞(Ω;R2) < +∞,

since u ∈ L∞(Ω; R2) by assumption (u1) and, for some μ > 0, supμ∈(0,μ) ‖Xμ‖L∞(D) < +∞. Therefore uε → u
in L1(Ω; R2). Indeed ∫

Ω

|uε − u| dxdy =
∫

Λ(Rε)

|uε − u| dxdy → 0

as ε → 0+, because the Lebesgue measure of Λ(Rε) tends to 0.

Step 7. We have
lim

ε→0+
A(uε, Ω \ Λ(Rε)) = A(u, Ω \ Ju).

Indeed by (3.15),
A(uε, Ω \ Λ(Rε)) = A(u, Ω \ Λ(Rε)).

Now, let us show that the contribution to the area in the intermediate region Λ(Rε \ Dε) (Def. (3.16)) is
negligible as ε → 0+.

Step 8. We have
lim

ε→0+
A(uε, Λ(R±

ε \D±
ε )) = 0.

We make the computation in Λ(R+
ε \D+

ε ), the case in Λ(R−
ε \D−

ε ) being similar. To simplify notation, we write
Tε instead of T+

ε , and set Tε = (Tε1, Tε2).
Take a constant C > 0 independent of ε ∈ (0, 1) so that

A(uε, Λ(R+
ε \D+

ε )) =
∫

Λ(R+
ε \D+

ε )

|M(∇uε)| dxdy

≤ C

∫
Λ(R+

ε \D+
ε )

[
1 + |∂xuε1| + |∂xuε2| + |∂yuε1| + |∂yuε2| + |∂xuε1∂yuε2 − ∂yuε1∂xuε2|

]
dxdy

(3.19)

where for i = 1, 2

∂xuεi = ∂xui∂xTε1 + ∂yui∂xTε2, ∂yuεi = ∂xui∂yTε1 + ∂yui∂yTε2.

From the definition of Tε

∇Tε(x, y) = ∇Λ (Φε(t(x, y), s(x, y)))
T ∇Φ+

ε (t(x, y), s(x, y))∇Λ−1(x, y).

Λ is a C1 diffeomorphism, thus all components of its Jacobian matrix are bounded; on the other hand the
Jacobian matrix of the transformation Φ+

ε is, for almost every (t, s) ∈ R+
ε \D+

ε ,

∇Φ+
ε (t, s) =

⎡⎣ 1 0
−δσ̇(t)[δε− s]

[δ − σ(t)]2
δ

δ − σ(t)

⎤⎦ .
The denominator (δ − σ(t)) is strictly positive; moreover σ ∈ Lip([a, b]) and thus all terms of ∇Φ+

ε are uniformly
bounded with respect to ε.

Then, since both ∇Tε and ∇u are bounded in the region considered, we obtain that also the integrand on
the right hand side of (3.19) can be controlled by a constant independent of ε and

lim
ε→0+

A(uε, Λ(R+
ε \D+

ε )) = 0.
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The main point is to show that the definition given in (3.17) in the relevant region Λ(Dε) is such that the
corresponding area gives origin to the term H2(Σmin) in the limit ε→ 0+, and it is done in the next step.

Step 9. We have
lim

ε→0+
A(uε, Λ(Dε)) = H2(Σmin). (3.20)

Let us fix μ > 0; we denote by uμ
ε the function defined on Λ(Dε) as

uμ
ε (x, y) := (Xμ2(t(x, y), d(x, y)/ε), Xμ3(t(x, y), d(x, y)/ε)) = (uμ

ε1(x, y), u
μ
ε2(x, y)).

In Λ(int(Dε)) we have

∇uμ
ε1 =

⎛⎜⎝∂tXμ2 ∂xt+
1
ε
∂sXμ2 ∂xd

∂tXμ2 ∂yt+
1
ε
∂sXμ2 ∂yd

⎞⎟⎠ , ∇uμ
ε2 =

⎛⎜⎝∂tXμ3 ∂xt+
1
ε
∂sXμ3 ∂xd

∂tXμ3 ∂yt+
1
ε
∂sXμ3 ∂yd

⎞⎟⎠ ,

where the left hand sides and t and d are evaluated at (x, y), while Xμ2 and Xμ3 are evaluated at
(t(x, y), d(x, y)/ε).

Therefore ∣∣∇uμ
ε1

∣∣2 +
∣∣∇uμ

ε2

∣∣2 =
1
ε2
G1 +

2
ε
G2 +G3 in Λ(int(Dε)), (3.21)

with ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G1 :=

(
(∂sXμ2)2 + (∂sXμ3)2

)
|∇d|2 = (∂sXμ2)2 + (∂sXμ3)2,

G2 :=
(
∂tXμ2∂sXμ2 + ∂tXμ3∂sXμ3

)
∇t · ∇d,

G3 :=
(
(∂tXμ2)2 + (∂tXμ3)2

)
|∇t|2,

where we have used the eikonal equation for the signed distance function

|∇d|2 = 1 in int(Λ(R)).

Notice that |∇t|2 is uniformly bounded with respect to ε on Dε, by the assumption that Ju is of class C2.
A direct computation shows that

∂xuμ
ε1∂yuμ

ε2 − ∂xuμ
ε2∂yuμ

ε1 =
1
ε2
E1 +

1
ε
Ẽ2 + E3, (3.22)

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E1 := ∂sXμ2∂xd∂sXμ3∂yd− ∂sXμ2∂yd∂sXμ3∂xd = 0,

Ẽ2 := ∂tXμ2∂sXμ3

(
∂xt∂yd− ∂yt∂xd

)
+ ∂tXμ3∂sXμ2

(
∂xd∂yt− ∂yd∂xt

)
=
(
∂tXμ2∂sXμ3 − ∂tXμ3∂sXμ2

)
∇t · ∇d⊥,

E3 := ∂tXμ2∂xt∂tXμ3∂yt− ∂tXμ2∂yt∂tXμ3∂xt = 0.

(3.23)

Set
E2 := ∂tXμ2∂sXμ3 − ∂tXμ3∂sXμ2. (3.24)

From (3.22), (3.23) and (3.24) we have(
∂xuμ

ε1∂yuμ
ε2 − ∂xuμ

ε2∂yuμ
ε1

)2 =
1
ε2

(E2)2 |∇t · ∇d⊥|2, (3.25)

where again Xμ2 and Xμ3 are evaluated at (t(x, y), d(x, y)/ε).
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Notice that if (x, y) ∈ Λ(Dε) then the vector ∇d⊥(x, y) = ∇d⊥(π(x, y)) is tangent to Ju at π(x, y), and
has unit length. In addition, t is constant along the normal direction to Ju, so that if (x, y) ∈ Λ(Dε) then
∇t(x, y) = ∇t(π(x, y)) + O(ε), and ∇t(π(x, y)) is also tangent to Ju, where

|O(ε)| ≤ c‖κ‖L∞(Ju) max
t∈[a,b]

(σ+(t) − σ−(t)),

κ being the curvature of Ju, for a positive constant c independent of ε.
Since α is an arc-length parametrization of Ju, it follows that |∇t| = 1 on Ju. Therefore

|∇t · ∇d⊥| = 1 + O(ε) on Λ(Dε), (3.26)

and hence from (3.25) (
∂xuμ

ε1∂yuμ
ε2 − ∂xuμ

ε2∂yuμ
ε1

)2 =
1
ε2

(E2)2(1 + O(ε)).

Whence, from (3.21) and (3.25),

A(uμ
ε , Λ(Dε))

=
∫

Λ(Dε)

√
1 + |∇uμ

ε1|2 + |∇uμ
ε2|2 + (∂xuμ

ε1∂yuμ
ε2 − ∂xuμ

ε2∂yuμ
ε1)

2 dxdy

=
∫

Λ(Dε)

√
1 +G3 +

2
ε
G2 +

1
ε2

[
G1 + (E2)2(1 + O(ε))

]
dxdy.

The area formula implies that

A(uμ
ε , Λ(Dε)) =

∫
Dε

√
1 + Ĝ3 +

2
ε
Ĝ2 +

1
ε2

[
Ĝ1 + (Ê2)2(1 + O(ε))

]
|det(Λ)| dtds.

Here, for i = 1, 2, 3, Ĝi (respectively Ê2) equals Gi (respectively E2) with (x, y) replaced by Λ−1(x, y) = (t, s),
where we have α(t) = π(x, y) and s = d(x, y); in particular Xμ2 and Xμ3 are evaluated at (t, s/ε). Remember
also that |det(Λ)| = |1− κs|, κ being the curvature of Ju at α(t). Making the change of variable s/ε→ s we get

A(uμ
ε , Λ(Dε)) =

∫
D

√
ε2 + ε2Ĝ3 + 2εĜ2 +

[
Ĝ1 + (Ê2)2(1 + O(ε))

]
|1 − εκs| dtds,

where now Xμ2 and Xμ3 are evaluated at (t, s), and we notice that the term O(ε) is unaffected by the variable
change.

Hence, by our regularity assumption on Ju and (3.26), we deduce

lim
ε→0+

A(uμ
ε , Λ(Dε)) =

∫
D

√
Ĝ1 + (Ê2)2 dtds. (3.27)

From (3.12) it follows

DX =

⎡⎣ 1 0
∂tXμ2 ∂sXμ2

∂tXμ3 ∂sXμ3

⎤⎦ ,
so that using the area formula

H2(Σ̂μ) =
∫

D

√
det(dxT

μDXμ) dt ds

=
∫

D

√
(∂sXμ2)2 + (∂sXμ3)2 + (∂tXμ2∂sXμ3 − ∂tXμ3∂sXμ2)2 dt ds,
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which coincides with the right hand side of (3.27). This shows that for any μ ∈ (0, μ)

lim
ε→0+

A(uμ
ε , Λ(Dε)) = H2(Σ̂μ).

Recalling (3.11), by a diagonalization process we can choose a sequence (με)ε such that, defining

uε(x, y) := uμε
ε (x, y), (x, y) ∈ Λ(Dε),

we get
lim

ε→0+
A(uε, Λ(Dε)) = H2(Σmin).

This concludes the proof of (3.20) and hence of (3.5). Inequality (3.6) follows by observing that Lip(Ω; R2) ⊂
D(Ω; R2) (see (2.2)) and applying Lemma C.2.

4. Parametric case

In this section we relax the hypotheses of Theorem 3.3, in order to allow area-minimizing surfaces not of
graph-type and possibly self-intersecting.

4.1. Hypotheses on u and statement in the parametric case

We consider a map u = (u1, u2) satisfying condition (u1) and:

(ũ2) − u1 ∈ C1
(
Ω \ Ju

)
, u2 ∈W 1,2

(
Ω \ Ju

)
;

− M(∇u) ∈ L1
(
Ω \ Ju; R6

)
;

− for ζ > 0 small enough, denoting by Ba
ζ (respectively Bb

ζ) the open disk centered at α(a) (respectively

α(b)) with radius ζ, we have u1 ∈ W 1,∞
(
Ω \ Ju ∪Ba

ζ ∪Bb
ζ

)
, and the following holds: if, for almost

every ζ, we consider the restriction of u1 to ∂Ba
ζ , then the L∞-norm of the derivative of such a restriction

blows up of the order of 1/ζ (and similarly at Bb
ζ).

(ũ3) The two traces γ± belong to C ([a, b]; R2
) ∩BV ([a, b]; R2

)
and (3.1) and (3.2) hold.

(ũ4) Γ = Γ [u], defined in (3.3), is such that the image Σmin of an area-minimizing disk-type solution of the
Plateau’s problem spanning Γ admits a semicartesian parametrization X , with a domain D (Def. 2.2)
satisfying the following two conditions:
− (a, b) × {0} ⊂ int(D),
− if σ+ (respectively σ−) is not Lipschitz18 in [a, b], then it is strictly convex (respectively strictly concave)

in a (right) neighbourhood of a. Similar conditions are required at b.

Sufficient conditions on Γ ensuring that Σmin admits a semicartesian parametrization are given in Section 5.

Remark 4.1. Theorem 4.3 remains valid if we exchange the hypotheses on the two components of u.

An example of map satisfying (u1), (ũ2)−(ũ4) is given in Example 5.6 below.

Remark 4.2. Condition (u1) and the first two items of hypothesis (ũ2) guarantee that u ∈ D
(
Ω \ Ju; R2

)
.

We also observe that assuming in (ũ2) the weaker condition u1 ∈W 1,2
loc

(
Ω \ Ju

)
is not enough for our proof to

work, since we need uμ
ε to be, in the intermediate region, of class W 1,2

(
Λ(Rε \Dμ

ε ); R2
)
, see the expression in

Step 2 below.

Theorem 4.3. Suppose that u satisfies assumptions (u1), (ũ2)–(ũ4). Then there exists a sequence

(uε)ε ⊂ W 1,2(Ω; R2)

converging to u in L1(Ω; R2) as ε→ 0+ satisfying (3.5). Moreover (3.6) holds.

18 Recall that σ± ∈ Liploc(a, b).
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b

Figure 6. Modification of the domain D when the gradient of σ+ blows up (in this case only
near t = a).

4.2. Proof of Theorem 4.3

As we have already remarked, hypothesis (ũ2) guarantees that u ∈ D(Ω \ Ju; R2) and hence the expression
A(u, Ω \ Ju) in (3.5) is meaningful.

To prove the theorem, we follow the line of reasoning of the Proof of Theorem 3.3. However we now have to
overcome two different problems. More precisely,

− the derivative of σ±, whose graphs form the boundary of the D, could be unbounded at t = a and t = b; this
implies that also |∇Tε| could be unbounded;

− near the crack tips the map u is not regular enough to guarantee straightforwardly that uε is sufficiently
regular.

Also in this case, we split the proof into various steps. In the first step we construct a family of surfaces Σμ

approximating Σmin and parametrized on suitable domains Dμ ⊆ D bounded by the graphs of σ±
μ ∈ Lip([a, b]).

Step 1. If σ± ∈ Lip([a, b]), we do not need to approximate Σ, thus we can pass directly to the next step with
Xμ = X and Dμ = D. Hence we can assume σ± ∈ Liploc([a, b]) \ Lip([a, b]).

Let us suppose for example that the graph of σ+ near the point (a, 0) is locally concave, with (right) derivative
σ̇+(a) = +∞, while the derivative of σ+ near b is bounded and σ− ∈ Lip([a, b])19, see Figure 6. Then we modify
the set D and the map X near the point (a, 0) as follows.

For a small positive constant c we adopt the following notation:

− �c is the portion of the line over [a, b] passing through (a, 0) with angular coefficient c−1, that is:

�c(t) =
t− a

c
, t ∈ [a, b];

− Pc is the first intersection point of �c with ∂D and its coordinates are denoted by (tc, σ+(tc)) (tc > a thanks
to our assumptions on σ+).

For every μ > 0 small enough, we define

σ+
μ :=

{
�μ in [a, tμ),
σ+ in [tμ, b],

19If also the other derivatives blow up, the construction of Xμ and Dμ is similar.
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and
Dμ := {(t, s) : t ∈ [a, b], σ−(t) ≤ s ≤ σ+

μ (t)}.
In order to define the map Xμ on Dμ, we need to consider also the line �2μ and the corresponding intersection
point P2μ with ∂D. For any t ∈ [a, t2μ], we denote by p(t) (respectively r(t), q(t)) the point having first
coordinate t, on the segment joining (a, 0) and P2μ (respectively joining (a, 0) and ∂Dμ, (a, 0) and ∂D); of
course, r(t) = q(t) for t ∈ [tμ, t2μ] (see Fig. 6).

Thus we define
Xμ : Dμ → R

3

as follows: for (t, s) ∈ Dμ,

Xμ(t, s) :=

{
φμ(t, s) if t ∈ [a, t2μ), s ≥ �2μ(t),
X(t, s) otherwise,

where φμ is linear along the vertical lines (i.e., parallel to the s-direction), φμ(p(t)) := X(p(t)) and φμ(r(t)) : =
X(q(t)). We observe that Xμ is still a semicartesian parametrization.

Denoting by Σμ the image of Dμ through Xμ, we have H2(Σμ) → H2(Σ) as μ→ 0+ ([14], Sect. 305).

Step 2.
For every μ > 0 small enough, let us define the sequence (uμ

ε ) as follows:

uμ
ε1 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1 in Ω \
(
Λ(Rε) ∪Ba

δε/2 ∪Bb
δε/2

)
,

u(T μ
ε )1 in Λ(Rε \Dμ

ε ) \
(
Ba

δε/2 ∪Bb
δε/2

)
,

Xμ2(t, s/ε) in Λ(Dμ
ε ) \

(
Ba

δε/2 ∪Bb
δε/2

)
,

ψμ
ε in Ba

δε/2 ∪Bb
δε/2,

and

uμ
ε2 :=

⎧⎪⎨⎪⎩
u2 in Ω \ Λ(Rε),
u(T μ

ε )2 in Λ(Rε \Dμ
ε ),

Xμ3(t, s/ε) in Λ(Dμ
ε ),

where:

− Λ, R, t = t(x, y), s = s(x, y) are defined as in Step 6 of the Proof of Theorem 3.3, and Dμ
ε := {(t, s) ∈ R

2 :
(t, s/ε) ∈ Dμ};

− T μ
ε is defined in (3.16), with Dμ in place of D and σ±

μ instead of ±σ, and corresponds to T+
ε in Figure 6;

− Ba
δε/2 (respectively Bb

δε/2) is the open disk centered at α(a) (respectively α(b)) with radius δε/2;
− the function ψμ

ε is linear along the radii and is equal to u1(α(a)) and to the trace v of uμ
ε1 on ∂Ba

δε/2

from the complement of Ba
δε/2; namely, if z ∈ Ba

δε/2, we have ψμ
ε (z) = 2|z−α(a)|

δε v
(

δε(z−α(a))
2|z−α(a)| + α(a)

)
+

δε/2−|z−α(a)|
δε/2 γ+

1 (a) (and similarly in Bb
δε/2).

By construction and thanks to hypotheses (u1), (ũ2)−(ũ4), the sequence (uμ
ε ) is in W 1,2(Ω; R2).

We have:

− A
(
uμ

ε , Ω \
(
Λ(Rε) ∪Ba

δε/2 ∪Bb
δε/2

))
= A

(
u, Ω \

(
Λ(Rε) ∪Ba

δε/2 ∪Bb
δε/2

))
by definition;

− A
(
uμ

ε , Λ(Rε \Dμ
ε ) \ (Ba

δε/2 ∪Bb
δε/2)

)
→ 0 as ε → 0+ for fixed μ, because of the estimates done in Step 8 of

the Proof of Theorem 3.3, since |∇T μ
ε | is bounded;

− A
(
uμ

ε , Λ(Dμ
ε ) \ (Ba

δε/2 ∪Bb
δε/2)

)
→ H2(Σμ) as ε → 0+: indeed the computations done in Step 9 of

Theorem 3.3 are still valid, since they depend only on the fact that the parametrization is in semicarte-
sian form.
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Thus
lim

ε→0+
A
(
uμ

ε , Ω \
(
Ju ∪

(
(Ba

δε/2 ∪Bb
δε/2) \ Λ(Rε)

)))
= A (u, Ω \ Ju

)
+ H2(Σμ).

In order to compute A(uμ
ε , B

a
δε/2) we observe that

|∇ψμ
ε | ≤

C

ε
(4.1)

for some constant C > 0 independent of ε and μ. Indeed, for z := (x, y) and |z−α(a)| ≤ δε/2, writing z−α(a)
|z−α(a)| =

(cos θ, sin θ) and v
(

δε(z−α(a))
2|z−α(a)| + α(a)

)
= v̂(θ), we have ∇ψμ

ε (z) = 2(z−α(a))
δε|z−α(a)|

(
v
(

δε(z−α(a))
2|z−α(a)| + α(a)

)
− γ+

1 (a)
)

+

2v̂′(θ) |z−α(a)|
δε ∇θ(z) almost everywhere, and ∇θ(z) is −1-homogeneous. Hence ‖∇ψμ

ε ‖∞ is bounded by the L∞-
norm of the radial part, which is of the order of ‖v‖∞/ε, plus the L∞-norm of the angular part, which is of the
order of ‖v̂′‖∞/ε. See Example 5.6 for related comments.

Thus, for a possibly different value of the constant C (still independent of ε and μ),

A(uμ
ε , B

a
δε/2 \ Ju)

≤ C

∫
Ba

δε/2\Ju

[1 + |∇ψμ
ε | + |∇uμ

ε2| + |∂xψ
μ
ε ∂yu

μ
ε2 − ∂yψ

μ
ε ∂xu

μ
ε2|] dxdy

≤ C
[O(ε2) + O(ε)

]
+ (1 + C)

∫
Ba

δε/2\Ju

|∇uμ
ε2| dxdy,

where we have used (4.1). Recalling that on Λ(Dμ
ε ) we have uε2(x, y) = Xμ3(t, s/ε), the term∫

(
Ba

δε/2∩Λ(Dμ
ε )
)
\Ju

|∇uμ
ε2| dxdy

is negligible as ε → 0+. On the other hand on Ba
δε/2 \ Λ(Rε) we have uμ

ε2 = u2, and thus∫
Ba

δε/2\Λ(Rε)

|∇uμ
ε2|dxdy = O(ε2).

Finally we get an analogous result also on Ba
δε/2 ∩Λ(Rε \Dμ

ε ) since here uμ
ε2 is defined as (u(T μ

ε ))2 and T μ
ε has

bounded gradient and tends to the identity.
Thus the area contribution on Ba

δε/2 is asymptotically negligible (and similarly on Bb
δε/2).

Finally, since H2(Σμ) tends to H2(Σmin) as μ→ 0+, we can choose uε as uμε
ε for a suitable sequence (με) of

positive numbers converging to zero, so that we get (3.5). Recalling that W 1,2(Ω; R3) ⊂ D(Ω; R2) and applying
Lemma C.2, we obtain (3.6).

Remark 4.4. If u satisfies (u1), (ũ2), (ũ3) and Γ [u], defined in (3.3), is contained in a plane Π , then

A(u, Ω) = A(u, Ω \ Ju) + H2(Σmin).

Indeed Σmin is of course the portion of Π bounded by Γ ; moreover, thanks to the definition of Γ , the plane Π
cannot be orthogonal to the unit vector (1, 0, 0). Thus, either the projection of Σmin on the plane R

2
(t,ξ), or its

projection on R
2
(t,η), has non-empty interior. On the symmetrized of this domain we can define a semicartesian

parametrization of Σmin and, applying Theorem 4.3, we find

A(u, Ω) ≤ A(u, Ω \ Ju) + H2(Σmin).

On the other hand, in this case H2(Σmin) = |Dsu|(Ω) thus, using relation (1.2), we have also

A(u, Ω) ≥ A(u, Ω \ Ju) + H2(Σmin).
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5. On the existence of semicartesian parametrizations

Our goal is to state some conditions on Γ which allow to construct a semicartesian parametrization for the
corresponding area-minimizing surface, in order to apply Theorem 4.3 for suitable maps u. Theorem 5.2 provides
some sufficient conditions for this purpose: roughly, we shall assume that Γ is the union of the graphs of two
analytic curves, joining in an analytic way and satisfying a further assumption of non degeneracy. We stress
that the analyticity forces the gradient of u to blow up near the crack tips.

The Proof of Theorem 5.2 is quite involved and it is postponed to Section 6.
We start with the following definition.

Definition 5.1 (Condition (A)). We say that a curve Γ union of two graphs satisfies Condition (A) if there
exists an injective analytic map

g = (g1, g2, g3) : ∂B → Rt × R
2
(ξ,η)

such that
Γ = g(∂B)

where, still denoting for simplicity by g the composition g ◦b (see (2.1)), and using the prime for differentiation
with respect to θ, the following properties are satisfied:

|g′(θ)| �= 0, θ ∈ [0, 2π),
g ′
1 < 0 in (θn, θs),

g ′
1 > 0 in (θs, θn),

g ′′
1 (θs) > 0, g ′′

1 (θn) < 0.

(5.1)

Note carefully that the last three conditions involve the first component of g only.
Our result is the following.

Theorem 5.2 (Existence of semicartesian parametrizations). Let Γ ⊂ R
3 be a curve union of the two graphs

of γ± and satisfying Condition (A). Then there exist an analytic, connected, simply connected and bounded set
D, and a disk-type semicartesian (Def. 2.2) area-minimizing solution X ∈ Cω

(
D; R3

)
of the Plateau’s problem

spanning Γ , with X free of interior branch points and of boundary branch points. Moreover,

(i) near the point (a, 0), the curve ∂D is of the form {(τ(s), s)}, for |s| small enough, with

τ(s) = a+ λ2s
2 + o(s2), (5.2)

for λ2 > 0, and similarly near the point (b, 0);
(ii) the Lipschitz constant of σ± on a relatively compact subinterval of (a, b) is bounded by the Lipschitz constant

of the restriction of γ± on the same subinterval.

Remark 5.3. The semicartesian parametrization provided by Theorem 5.2 could not satisfy the condition

(a, b) × {0} ⊂ int(D).

We can obtain a semicartesian parametrization fulfilling condition (ũ4) of Theorem 4.3 by symmetrizing the
domain, as in Step 4 of the Proof of Theorem 3.3

From Remark 5.3 and Theorems 4.3 and 5.2 we get the following result.

Corollary 5.4. Suppose that u satisfies (u1), (ũ2), (ũ3) and that Γ [u] satisfies Condition (A). Then there
exists a sequence

(uε)ε ⊂ W 1,2
(
Ω; R2

)
converging to u in L1(Ω; R2) as ε→ 0+ satisfying (3.5). Hence (3.6) holds.
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Remark 5.5. Before proving Theorem 5.2, the following comments are in order.

− Note the special structure of the curve Γ [u] in Corollary 5.4: it is not the graph of an R
2-valued function

over Ju, but it is instead the union of two analytic graphs, joining together in an analytic way, of the two
R

2-valued functions u±. Since globally the map g is required to be analytic, it results that u± are not
independent.

− The nondegeneracy requirement (5.1) of g at the south and north poles are necesssary in order for the proof
of Theorem 6.1 to work. In particular, it is needed to ensure that the restriction of the height function h to
∂B is a Morse function (Step 4 of the Proof of Thm. 6.1).

− As we shall see, the analyticity requirement in hypothesis (ũ4) is needeed in order to prevent the existence of
boundary branch points in a disk-type area-minimizing solution of the Plateau’s problem with boundary Γ .

Example 5.6 (Maps satisfying the hypotheses of Thm. 5.2). In this example we present a map u satisfying
(u1), (ũ2) and (ũ3) and whose Γ = Γ [u] satisfies Condition (A) and hence, from Theorem 5.2, also condition
(ũ4). The map u is defined so that Γ is a perturbation of the circle: indeed Γ is exactly the boundary of the
unit disk contained in the plane R

2
(t,ξ) whenever u2 is identically zero, and the nondegeneracy condition (5.1)

holds. It is clear that, starting from u, several other maps satisfying the same conditions can be constructed.
Let Ω be a bounded open connected subset of R

2
(x,y) containing the square [−1, 1]2. Let us consider the map

ũ = (ũ1, u2) : Ω → R
2 defined by

ũ1(x, y) :=

{√
1 − x2 + y2 if |x| ≤ 1, y ≥ 0,

−
√

1 − x2 + y2 if |x| ≤ 1, y < 0,

ũ1(x, y) := y, (x, y) ∈ Ω \ ([−1, 1] × R),

(5.3)

and with u2 ∈ C1(Ω)∩W 1,∞(Ω), such that Condition (A) holds (the simplest example being of course u2 ≡ 0).
We notice that J ũ = [−1, 1] × {0}, and ũ1 ∈ W 1,∞(Ω \ (J ũ ∪ B− ∪ B+)

)
, where B− (respectively B+)

is a sufficiently small ball centered at (−1, 0) (respectively at (1, 0)). In addition, ũ1 ∈ W 1,1
(
Ω \ J ũ

)
, but

ũ1 /∈ W 1,2
(
Ω \ J ũ

)
, as it can be checked directly (compare Rem. 4.2). Since the gradient of u2 is bounded, we

get M(∇ũ) ∈ L1
(
Ω \ J ũ; R6

)
.

Observe that ∇ũ1 = (0, 1) in Ω \ ([−1, 1]× R), while the limit of ∇ũ1 from the side of Ω ∩ ((−1, 1) × R), as
(x, y) → (−1, y) with y �= 0, is (1/y, 1); hence the x-component of ∇ũ1 is discontinuous along {(x, y) ∈ Ω : x =
−1, y �= 0}, and blows up at (−1, 0), of the order of magnitude given by 1/|y|. A similar behaviour holds along
{(x, y) ∈ Ω : x = 1, y �= 0}.

In this example we have D = {(t, s) : t2 + s2 ≤ 1} and, identifying t with x, γ±[ũ](t) =
(±√

1 − x2, u2(x, 0)
)

for |t| ≤ 1, and λ2 = 1
2 in (5.2). Γ is a closed simple analytic curve lying on the cylinder (in the space Rt×R

2
(ξ,η))

with base the unit disk in R
2
(t,ξ), thus the existence of a semicartesian parametrization is obvious since the area-

minimizing surface spanning Γ can be described as a graph on the tξ-plane (Thm. A.12). Notice that it is
possible20 to modify ũ1 in Ω− := {(x, y) ∈ Ω : x < −1} (respectively in Ω+ := {(x, y) ∈ Ω : x > 1}) into a
function u, so that the function u1 defined as u1 := ũ1 in Ω \ (Ω− ∪Ω+), and u1 := u in Ω− ∪Ω+, satisfies u1 ∈
C1(Ω\Ju)∩W 1,1

(
Ω \ Ju

)
. Moreover u := (u1, u2) satisfies Ju = Jũ, u± = ũ± on Ju, M(∇u) ∈ L1

(
Ω \ Ju; R6

)
and u ∈ D(Ω \ Ju).

We stress that Γ satisfies (A) and thus we could apply the argument in the Proof of Theorem 5.2. However,
it is easy to modify this example keeping the same behaviour near the poles but losing the convexity of the
region enclosed by the projection of Γ .

20The construction of u, for instance in Ω− and for positive values of y, can be done as follows: take ȳ > 0 and consider the
curve obtained as the intersection of the graph of ũ1 with the plane {y = ȳ}. This curve is a Lipschitz graph over the x-axis: locally
around x = −1 it is constantly equal to ȳ for x < −1, and increases, for increasing values of x > −1, with a concave part making
an angle smaller than π/2 at x = −1. It is enough to smoothen such an angle from the side where x < −1, continuing in a C1 way
the concave part for x < −1, and pasting it (therefore, forming a local minimum) with the value of ȳ in a sufficiently short interval,
keeping the extension positive and keeping the bound of the order of 1/|ȳ| for the derivative.
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We observe that similar examples can be constructed replacing in (5.3) the square root with a function which
is (a branch of) the inverse of a smooth function t = f(ξ), with f(0) = f ′(0) = 0 and f ′′(0) > 0 (with the
obvious definition in Ω \ ([−1, 1] × R)).

Example 5.7. Two other interesting examples of curves Γ satisfying Condition (A) have already been discussed
in the introduction and plotted in Figure 1.

6. Proof of Theorem 5.2

In this section we prove Theorem 5.2. The proof is involved, and we split it into various points.
Let Σmin be an area-minimizing surface spanning Γ and having the topology of the disk. Let

Y : (u, v) ∈ B ⊂ R
2
(u,v) → (Y1(u, v), Y2(u, v), Y3(u, v)) ∈ R

3 = Rt × R
2
(ξ,η) (6.1)

be a conformal parametrization of Σmin (see Thm. A.2).
Since we can assume the three points condition (Remark A.3), we suppose that

Y (0,−1) = (a, γ+(a)) = (a, γ−(a)) =: S

Y (0, 1) = (b, γ+(b)) = (b, γ−(b)) =: N, (6.2)

and we fix a third condition as we wish (respecting the monotonicity on the boundary parametrization), for
definitiveness

Y (1, 0) = ((a+ b)/2, γ+((a+ b)/2)).

In Section 6.1 we show a transversality property. We will make use of Morse relations for manifolds with
boundary, in order to exclude, for a suitable Morse function, the presence of critical points of index one. The
absence of boundary branch points for Y will be used in the proof.

In Section 6.2 we explain how this transversality property ensures the existence of a local semicartesian
parametrization and, using some compactness argument and the simply connectedness of Σmin, also of a global
semicartesian parametrization.

Finally in Section 6.3 we provide the regularity and the shape of the domain of this semicartesian parametriza-
tion.

6.1. A transversality result

Let P be the family of parallel planes orthogonal to the unit vector et = (1, 0, 0), that is the planes in the
form {

(t, ξ, η) ∈ Rt × R
2
(ξ,η) : t = const

}
.

The next result is one of the most delicate parts of the Proof of Theorem 5.2.

Theorem 6.1 (Transversality). In the same hypotheses on Γ of Theorem 5.2, none of the planes of P is tangent
to Σmin.

Proof. We have to show that the normal direction to Σmin at a point of Σmin is never parallel to (1, 0, 0); at
self-intersection points of Σmin, the statement refers to all normal directions.

Our strategy is to introduce a height function having the planes of the family P as level sets, namely the
function given by the first coordinate t in R

3 = Rt × R
2
(ξ,η), restricted to an extension of Σmin. The proof

consists then in proving that the only critical points of the height function are the minimum and the maximum
corresponding to points S and N (see (6.2)).

Since ∂Σmin = Γ is non-empty, in order to deal with boundary critical points, it is convenient to extend Σmin

across Γ .
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By Condition (A) the curve Γ is analytic; therefore (Thm. A.8) we can extend Σmin to an analytic minimal
surface Σext across Γ ; Σext can be parametrized on a bounded smooth simply connected open set Bext ⊃ B
through an analytic map Y ext = (Y ext

1 , Y ext
2 , Y ext

3 ) which coincides with Y on B, is harmonic, i.e. ΔY ext = 0
in Bext, and satisfies the conformality relations |Y ext

u |2 = |Y ext
v |2, Y ext

u · Y ext
v = 0 in Bext. In addition, from

Theorems A.6 and A.7, Y ext has no interior (i.e., in B) and no boundary (i.e., on ∂B) branch points. Hence,
possibly reducing Bext, we can suppose that Y ext has no branch points in Bext.

Therefore, the Gauss map

N : (u, v) ∈ Bext → N (u, v) :=
Y ext

u (u, v) ∧ Y ext
v (u, v)

|Y ext
u (u, v) ∧ Y ext

v (u, v)| (6.3)

is well-defined in Bext21.
Let us define

h : (u, v) ∈ Bext → h(u, v) := Y ext
1 (u, v) ∈ Rt.

Observe that (u0, v0) ∈ Bext is a critical point for h if and only if the plane {(t, ξ, η) ∈ R
3 : t = Y ext

1 (u0, v0)}
is tangent to Σext at Y ext(u0, v0). Indeed, criticality implies ∂uY

ext
1 (u0, v0) = ∂vY

ext
1 (u0, v0) = 0, and one checks

from (6.3) that
N (u0, v0) = (1, 0, 0). (6.4)

On the other hand, if N (u0, v0) = (1, 0, 0), the image of any vector of R
2
(u,v) through the differential of Y at

(u0, v0) is orthogonal to (1, 0, 0). In particular, if we consider the image of eu = (1, 0) and ev = (0, 1), we obtain
Y1u(u0, v0) = 0 = Y1v(u0, v0).

From the above observation, it follows that the thesis of the theorem reduces to show that the function h has
no critical points in B, except for (0,±1), for which we shall prove separately that N (0,±1) �= (1, 0, 0).

At first, we shall show that the thesis of the theorem holds true up to a small rotation of Σext around a line
in the orthogonal space to (1, 0, 0) that takes a direction in a suitable set to become (1, 0, 0); moreover this set
of directions is dense in a small neighborhood of (1, 0, 0).

In the last step we will show that the statements holds true without applying this rotation.

Step 1. Up to a suitable rotation in R
3, the function h has no degenerate critical points.

We notice that any degenerate critical point of h is a critical point also for the Gauss map. Indeed let (u0, v0) ∈
Bext be critical: using (6.4) we have, for the coefficients of the second fundamental form,

Y ext
uu · N = Y ext

1uu = huu, Y ext
uv · N = Y ext

1uv = huv, Y ext
vv · N = Y ext

1vv = hvv.

If in addition (u0, v0) is degenerate, then the determinant of the Hessian of h at (u0, v0) vanishes, and this
implies that also the determinant of the second fundamental form is zero. That is, (u0, v0) is a critical point for
the Gauss map.

From Sard’s lemma, it follows that we can find a rotation around a line in the orthogonal space to (1, 0, 0), as
close as we want to the identity, so that the t-direction does not belong to the set of critical values of the Gauss
map. Moreover such a rotation can be freely chosen in a set that is dense in a neighborhood of the identity. We
also remark that for a sufficiently small rotation condition (A) remains valid although the values θn and θs of
the parameter leading to maximal and minimal value of the t-component are perturbed of a small amount.

Therefore, from now on we assume that

all critical points of h in Bext are nondegenerate.

Step 2. The height function h has no critical points on ∂B.

21N is also harmonic and satisfies the conformality relations, see ([5], Chap. 1.2).
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Suppose first by contradiction that there exists (u, v) ∈ ∂B \ {(0,±1)} such that ∇h(u, v) = 0, namely (u, v)
is a critical point of h different from (0,±1). We claim that if τ∂B ∈ R

2, |τ∂B | = 1, τ∂B tangent to ∂B at (u, v),
then for some λ �= 0

Yτ∂B
(u, v) = λτΓ (u, v),

where τΓ (u, v) is a tangent unit vector to Γ at Y (u, v) and Yτ∂B
is the derivative of Y along τ∂B . Indeed,

since Y is smooth up to ∂B, it follows that Yτ∂B
(u, v) is tangent to Γ at Y (u, v). Now write τ∂B = αeu + βev,

α2 + β2 = 1 and eu = (1, 0), ev = (0, 1). Since

Yτ∂B
(u, v) = αYu(u, v) + βYv(u, v),

the conformality relations imply
|Yτ∂B

(u, v)|2 = (α2 + β2)|Yu(u, v)|2.
Then the absence of boundary branch points guarantees that |Yτ∂B

(u, v)|2 �= 0. Hence Yτ∂B
(u, v) is a non-

zero vector parallel to τΓ (u, v) and the claim follows. Observe now that, by assumption, τΓ (u, v) has non-zero
t-component, so that

αY 1
u (u, v) + βY 1

v (u, v) �= 0, (6.5)

which contradicts the criticality of (u, v) for h. Thus (6.5) shows that h has no critical points on ∂B \ {(0,±1)}.
In order to exclude that S (and similarly N) is a critical point for h, we observe that condition (A) implies that
the convex hull of Γ , and hence the convex hull of Σmin

22, is contained in a wedge having the tangent to Γ
at its lowest point as ridge and the two slopes are strictly increasing starting from the ridge. Thus the normal
vector to Σext in S cannot be parallel to (1, 0, 0).

As a consequence of Step 2 we can suppose that all critical points of h are contained in B.

Step 3. The function h has neither local maxima nor local minima in B.
Indeed, assume by contradiction that p = Y (u0, v0) ∈ Σmin, where (u0, v0) ∈ B is a local minimum point
for h. Then locally the surface Σmin is contained in a half-space delimited by the tangent plane {(t, ξ, η):
t = Y1(u0, v0)}, the intersection with this tangent plane being locally only the point p. We now construct a
competitor surface Σ′ as follows: we remove from Σmin a small portion locally around p, obtained by cutting
Σmin locally with a plane at a level slightly higher than the minimal value. We fill the removed portion with a
portion of plane, and this givesΣ′23. Then the area of Σ′ is strictly smaller than the area ofΣmin, a contradiction.
A similar argument holds for a local maximum point and therefore the Proof of Step 3 is concluded.

Employing the notation of Appendix B, we have therefore

m0(h,B) = m2(h,B) = 0.

The next step is a consequence of the monotonicity and nondegeneracy assumptions expressed in (5.1), and
of the conformality and analyticity of Σmin.

Step 4. The restriction h|∂B of h to ∂B is a Morse function; moreover m−
0 (h|∂−

h B) = 1 and m−
1 (h|∂−

h B) = 0
(Appendix B).

We observe that condition (A) implies that there exists a parametrization of Γ on ∂B whose first component
is a Morse function. We have to show that also the parametrization induced by the area-minimizing surface Y
has the same property.

As already done for the function g, we denote by Y ext
|∂B and by h|∂B the composition Y ext ◦ b and h ◦ b

respectively (see (2.1)) and we use the prime for differentiation with respect to θ. At first, we observe that out

22 Any connected minimal surface X with a parameter domain D is contained in the convex hull of X|∂D . See ([6], Thm. 1,

Chap. 4.1.)
23If the cut level is close enough to the critical level, Σ′ is the image of a map in C(Γ ) (see Appendix A).
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of branch points, all the directional derivatives of Y ext are non zero. Thus in particular, from the absence of
boundary branch points on ∂B, we deduce that

|(Y ext
|∂B)′(θ)| �= 0, θ ∈ [0, 2π).

On the other hand, since g is analytic with differentiable inverse, there exists a C1 function ψ from [0, 2π] in
itself such that ψ(2π) = ψ(0) + 2π and

Y ext
|∂B(θ) = g(ψ(θ)), θ ∈ [0, 2π).

Differentiating the last expression and remembering from (5.1) that |g′| �= 0, we get that also ψ′ never vanishes,
indeed:

0 �= |(Y ext
|∂B)′(θ)| = |g′(ψ(θ))||ψ′(θ)|.

From the semicartesian form of Γ , h|∂B has just a minimum and a maximum in correspondence of N = (0, 1)
and S = (0,−1). From the properties of g we infer that ψ(θs) is the value of θ corresponding to S, and similarly
for N . Since

h′′|∂B(θ) = g ′′
1 (ψ(θ))(ψ(θ))2 + g′1(ψ(θ))ψ′′(θ),

computing for the values corresponding to S and N we get that the first addendum is non-zero, while the
second vanishes. We have thus proven that h|∂B is a Morse function, with a maximum in (0, 1) and a minimum
in (0,−1).

Following once more Appendix B (see (B.1)), we now set

∂−h B := {(u, v) ∈ ∂B : ∇h(u, v) · νB(u, v) < 0},
where νB(u, v) denotes the outward unit normal to ∂B at (u, v) ∈ ∂B.

We prove that
(0,−1) ∈ ∂−h B and (0, 1) /∈ ∂−h B.

Indeed if ∇h(0,−1) · νB(0,−1) ≥ 0, we get a contradiction from the same argument used in Step 2 to prove
that (0,−1) is not critical for h. Similarly (0, 1) /∈ ∂−h B.

We have thus obtained that
m−

0 (h|∂−
h B) = 1, m−

1 (h|∂−
h B) = 0.

Step 5. The function h has no saddle points in B.

The Morse function h (Step 1) has no points of index zero (minima) in B and no points of index two (maxima)
in B by Step 3: again following the notation of Appendix B (see (B.2)), we have

M0(h,B ∪ ∂B) = 1, M2(h,B ∪ ∂B) = 0.

In addition, using Steps 2 and 4, we can apply Theorem B.1, and obtain, being χ(B) = 1,

M1(h) = M0(h,B ∪ ∂B) +M2(h,B ∪ ∂B) − χ(B) = 0.

Step 6. It is not necessary to apply any rotation.

It is sufficient to show that the direction given by (1, 0, 0) is actually not critical for the Gauss map. At first we
can assume that Γ is not contained in a plane. Indeed if it were planar, necessarily

N (u, v) = ν0, (u, v) ∈ B

for some constant unit vector ν0 �= (1, 0, 0), since Γ is union of two graphs.
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Assuming that Γ is non planar, we reason by contradiction and suppose that there is a degenerate critical
point p = Y (u0, v0) for the height function h in the relative interior of Σmin. This means that (u0, v0) is a
critical point for the Gauss map, that is the product κ1κ2 of the two principal curvatures is 0; because of the
minimality of Σmin we get that p is an umbilical point, with κ1 = 0 = κ2. Recalling that in a non-planar minimal
surface the umbilical points are isolated (see for example [5], Rem. 2, Chap. 5.2), we can find a direction in a
small neighborhood of (1, 0, 0) that is normal to Σmin in a neighborhood of the degenerate critical point p and
is not a critical value for the Gauss map. If we rotate Σmin taking this direction to become vertical, we have a
nondegenerate critical point for the height function, which is a contradiction in view of the previous steps. �

6.2. The semicartesian parametrization

We can apply Theorem A.9 to Σext with the family of planes of Theorem 6.1, obtaining a local semicartesian
parametrization. More precisely, for any point p ∈ Σext there exists an open domain Dp ⊂ R

2
(t,s) and an

analytic24, conformal semicartesian map Xp parametrizing an open neighbourhood of p on Σext:

Xp : Dp → Σext,

(t, sp) → (t,Xp2(t, sp), Xp3(t, sp)). (6.6)

Proposition 6.2 (Global semicartesian parametrization). In the same hypotheses on Γ of Theorem 5.2, Σmin =
X(D) admits an analytic parametrization of the form (2.5).

Proof. The local parametrization in (6.6) is unique up to an additive constant: sp �→ sp + ρ. Indeed, if tp is
the t-coordinate of p, the direction of ∂spXp is given by the intersection of the tangent plane to Σext and the
plane {t = tp}, since its t-component is zero. The vector ∂tXp is then uniquely determined by being in the
tangent plane to Σext, orthogonal to ∂spXp and having 1 as t-component. This in turn determines the norm of
∂spXp and hence ∂spXp itself (up to a choice of the orientation of Σext)25. Functions Xp2(t, sp) and Xp3(t, sp)
can now be obtained by integrating the vector field ∂spXp along the curve {t = tp} ∩ Σext and transported as
constant along the curves {s = const}. Now we can cover Σmin∪Γ with a finite number of such neighbourhoods
(local charts) having connected pairwise intersection, and we can choose the constant in such a way that on the
intersection of two neighborhoods the different parametrizations coincide. In this way we can “transport” the
parametrization from a fixed chart along a chain of pairwise intersecting charts. This definition is well-posed
if we can prove that the transported parametrization is independent of the actual chain, or equivalently that
transporting the parametrization along a closed chain of charts produces the original parametrization. This is a
consequence of the simple connectedness of the surface26, indeed we can take a closed curve that traverses the
original chain of charts and let it shrink until it is contained in a single chart.

Thus we can construct a global semicartesian parametrization X defined on a open domain Dext ⊂ R
2 as

required in hypothesis (ũ4). Eventually
D := X−1(Σmin ∪ Γ ) (6.7)

is a closed bounded (connected and simply connected) set such that the intersection with the line {t = k}, for
k ∈ (a, b), is an interval (not reduced to a point); indeed if the intersection were composed by two (or more)
connected components, there would be at least 4 points on the intersection of Γ with the plane {t = k}, and
this is impossible since Γ is union of two graphs on t. �

Before proving that D satisfies the local Lipschitz conditions required by Definition 2.2, we need the following
regularity result.

24From the Proof of Theorem A.9 one infers that the regularity of the local semicartesian map is the same as the surface.
25Incidentally, we note here that |∂spXp| = |∂tXp| ≥ 1 (which excludes branch points).
26This is one of the points where it is important to consider disk-type area-minimizing surfaces.
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Lemma 6.3. The domain D defined in (6.7) has analytic boundary.

Proof. The boundary of D is the image of an analytic map defined on ∂B. This latter fact follows directly from
the analyticity of the map Y : B → Σmin (see (6.1)) and of the map X : D → Σmin. The fact that Σmin can have
self-intersections is not a problem here because the preimages of points (in either B or D) in a self-intersection
are well separated, so that we can restrict to small patches of the surface and reason locally. �

We are now in a position to specify a further property of ∂D27.

Proposition 6.4. In the hypotheses and with the notation of Proposition 6.2, D has the form in (2.3), where
the two functions σ± : [a, b] → R satisfy (2.4) and condition (ii) of Theorem 5.2.

Proof. Since, as noticed in Lemma 6.3, D ∩ {t = k} is an interval, not reduced to a point, for any k ∈ (a, b), D
is in the form (2.3) with σ− < σ+ in (a, b); up to traslation we can suppose also σ+(a) = 0 = σ−(a).

Let (t, s) ∈ ∂D and let p = X(t, s) ∈ Γ . Let us suppose that s = σ−(t) (the case s = σ+(t) being similar)
and let us write σ in place of σ− for simplicity. We have to show that

|σ′(t)| ≤ |γ′(t)|. (6.8)

Let ϑ(t, s) ∈ [−π/2, π/2] be the angle between the tangent line to Γ at p (spanned by Γ ′(t)
|Γ ′(t)| ) and the direction

of Xt(t, s). Note that if ϑ(t, s) ∈ (−π/2, π/2) we have

tg(ϑ(t, s)) = σ′(t). (6.9)

Indeed, take a vector � generating the tangent line to ∂D at (t, s), for instance � = (σ′(t), 1). Using also the
conformality of X , the derivative X� of X along the direction of � is given by X�(t, s) = σ′(t)Xs(t, s) +Xt(t, s),
and is a vector generating the tangent line to Γ at p, and (6.9) follows.

Let now Θ(t, s) ∈ [0, π/2] be the angle between the tangent line to Γ at p and the line generated by
et = (1, 0, 0). If Θ(t, s) ∈ [0, π/2) we have, writing γ in place of γ−,

tg(Θ(t, s)) = |γ′(t)|.

Hence, to show (6.8), it is sufficient to show that ϑ(t, s) ≤ Θ(t, s), or equivalently

π

2
− ϑ(t, s) ≥ π

2
−Θ(t, s). (6.10)

Consider Γ ′(t)
|Γ ′(t)| as a point on S

2 ⊂ R
3 and think of et as the vertical direction (Fig. 7b). We have that π

2 −Θ(t, s)

is the latitude of Γ ′(t)
|Γ ′(t)| . On the other hand, remembering thatXs(t, s) is orthogonal to et, we have that π

2 −ϑ(t, s)

(the angle between Γ ′(t)
|Γ ′(t)| and Xs(t, s) by conformality) is the geodesic distance (on S

2) between Γ ′(t)
|Γ ′(t)| and the

point obtained as the intersection between Tp(Σmin) and the equatorial plane. Hence inequality (6.10) holds
true. �

6.3. Shape of the parameter domain

In order to conclude the Proof of Theorem 5.2, we need to study the behaviour of ∂D near (a, 0) and (b, 0).

Proposition 6.5. Assertion (i) of Theorem 5.2 holds.

27 The analyticity of ∂D in particular implies that we cannot have a global Lipschitz constant for σ±, so that the result in
Proposition 6.4 is optimal.
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Γ
Γ

et

∂tX

∂sX

X(t, ·)
Θ

θ

TΣ(p)

{t = t}

(a)

Θ
θ

Γ
|Γ |

∂tX
|∂tX|

∂sX
|∂sX|

et
S2

(b)

Figure 7. (a) The dotted vector et is perpendicular to the plane {t = t} on which we have
represented a part of the curve {X(t, s) : s ∈ [σ−(t), σ+(t)]}. Γ is also drawn, and passes through
the plane {t = t} transversally. The other plane is the tangent plane to Σmin at p = X(t, σ−(t))
and the three vectors are the conformal basis of the tangent plane span{∂tX, ∂sX} and the
vector Γ ′(t). The angles θ and Θ are also displayed. (b) the same vectors normalized and
represented on the sphere S

2.

Proof. Let us consider the point (a, 0). From the analyticity of ∂D (Lem. 6.3) and the fact that (a, 0) minimizes
the t-component in ∂D, we can express it locally in a neighborhood of (a, 0) as the graph (τ(s), s) of a function
τ : (s−, s+) → R defined in a neighborhood (s−, s+) of the origin that can be Taylor expanded as

τ(s) = a+ λ2s
2 + α3s

3 + α4s
4 + o(s4), s ∈ (s−, s+),

with λ2 ≥ 0.
Assume by contradiction that (5.2) does not hold, and therefore

λ2 = 0.

Since D is contained in the half-plane {t ≥ a} it follows that

α3 = 0 and α4 ≥ 0.

We shall now compute the area A(ε) of

Σε
min := Σmin ∩ {t < a+ ε} = X(D ∩ Sε)

for small positive values of ε, where Sε := {(t, s) : a ≤ t < a + ε}. Using the conformal map X we need to
integrate the area element over the set D ∩ Sε. However the integrand is the modulus of the external product
of the two derivatives of X with respect to t and to s, which is always greater than or equal to 1, so that,
integrating, we get

A(ε) ≥ L2(D ∩ Sε) ≥ cε1+1/4 (6.11)

for some positive constant c independent of ε.
We now want to show that the minimality of Σmin entails that H2(Σε

min) ≤ cε1+1/2, which is in contradiction
with (6.11). Indeed we can compare the area of Σmin with the competitor surface

Σ := Σ1 ∪Σ2 ∪Σ3 ∪Σ4,
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{t = a+ ε}
Σ1

Σ2

Σ3

Σ4

Figure 8. The competitor surface Σ. Σ1, Σ2 and Σ3 are the light gray, black and dark gray
surface respectively.

where (see Fig. 8):

− Σ1 is the parabolic sector delimited by the osculating parabola to Γ in the minimum point and by the plane
{t = a+ ε};

− Σ2 is the portion of the plane {t = a+ ε} between the curve Σmin ∩ {t = a+ ε} and the boundary of Σ1;
− Σ3 is obtained by connecting linearly each point of the osculating parabola with the point of Γ having the

same t-coordinate;
− Σ4 := Σmin ∩ {a+ ε ≤ t ≤ b}.

Notice that Σ is a Lipschitz surface and ∂Σ = Γ . Moreover Σmin = Σε
min ∪ Σ4 with Σε

min ∩ Σ4 = ∅. Thus,
using also the minimality of Σmin, we get

H2(Σmin) = A(ε) + H2(Σ4) ≤ H2(Σ) ≤
4∑

i=1

H2(Σi),

which implies A(ε) ≤ H2(Σ1) + H2(Σ2) + H2(Σ3). Now, we notice that, for a constant c independent of ε:

− H2(Σ1) ≤ cε1+1/2, since it is a parabolic sector,
− H2(Σ2) ≤ cε1+1/2 because Σmin is bounded by the two planes of the wedge,
− H2(Σ3) = o(ε1+1/2) because Σε

min is contained in the inside of a cylindrical shape obtained by translation of
Γ in the direction orthogonal to both the tangent vector to Γ in its minimum point and the vector (1, 0, 0).

Thus we get the contradicting relation:

c1ε
1+1/2 ≥ A(ε) ≥ c2ε

1+1/4,

where c1 and c2 are two positive constants independent of ε. �

Appendix A. Some useful results on Plateau’s problem

In this appendix we briefly collect all definitions and results on Plateau’s problem, with the related references,
needed in the proofs of Theorems 3.3, 4.3, 5.2 and 6.1.
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A.1. Parametric approach

Let B ⊂ R
2
(u,v) be the unit open disk and Γ be an oriented28 rectifiable closed simple curve in R

3. We are
interested in minimizing the area functional ∫

B

|Yu ∧ Yv| du dv

in the class29

C(Γ ) =
{
Y ∈ W 1,2(B; R3) : Y|∂B ∈ C(∂B; R3) weakly monotonic parametrization of Γ

}
.

The set Y (B) for Y ∈ C(Γ ) is called a disk-type surface spanning Γ .

Definition A.1 (Disk-type area-minimizing solution). We refer to a solution of the minimum problem

inf
Y ∈C(Γ )

∫
B

|Yu ∧ Yv| du dv (A.1)

as disk-type area-minimizing solution of Plateau’s problem for the contour Γ . Its image Y (B) ⊂ R
3 is called area-

minimizing surface spanning Γ , but sometimes, with a small abuse of language, also area-minimizing solution,
identifying the image and the parametrization. We usually denote such a Y (B) by Σmin.

For further details about the formulation of Plateau’s problem we refer to ([5], Chap. 4, p. 270).
Concerning the existence of a solution of (A.1) the following holds.

Theorem A.2 (Existence of minimizers and interior regularity). Problem (A.1) admits a solution Y ∈ C2(B)∩
C(B), such that

ΔY = 0 in B (A.2)

and the conformality relations hold:

|Yu|2 = |Yv|2 and Yu · Yv = 0 in B. (A.3)

Moreover the restriction Y|∂B is a (continuous) strictly monotonic map onto Γ .

Proof. See for instance ([5], main Thm. 1, Chap. 4, p. 270). �

Remark A.3 (Three points condition). One can impose on a minimizer Y the so-called three points condition:
this means that we can fix three points ω1, ω2 and ω3 on ∂B and three points P1, P2 and P3 on Γ (in such a way
that the orientation of Γ is respected) and find a solution Y of (A.1) such that Y (ωj) = Pj for any j = 1, 2, 3.

Definition A.4 (Minimal surface). A map Y ∈ C2(B) ∩ C(B) satisfying (A.2) and (A.3) mapping ∂B onto Γ
in a weakly monotonic way is called a minimal surface spanning Γ .

Concerning the regularity of a map Y : B → R
3 parametrizing a minimal surface, we cannot a priori avoid

singular points, called branch points.

Definition A.5 (Branch point). A point ω0 ∈ B is called an interior branch point for a map Y satisfying (A.1)
and (A.3) if

|Yu(ω0) ∧ Yv(ω0)| = 0. (A.4)

If Y is differentiable on ∂B, and ω0 ∈ ∂B is such that (A.4) holds, then ω0 is called a boundary branch point.

28The orientation is provided by fixing a homeomorphism from ∂B onto Γ .
29Since Γ is rectifiable, we have C(Γ ) �= ∅.
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Observe that if ω0 is a branch point then Yu(ω0) = Yv(ω0) = 0. It is known that interior branch points can be
excluded.

Theorem A.6 (Absence of interior branch points). Let Y be as in Theorem A.2. Then Y has no interior branch
points.

Proof. See [15], main theorem. �

Under the stronger assumption that Γ is analytic the classical Lewy’s regularity theorem [10] guarantees that
our solution of (A.1) is analytic on B .

Theorem A.7 (Absence of boundary branch points).
Let Γ be analytic and Y be as in Theorem A.2. Then Y is analytic up to Γ and has no boundary branch

points.

Proof. See [9]. �

Theorem A.8 (Analytic extension). Let Γ be analytic and Y be a minimal surface spanning Γ . Then Y can
be extended as a minimal surface across Γ , that is there exist an open set Bext ⊃ B and an analytic map
Y ext : Bext → R

3 such that Y ext = Y in B and Y ext satisfies (A.2) and (A.3) in Bext.

Proof. From ([6], Thm. 1, Chap. 2.3) one can extend a minimal surface across an analytic subarc of Γ . We
apply this result twice to two overlapping subarcs covering Γ . Where the two extensions overlap, they have to
coincide due to analyticity. �

The following classical result can be found in ([5], p. 66).

Theorem A.9 (Local semicartesian parametrization). If a minimal surface Y is intersected by a family of
parallel planes P none of which is tangent to the given surface and if each point of the surface belongs to some
plane Π ∈ P, then the intersection lines of these planes with the minimal surface form a family of curves which
locally belong to a net of conformal parameters on the surface.

A.2. Non-parametric approach

Concerning the so-called non-parametric problem and the minimal surface equation, we give the following
definition and we refer to [8] for more.

Definition A.10 (Non-parametric solution). Let U ⊂ R
2 be a connected, bounded, open set and let φ ∈

C(∂U ; R2). A solution of the minimal surface equation for the boundary datum φ is a solution z ∈ C2(U)∩C(U)
of ⎧⎨⎩div

(
∇z√

1+|∇z|2

)
= 0 in U

z = φ on ∂U.
(A.5)

The existence of a solution of (A.5) is given by the following result.

Theorem A.11 (Existence of non-parametric solutions). Suppose that ∂U is C2 and has non negative curvature.
Then (A.5) admits a solution.

Proof. See ([8], Thm. 13.6). �

If Γ can be described as the graph of a continuous function defined on the boundary of a bounded convex
open set, then the following representation result holds.
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Theorem A.12. If Γ admits a one-to-one parallel projection onto a plane Jordan curve bounding a convex
domain U , then (A.1) has a unique solution X, up to conformal C1 diffeomorphisms of B. Moreover X(B) can
be represented as the graph of a solution z : U → R of (A.5) with boundary datum a function φ whose graph
is Γ .

Proof. See ([5], Thm. 1, Chap. 4.9). �

We conclude this appendix with a regularity result for a solution of (A.5).

Theorem A.13. Let U ⊂ R
2 be bounded open convex set with ∂U of class C2 and let z be a solution of (A.5)

with boundary datum φ ∈ C1,λ(∂U) for some λ ∈ (0, 1]. Then z ∈ C0,1(U).

Proof. See ([8], Thm. 13.7). �

Appendix B. A result from Morse theory

In this short section we report a result from ([13], Thm. 10) on critical points of Morse functions. The result
holds in any dimension, but we need and state it only for n = 2.

Let U be a bounded open subset of R
2 and let B be an open subset of U of class C3 with B ⊂ U . Suppose

that

− f : U → R is a Morse function;
− B contains all critical points of f ;
− all critical points of the restriction f|∂B of f to ∂B are non degenerate (i.e., f|∂B is a Morse function).

Define
∂−f B := {b ∈ ∂B : ∇f(b) · νB(b) < 0}, (B.1)

where νB(b) denotes the outward unit normal to ∂B at b ∈ ∂B.
For i = 0, 1, 2, denote by mi(f,B) the number of critical points of index i of f in B and by mi(f|∂−

f B) the

number of critical points of index i of f|∂B on ∂−f B, with m2(f|∂−
f B) := 0. Define

Mi(f,B ∪ ∂B) := mi(f,B) +mi(f|∂−
f B), i = 0, 1 , 2. (B.2)

The following result holds.

Theorem B.1. We have

M0(f,B ∪ ∂B) −M1(f,B ∪ ∂B) +M2(f,B ∪ ∂B) = χ(B),

where χ(B) is the Euler-Poincaré characteristic of B.

Appendix C. The space D(Ω; R2)

In this section we discuss a property of the space D(Ω; R2) introduced at the beginning of Section 2.
In [1] the following result is proven.

Theorem C.1. Let v ∈ BV(Ω; R2). The following conditions are equivalent:

− A(v, Ω) =
∫

Ω

|M (∇v(x)) | dxdy < +∞;

− v ∈ W 1,1(Ω; R2), M(∇v) ∈ L1(Ω; R6) and there exists a sequence (vμ) ⊂ C1(Ω; R2) converging to v in
L1(Ω; R2) such that the sequence (M(∇vμ)) converges to M(∇v) in L1(Ω; R6).

The following lemma shows that A can be obtained also by relaxing A in D(Ω; R2).
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Lemma C.2. Let u ∈ BV(Ω; R2). Then

A(u, Ω) = inf
{

lim inf
ε→0+

A(uε, Ω), (uε)ε ⊂ D(Ω; R2), uε → u in L1(Ω; R2)
}
. (C.1)

Proof. Trivially A(u,Ω) is larger than or equal to the right hand side of (C.1), since C1(Ω; R2) ⊂ D(Ω; R2) and
A = A on C1(Ω; R2).
In order to prove the opposite inequality, let (vε) be a sequence in D(Ω; R2) such that

lim
ε→0+

A(vε, Ω) = inf
{

lim inf
ε→0+

A(uε, Ω), (uε) ⊂ D(Ω; R2), uε → u in L1(Ω; R2)
}
.

Thanks to Theorem C.1, for each ε > 0 we can find a sequence (vμ
ε )μ in C1(Ω; R2) converging to vε in L1(Ω; R2)

as μ→ 0+ such that

A(vμ
ε , Ω) =

∫
Ω

|M (∇vμ
ε (x)) | dx μ→0+

−→
∫

Ω

|M (∇vε(x)) | dx = A(vε, Ω).

Thus by a diagonal process we obtain a sequence (vμ(ε)
ε ) ⊂ C1(Ω; R2) converging to u in L1(Ω; R2) as ε → 0+

such that the right hand side of (C.1) equals

lim
ε→0+

A(uμ(ε)
ε , Ω) = lim

ε→0+
A(vε, Ω),

and this concludes the proof.
�
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