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TOPOLOGICAL GRADIENT FOR A FOURTH ORDER OPERATOR USED
IN IMAGE ANALYSIS

GILLES AUBERT! AND AUDRIC DROGOUL!

Abstract. This paper is concerned with the computation of the topological gradient associated to
a fourth order Kirchhoff type partial differential equation and to a second order cost function. This
computation is motivated by fine structure detection in image analysis. The study of the topological
sensitivity is performed both in the cases of a circular inclusion and a crack.
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1. INTRODUCTION

The notion of topological gradient which has been rigorously formalized in [13,17] for shape optimization
problems has a wide range of applications: structural mechanics, optimal design, inverse analysis and more
recently image processing [6-8]. Roughly speaking the topological gradient approach performs as follows: let 2
be an open bounded set of R? and j(£2) = J(£2,ug) be a cost function where ug, is the solution of a given
PDE on (2. For small € > 0, let 2. = 2\Z¢ + ew, where zg € 2 and w is a given subset of R2. The topological
analysis provides an asymptotic expansion of j({2.) as € — 0. In most cases it takes the form:

3(02e) = §(92) + €Z(x0) + o) (L.1)

Z(xo) is called the topological gradient at xg.

Thus, in optimal design for example, if we want to minimize j({2) it would be preferable to create holes at
points xg where Z(zg) is “the most negative”. In practice, we keep points xo where the topological gradient is
less than a given negative threshold. In image processing the choice of the cost function is guided by the aimed
application. For example for detection or segmentation problems, we have to choose a cost function which
blows up in a neighbourhood of the structure we want to detect. Thus removing from the initial domain such
a neighbourhood implies a large variation of the cost function and so a large topological gradient. In [8] the
method was applied for edge detection by studying the topological sensitivity of j(£2) = [, [Vue|*dz where ug
is the solution of a Laplace equation. For filament (or point) detection, the problematic is different. Indeed there
is no jump of the image intensity across this type of structure which is of zero Lebesgue measure. Typically the
intensity takes the value 1 on the fine structure and 0 elsewhere. It is known (see for example Steger [18]) that
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FIGURE 1. (a) Perforated domain, (b) cracked domain.

the gradient operator is not adapted since “it does not see” these structures. In this case we have to use a cost
function defined from the Hessian matrix of a regularized version of the initial image. Inspired from the theory
of thin plates ([9], Chap. 8), the main goal of this paper is to compute the topological gradient associated to
the following model: if 2 denotes the image domain and if f is the initial grey values image (the data, possibly
degraded) we search for uy, as the solution of the fourth order PDE:
Au+u=f,in 2
(P) Bi(u) =0, on 912 (1.2)
Bs(u) =0, on 012

where By (u) and Ba(u) are natural boundary conditions to be specified in the next section (in fact we will study
a more general model). The cost function is then defined as:

24 2 24 9%u
Jo(u) = /Q(Au)2 +2(1—-v) <<8£8x2) - g—x%g—x%> , (1.3)

where 1 < v < 0 is a parameter (the Poisson ratio). The link between up and Jo(u) is

ugn = argmin  Jo(u) + |ju — f||%2(m.
uw€H?($2)

Let us notice that for v = 0 the cost function simplifies as Jo(u) = [, [[V2u||3. This latter cost function has
been used in the numerical companion paper [10] for detecting fine structures in 2D or 3D images (see also [11]).

In this work we compute the topological gradient associated to (1.2) and (1.3) when 2. = 2\zo + €B(0,1)
and (2, = Q\zg + eo(n), where B(0,1) is the unit ball of R? and o(n) is a straight segment with normal n (a
crack, see Fig. 1).

We warn the reader that the proofs are very technical and we only give the main steps. For the complete
proofs and some results in 3D we refer the reader to [11]. The numerical analysis of the model as well numerous
examples will be given in [10]. Most of the results of our work have been announced in [5].

Remark 1.1. The study of topological sensitivity for fourth order operators is not new. In [4], the authors in
a different context, compute the topological gradient for the Kirchhoff plate bending in the case of a circular
inclusion. Our model is simpler and we are able to give explicit expressions of the topological gradient both in
the cases of circular inclusions and of cracks.

Remark 1.2. The link between the PDE and the cost function simplifies the topological gradient computation
but it is easy to adapt the method for some other cost functions.

In the following, we denote by ||u|/m,@ = [|ul| gm (o) (respectively |u|m o = |[u|gm (o)) the norm (respectively
the seminorm) on the Sobolev spaces H™ ({2) and ||u||s,r the norm on the fractional Sobolev space H*(I") with
=00
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The outline of the paper is as follows. In Section 2 we define precisely the cost function and the variational
problem. In Section 3 (respectively Sect. 4) we give the main steps of the computation of the topological gradient
in the case of a circular inclusion (respectively of a crack). The paper ends with three appendices in which are
developed details not given in Sections 3 and 4.

2. DEFINITION OF THE COST FUNCTION AND VARIATIONAL MODEL

In this section we specify the general cost function and the variational model we want to study. Before, we
give a lemma explaining why the natural operator we have to use in the cost function for detecting points and
curves in 2D must be of second order.

2.1. Detecting fine structures: what is the good operator?

We denote by D(R?) the space of C>- functions with compact support in R? and D’(R?) the space of
distributions on R?. We refer the reader to [11] for the proof of the following lemma.

Lemma 2.1. Let ¢ : R2 — R be a Lipschitz continuous function, and let (gn)n>o be a sequence of functions
defined by

1  %(w)
gn(z) = 91(h)e f2(h) where 0; : RT — RT and }ILILI}) 0;(h) =0.

(i) Let a € R?, by setting o(x) = || — al|, 01(h) = 7h and 03(h) = h then
. 8a, in D' (R?).

Besides we have
2

vgh(a) = [an}Ta Vzgh(a) = _W

I,

where I denotes the identity in R2.
(ii) Let I" be a smooth closed curve or a smooth infinite curve of R? delimiting two sub-domains R%™ and Rff
forming a partition of R2. Let o be the signed distance to I' defined by:

o(z) = dist (x,R%f) — dist (ac,R%+> .

We denote by ]R%f (resp. R%™), the sub-domain {¢ > 0} (resp. {p < 0}).
Taking the following scalings: 61(h) = v/7h and 02(h) = h, we have

gn = dr, in D' (R?)
Besides for all x € I' we have

Von(z) =10,0]",  spec(Vign(z)) = {—%,0},

where spec(M) denotes the eigenvalues of the matriz M. The associated eigenvectors to Vg, on I' are
(Ve(z), Vp(a)*), where Vi(x) = n().

So this lemma shows heuristically that the gradient “does not see” fines structures in R? (points and filaments).
On the other hand second derivatives are singular on these structures.
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2.2. Definition of the cost function and the fourth order PDE

We give now the general cost function we are going to study. The cost function is more general than (1.3). It
is defined by:

J (u)—/(Au)2+2(1—1/) O"u 2—@(92—” + 5| Vulldz, 0<v<1,7y>0 (2.1)
@ o 0 021022 31'% 83;% v ’ Y= '
Remark 2.2.
(i) When v = 0 we retrieve (1.3).
(ii) We check easily that Jp:
J_Q(u) Z (1 — I/)‘UG,IQ(_Q) + ’Y‘uﬁ—ll(())v Vu S Hz(ﬂ) (22)

For small € > 0, let (a) 2. = 2\{zo + ew} or (b) 2 = 2\{zo + eo(n)}, where z € 2, w = B(O, 1) is the unit
ball of R? and o(n) is a straight segment centered at the origin and with normal n (a crack). We introduce the
bilinear and linear forms:
Pu 0% 0?ud*v  0%ud*v
(u0) = | Audv+(1—v) (222 Y guey gugt . ,
“ (u U) /‘ uav+ ( V) ( 8x18x2 8x18x2 83;% 8x§ 83;% 31'%) + ’YVU Vo uv

(9]
lL(v) = /Q fo.

Thanks to Lax-Milgram lemma, it is easy to prove that for ¢ > 0 fixed there exists a unique u. € H2(§2,)
such that

(2.3)

ac(ue,v) = l(v), Vv € H*(82.). (2.4)
This solution u. necessarily satisfies the Euler equation:

A2ue - ’YAue + Ue = fa on {2,
(Pe) Bi(ue) — vOpue = 0, on 082, (2.5)
Ba(ue) =0, on 942,

where

Bi(u) = 0, (Au) — (1 — )0, <n1n2 (@ 52U> () u )

ox? B 8—1‘% 011029

and

0%u 0%u 0?u

2 2

By(u) =vAu+ (1 —v) (nla—x% + nza—x% + 2n1ng 3$18x2) ,

where f € L?(£2.); n = (n1,n2) is the outward normal to the domain, and o = (01, 02) is the tangent vector
such that (n,o) forms an orthonormal basis.

Remark 2.3.

(i) When v =0, (2.4) is well-posed by using Gagliardo—Nirenberg inequalities [1,15]. The computation of the
topological gradient is the same as in the case v # 0.
(ii) We have the following relation: ac(u,u) = Jo, (u) + |[ull o, -

We denote by P; the set of polynomial of degree less or equal than 1, and by C' all constants not depending
on e. Finally, we will use the quotient space H™({2)/P; which is the set of H™({2) functions defined up to a
polynomial of degree less or equal than 1. In the paper, we study independently the case of a domain perforated
by a ball and the case of a cracked domain.
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3. COMPUTATION OF THE TOPOLOGICAL GRADIENT IN THE CASE OF THE BALL

3.1. Notations and statement of the problem

Let 2o € 2 and B(O,1) the unit ball. We define {2, = 2\xo + eB(O, 1) with x¢ and e chosen such that the
perturbation does not touch the border. By denoting B = B(xg,1) and B = B(xo,€) we have 02, = 0B, U I’
(I' =090).

Problem (P.) rewrites as

A2ue - ’YAue + Ue = fa on {2,
(P?) Bi(ue) — v0nue =0, on 9B, U T, (3.1)
Ba(ue) =0, on 0B, UT.

Let v € H?(f2), and u, the solution of (P?). By a classical regularity result, uc € H*(f2:). Then by using

integration by parts on (2., and ([9], p. 376), we get from (2.4) and (2.5):

/ fv= / (A2u6 — vAu. + ue) v
2. 2.

= ae(ue,v) — / ((B1(ue) — ¥Onue) v — Ba(ue)0pv) + / ((B1(ue) — YOnue) v — Ba(ue)Onv) .
B. r
To simplify notations we suppose that zg = 0.

Now to compute the topological gradient, we have to estimate the leading term when € — 0 in the difference
Je(ue) — Jo(up). Using equations satisfied by u. and up we have

Je(ue) — Jo(ug) = /Qf(f — 2ug) (ue — ug) — /Q (ue — ug)? — /Bf(f — up)up. (3.2)
Let us denote L. : H%(§2.) — R the hﬁear map |
Le(u) = /Qe(f — 2uo)u, Yu € H*(0,), (3.3)
and
Fo= [ e [ (oo (3.4

The first step for evaluating (3.2) is to introduce v, the unique solution of the adjoint problem (see [2]
and [17])
ac(u,ve) = —L(u), Yu € H*(82.). (3.5)

From (3.5) and (3.4) we rewrite (3.2)
Je(ue) = Jo(ug) = —ac(ue — uo,ve) + Je = —le(ve) + ae(uo, ve) + Te
/ fue + / A2u0 — vy Aug + ug) ve + / (B1(ug) — yOnug) ve — Ba(ug)Onve + Je
OB,
=/<&mwﬂme—&mmM+@
0B,
Then we set w. = ve — v, where vg is the solution (3.5) with € = 0, (29 = 2), thus we rewrite
Je(ue) — Jo(uo) = / (B1(uo) — v9nuo) vo — B2(ug)0nvo + / (B1(uo) — vOpuo) we — Ba(uo)Opwe + Je.
OB,

0B,

Now we express the difference Je(u.) — Jo(up) as a sum of more simple terms.
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For ¢, € H32(0B.), @2 € H'/?(0B,) let 19192 € H?(B,) the solution of the problem

A?P1%92 = 0, on B,
[£1%2 = 1, on OB, (3.6)
Onlf1%2 = o, on JB..

For v € H?(§2.) we denote by I* the function [*?* and for € = 1 by [¥::%2 the function [¥*¥2. The difference
becomes:

Je(ue) — Jo(uo) = / (B1(uo) — v0nuo) vo — Ba2(uo)0nvo +/ (B1(uo) — v0nuo) I’ — Ba(uo)Onl + Je
OB, OB,
= L.+ K.+, (87)

where
Ke = / (Bl (uo) — ’Y@nuO) l?‘ — BQ(Uo)anléue, L. = / (Bl (UO) — ’Y@nuO) vy — BQ(Uo)anvo.
dB. dB.
Let ug(z) = uo(z) — up(0) — Vug(0).z, it is straightforward that
Ke = / (B1(up) — vOnuo) I — Bo(ug)0nll<.
OB,
Then integration by parts (see [9], p. 376) gives

K. = / AZTL — b (T, 1) — / 5 (Augl™ — Vug. V%)
Be B

where b, (u,v) is the bilinear form associated to (3.6) and defined by
Pu 0% 0?ud*v  *ud*v
bE }) - A A 1 - 2 _—_— —_— e —_——— — — — .
() /Be udv+(1-v) ( 0210x9 011019 023 023 Ox3 89@%)

Integration by parts again gives:

Ke= / (AQUO — ’}/AUO) léuf + ’}/VU().V[?‘ — A2léue uo + By (l:j‘) ug — Bo (l;uf) Op g . (3 8)
Be B H—/O_/ OB, ’

In a similar manner

L= / (A%ug — yAug) vo +vVug. Vg — / Avoup + B (vo)uo — Ba(vo)Onuo- (3.9)
B. B. 9B,

We set F' = (f — 2uyp), thus we have in the distributional sense for ¢ — 0:
A?vg — yAvg +vg = —F in D'(B.). (3.10)
From (3.7)-(3.10) we get

L+ K= / (f —wo)vo +vVug.Vug + / (F — vAvg + vo) ug + / (A2u0 — vAuo) &
B Be

E B

+ 7Vuy.VIYe +/

(B (1) + B (vo)) i — / (B (1) + Ba(vo)) Ouiio
OB,

0B,

Z/ (f —uo)vo +vVuo-Vug + Ja — Jp + & + E + &, (3.11)
Be
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where

Ja = /é?Be (B1 (&) + Bi(vo)) uo, Jp = /836 (Bz (1<) + Ba(vo)) Ontio,

&= / (F — ’yAUO + ’Uo)%, E = / (AQUO — ’}/Auo) lzue, Es = / ’YVU().VZEUE. (3.12)
B B.

In the next section, we will show that &, & and &3 are v~ o(e?) and that Ja and Jp are «» O(€?). Before we

establish the asymptotic expansion of Bi(vg), Ba(vg) and we.

3.2. Estimates of B1(vo)(z) and Bz(vg)(x) for x € 9B,

Proposition 3.1. Suppose vy regular, then when € — 0 we have the following boundary erpansions:

g1(X)

€

Bi(vo)(eX) = — +0(1),  Ba(vo)(eX) = —g2(X) +O(e),

where setting X = (cos(f),sin(0)) € OB

821)0 82’1}0

v 0) ) cos(26) + 2(1 0) sin(26
(0) = G2 0)) cos26) 4 2(1 — 1) 50—(0)sin(20),

01(X) = 91(0) = (1 - v) (

0z3
- (14w (1—-v) [0%v 0%vg ] 0%y .
92(X) = g2(0) = ————=Avy(0) — 5 ( 7 (0) — 3 (0)) cos(20) — (1 —v) 92015 (0) sin(26).

Proof. Tt suffices to expand Bj(vg)(eX) and Ba(vg)(eX) around € = 0 by using Taylor formula (see [11] for
details). O

3.3. Asymptotic expansion of w,
We recall that w. = v. — vg is the solution of:
A%w, — yAwe +we = 0, on £2,
Bi(we) — yO0hwe = —Bi(vo) + 70nv0, on 0B,
() Bs(w.) = —Ba(vo), on 0B, (3.13)

Bi(we) — y0,we =0, on I,
By (we) =0, on I

We denote by B’ the exterior domain R?\ B, and we introduce the weighted Sobolev space [14]:

Vu c
(1+72)1/21og(2 + r?)

u
{u, (1+72)log(2 + 12) <

W?2(B') = L*(B), L*(B"),V*u € L2(B’)} , (3.14)

where r = |x|. We denote by W?2(B’)/P; the set of functions W?2(B’) defined up to a polynomial of degree less
or equal than 1. To estimate w,, we introduce (see [3,17]) the following exterior problem

A’P =0, on B,

(Peat) § B1(P) = g1, on 0B, (3.15)
By(P) = g2, on 0B,
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where g1 € H=3/2(0B) and g, € H~'/?(dB) are given in Proposition 3.1. From Theorem B.3 (Appendix B),
we deduce that problem (Pe,) admits a unique solution P € W?(B’)/P; and P can be written as the sum of
simple and double layers potential:

P(z) = / M) E( — y)do(y) + / Mo (1)B, (E( — ))do(y)
OB OB

where A1 and Ay are densities that we can determine in function of the boundary data; E(z) denotes the
bilaplacian fundamental solution:

B(z) = — ol log(a) (3.16)

From Theorem B.3 (Appendix B) and Proposition 3.1 we get

A1 = acos(20) + Bsin(20), A2 = ¢+ acos(20) + bsin(20) (3.17)
where
1—v (0% 0%, 1—v 0% 1+v
- 0) — 0 b= — = " Auy(0
“ 3+v (83:% ©0) 0z? ( )) ' 3+ 000101, € 1—v vo(0), (3.18)

a=2a, [=2b.

2.0, = O(—€”log(e)).

Then from Lemma B.6 (Appendix B), we prove that w. = ¢2P (£) + e, with |l
In the next subsection we estimate J4, Jg, &1, & and 3.

3.4. Estimates of J4, Jg, &1, €2 and &3

Lemma 3.2. Let Ja, Jp, &1, &2 and & given in (3.12), we have the following estimates

Jaq = 62%/ A () V2u0(0)y.ydo(y) + o(e?), Jp = —62/ A2 () V2u0(0)y.ydo(y) + o(€?),
B oB

E=0(), &=0(-€logle), & =0(—¢€logle)).

Proof. From the linearity of the solution of (3.6), by using the jump relations (B.7) given in Theorem B.3
(Appendix B) and the asymptotic expansion of w. we get

ta= [ (Bt + 50O )= | (B + 28107)00)) T(ex)io () + 7

€

= 5/ —g1(X) + Bl(lp)(X)%(eX)da(X) +F1+F
OB

—g1(X) + B (I")(X) €
c/ 91( )+6 1 )%v%O(O)X.Xda(XHﬂ+f2+f3
OB

1
— / Al(y)Vzuo(O)y.yda(y) +F1+Fo+ F
9B

2

where
g1(X)
€

A= [ macywm mecf (Br(wn)(ex) + 250 Texyaox),

Fi= [ (a0 +B.0700) (T(eX) - 23Tu(0X.X ) do ()



1128 G. AUBERT AND A. DROGOUL

Let B, such as B & B, C %() By a change of variable, by using Lemma B.2 (Appendix B), a Taylor expansion
of up(eX), the trace theorem applied on B,.\ B, a change of variable and Lemma B.6 (Appendix B), the following
estimate holds

_ 1 N

Fi=¢ B1(I&) (eX)up(eX)do(X) = 6/ E—SBl(l? (eX))ug(eX)do(X)
oB oB

e (€X)]o,p = Ol “Pla,p < Cllec(eX) | g2, 3y p, < Cele

<C 2.0. < Ce*log(e).

From estimates given in Proposition 3.1, and by a Taylor expansion of ug(eX) at 0 we easily see that
Fo=0(%), F3=0().

Similarly
Jp = /335 (Bz(vo) + By (ZEQP(%)JrEe)) Onug = 6/83 (Bz(vo)(GX) + Bg(lp)(X)) Ontip(eX)do(X) + Fu,
= e/aB (=92(X) + Bo(1")(X)) Optio(eX)do(X) + Fu + Fs,
= 62/ (—92(X) + B2(I7) (X)) Vuo(0)X.ndo(X) + F4 + Fs + Fe,
OB

= —¢ A2(y) V2uo(0)y.ydo(y) + Fu + Fs + Fe,
9B

where
Fy = /83 By (I¢9) Opug, Fs = E/BB (Ba(v0)(eX) + g2(X)) Opuo(eX)do(X),

Fo= /8 (=23) + BaI™)(X0) (0,70 (eX) = E27%u0(0) X) dr(X).
Similarly to the F; computation, and from a Taylor expansion of 9,,ug(eX) we can prove that
Fa =0 (—€’log(e)) .
Then from estimates given in Proposition 3.1 and a Taylor expansion of d,up(eX) we obtain
Fs=0(), Fe=0().

Thus, we deduce the estimates of J4 and Jp given in the lemma.
For &1, by using a change of variable, a Taylor expansion of ug(eX) and the definition of F' given in (3.10),
it is straightforward that
& =0 (63) .

For &, a change of variable, Lemma B.2 (see Appendix B) with e = 1, the trace theorem applied on B,\B, a
change of variable again, and finally Lemma B.6 (see Appendix B) lead to

£ = 62/ A2ug (X)X (eX) < Oy 515 < C||we(€X)]|2.5,
B

<cé (”we(EX)”o,BT\E + "LUE(GX”LBT\E + ‘WE(GX)|27BT\§> )

1
< 0 (Huwdl. + o, + il ) < Celog(e)

where B & B, C %Q. Similarly for £ we have
&3 < Ce(Jweli.o, + €lwea.n.) < —Celog(e) O
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3.5. Computation of the topological gradient in the case of the ball

From (3.7), (3.11) and using estimates given in Lemma 3.2 we have

Je(ue) — Jo(uo)

5 =7 (f(0) —up(0)) vo(0) + vy Vup(0).Vug(0)

+5 [ M)V u0ado) + [ %) Tu00)sdo ) + % +o(1).
B B €

€

Using polar coordinates and from the expressions of A; and A2 given in (3.17) and (3.18), we obtain

Je(us) — Jo(uO)

3 = (f(0) = u0(0)) vo(0) + y7Vug(0). Vg (0)

32160 32160 821)0 32’1}0 ’
(G- 50) (G- 5o)
+ 82’&0 ( 82’00

8$231'1 31’28$1

€

(0)mda" + 7c’ Aug(0)Avg(0) + % +o(1),

where
!

21—1/ p_ 14w

, c .
3+v 1—v

From (3.4) and by using Lemma B.6 applied to u. — up and a Taylor expansion of f and ug at 0, we have
Je = =me*(£(0) — uo(0))uo(0) + 0 (7).

3.6. Conclusion: general expression for all xg € (2

The topological gradient of the cost function J, in the case of the ball associated with (Peb) given in (3.1) is
for all point xy € £2:
Z(zo) = m (f (o) — uo(z0)) (vo(x0) — uo(x0)) + 7 Vuo(zo). Vo (o)
271(1 — v) 0%y 02y SRLIN 0%, 02y GRLIN
- - 0 () — =0 4
3+v (( 0z3 (z0) 023 (%) 0z? (z0) 0x3 (z0) | + 022011 (xO)aanxl (z0)
(14 v)

— ﬁAUO(l‘o)Avo(l‘o). (319)

4. STUDY IN THE CASE OF THE CRACK
4.1. Notations and statement of the problem
For each smooth manifold X' C {2, we define the following spaces:

1/2 s 3/2 o
Hyf*(2) = {ujp,u € HYA(D),uz5 =0}, H (2) = {ujs,u € HY(2),u 55 =0},

where X is a smooth closed manifold containing Y and of the same dimension.
We define on these spaces the following norms

HuIEHHéf(E) = ”u”Hl/?(E)v ||u\2||H§é2(2) = HUHHW?(Z)

Now, let ¢ C 2 a C'-manifold of dimension 1, with normal n and containing the origin. We denote by 7 the
tangent vector to the crack o such as (n, 7) forms an orthonormal basis. 97 denotes the differentiation along the
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Q

£

r

(a) 0 Do and w (b) oe, Oc, we and.(7E
FIGURE 2. Extension of the crack in a smooth closed curve

vector 7 and d7 stands for the curvilinear Lebesgue measure along o. In this section we set the crack exterior
domain, A = R?\@. As for the ball we define the following weighted Sobolev space on A:

Vu c
(1+7r2)1/21og(2 + r2)

u

{“’ T loa e € LA

W2(A) = L*(A),V?u € LQ(A)} ,

where r = |z|. We denote by W?2(A)/P; the space of W?2(A) functions defined up to P; functions and by (2, the
cracked domain 2\zg + eo. We assume that o. N 92 = () and to simplify that 2o = 0. We set o, = {z, Zeo}.
Thus 92, = 6. U T and the problem (P.) expresses as

A2ue - ’YAue + Ue = fa on {2,
(PS) Bi(ue) — vOpue =0, on 0. U T, (4.1)
Bs(ue) =0, on o, UT.

Let o a smooth closed curve of same dimension as o such as 0 C 7, and let w the sub-domain of R?, such as
0w = 7; we denote by we = {z, T € W} and 2. = 2\@, (see Fig. 2). Let v € H?(£2.) and u, the solution of (P?).
Thanks to classical regularity result, we obtain that u. € H*(£2.). With an integration by parts in £2\&, U O,
(see [9], p. 376) the variational formulation of (P¢) is

/ fo= / (Azu6 — vAu + ue) v,
Q. Q.

= ac(u,v) — / ((B1(ue) — yOnue) [v] — Ba(ue)[0nv]) + /F (B1(ue)v — Ba(uc)onv) , Vv € H*(0.),

€

where ac(u,v) is given in (2.3) and where we set [v] = v" — v~ the jump of v through o, and [9,v] =
(0nv)" = (8,v)~ the jump of d,v (see Fig. 2). To simplify, we assume that o = {(s,0), —1 < 5 < 1} (we place
us in the local coordinate system of the crack).

We compute the topological gradient as in the case of the ball in evaluating the leading term in the asymptotic
expansion of J.(ue) — Jo(up) when € — 0. By using equations that u. and ug verify, we have

Je(ue) — Jo(uo) = /

2

(f = 2uo)(ue — uo) — / (ue — uo)?. (4.2)

2

We define L.(u) as in (3.3), and we set

= — Ue — U 2. .
7. = /Qu ) (4.3)

e
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As in [2] and [17], to evaluate (4.2), we introduce v, the solution of the adjoint problem (3.5). From (3.5)
and (4.3) we rewrite (4.2)

Je(ue) - JO(UO) = _ae(ue - anUe) + u7e = _le(ve) + ae(anUe) + \75
—— [ foct [ (&uo—r8uo+u) vt [ Baluo)lod - Bofus)@uvd + .
2. Oe

€

— [ (Biw) = 10010) 0] = Ba(uo) Oyv] + .
Then we set w. = ve — vg, where vy is solution of (3.5), with e = 0. Thus, J.(u.) — Jo(ug) rewrites as
Je(ue) = Jo(uo) = / (B1(uo) — yOnuo) [we] — Ba(uo)[Opwe] + Te = 1a — Ip + Te, (4.4)

Oe

where

L= [ (Biw) =20u) wl, Tn = [ Batuo)onui) (45)

e e

In the next subsection, we show that I4 and Iz «~ O(€?) and that J, «~ o(e?). We first establish the asymptotic
expansion of By (vg), Ba2(vg) and w..

4.2. Estimates of By(vo)(x) and Bz(vo)(x) for = € o

Proposition 4.1. By assuming that vy is smooth, and by setting X = (s,0) for —1 < s < 1, we have the
following boundary expansions when € — 0

Bi(vo)(eX) = O(1),  Ba(vo)(eX) = —g2(X) + O(e),

where o2 o
Vo ()
X)=— — 0).
0(X) = - 52 0) ~ v g2 0)
Proof. 1t is straightforward by using that 07 = —dx; and On = Oxs. d

4.3. Asymptotic expansion of w,
We recall that w. = v. — vg is the solution of
A%w, — yAwe + we = 0, on f2,
(09) Bi(we) = y0pwe = —Bi(vo) + ¥0nv0, on o,

Bs(we) = —Bsz(vg), on o,
Bi(we) — y0pwe = Ba(we) =0, on I
To estimate w,, we introduce the following exterior problem
A’R =0, on R*\7,
(Rext) § B1(R) = g1, on o, (4.7)
Bs(R) = g2, on 0.

We easily verify that g; € (Hg’é2(0))’ and g2 € (H&éQ(J))’. Using Theorem C.3 given in Appendix C, we deduce
that problem (R..:) admits a unique solution R € W?(A)/P; which is a sum of third and fourth layers potential

R(z) = 74 M()B1y(B(x - y))dr(y) + 7? Ma(9)Bay (E(z — y))dr(y),
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where § is the principal Cauchy value. We have the following relations:

[R] = th — R‘; =X\, [O.R] = anR‘J; — anR‘; = —\o, (4.8)
where
_ _ —4p5 _ g2
A1(s) =0,  A(s) = =G+ 1-s2, V(s,0) €0,
9% 9%
8= ax%" (0) + 1/87%0(0). (4.9)

By using Lemma C.5 (Appendix C), we obtain

T

we = 2R ( ) + e (4.10)

€

with |[ec||g2(n.) = O(—€?log(€)). In the next subsection we show that I4 «~ o(e?) and that Ip «~ O(€?).

4.4. Estimates of I4 and Ipg

Lemma 4.2. Let I4 and Ip given in (4.5), then we have the following estimates
I»=0(), Ip = —625/ Ao (X)dT(X) + O(e?)

with £ = 210(0) + 24 (0).
2 1
Proof. We assume that wug is smooth, thus from Proposition 4.1 we have
Bi(up)(eX) = O(1).

Let B D o, from Lemma C.1 (see Appendix C), and by using the equivalency of the H?(B\7)-norm and the
seminorm, with a change of variable, we get:

Iy < €]| Bi(uo)(eX) we(eX) || 2(B\3) /oy < Celwe(eX)|o, prz < Ce2|wel2,, -

g2 oy
From Lemma C.5 (see Appendix C), we have
Ip,=0 (65) .

From (4.8), (4.10) and (4.5), we express Ip as
Iy — _625/ Ao (X)dr(X) + &1 + &, (4.11)

where

&= / (Ba(u0)(€X) — &) [Dwe (eX)dr(X), & = / E[Onen(eX)]dr(X),

o 82u0 82160

Similarly by using Proposition 4.1 and Lemma C.5 we get
&1 < || B2(uo)(€X) = &l yas2 o [we(eX) | 12 vz /80 < Ce|welz,0, < C€,
& < Cllec(eX) | rr2(p\a) /2y < Célec|a,n. < Ce?log(e). O
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4.5. Computation of the topological gradient in the case of the crack

From (4.2), and from estimates given in Lemma 4.2 we have

M _ g/ Xo(X)dr(X) + f—z +o(1).

By Lemma C.5 applied to u. — ug we deduce the estimate of Z.:
Z. = O (e*(log(e))?) .

By using the expression of A2 given in (4.9), we deduce the topological gradient at 0

! — — 27
20 =¢ [ a0 =¢ [ ey = et

or more precisely

T 0%u 0%u 0%v 0%v

2
4.6. Conclusion: general expression for all point xy € 2

The topological gradient expression associated with the cost function J.(u) and problem (P¢) given in (3.1)
and in the case of a cracked domain 2, = 2\zg + eo(n) is:

I(zo,m) = —(1_1/2)% (VQuo(:ro)(n,n) + vV2uq(x0) (T, 7)) (VQUO(wO)(n, n)+ l/vz’l)o(xo)(T,T)) ,

where n L 7 such that (7,n) be an orthonormal basis. Then, if we want to minimize J.(uc) we can define
the topological gradient at xo as the min value of Z(zp,n) (this definition should change according to the
application: see [10] for another definition adapted to a fine structure detection problem):

I(xo) = ”51”121 Z(zo,n). (4.13)

APPENDIX A

In this Appendix we give a useful result for the study of exterior problems. We denote by the same letter O
the exterior domain of the crack and of the ball. In the following, we denote by B, the ball of center 0 and of
radius r. In the crack case, B denotes a ball containing strictly the crack (for example B = B,, with n > 1) while
in the ball’s one B denotes the unit ball. We denote by W?(O) the weighted Sobolev space defined by (3.14)
replacing B’ by O.

Lemma A.1. Let u € W2(O). We have the following inequality

[ullw2(0)/p, < Clulz,0,
where C is a constant depending only on O.

Proof. Let n > 0 such as B = B,: 2 > n > 1 for the crack and = 1 for the ball. Let ¢ € C?([0,4+c]), a real
function defined by:
w =0, for 0 <t <m,

0<p<1l fornp<t<2
p=1 for t > 2.
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Let ¢(z) = ¢(|z|), then uy € WE(B'), where we recall that WZ(B’) is the closure in W2(B') (see (3.14)) of
C*°(B')-functions with compact support in B’.
On WZ(B'), thanks to Hardy inequality and to the 1 expression, we have

lullwa(sy) < llwdllwesy < Cléulz,p-

Now we bound from above [uls, 5

[vule,pr < ‘u|2,B§ + |¢u|2,32\§ <u 2,B, T |4 |2,32\§”u”2,32\§ < ‘u|2,B§ + C||u||2,32\§.
Denoting by w the crack or the unit ball and O = R?\w, and using the equivalency of the W?(By\w)-norm

with the H?(By\@)-norm we get

[ullw2(0) < Cllull2,B\& + Clul2,5;-

Thanks to Deny-Lions Lemma ([9], Lem. 5.2) we get

lullw20)/p, < Cllullg2B,\@)/p, + Clul2,p;, < Clul2,0. O

APPENDIX B

In this section we develop some technical computations not given in Section 3. We recall that B denotes the
unit ball and B’ the exterior domain. We recall the definition of the weighted Sobolev space W?2(B’):

Vu c
(1+72)/210g(2 + r2)

u
1+ 2)log2 +72) -

W?2(B') = {u L*(B"), L*(B'),V?u € L2(B’)} (B.1)

with r = |z|.
Lemma B.1. Let u € H*(R2), such as A*u € L*(£2). Let It a smooth closed curve such as It C 982. We have
the following inequality
<Bl (u)

2
Bs(u) < Clulz,0 + [|A%ulfo, o,

>H3/2(F1)><H1/2(F1)

where

B
(31271;) = sup / Bi(u)p1 — Ba(u)p2.
2N ) H=sr2(ryyx H-1/2(1y) n

leillsy2,ry +lle2lli/2,r =1

Proof. See [11]. O

Lemma B.2. Let w C R?, p; € H¥?(0w) and oy € HY?(dw), then there is a unique solution 1912 € H?(w)
of (see (3.6) with e =1):
A2[P1%2 = 0, on w,
191992 = 1, on Jw,
Opl?v%2 = o, on Ow,

and we have the following inequality

[172%2 |2, < Cllg1llz/2,00 + Clle2lli/2,00- (B.2)

Proof. See [11]. O
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The four first points of the following theorem are taken from ([9], p. 402 and p. 417). Let f € H*(9B) and
g € H*(0B), we denote by (f,g) the scalar product on 0B:

= /83 fgdr.

Theorem B.3. Let gy € H3/2(0B), go € H-'/?(0B), such as

(91,1) =0, (g1,21) — (g2,m1) =0, (g1,22) — (g2,n2) =0
We consider the following exterior problem
AP =0, on B,
(Pewt) § B1(P) = g1, on 0B, (B.3)
Bs(P) = g2, on 0B.

(1) The problem (Pext) given in (B.3) admits a unique solution in W2(B')/P1 and the map (g1,g2) — P is
continuous from H3/2(0B) x H=Y2(0B) to W?(B') /Py, where W?(B') /Py is the space of W2(B') functions
defined up to a polynomial function of degree less or equal than 1.

(2) The solution P € W2(B')/P1 of (B.3) expresses as the sum of simple and double layers potential:

P)= [ M@E@-y)do(y) + | Aay)on,E(x —y)do(y), forz € B (B4)
OB 0B

(3) There exist ag,a1,az € R such as the densities Ay and A2 are given by the five following equations

- %Al(l‘)Jr M (Y)Bra(E(x—y))do(y)+ ¢ Aa2(y)Big (Ony E(z—y)) do(y)+ao+a1z1+azzs = g1(z)

oB oB
1
+5h2(2)+ - M (y)B2o(E(z = y))do(y)+ - A2(y)Baw (Ony E(x—y)) do(y) —aini (z) — azna () = ga2(x)
<)‘17 > =0
<)\1,l‘1> <A2a 1> =0
(A1, 22) + (A2,m2) =0 (B.5)
where x € OB and ¢ denotes the principal Cauchy value.
The three last conditions of (B.5) express the following asymptotic behavior of P:
P(z) = ap + a121 + asxs + Alog(|z]) + O(1).
(4) For x € 0B, we set x = (cos(0),sin(f)) for 0 € [0,2x[. Assuming that g1 and g2 take the form
g1(x) = Ay cos(20) + By sin(20), and ga(z) = Cy + Az cos(20) + Basin(26), then
P(z) = O(log(|z|)) and then ag = a1 = az = 0. Thus A1 and A2 are given by:
A1(x) = accos(20) + Bsin(26) (B.6)
A2(x) = ¢+ acos(20) + bsin(20) ’
with
A1+A2(1—|—Z/) Bl—|—Bg(1+I/)
a=-8——"—> f[f=-8——7
1-v)3+v) 1-v)3+v)
gV +ddy ) Bil+y)+4By -, G

1-v)B+v)’ 1-v)B+v)’ 1—v
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(5) Let I¥ defined by (3.6) (for € = 1) and the data g1 and go given in the fourth point; then we have the
following jump relations through OB for x € 0B

g1(z) — B1(1")(z) = =\ (z), 2 € OB
g2(z) — Bo(IP)(z) = \a(2), © € OB (B.7)

Remark B.4. The choice of g; and g5 in the fourth point comes from the boundaries data given in Proposi-
tion 3.1.

Proof. We introduce the bilinear form on W2(B') /P,

/ e J— _—
Vluv) = | Audv+(1-v) <2 021029 011012 023 023 Ox3 0x3

B’

?u 0% 0%u 0%v 0% 821;)

and the linear form on W?2(B')/P;
l'(v) = / g1V — g20nv, Yo € W2(B')/Py
oB

From (2.2), and Lemma A.1, the coercivity of o’(u,v) is straightforward. Applying the trace theorem on Bo\ B,
we deduce the continuity of I'(v) on W2(B’)/Py, which ends the proof of the first point.

The second and the third point are proven in ([9], p. 417).

Then by using the Green formula on B’, we get

P(z) = E—A%ﬂw—wP@M%,

= [ Biy(E@ )P, - / Bay(E(x — )0, P(y)doy.
OB OB
T / O, (E(x — ) B,y (P)(y)do, — / E(x — y)By(P)(y)do,.
OB oB
—A-B+C-D

We remark that with the values of g1 and g9 given in the fourth point we have the following relations:

(91,1) =0,
<g1,$1> = <glan1> = <glax2> = <glan2> = 07
(g2, 1) = (g2, 1) = (g2, T2) = (g2, n2) = 0. (B.8)

Computing By ,(E(z — y)) and B ,(E(z — y)) for y € 0B and when |z| — oo we show that
A= - By y(E(x —y))P(y)dy = O (log(|z])), B = /83 Bsy(E(x —y))0n P(y)dy = O (log(|z|)) -
For C' and D, we use a Taylor expansion of E(x —y) and 0,, (E(x — y)) at 0, and we assume that 2| — oo
1, 1
E(x —y)=E(z) —y.VE(z) + §y.V E@zy+0|—|,

]

8MEm—y%:VE@M@—WﬁE@Mny+O(éﬂ. (B.9)
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Using the estimates V2E(x) = O(log(|z])), (B.9) and the relations (B.8) we have

C= - On, (E(x — y)) B2,y (P)(y)dy = O(log(|z|))

D= [ E(z—y)B1y(P)(y)dy = O(log(|z|))
OB

We deduce that P(z) = O(log(|x|)) when 2 — oo and then ag = a1 = az = 0.
To determinate A\; and Ao we first compute kernels associated with the integral equations.
From ([9], pp. 390-392), by setting x = (cos(p),sin(p)) and y = (cos(f), sin()), we have

_8i7r (1+v)log (2(1 —cos(p —0)) + (1 +3v) + (1 —v)(1 — cos(p — 0))),
B (O, (B — ) = — 1=+~
Bi (Bl —y)) = == — —— cos(o — ),
1—v 1+v
8w cos(iw =) + 87 (1 —cos(p —0))

To simplify notations, we denote by A1(0) = A1 (cos(f),sin(f)) and A2(0) = A2 (cos(0),sin()) the densities \q
and Ao evaluated on the unit circle. Equations given in the third point of the Theorem B.3 express as

B2,3: (E(-T - y))

cos(p — 0),

1 11—
— =Xi(p) +/ (—— - v cos(p — 0)) A1 (6)do
2 0 4m 8T
(- 1) 2 1—v 1+v
— -0 A2(60)df = A 2 By sin(2
(- cosle — ) + gt ) M(6)8 = Ay cos(2) + B sin(2)
1 A
5)\2(4,0) + / (—g (1 +wv)log (2(1 —cos(p —0)) + (1 +3v) 4+ (1 —v)(1 — cos(p — 0)))> A1(0)do
(Eq. 2) . OV L
+ / (—— + cos(p — 0)) A2(0)d0 = Cy 4 Az cos(2¢) + By sin(2¢).
0 4m 8
The only singular kernel is m = O (|0 — ¢|?) associated with By, (0, (E(z —y))). We remark that

Big (0n, (E(x —y))) = 0On, (B1,y (E(x —y))). We deduce that

/8 , Die (O, (E(z —y))) do(y) = Oy, /8 By (E(z —y))do(y) = 0, (—%) = 0.

We can rewrite the left term of (Eq. 1) as:

2m 1-v 1ty
fi} (_ 8w cos(iw =) + 8m (1 — cos(p — 0))) (A2(6) — X () dO

Then we are searching for the form of the solutions. First fo% A1(0)df = 0 and according to the fourth point,
g1 € span(cos(26),sin(26)) and g2 € span(1, cos(26),sin(26)) so regarding the kernels forms, it is legitimate to
search A1 and A\ as
A1(0) = accos(20) + Bsin(20),  A2(0) = acos(20) + bsin(20) + c.
Let f continuous on [0, 27], we define the following improper integral: I(f)(p) = Ozﬂ %d@, where by
definition: 550% = lim,_,¢ fogp_e + fjie. Then we compute the two following improper integrals:

I(cos(20))(¢) = —4mcos(2¢),  I(sin(20))(¢) = —4mwsin(2¢). (B.10)
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We rewrite (Eq. 1) as

2m .y
- % (arcos(2¢) 4 Bsin(2¢)) + /0 <—i 1

4 81

cos(p — 0)) (acos(20) + [Bsin(20)) dd

SRV Y 1+v . )
+ fg (— & cos(p — 0) + e ——"— 9))> (a(cos(260) — cos(2¢)) + b(sin(20) — sin(2¢))) d

= Aj cos(2¢p) + By sin(2¢).
From (B.10),we obtain the following equation:

1+v

—% (acos(2¢) + Bsin(2¢)) + (—4macos(2p) — 4dwbsin(2¢)) = A; cos(2¢) + B sin(2¢p).

Identifying each term in front of cosinus and sinus we get

1
(Eq. 1) EOR (B.11)
2 2~ b
Similarly, equation (Eq. 2) rewrites as
1—
9 VC = CQ)
(13.?2) g+ 1—5’;1/0[:142, (B.12)
b 1+v
2 — B,.
5 + 3 B 2

Solving (Eﬁ) and (Em) we obtain the expression of A\; and Ay given in (B.6), which ends the proof of the
fourth point.

For the fifth point, let [ defined by (3.6) (with ¢ = 1). Thanks to the continuity of simple and double layers
(see [9], p. 384), we have

W)= | M@E@-y)doy)+ [ Ay)dn, E(x —y)do(y), for = € B.
OB oB

Using again jump relations given in ([9], p. 385), we obtain for x € 0B

1

B (%) (2) = gh@) + [ M0 BuABG =)o) + [ B (00, Ela =) do),

1
By (I7) (z) = —5)\2(3:) + /8 M (y)B2o(E(x —y))do(y) + /8 A2(y)Bag (On, E(z —y)) do(y). (B.13)
B B
Finally, by using (B.13) and the two first equations of (B.5) and by setting agp = a1 = a2 = 0, we get the last
point of the theorem. O

Lemma B.5. Let P the solution of (Peyt) given in (3.15). We have the following asymptotic behavior as
|x] — oo:

C C
|P(z)| < Clog(|z]), [VP(x)] < T’ V2P (z)| < B

N, =ocson [P (), =o(vmem). (e, =0 (:)

€ € €
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Proof. P(z) is given by

P@) = [ M@EE-dol)+ [ X, (- y)dol)
OB OB
With the boundary data g; and go given in the last point of Theorem B.3, A\; and Ay verify the following
relations

(A, 1) =0,
<A1,-T1> = <A1an1> = <)\1,l‘2> = <A1an2> = 0?
</\2,.T1> = </\2,n1> = <)\2,l‘2> = </\2,n2> =0. (B14)
A Taylor expansion of P at « and (B.14) give the first inequality. The two others inequalities are straightforward
if we differentiate the expression of P in interchanging integral and derivatives. Then using again a Taylor
expansion at x, and by taking |z| — oo, we get the result. To estimate the L?({2)-norms of the derivatives of
P, we choose two large positive reals a and D and a small positive real € such that B C B, C %(Z - %BD. Thus
we have:

Hp(f)HZn :/Qgp(g)zd“”:g/mwp(y)?dyS62 </BG\BP(y)2dy+/13D\BaP(y)2dy>

D

€

D/e 2 2
< Ceé® + 062/ log(r)?rdr = Ce? + Cé? {log(r)%(log(r) -1+ TZ} < C'log(e)?

a
which is the first estimate. The computation of the second and the third norm estimate are similar. O

Lemma B.6. Let w. given in (3.13) and P the solution of (Peyt) the exterior problem given in (3.15), then we
have the following asymptotic expansion when € — 0:

we = 2P (£> + €.
€

with , .
lecll2,2. = O(e” log(e)), |wello,2. = O(—€*log(e))
[wel1,0. = O (—62 log(€)), |wel2,0. = O(e)

Proof. e, is solution of the following problem

A?e. — ale. + e = aAP (%) —é2p (%) on {2,
Bi(ec) — vOnec = —Bi(vo) — %gl (%) —Y0nhvo = p1(z) = O(1), on IB,
(&) Bs(e.) = —Ba(vg) — g2 (%) = po(z) = O(x), on 0B, (B.15)
2
Bi(ee) — yOnee = —%B1(P) (%) =¢1(z) =0 (@) , on I’

z 2
Bs(eo) = —Bs(P) (;) = ¢o(x) = O (—2> : on I’
where the expressions of g; and gy are:

g1(X) = Ay cos(20) + Bysin(20), g2(X) = Cy+ Az cos(26) + B sin(20)
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with X = (cos(6),sin(f)) and where

821)0 821)0
n=-0) (530 -F20). B-20-n502-0,

1—v (9w 9o d?v 1+v

The variational formulation of problem (B.15) is: find e. € H?({2.) such as

ac(ee,v) = /Q (—52P (%) +~AP (%)) v+ /GB‘ 1V — P20, + /F —P10 + P20n0.

We integrate by parts the second terms in the right hand side part of the above equality

fo 20 Qo= foonr Q)emer Qo= [ aur (R orr (Q)ows [ er (D)

Let b, the bilinear form associated with the leading operator of (B.15) such as for all u,v € H?(£2,)

0% 0% 0%u 0%v 0% O%v
belu,v) = /Q Audv+(1-v) (2751;1@@ 91107 02 003 %%) ‘

Then we split the error into the sum e, = el + €2, where

(B.16)

o ¢l € H%*(£.)/P; is defined by
be(el,v) =11 (v), Yo € H*(02,.)/P,

HOE /83‘ (4,01 — e, P (%)) v+ /GB‘ (—@2 + 2P (%)) Onv

We can show (as for the Poincaré inequality (see [16])), that there exists C' independent of € such as the
following inequality holds:

with

lullzr2(2.)/8, < Clulz,q., Yu € H(2:)/P1. (B.17)

We deduce the coercivity of b. on this space with a constant not depending on e:

be(u,u) > (1 — V)\“g,m > CH“H?#(QE)/Py
Thanks to the trace theorem applied on §2., the continuity of I on H?(£2.)/P; is then straightforward.
o ¢2 € H?(f2.) is defined by
ac(e2,v) = 12(v), Yv € H?*(12,)

with
Z(v) = /Q (—62P (%) +yAe! — ei) v+ ye*P (%) Av

o () (s r (2))

The coercivity of a. on H?(£2.) is known (see (2.2)) and as for b. the constant do not depend on ¢; the
continuity of [2 on H?({2,) is easily checked using the trace theorem on 2.
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Now let us estimate [|e}|| zr2(o.)/p, and ||€2||2,o. with respect to .
By considering the variational form of el, by taking as test function v = e! and by using a change of variable
we have

(1-v)lel R g, <belel,el) = / (1(eX) — B, P(X)) el (eX) + ¢ / (—pa(eX) + 2P(X)) Ope] (eX)
oB OB

< (ellpr(eX)l—s/2,08 + €10 Pl —3/2,08) llec (€X)|| g2r20m) p,
+ (llp2(eX)|=1/2,08 + € 1Pl =1/2,08) 100 (e2(€X)) [l g1/2(08) /8, -

Let r > 0 such as B & B, C 12. The trace theorem on B,\B, the Deny-Lions inequality ([9], Lem. 5.2) and a
change of variable give:

lecl3.0, < C (ellpr(eX)-s/2.08 + €10nPll-3/2,08) lec (€ X)) 2\ 5) /e,
+C (||‘P2(6X)H71/2,8B + 52||PH71/2,8B) ||€i(6X)HH2(Br\§)/]P‘1
< C (elei(eX)l-s/2.08 + €10n Pl -3/2,08) lec (eX)|5 p\5
+ C (lle2(eX)l-1/2,05 + €l Pl -1/2,08) \ei(eX)|27BT\§
< Ce (€||‘P1(€X)”73/2,8B + 62||8np||73/2,8B) |€i\2,ne + Ce (H‘P2(€X)||71/2,8B + €2||PH—1/2,813) |€i\2,96-
Using that ¢1(eX) = O(1) and ¢2(eX) = O(¢e) we get
=0(e?) (B.18)

Hei HH?(QE)/P1

With a similar reasoning for €2, from its variational formulation we obtain
Clele, <adetet) = [ (<P (%) +aacl—el) et 4rep (2) ac
e 2. € €
z 2 2p (% 2
+f Covtaar (D)) e+ (m-aer (3)) o
r
2 z 1
<C (6 ’P (—)H +7le.
e/ llo,q.
z 2
+ (o1l sy.r + ¢ |0nP (2] le2lls/a.r
e/ ll-3/2,r

) E

x
z,oe+|e1||mgwl) leZlo.c.+Cre [P (2)]  le?la..

€

X
+ <||¢2||1/2,F + 7€ HP (z)

[

The trace theorem applied on §2\B,, the estimates ¢; = O (%), ¢p2 =0 (%) and ||ei||H2((Z )Py = O(€?),
and Lemma B.5 give:

=0 (—€’log(e))

Al
Hee 2,92,

Coming back to e, since e! is defined up to a function in P;, and thanks to the Deny-Lions inequality given
in (B.17), we have

l2,0. < Ce? log(e)

lecllz,a. < lletll a0 mp, + lle?

which is the first estimate. For the LQ(QE)-norm estimates of w,, Vw, and VZw,, we must use that w. =
P (f) + e, differentiate it, take the norm and use Lemma B.5 and the previous estimate of ||ec||2,q. . g
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APPENDIX C

Let 0 a smooth manifold that we extend to a smooth closed curve . We denote by w the domain such as
0w = o (see Fig. 2a).
We recall the definitions of H&éZ(J) and Hgéz(a):
1/2 ~ 3/2 ~
Hoy?(0) = {ujgu € HY2(G),upv5 = 0}, Hg (0) = {ujp,u € H*@), upz = 0},
and we introduce the weighted Sobolev space

u Vu
e L*(A €
{u, (14 72)log(2 +12) (4), (1+7r2)1/21og(2 + r?)

W2(A) = L*(A),V?u € L2(A)} ,

where r = |z| and A = R?\7.
In the sequel, B denotes the ball containing strictly the crack o and its extension o (for example B = B,

with 7 > 1) and such as B C % for small e.

/ /
Lemma C.1. Let v € H?>(B\7), g1 € (Hg’é2(a)> and go € (H&éZ(J)) , then we have the following inequality

/glM < Clgill gsp2 o 10l a2 (3v2) /24 /92[3nv] < Cligall sz oy 10l 52 (877 /4 -

Proof. By using the definition of the Hggz(a)—norm and by splitting the jump of v across o, we have for any
smooth function ):

/091 [0l < Ngull g2 oy o+ M sz oy < Nlgnll oz, (o +®llsj25 + o™ +ll3j25) -
Then by using the trace theorem applied to (v + 1) on B\@ and v~ + ¢ on @, we have

[ 9ol <Nl g oy (I + Pl + 10+ )

By taking the infimum with respect to ¢» € P; and from the Deny-Lions inequality the first inequality holds.
The second one is proved in the same manner. O

Lemma C.2. Let u € H*(A?, B\7), hy € H(%Q(a) and hg € Hééz(a), then we have the following inequality

/aBl(U)Ch - /0 By(u)ga < Clllanll yarz oy + lall 12 )) (lul2,mnz + 1A% 2(03))

Proof. See [11]. O

Then we introduce the exterior problem:

A’R =0, on R*\7,
(Reat) § B1(R) = g1, on o, (C.1)
B3(R) = g2, on o,

where ¢g; € Hgéz(a)’ and g2 € Hééz(a)’.
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Theorem C.3.

1143

1 C.1) admits a unique solution in W2(A)/Py and the map (g1, g2) — R from H3/2 x H? (o) into
00

W?2(A) /Py is continuous.
(2) The solution of (C.1) expresses as the sum of double and triple layers potential:

/)\1 \Bi(E(z — ))dr(y /)\2 \Bo(E(z — y))dr(y), for x  A. (C.2)
(3) The following jump relations through o hold:
[Rl =R, — R, =\,
3 (C.3)
[OnR] = anR; — anR‘a = —o.
4) The densities \1 and A2 are given by the two following equations:
(4) g y g eq
a fxl )B1u By (B(x — y))dr(y fxz )By..Ba, (E(x —1))dr(y), (C.4a)
gaf f M () Baw Bry(E(z — y)dr(y f No(y) Ba.u By (E(x — ))dr(y), (C.4b)

where § denotes the principal Cauchy value.

(5) Foro={(s,0) x {0}, -1 <s <1}, g1(x) =0, and g2(x) =V (with V a constant), A1 and Az are given by

Ai(s) =0, V(S,O) €o

)\2( ) mV\/l—SQ,V(s,O)GU

Proof. We denote by &' the exterior domain &' = R?\&.
We introduce the two following spaces

H* (A%, %) ={ue H*@),A%ue @)}, W(A%E) ={ueW*@),rlog(r)A%u e L*[@)},
where W?2(@') is defined by (3.14) replacing B by @. We define the following bilinear forms:
Pu 0% 0?ud*v  0*ud*v
A(u,0) = [ Audv+(1—p) (220 v guow OTuow
alu,v) /@ udv+ (1 - v) ( 01029 021012 O2% 023 Ox3 89@%) ’
Pu 0% Pud*v  *u 8%)

a(u,v) = | Audv+ (1 —v) (2

a}/

02109 01019 022 023 O3 0x3

Considering that u € H?(A? &), the Green formula applied on @ gives
a(u,v) = / Auw —/ (B1(u)v — Ba(u)dnv), Yo € H*(@).
by o
By the same reasoning on u € W2(A2,&') we have

d(u,v) = | A%uv+ /a~ (B1(u)v — Ba(u)0nv) .

L:'/

Then we introduce the space

(C.5)

K ={u € H*(A%®)/P1 x W?(A%, &) /Py, supp(A*u) = 0, [B1(v)]s = [B2(u)]lo = 0, [u]s\5 = [Onu]d\T = 0}
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and by using the regularity of H2 (A) functions, K rewrites as
K= {u € W2(A2,A)/P1,supp(A2u) =0, [B1(u)], = [B2(u)]s = O}
(Reszt) reformulates as
find R € K such as Bi(R) = g1 and By(R) = g2 on o (Rext)
and the variational formulation of (Rs¢) is: find R € K such as
a(R,v) =1(v), Yv € K,

where

2 2 2p 52 2 92
a(R,v):/ARAU+(1_V)( PR v PR 8R8v>’
A

283:1(%2 011079 0z? 8—335 B 8—:@8—33%
1) = [ ol = l00]
Problem (Re¢yt) admits a unique solution in K. Indeed, it is coercive on K: first we have
a(u,u) > (1 — V)|u\%V2(A), Yu e K (C.6)
and from Lemma A.1 we have:
Jull x = llullwz(ayp, < C(A)]ulwz(ays

which gives the proof of the coercivity of a(u,v) on K. After that the problem is continuous on K: applying
Lemma C.1, we obtain

1) < C (91l 372y + 1921 11720y ) Nl e, (c.7)

which implies the continuity of I(v) on K. From (C.6) and (C.7) we deduce the continuity of the map (g1, g2) — R
from H3? (o) x HY? (o) into W2(A)/Py.
Then as K is a closed subspace of W?(A)/P; which is an Hilbert space, we deduce that it is an Hilbert space too.
Thanks to Lax—Milgram’s theorem, we get the well-possedness of problem (R.z:). Thus we define the following
isomorphism

(gla 92) — R

Jo 3/2 ! 1/2 !
(#5%(@) x (Hf* () — K.
Let us consider the following problem: for (¢1,¢2) € H(%Q(a) X HSéQ(a)

find Q € K such as [Q] = ¢ and [0,Q] = ¢q. (Qext)
Let v € K, we have
o, v) = /A Ao+ / Bu()[u] — Ba(v) [0,
The variational formulation of (Qey) is: find Q € K such as
a(Q,v) =1(v), Vv € K,

where

I'(v) :/0(1131(11)—/0(]232(@).
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In the same way as for problem (R¢st), we show the coercivity of problem (Qc,:). From Lemma C.2,
') < Ol g3y + 2L a0l 21

From the equivalency of W?2(A)/P;-norm and seminorm, we deduce the continuity of the map I'(v) on K.
Thanks to Lax-Milgram theorem we obtain the well-possedness of problem (Qc,¢). Thus we can define the
isomorphism

(qla CI2) — Q

Ji:
(H2(0)) x (Hy*(0) — K.
We denote by J = J; L6 Jy the isomorphism
(91,92) —(q1,42)
J: 3/20 v/ HY2 (5 3/2 1/2
(Hoo (U)> X ( 00 (U)) — (Hoo (U)) X (Hoo (‘7)>~
Now, let u defined by

() = / M) BryE(x - y)dr(y) + / Ao (y)Ba,y B — y)dr(y)

= /. M (y)BryE(x — y)dr(y) + . Xa(y)Bay E(x — y)dr(y),
where x € A and )\ € Hgéz(a), A2 € HSéQ(a) and \; € H3/2- (i~ () defined by

5 A, on o
‘" 10,on5\7

for i € {1,2}. Firstly, u is biharmonic. Indeed for z € A and y € ¢ the maps y — By, E(r —y) and y —
By yE(x —y) are C*°(0). Besides

AiBl,yE(x —y) = Bl,yAiE(x —y)=0 and AiBg’yE(x —y) = Bg,yAiE(w —y)=0.

Then by using the regularity of y — By ,E(x —y) and of y — By ,E(x —y) we can interchange the integral and
bilaplacian operators which leads to the following equation:

A%i(z) =0, Vz € A

Besides for |z| — oo, a Taylor expansion at x gives a(z) = O (log(|z|)). A twice differentiation of u and a Taylor
expansion at point x of %, show that 4 € W2(A). Considering @ as an element of W2(A)/Py, we get u € K. By
using jump relations given in ([9], pp. 385-386) we have

Bl,ﬂ?(ﬁ)(z) = % Al(y)Bl,zBl,yE(x - y)dT(y) + j{ AQ(y)Bl,xBZyE(:E - y)dT(y)a
o g (08)

By o(@)(x) = f No(y)BaaBiy E(x — y)dr(y) + ;f No(y) Baa By Bz — y)dr(y).

We show now that these two boundary integral equations describe the isomorphism J~!. Indeed by using ([9],
p. 384), we get

7 (2) = 4\ (x f M () By E(x — y)dr(y jbz )Ba.y B(w — y)dr(y),

7 (2) = Tholz fxl V0. Byy B — y)dr(y jbz V0n. Ba.y B(w — y)dr(y).
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Then by difference
[@] = A1, [Ont] ==X

As J; is an isomorphism, if we set A\; = [R] and Ay = [0, R], we get & = R. Thus (C.8) with By(a) = g1 and
Bs() = go defines the isomorphism J~!. This ends the proof of the second, third and fourth points of the
theorem. Now we must solve the two boundary integral equations (C.4) in order to prove the fifth point. We
first compute the kernels in the simple case of a straight crack: we set n = (0,1), z = (s,0), and y = (¢,0) € &

and so:
B (1 (B - ) = -2 00,

Byu (BLy(E(x —y))) = Bie (Bay(E(r —y))) =0,

B (Bay(Blo — ) = S IE L),

Integral equations (C.4a) and (C.4b) rewrite as

7{ Mol -1 +V)(3+V)dt.
(s —t)?2

These two equations are uncoupled. For the first one the choice A; = 0 is a solution, and by uniqueness it is the
solution of (C.4a). For the second equation, we define the function:

g(s):lj{1 Az—(t), —-1l<s< 1

T s—t
We remark that (C.4b) rewrites as

4

= trE

Then we get g(s) = As+ B with B an arbitrary constant that we can take equal to 0. From [12], Ay is given by
the following formula

1—¢2 1 LV -2
:--7{ St P At = 5) + As)dt + —Z
1_825_t m rvIo_s2), st 1—s2

= 1_82<f mdt—f \/—t2dt>

B —A 9 T C _ —
== (PG = AV

where we set C' = A/2 in order to verify Aa(—1) = Aa(1) = 0 (ie Az € Hééz(a)). This ends the proof of the
theorem. 0

C
Vi

Lemma C.4. Let R be the solution of the exterior problem (R) given in (C.1), we have the following asymptotic
behavior:
For |z| — oo

R(z)| < Clog(lz]),  |VR()| s%, V2R(x)| <

2]
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Fore— 0

[#(H)],,, =ocwsn. [r(2)],, =ow @ |r(%)],, =o(})

€

Proof. From the expression of R given in Theorem C.3 and by using a Taylor expansion at point x and taking
|z] — 400, we get the first inequality. For the second and the third ones, we must differentiate the expression
of R € C*(R?\7), interchange integral and derivative, and use a Taylor expansion around z. We refer to
Lemma B.5 for the proof of the three last estimates. O

Lemma C.5. Let be w, the solution of problem (QF) given in (4.6), and R the solution of the exterior problem
(Rext) given in (4.7), then we have the following asymptotic expansion:

—62R( )—I—e6

with )
lecll2,0. = O (—€*log(e))

(€)-

Proof. e, solves the following problem

A%e, —~yAe. + e = vAR (%) _ 2R (f) on 12,
Bi(e) = 10nec = ~Bi(wo) — - Bu(R) (Z) ~10u0 = 1) = O(1),  om
e
(&) Ba(e.) = —Ba(vo) — go (%) = py(z) = O(2), on o, (C.9)
Bi(ed) — vdpee = —%Bl(R) (%) = ¢i(z) =0 <;—23> , on 0N
Bafer) = ~Bal®) (£) = ento) = 0 (5. on 90

where go(X) = —%2”20 (0) — v (0) = —p for X € 0.

3 Oz

The variational formulation of problem (&) given in (C.9) is: find e, € H?({2.) such as
ac(ee,v) = / YAR (£> v—€e’R (£> v +/ p1[v] — w2[0nv] — / (p1v — Pp20nv) , Yo € H?(0,).
2. € € o r

Integrating by parts the first term of a.(ee,v) gives

/Q v—e/ OnR ( —e/ [anR(f) v]—ez/FR(f) anu+62/ae [R(%) anv]+/9 62R<%) Av.

€

The variational formulation of (&) rewrites as:

c(ee,v —6/8R v—e/ [(‘%R(%)v}—ez/FR(%)@nv
i [ [n(E)or] + ] en(D)2e-cn(Z)-
+ [ ol = alouel - [ (610 gaduv). o € HE ).

€

We split e, in the distributionnal sense into the sum e, = el +el~ + €2 with
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e elF € H?(0.)/P; defined by

be(eb® v) = 1M%(v), Yo € H?(£2.) /Py, where b, is given in (B.16)

1LE(v) = —ve /0 ((?nR (%) v)i +’}/€2/ (R (%) &ﬂ))i

where we recall that for = € o, u(z)® are the right and left limit values (see Fig. 2).
We check easily that each problem defining the solution el* is well defined on H?(£2.)/P;.
e ¢2 € H?(f2.) is defined by the variational form:

ac(e?,v) = aclec —ebt —el™ v) = —/ R <£> v —I—/ ve’R <£> Av — ’y/ V(elt+el7) . Vo
Q. € Q. € Q2.

_/ (ei*%—ei")v—/ (¢1U—¢23nv)+/ ©1[v] — @a[0nv] Yo € H?(82.).
2. r e

and

As for el'*, we can show that e? is well defined.

Now let us estimate ||e>F|| g2(q.)/p, and |[e?[|2,.. A change of variable, the trace theorem on B\@, the equiv-
alency of H?(B\w)/P;-norm and seminorm and a change of variable again lead to

v <hien ity =—c [ (an(E)err) 4 [ (1()ot)’

Oe

:_62/ (BnR(X)ei’+(eX))++e3/ (R(X)nel T ((eX))"
21| ,1,+ 3 1,4+
< Ce ||ee (EX—)||1ng62(0)/[@1 + Ce ”aﬂee (G*Xv)HHéé?(g)/P1
< CEllel ™ (eX) | ar20m)p, + Ce|Oner ™ (X))l mir2(0m) p,
< Ellee™(€X) | ga(mz)/p, < Celec™(€X)ly g5 < Clec |20,
We deduce that el |2 0. = O(€?). In the same way, applying the trace theorem on @ we get el 7|2 o =
O(e?)

As el* is defined up to a polynomial of degree less or equal than 1, and from Lemma C.1 and the estimates
Ip1ll-3/2,r = O(e%), lld2ll-1/2,r = O(€?), ler(eX)] = O(1), |p2(eX)| = O(e) and |ef |20, = O(¢?) and a

change of variable we have
x x
R 2 R 2
e/ llo,0. e/ llo,0.

+y (led e +lee [m o m,) €2

+ (llee L2 e + lee MLz e) lle?

+ l¢1ll—s/2.rll€2ll3 /2.0 + 0201 /2. |Onel |1 j2.r

+ €||<P1(€X)HH%2(0)/|€§(€X) 2,B\7 T H<P2(€X)||H010/2(0),\€Z(€X)|2,B\a
< C (—€log(e) + Ce® + Ce* + Ce?) | e?

Clle?l3 . < ac(e?, e?) < €

€7 7€

0, + 7€

1,92¢

0,02,

2.0,
We deduce that
leZ]l2,2. = O (—€*log(e)) -
We come back to e.: as el* is defined up to a polynomial of degree less or equal than 1 and thanks to the

Deny-Lions inequality given in (B.17) we have

leella,o. < llee ™12y jm + lee ™ Ny + €€l 2y = O (—€*l0g(e))
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Finally, to estimate |we|z2,o. we use Lemma C.4:

2.0, < Ce+ Ce? log(e) < Ce

X
[wel2,0, < € ‘R (—)‘ + |ec
€ 2,82

5

which ends the proof. O
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