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SOME CONTROLLABILITY RESULTS FOR LINEARIZED COMPRESSIBLE
NAVIER-STOKES SYSTEM *

DEBAYAN MAITY!

Abstract. In this article, we study the null controllability of linearized compressible Navier—Stokes
system in one and two dimension. We first study the one-dimensional compressible Navier—Stokes
system for non-barotropic fluid linearized around a constant steady state. We prove that the linearized
system around (,5,0,5), with 7 > 0, & > 0 is not null controllable by localized interior control or
by boundary control. But the system is null controllable by interior controls acting everywhere in
the velocity and temperature equation for regular initial condition. We also prove that the the one-
dimensional compressible Navier—Stokes system for non-barotropic fluid linearized around a constant
steady state (p,o,0), with 5 > 0, © > 0, § > 0 is not null controllable by localized interior control or
by boundary control for small time 7. Next we consider two-dimensional compressible Navier—Stokes
system for barotropic fluid linearized around a constant steady state (p,0). We prove that this system
is also not null controllable by localized interior control.
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1. INTRODUCTION

Control of fluid flow has been an important area of research and has many practical applications. The question
about controllability of fluid flows has attracted the attention of many researchers, more for incompressible flow
but much less for compressible flow. In this paper we are interested in controllability properties of linearized
compressible Navier—Stokes system.

For a compressible, isothermal barotropic fluid (density is a function of only pressure), the Navier—Stokes
system in 2 C RY, consists of equation of continuity

dp

a(x,t) + div]p(x, t)u(t, z)] =0, (1.1)
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and the momentum equation
0
) | S (1) + (i, 0.V )ule,0) = £z, 0)| = =Fp(e, )+ p Al ) + A+ @) Vldiv (e, o), (12)

where p(z,t) is the density of the fluid, u(x,t) denotes the velocity vector in R and f(z,t) is an external force
field in RY. The pressure satisfies the following constitutive law

p(z,t) =ap’(z,t), t>0, x€{2, (1.3)

for some constants a > 0, v > 1. The viscosity coefficients g and A are assumed to be constant satisfying the
following thermodynamic restrictions, u > 0, A + p > 0. For non-barotropic fluid (when density is a function
of pressure and temperature of the fluid), the Navier—Stokes system consists of the equation of continuity, the
momentum equation and an additional thermal energy equation

cop(x,t) {% + u.V@] (x,t) + H(x,t)%(x,t)div u(x,t)

10w 0wy’
=K A0z, t) + A(di t)? +2 e - 1.4
5 20, 1) + A(div u(, 1) + “ijz_lzl(axﬁaxi) , (1.4
where 0(x,t) denotes the temperature of the fluid, ¢, is the specific heat constant and « is the heat conductivity
constant. For ideal gas, the pressure is given by Boyles law:

p(x,t) = R p(z,t) 0(x, 1), (1.5)

where R is the universal gas constant (See [8]).

In this article, we first consider the compressible Navier—Stokes system for non-barotropic fluid in a bounded
interval (0, L), linearized around a constant steady state (p,0,6), with p > 0 and 6§ > 0. More precisely we
consider the system

pr+pus = fxo,, in(0,L)x(0,T),

A2 RO :
U — T,uuzz + ? Px + Rgm =0gX0,, N (OvL) X (O’T)a

]
0, — ﬁ'z 0., + Jj—ux = hxo,, in (0,L) x (0,T), (1.6)

where X, is the characteristic function of an open subset O; C (0,L). We choose the following initial and
boundary conditions for the system (1.6):
p(0) = po, u(0) =wup and 6(0) = 6y, in (0, L),
)=0, u(L,t)=0 V t>0, (1.7)
)=0, O(L,t)=0 V t>0.
In (1.6) and (1.7), f, g and h are distributed controls. We are interested in the following question: given T > 0
and (po,uo,00) € (L*(0,L))?, can we find interior control functions such that the solution (p,u, ) of (1.6)

and (1.7) satisfies
(pyu,0)(z, T) =0 for all z € (0,L)? (1.8)
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Our first main result regarding interior null controllability is the following,

Theorem 1.1. Let
01 C (OvL)v 02 g (OvL)v 03 g (OvL)v

i.e., O1 is a proper subset of (0,L). Let us assume (po,uo,00) € L?*(0,L) x L?(0,L) x L*(0,L). The sys-
tem (1.6)—(1.7) is not null controllable in any T > 0 by the interior controls f € L*(0,T;L*(01)),
g € L*(0,T; L*(03)) and h € L*(0,T; L*(03)) acting on density, velocity and temperature equation respectively.

Remark 1.2. The above negative result can be extended to the case of less regular interior controls or boundary
control. See Remarks 2.14 and 2.15 for more details.

Our next positive result shows that, if initial density pg lies in a more regular space then the linearized system
is null controllable by velocity and temperature controls acting everywhere in the domain.

Theorem 1.3. Let f =0 in (1.6). Let us denote

H!0,L) = {p € H(0,L)] /01 p(z)dx = 0} .

Let us assume (po,uo,0p) € H}(0,L) x L?(0,L) x L*(0,L). Then for any T > 0, there exist controls
g € L*(0,T;L2(0,L)) and h € L*(0,T;L*(0,L)) acting everywhere in the velocity and temperature equation
respectively, such that the solution of (1.6) and (1.7) satisfies

(p,u,0)(x, T) =0 for all x € (0, L).

The next result shows that the above result is sharp as null controllability cannot be achieved by localized
interior velocity and temperature controls.

Theorem 1.4. Let f =0 in (1.6). Let
0, C (O,L), O3 C (O,L)7

i.e., Oy is a proper subset of (0,L). Let us assume (pg,uo,0p) € HL(0,L) x L*(0,L) x L?(0,L). The sys-
tem (1.6) and (1.7) is not null controllable in any T > 0 by the interior controls g € L*(0,T;L*(O2)) and
h € L?(0,T; L?(03)), acting on velocity and temperature equation respectively.

The proof of these results relies on the observability inequality. We know that the null controllability of
a linear system is equivalent to a certain observability inequality for the solutions of adjoint system (see [6],
Chap. 2). To prove the negative results, we will construct particular solutions for the adjoint system such that
the observability inequality cannot hold. In order to do that first we will consider the adjoint system in R x (0, 7T)
as a terminal value problem. We will construct highly localized solutions known as “Gaussian Beam”. Similar
kind of construction has been used for hyperbolic equations by Ralston ([13]) and for wave equations by Macia
and Zuazua ([9]). We will prove that solutions are localized in a small neighbourhood of any zy € R. Thus given
an observation set, we can always find an interval away from the observation set such that the solutions are
localized in that interval. Using this we are able to prove the negative results. To the author’s best knowledge
these are new results regarding controllability issues of Navier—Stokes system for non-barotropic fluid.

In Theorem 1.4, we proved a positive result when controls acting everywhere in the equation. The question
then arises: whether positive results could be obtained by using control supported in a small, but moving region,
as in [2,10]. Rosier and Rouchon in [15] proved that the structurally damped wave equation in one dimension
is not null controllable by a boundary control. Later on Martin et al. in [10] proved that the same equation
in one dimension with periodic boundary conditions, is null controllable with a moving distributed control for
sufficiently large time. Chaves-Silva et al. in [2] extend the above result to higher dimension. The structure of the
system considered by the authors in [2,10], in some sense, is similar to the linearized compressible, barotropic
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Navier—Stokes system in one dimension as well as in higher dimension. These issues will be discussed in a future
work which is in progress.

We have studied in this paper the null controllability of the linearized compressible Navier—Stokes system
only. The “Gaussian Beam” construction is used to show negative results. However one may use other techniques
based on the use of nonlinearity (see [6] for example) to achieve controllability results for the full nonlinear
system.

There have been some results regarding the control of compressible barotropic fluid models in recent years.
Amosova in [1] considers compressible Navier—Stokes system for viscous barotropic fluid in one dimension in
Lagrangian coordinates in a bounded domain (0, 1) with Dirichlet boundary condition. She proves local exact
controllability to trajectories for the velocity in any time 7' > 0, using a localized interior control on the velocity
equation, provided that the initial density is already on the targeted trajectory and initial condition lies in
H(0,1) x H}(0,1).

Ervedoza et al. in [7] consider the compressible Navier—Stokes system in one space dimension in a bounded
domain (0, L). They prove local exact controllability to constant states (p, @) with p > 0, @ # 0 using two bound-
ary controls, both for density and velocity, in time T' > m when initial condition lies in H3(0, L) x H3(0, L).

Chowdhury et al. in [5] consider the compressible barotropic Navier—Stokes system linearized around a
constant steady state (Qo,0) with Qo > 0 in a bounded domain (0, 7). They proved that the linearized system
is not null controllable by a localized control or by boundary control. They also proved that the linearized system
is null controllable by an interior control acting everywhere in the velocity equation when initial condition lies
in H! (0,m) x L?(0, ).

Chowdhury in [3] considers the compressible barotropic Navier—Stokes system linearized about a constant
steady state (Qo, Vo) with Q¢ > 0,Vy > 0 in (0, L) with Dirichlet boundary condition and an interior control
on the velocity equation acting on open subset (0,1) C (0,L). He proves that the system is approximately

controllable in L2(0, L) x L2(0, L) when T > ——

. He also proves a similar result in two dimension.
0
Chowdhury et al. in [4] consider the compressible barotropic Navier—Stokes system linearized about a constant

steady state (Qo, Vo) with Qo > 0,Vp > 0 in (0,27) with periodic boundary condition. They proved that the
2
linearized system is null controllable by a localized velocity control when T" > 77? and initial condition lies in

H1 (0, 27) x L2(0, 27). ’

Our linearized system (1.6) and (1.7) is similar to the linearized system considered by the authors in [5]. So
we expect similar controllability results. Their method is based on explicit expression for eigenfunctions and the
behaviour of the spectrum of the linearized operator. They proved that there is an accumulation point in the
spectrum of the linearized operator. This system behaves very badly with respect to controllability properties
and a similar type of controllability behaviour is also observed in [11,14,15] for different types of systems where
an accumulation point is present in the spectrum of linearized operator. But the method used in [5] does not
seem to fit very well in our case. In fact one can prove that there is an accumulation point in the spectrum of
the linearized operator considered here, for certain boundary condition. But the expressions of eigenvalues and
eigenfunctions are complicated. So here we use Gaussian Beam approach to achieve the negative results. This
technique does not require the knowledge of the spectrum and it seems to extend to higher dimension also.

The controllability properties are completely different, if we consider compressible Navier—Stokes system
linearized around non null velocity. For barotropic fluid, the system linearized around (Qo, 0) is not controllable
in any time T by localized interior control but the system linearized around (Qg, V) is null controllable by
localized interior control for large time T'. It is interesting to note that there is no accumulation point in the
spectrum of the linearized operator in the latter case and better controllability behaviour at least for T' large
enough (see [4]). But the question remains what happens when time 7 is small enough. Our results answer this
question in the negative.
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We consider the compressible non-barotropic Navier—Stokes equation linearized around constant steady state
(p,0,0), p>0,5>0,0 >0
pt+0pz+pus = fxo,, in (0,L) x (0,7),

A+ 2 RO
- +, Muxx + ? Pz + Vuy + RO, = gxo,, in (OaL) X (O,T),

Ut

K

0
O¢(x,t) — Opr + Jj—um + 00, = hxo,, in (0,L) x (0,T),

p(0) = po, u(0) =wup, and 6(0) =60y, in (0,L),
p(0,t) =0, u(0,t)=0=wu(L,t), Vte(0,T),
0(0,t) =0=46(L,t), Yte (0,T). (1.9)
We prove the following theorem.
Theorem 1.5. Let
O1 = (l1,l2) C(0,L), O C(0,L) O3C(0,L),

ie., O is a proper subset of (0,L). Let us assume (po,ug,0p) € L2*(0,L) x L?(0,L) x L?(0,L). If
I —
T < max lTl, _l2
0]
L2(0,T; L*(Oy)), g € L?(0,T; L*(O2)) and h € L?(0,T;L*(O3)) acting on density, velocity and temperature
equation respectively.

, then the system (1.9) is not null controllable by localized interior controls f €

As a corollary of the above Theorem, one can rule out null controllability of compressible barotropic
Navier—Stokes system linearized around constant steady state (p,v) in small time 7', using a boundary control
or localized interior control.

Corollary 1.6. We consider compressible barotropic Navier—Stokes system linearized around a constant steady
state (p,0), p> 0,9 >0 in (0,L) x (0,T) or in (0,27) x (0,T) as in [3,4].

(i)  For initial condition belonging to L*(0,L) x L*(0, L), the system with Dirichlet boundary condition is not
null controllable at any time T > 0 by a interior control acting only in the velocity equation. The control
may act in a non empty open subset of (0, L) or in the whole domain (0, L).

(ii) The system with periodic boundary condition is not null controllable by interior control localized in (I1,13) C
(0,27), acting only in the velocity equation when initial condition lies in H}, (0,27) x L?(0,27) and time

{ l1 2m — l2 }
T < max{ —, — .
v v
(iii) For initial condition belonging to L?(0,L) x L?(0, L), the same system is not null controllable by boundary

control if time T < —.
v

L
Remark 1.7. From the above corollary we see that the condition 7" > l in Ervedoza et al. [7] is natural.
v
Next we will show that, our method can be extended to higher dimension also. For simplicity we consider
the compressible barotropic Navier—Stokes system in two-dimensional bounded domain 2, linearized around a
constant steady state solution (p,0,0), p > 0,

pe+pdiva = fxo,, in 2x (0,T),
A
u-— %Au — #V[div ul + ayp?’?Vp = gxo,, in 2 x (0,T),

p(0)=pp and u(0) =ug, in £,
u=0 on 9N x(0,7). (1.10)
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where u = (u1,us2) and O1, 02 are open subsets of (2. We obtain the following negative null controllability result
for the system (1.10).

Theorem 1.8. Let
01 C Q, 02 - Q,

i.e., O1 is a proper open subset of (2. Let us assume that (po,ug) € (L*(§2))3. Then the system (1.10) is not
null controllable in time any T > 0 by interior controls f € L?(0,T; L*(O1)) and g € (L*(0,T; L*(02)))>.

The plan of the paper is as follows. In Section 2, we study the control system linearized around a constant
steady state (p, 0, ) in one dimension. We prove Theorem 1.1, Theorems 1.3 and 1.4 here. In Section 3, we study
the control system linearized around a constant steady state (p, v, ). Theorem 1.5 is proved here. In Section 4
we consider the linearized system in two dimension around constant steady state (p,0). We prove Theorem 1.8
here.

2. NULL CONTROLLABILITY OF COMPRESSIBLE NON-BAROTROPIC NAVIER—STOKES
SYSTEM IN ONE DIMENSION LINEARIZED ABOUT (p,0,6)

In this section, we will discuss interior null controllability of the system (1.6) and (1.7). We introduce the
positive constants

A2 K
vy 1= ——, ko = —,
P PCy

Let us define Z = L?(0,L) x L*(0, L) x L?(0, L) endowed with the inner product

Z (171 ’—7anacx’2Luacvasx'EQCvaxx
<9 : ¢>Z.—Re/0p<><>d +p/0 (#)o(x)da + §/09<>¢<>d.

0
bi= (2.1)

The following proposition about existence and uniqueness of the system (1.6) and (1.7) follows easily from
semigroup theory.

Proposition 2.1. Let (pg,uo,00) € Z. Let us assume that f € L*(0,T; L?(01)),
g € L*(0,T;L*(O3)) and h € L*(0,T;L*O3)). Then (1.6) and (1.7) has a unique solution (p,u,0) with
p € L?(0,T;L?(0,L)), u € L*0,T; H}(0,L)) and 0 € L*(0,T; H}(0, L)). Moreover (p,u,8) € C([0,T); Z).

2.1. Observability inequality

The idea is to use the adjoint system to derive certain identity which can be used to obtain an observability
inequality, equivalent to null controllability. (See [6], Chap. 2). For this we consider the following adjoint problem,

—or—pv, =0, 1in (0,L) x (0,7,
0
—vt—l/ovm—]%az—Rgbm =0, in (0,L) x (0,T),

0
- ¢t - k0¢xm - ]:_Ux - Oa in (O’L) X (07T)7

O'(T) =or, U(T)U: vr, ¢(T) = ¢T, in (O,L),
v(0,) =0=n0(L,t) ¥V t>0, ¢0,6)=0=¢(L,t) V t>0. (2.2)
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with (op,vp, ¢r) € Z. The adjoint system (2.2) is also well posed in Z. In fact we have

Proposition 2.2. Let (o7, vr,¢r) € Z. The system (2.2) has a unique solution with o € L?(0,T;L?(0,L)),
v € L?(0,T; H}(0, L)) and ¢ € L?(0,T; HE(0, L)). Moreover (a,v,¢) belongs to C([0,T); Z).

Let us first assume that (pg, ug, 0o), (o7, vr, ¢r) € C°(0, L) x C(0, L) x C°(0, L),
fe€Cx((0,T) x O1), g € C((0,T) x Oz), h € C*((0,T) x O3) and let (p,u,d) and (o, v, ) be the solutions
of (1.6) and (2.2), respectively. Taking inner product in Z of (1.6) with (o, v, ¢) and integrating we obtain

T L T L RO
RO/ / (Osp + pug)o dzdt + p? / / (Oru — VoUgy + ?px + RO,)v dadt
o Jo o Jo

=2 T L n T
4P / / (040 — kofn + 0006 dadt = Ré/ fo dadt
o Jo Cov o Jo,

0
T 2o [T
—&—52/ / gv dadt + == / h¢ dzdt.
0 02 9 0 02

An integration by parts and use of (2.2) gives

N L L
B8 [ lp(e. Dor(a) = po()ole0)lds + 7 [ ule, Dyer(z) - un()e(z,0)ds
0 0

,5201; L B B T
+— /O [0(z, T)ér () — Oo(x)p(x,0)]de = RO /O o, fo dadt

0
T ‘520 T
+p? / / gu dzdt + =1 / / h¢ dadt. (2.3)
0 02 9 0 02

The above relation leads us to the identity equivalent to null controllability.

Proposition 2.3. For each initial state (po, uo, o) € Z, the solution of the system (1.6) and (1.7) can be driven
to rest by interior controls f € L?(0,T;L*(O1)), g € L*(0,T; L*(Oz)) and h € L*(0,T; L*(03)) in time T if
and only if

_ T T 520 T Po 0-(‘70)
RQ/ fo dzdt + p? / / gv dadt + ===~ / / ho dxdt + uo |, | v(+,0) =0 (2.4)
0 O1 0 (@] 0 0 O3 o ¢(70)

Z

for all (op,vr,¢r) € Z, where (o,v,d) is the solution of the adjoint system (2.2).

Proof. By a density argument we deduce that for any (pg, ug,6o) € Z and (o7, vr, ¢r) € Z the identity (2.3)
holds. Thus from (2.3), it follows that (2.4) holds if and only if (1.6) and (1.7) is null controllable and f, g, h
are the corresponding controls. O

One can use the identity (2.4) to get an observability inequality which is also equivalent to null controllability.
More precisely we have the following Proposition (See [12], Sect. 2 and [6], Chap. 2).

Proposition 2.4. The system (1.6) and (1.7) is null controllable in Z in time T > 0 if and only if there
exists a constant C' such that for any terminal condition (op,vr,¢r) € Z, (0,v,0), the solution of the adjoint
problem (2.2) satisfies the following observability inequality

T T T
||o<~,o>||%2<o,m+||v<-,o>|iz<o,L>+||¢<-,o>|iz<o,L><C</ / o2dadt + / / vRdadt + / / ¢2dwdt>.
0 01 0 02 0 03
(2.5)
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2.2. Highly localized solutions

We now want to prove that the system (1.6) and (1.7) is not null controllable in Z when controls are localized.
Our idea is to show that the observability inequality (2.5) does not hold in this case. For this we first consider
the adjoint problem in whole real line:

—or—pv, =0, inRx(0,T),
0

—vt—VOvIZ—RTJI—qum =0, in R x (0,7,
p

0
— op(x,t) — kodya — R—vz =0, in Rx (0,7),

Cy

o(T) =or, o(T)=vr, &T)=or inR. (2.6)

First we will construct a particular solution of the above adjoint problem which is localized in a small neighbour-
hood of any xy € R. For this we would like to have a Fourier representation formula for the solution of (2.6).
Let us assume that (or,vr, ¢r) € (L?(R))? and (o,v,¢) € (L?(0,T; L*(R)))3. We define 5(£,t) the Fourier
transform of o in the space variable z for each t € (0,T') as follows,

(& t) = /Ra(ac,t)e_ifwdx, £eR.

We also define 0(€,t) and ¢(£,t) in a similar manner. Applying the Fourier transform in (2.6), we obtain the
following system of ODE satisfied by (&, t), 0(&,t) and ¢(&,t)

- at&(gat) - :5 (7’5) ,ﬁ(gat) = Oa g S Rat € (OaT),

- 8tﬁ(§7t) - 1/0(—52)'{}(5, t) - %9 (25)6(5775) - R(’Lg)é(f’ t) = 07 f € th € (O’T)a
: o RO,
— 09(&,t) — ko(—€7)0(&, 1) — C—(lﬁ)v(ﬁ»t) =0, EER,te(0,T),
5(&,T) = 67(8), (E&T)=0r(&), S(&T)=dr(€) (eR. (2.7)
Let us define
0 pi& 0
RO . .
A = | 5wt lig | (2.8)
0 R—ezg —ko&?
Cy
Then (2.7) can be written in the following form
(o] —ae@ |
oy ¢
(6,8,0)(&,T) = (67(€), 07(8), dr(£)). (2.9)

The unique solution of the above system of ODE can be written as

(6,9,0)(& 1) = e*OT (60 b7, ). (2.10)
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We will now discuss some properties of the eigenvalues of A(§). Let a : R - R, b: R — Rand ¢: R — R be
three smooth functions. Let A3 + a(£)A? + b(&)A + ¢(€) be a cubic polynomial. Let us define the discriminant of
the above cubic polynomial

D(€) = 18a(§)b(€)c(€) — 4a®(€)c(€) + a*(£)b*(€) — 4b°(€) — 273(€).

Now the roots of the above cubic polynomial are given by the following formula

(&) = —% <a(§) +wiC(&) + kaOCS(ég)> , for k=1,2,3. (2.11)
where
~1+4V3 —1-4V3
w1=1, WQZfa wdzf

are the three cubic roots of unity, and

Cle) - \/ D1(6)-+ /DA~ IDOET

with
Dy(€) = a®(§) = 3b(€),  D1(€) = 2a°(€) — 9a(€)b(€) + 27¢(€) and D1 (€)* — 4Dy (€)* = —27D(¢)

and when
Do(€) #0 and D(€) #0.

In this formula, Na and K denote any choice for the square or cube roots, but one has to be consistent with
the choice for all &.

If D(£) # 0 and Do(€) = 0 for some &, the sign of \/D1(£)% — 4Dy(£)? = /D1 (€)? has to be chosen to have
C(&) # 0, i.e. one should define 1/ D1(£)? = D1(§). In this case the roots are given by

Me(€) = —% (a(g) Tt D1(§)> fork=1,2,3.

If D(&) =0 and Dy(§) = 0 for some &, the three roots are equal

AL(€) = A2(€) = As(&) = —b(£)/3.
If D(¢) =0 and Dy(§) # 0 for some &, there is a double root

_ 9¢(6) — a(©)b()

M) = dall) = TogpTS

and a simple root ,
) — (OO = 96(6) —al)®

Do(§)
As a, b and c are differentiable functions of &, it is easy to deduce that real part and the complex part of the
roots are also differentiable for all £ € {& € R|C(§) # 0,D(§) # 0, Do(€) # 0}. We have the following lemma
about the properties of the eigenvalues of A(&).

Lemma 2.5. The ecigenvalues of A(§) always have mnon positive real part for all & € R. Let

{=A(€), —u(€), —6(&)}, be the eigenvalues of A(£), where Re A(§) > 0,Re u(§) > 0 and Re 6(§) > 0. There

exists a constant & = &y(R, 0, vy, ko, b) > 0, such that for || > &, one of the eigenvalues, say d(§) salisfies
lim 6(¢) = wo, (2.12)

[§]—o00

where wy = f—f.
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Proof. The eigenvalues of A(€) are given by the roots of the characteristic polynomial
N3 (v + ko)E2N? 4 (ROE® + R*bE? + kovoE)\ + ko ROE = 0. (2.13)

Since it is a polynomial of degree three, it will always have a real root.
Now the polynomial A\* + a\? + b\ + c is stable i.e. all the roots have negative real part if and only if

a>0,b>0,¢>0 and ab>c.
(Thm. 2.4, Part I of [16]). For our case,
a(€) = (vo +ko)€?,  b(€) = ROE* + R*bE® + kowo&?,  ¢(€) = koRAE™.

And it is easy to verify that a(§) b(&) > c(§) for all £ € R\ {0}. So all the eigenvalues have negative real part
for all £ € R\ {0}. For £ = 0, the characteristic polynomial has only one root 0.
Let {—A(&), —u(§), —d(&)}, be the eigenvalues of A(), given by the formula (2.11). Thus

Re AM(&) >0, Repu(§) >0, Red(§) >0forall & cR\{0}.

Comparing the coefficients of the characteristic polynomial we obtain,

A(€) + 1(§) + (€)= (vo + ko)&?,

AE)u(€) + u(€)d(€) + 8(EME) = RO + R*bE? + kono€?, (2.14)

AEnE)d(€) = koROE™.

It is well-known that, if the discriminant D > 0, then the polynomial has three distinct real roots and if
D < 0, then the equation has one real root and two complex conjugate roots. In our case the discriminant is
D(&) =k§ v (vo — ko)*E" + [18(vo + ko)k§uo RO — 4(vo + ko)* ko RO

+2(vo + ko)? (RO + R*b)kovo — 12(RO + R*b)kjg] €0 + O(€9). (2.15)

We also have B
Do(&) = (vo + ko)&* — 3 (ROE* + R?bE* + korpé?) .

This leads us to consider the following two cases.

Case I. Let vy # ko. In this case, there exists a positive constant &, such that D(£) > 0 and Dy(§) # 0 for all
|€] > &o. Hence for [£] > &y, A(E), 1(€) and 6(&) are all real, positive and distinct. Let us define,

30 = 22 ice) = 18 51 - 28 (2.16)
In (2.14), letting €| — oo, we obtain
AE) + (&) +6(6) = (w0 + ko),
Jm (MO +HEOIE) +HOAE)) = kow, (2.17)
Jm X©RE©IE) =0

As M(€), u(€),8(€) are all positive, from the first equation of (2.17), we deduce that (), [i(€),8(¢) are all
bounded. They are also continuous for [£| > &. As A(§), u(§), () are all distinct and continuous for [¢] > &,
without loss of generality we assume that

AE) > (&) > 6(€) for [¢] > &.
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From the last equation of (2.17), we obtain that §(£) converges to 0 as |£| — oo. From (2.17) we obtain,
lim (M©)+ () = (o +ko),  Jim (M) &) = kovo. (2.18)

1
|§]—o00 |€]—o00

Therefore, A(€) and i(€) both converge as || — oo and one of them converges to 1y and the other one to kq.
Without loss of generality we assume that

A) L (é)
= vy; lim = ko.
flooe 20 felmoo €2
Therefore
|£llim A§) = o0, ‘fl‘im w(&) = oo.
From the last two equations of (2.14), we have
1 1 1 1 Rb 1)
s 2.19
GG G R R 219
. . RO
Letting |¢] — oo, we deduce that lim §(§) = — = wp.

[§]—o00 0]
Case II. Let vg = kg. In this case,

D(§) = —4kg R?b¢'° + O(¢8).

Thus there exists a constant &y, such that D(§) < 0 and Dy(&) # 0 for all || > &. Hence for all [£| > &, we
have one real root and two complex conjugate roots. Let

A(§) = a(§) +ip(§) and pu(§) = a(§) —iB(8).
Hence, for all [£| > &, a(§) and §(€) are all real and positive. Let us define,

a(e) = 25 e = B 3t = - (2.20)
From (2.14) we obtain

26/(€) + 6(€) = 2ko, )

&2 (&) + 57(€) +2a(£)d(€) = kg + Ra%f%’ (2.21)

(@ +57©) 56) = 2

As a(€), B(€),5(€) are all positive, from the first two equations of (2.21), we deduce that &(€), B(€), 6(¢) are all
bounded for |£] > &. They are also continuous. From the last equation of (2.21), we obtain
lim a*(€)5(6) =0, lim F*(€)5(&) =0.
[§]—00 [§]—00

Multiplying the second equation of (2.21) by o}(g)é(g) and letting |£| — oo we obtain

S

RO + R?b
572 - 0.
Again multiplying the second equation of (2.21) by g(f) and letting |{| — oo we obtain

~ - _ ~ ~ ) 2
i 3(6) = Jim_ 5 [JE@20) + F(©) + 28050° - 50 T =0,

|¢]—o0 ¢[00 kg
Now we can proceed as in Case I, to obtain lim ¢ d(£) = wo. O

lim &(£)6(6) = lim — {&(5) (©)(@%(€) + B2(€)) +2a(£)*6(£)* — a(€)d(¢)

[€] =00 [€]— o0 ]{io
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FIGURE 1. Eigenvalues of A({) in the complex plane for ¢ varies in the interval (0,5) when
vo=60=>b=1,R =3 and kg = 4. Blue line represents —A(&), green line represents —u (&) and
red line represents —d(€). (In online color)

In fact more can be said about §(§). We have
Lemma 2.6. Let A(E) be defined as in (2.8) and —5(&) be the eigenvalue satisfying l‘im 0(§) = wo. Then there

€] —o00

exists a constant 0 < ay such that for all £ € R,
0 <Re d(¢) < ay.

Further for |£] > &, where & as in Lemma 2.5, §(§) is differentiable and we have

d C
0] < 22

for some positive constant C.

Proof. From Lemma 2.5, §(§) lies on the right half side of the complex plane and it is bounded for all £ € R.
Thus there exists a constant 0 < ay, such that

0< Re 5(5) < ai.

The coefficients of the characteristic polynomial (2.13) are differentiable and from the formula (2.11) it is easy
to deduce that, the real and complex parts of the roots are differentiable for |£| > &y. For |£] > &y, J(§) is real
and hence differentiable. As —4(§) is a root of the characteristic equation (2.13), we have

—0(6)° + (vo + k0)&*3(€)* — (ROE* + R*bE™ + korog")3(€) + ko ROE* =0
Differentiating the equation with respect to £ and using the fact that §(£) is bounded for all £ we obtain the

estimate (2.22). O
Lemma 2.7. Let A(§) be defined as in (2.8) and —06(&) is the eigenvalue satisfying, |£llim 0(§) = wo. The
— 00
eigenfunction of A(§) corresponding to —6(€) is <1, us(?,dg(ﬁ)) where
p

5(€)? — vo€25(¢) + ROE®
Rpe?

ds(§) = —
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FIGURE 2. In the horizontal axis we represent { and the vertical one the real part of eigenvalues
of A(&) for £ varies in the interval (—5,5) when vy =6 = b =1,R = 3 and kg = 4. Blue line
represents Re(—A(§)), green line represents Re(—pu(§)) and red line represents Re(—d(¢)). From
the figure it is clear that the branch corresponding to §(€) is of hyperbolic type, while the other
two are parabolic type. (In online color)

For (€| sufficiently large, we have

C
d —.
|ds (§)] < e
for some positive constant C.
Proof. From (2.19), we first obtain
2(—1y3(€) + RO) = R (i w11 )
SO )= RO kg~ M@ /e

Hence for |¢] sufficiently large, we obtain
€% (=100(€) + RO)| < C,

and the estimate of ds(€) follows.

We now want to give a representation formula for solution of (2.6). We have the following proposition.

Proposition 2.8. Let us consider

A a7 R 0

(O-Ta ur, ¢T) = O-T(f) (L #a d5(£)) 5
for a suitable 67 € L%(R), such that (67,07, ¢r) € (L2(R))3. Then

1 A iz ,— -
o(w,0) = 5= [ Gr(ete O ag,

R
v(z,t) = %/R&T(g)em%e—a(g)w_t) de,
1

G (€)™ ds(€)e 0 OT = g,

T

:%R

(2.23)

(2.24)
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is the solution of (2.6), corresponding to the terminal condition

7re) = 5= [ or(©e .
_ i & 515(5)
vrta) = 3= [ ar(@en S ag,
or(@) = 5= [ Fr(©etas(e) ds. (2:25)

Proof. Denote (6,0, ¢) to be the solution of (2.7) corresponding to the terminal condition defined in (2.23).
Then from (2.10), the solution of (2.7) can be written as

o6, t) = SET—-t) 5 () :eé(i)(Tt)%&T, ¢(§’ t) = I(ENT— t)d(;(g) (2.26)

It is easy to verify that (&,9,$) € L2(0,T;L%(R))?. By taking the inverse of Fourier transform, we obtain,
(0,v,¢) defined as in (2.24), is the solution of system (2.6) corresponding to the terminal condition (2.25). O

We are now interested in the construction of some particular solutions of the equation (2.6), which are
localized in a neighbourhood of some zy € R. For that, we choose 65 in (2.23) using a suitable cut off function
¢ and analyze the solution (o€, v¢, ¢) of (2.7) given by (2.24).

Theorem 2.9. Let 1 be a smooth function compactly supported in (0,1) and of unit L? norm. For any e > 0,
sufficiently small and for any x¢ > 0, let us take

G5(€) = €ty (\/E (5 - %)) C (2.27)

Let (05(x),v5(x), 95 (x)) and (o¢(xz,t), v(x, 1), ¢ (x, 1)) be as in (2.25) and (2.24), respectively. Then they satisfy
the following

i) gre T <o (,0)|F2m) < 25

(ii) For any n > 0, there exists a constant C' independent of € such that

o ()22 (0,7322 (1o 2m) < CVE (2.28)
(iii) For some positive constant C independent of e,
1012 20,702 () < C€ 161720, 7;02(ry)) < Ce. (2.29)
Proof. Let us denote .
(650,690 = o5.(6) (1. o)) (2.30)

First we verify that (65,95, %) € (L2(R))3. We have

/I &)* dg = /”2 ( (f——))Qd»s:ch)ch:l.
Thus 65 € L?(R). Now
Jlev@r ac= oo (v (1))
1

/Iw olk %+)d< < O
(CVe+1)?

2 5(¢)>2
5252

dg
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So we have 9% € L2(R). Similarly we can show that ¢ € L2(R). Thus the representation formula (2.24) is well

defined. Now we will prove (i).
Note that

7'(@.0) = 3= [ BT e,

By Parseval’s relation we have

1
el 2 _ L —28(6)T | ~e 2
I0°C Olifae) = 57 [ O o7 de

Using Lemma 2.6 we have

L 2 _ .
g7 [ IO ae < 5o [ 0o ds < - [ 1ar(©F de
7T R 27 Jr

Hence we have proved (i). To prove (ii) we have using a change of variable formula

o(x,t) = S €4¢(\[(£ 1)) i(@=20)¢a=8(E)(T—1) ¢

—1/4 s T
_ /,(/J acaco)f+)—(f+ )( t)dc

Note that )
A o) (G+d) _ UT = 20) iw—wo)(GtL)
d¢ Ve

Thus for |x — xg| > n > 0, we have, after integration by parts

el/4 L BT T (I
frt)= ——— — (et o) (g=+2) (=t (T—1) d
(1) 2m’(x—x0)/0 ac (e )w<<>e ¢

—el/t im0 (5t 4 5t 1) ()
_ v Vel dc¢.
27ri(x—xo)/0 d¢ (¢(C)e ) ¢

Now

d¢
Thus for € small, we have for some C' independent of €
‘d% (w<c>e““%+%”‘”)’ <C (1 f+ - {) < C(1+ o).
Therefore, for € small enough and |z — xo| > 1 > 0, we have
(1/4 (1/4
|o€(z, t)|<C27T|x_x0|(1+\/_) M~

Thus there exists a positive constant C (T, n), such that

2
o112 20,75 L2(j—w0 2m)) < CVE

o (0@t T0) LG (1) (s (S 1) T -0).

(2.31)

(2.32)

(2.33)

(2.34)
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This proves (ii). We have

/ /|v z,t))? dadt = —/T/we(g’t)z d§dt:2i T/]R o

+ )2

2 e €

= ‘2/ dt/ WOl C\f+1)
SCG.

5 2
@(T“%%@ dedt,

d¢,

Similarly we can show that
H¢E||2L2(07T;L2(R)) S 064. H

Let us give some more properties of o, v, ¢ which we will need later on to prove the main results.

Lemma 2.10. Let (05,05, ¢5) and (o¢(x,t), v (z,t), ¢ (x,t)) be as in Theorem 2.9. Then o5, v5 and ¢S lie in
H(R). Moreover (c¢,v¢,¢) € (H*(0,T; H*(R)))?.

Proof. Let us first show that 0% € H'(R).

[asimne = [avimernls(ve(e- 1)) ae

SC(l-I—GiZ)/RWJ(C)F dCSC(1+El2)~

Thus 0% € H'(R). In a similar way we can show that v$ and ¢ belong to H!(R). Next we will show o¢ €
HY(0,T; H(R)). First we have

/ / +§ )6€ (€, 1) 2d§dt / /1—1—52 &5, |26( 28(£)(T—t)) dgdt
1
<O(”e—z)/0 a [ weorsor(1+3):
T
)|2déed 1+ &2 2,(=26(6)(T—1) g¢
/o/(+£)| (&) §t//+£ €)[216% () e ca
. 1
co(ieh) [ fwor<er(1+4):

Thus we have shown o¢ € H(0,7;H*(R)). Similarly we can show that v¢ and ¢¢ also belong to
H'Y(0,T; H'(R)). O

Next we have

Lemma 2.11. Let 0 be as in Theorem 2.9. Then for any n > 0, we have the following estimate

1 —2a
10 Co O gesolny = o> (23

Proof. First by Lemma 2.10, we conclude that o¢(-,0) € H!(R). Proceeding in a similar way as in Theorem 2.9,
we first obtain

10 172 (g 2 < CVE (2.36)
for some positive constant C, independent of e. Therefore

1, 1,
17 (5 O 22— | <y = 7€ ol — CVe> P T (2.37)

for € small. ]
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Lemma 2.12. Let v¢ and ¢° be as in Theorem 2.9. Then
HUE(L, ')HHl(O,T) < C€3/4, and H(bE(L, )”Hl (0,7) < 067/4, (238)
for any L € R.

Proof. By Lemma (2.10), we have v¢(L,-) and ¢¢(L,) lie in H'(0,T) for any L € R. We have

Lt\<C/| \ﬁl d§<03/4/|¢ O)|d¢ < Cce¥/4,
and

(Lol [ jorte Vﬂ dg < 0 [ o < ce

Thus
[0 (L, )| mr10,7) < Ce¥/™

Similarly, we can show
(L N o,m) < Ce/*, g

2.3. Proof of main theorems

Now we will use the above construction to prove Theorem 1.1. First we prove the following theorem. Theo-
rem 1.1 will be a direct consequence of this theorem.

Theorem 2.13. Let Oy be a proper subset of (0,L) and O3 C (0,L),O5 C (0, L). Then there exists a terminal
condition (or,vr,¢r) € Z, such that the solution of (2.2), corresponding to this terminal condition, satisfy the
following estimates

1
llo(-,0)|lL2c0,0) > 8—7r€_2a1Ta

o122 0.1:22(00)) + 1el32(0.2:25(0my) + 16 32(0,:2(00) < OV (2.30)
Proof. As O is a proper subset of (0, L), we choose xg and 1 > 0 such that
{z : |z — x| <n} C(0,L) and does not intersect O.
Let us choose 65(&) is as in Theorem 2.9 with the above choice zg. Let (05, v5, ¢5) and (o€, v, ¢¢) are as

in (2.25) and (2.24) respectively.
Let us set

() =¢°(0,1),  ri(t) = ¢°(L,1). (2.40)

Let (&e(ac,t),ﬁe(ac,t),gze(x,t)) be the restriction of (o¢(z,t), v (x,t), $°(x, 1)) to (0,L) x (0,T) and (5%, 05, v%)
be the restriction of (¢5., v5, ¢5) to (0, L).
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Then 5¢(x,t), ¥¢(x,t) and ¢¢(x, t) satisfy the following system,
—oy(x,t)—po;, =0, in (0,L) x (0,7,

RO v
— U — S, — —— 35— RS =0, in (0,L) x (0,7),

3
y v« RO .
— ¢ — koS, — —10v5 =0, in (0,L) x (0,T)
v

o"(T) = o, ©(T)=0p, gz\;e(T) = o7,

B0,0) = 5(), (1) =i (t) Y 1> 0,

G°(0,8) = r5(t), (L, t)=15(t) ¥V t>0. (2.41)
Note that by Lemmas 2.10 and 2.12, we have (55,35, ¢5 ) (Hl(O L))3 and (q§,q5,75,r5) € (HY(0,T))%
The above system has a unique solution (5¢, ¢, ¢¢) with (5¢,4¢,¢¢) € C([0,T]; Z). They satisfy the following
estimates:

(i) From (2.35), we have

v e o e 1 a

15°C, 0)llz2(0,0) 2 15°C, Ol L2(a—sol<n) 2 e st (2.42)
(ii) From Theorem 2.9,

H5—6”%2(0,T;L2(01)) — HU HLQ(OTLQ(\x xo|>n) = C\/_

HT’EH%Z‘ 0,T;L2(02)) = < lv° HL2(0 TiL2(R)) ce?,

19°[1720.7:22(04)) < C€™. (2.43)
(iii) From Lemma 2.12,

g5l 0.y < C%, Naillm o,y < C¥* Nlrgllm o,y < Ce™*, Irllm oy < Ce/™ (2.44)

Let o¢(z,t), v°(x,t) and (Ee(x, t) satisfy the following system
of —pv, =0, in(0,L) x (0,7),

— ¥ (.t) — i, —%90 ~ R =0, in (0,L) x (0,7),

— ¢ — koot — ]:—eﬁ; =0, in (0,L) x (0,7),

F(T)=0, v(T)=0, ¢°(T)=0, in (0,L),

v°(0,1) = —qo(t), O(L,t) = —qi(t) ¥ t>0,

¢°(0,8) = —r§(t), ¢°(L,t) = —r5(t) V¥ t>0. (2.45)

As (g5, q5,75,75) € (HL(0,T))*, the above system has a unique solution (¢, 7¢, ¢°)T € C([0,T); Z). Using (2.44),
we obtain
16, 0% ) 1720.7.2) < C (a6l 20,1y + gzl 20,0 + 7§l 20,0 + IrEllz2co,my)
< e, (2.46)

and

15°C, 0l £2(0,) < CllF Nl 0,7y 22(0,1)) < Ce/™. (2.47)
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Let us set

o(x,t) = 5(x,t) + (=, t),

v(z,t) = 0(x,t) + 0°(x, 1),

P(x,t) = ¢ (x,1) + 6% (,1). (2.48)
Then, (o, v, ¢) satisfy the system (2.2) and the estimate holds. O

Using the above theorem now we can prove Theorem 1.1.

1

Proof of Theorem 1.1. Theorem 2.13 shows, in the observability inequality (2.5), L.H.S > 8—e_2a1T and R.H.S
T

< Cy/e. Hence (2.5) cannot hold. Hence system (1.6) and (1.7) is not null controllable. O

Remark 2.14. The above result is established when f € L2(0,7;L*0;)), g € L*(0,T;L*(Oz)) and h €
L2(0,T; L*(O3)). We can extend this negative result to less regular control. More precisely we can take g €
L?(0,T; H-Y(O2)) and h € L*(0,T; H=1(03)). In order to give a sense to the R.H.S. of (2.3), we need to replace
X0, and xo, in (1.6) by ¥y € C°(02) and U3 € C°(O3) respectively. The observability inequality becomes

lo (- 01Z20,z) + 00 0)lI72(0,1) + 16, 0)lI20,1)

<C (/OT/O azdxdt+/OT/o (%v)idxdt—k/f /o (ngb)idxdt) (2.49)

where (0,v, ¢) is the solution of the adjoint system (2.2). Using the same construction as above one can prove
that this observability inequality does not hold and hence the system is not null controllable.

Remark 2.15. One can use the above Gaussian Beam construction to rule out null controllability using a
boundary control. Let us consider the system (1.6) and (1.7) with f = g =h =0 and v(L,t) = q(t) € L*(0,T).
In this case null controllability is equivalent to the following observability inequality

T
lo (s 01720,y + 10( O |70,y + 6(5 0)[Z2(0,) < C /0 |Rpfo (L, t) + p*rova(L,t)|* dt. (2.50)

where (o,v, ¢) is the solution of the adjoint system (2.2). We can use the above construction to show that the
above observability inequality does not hold and hence the system is not null controllable by a boundary control
in any time 7" > 0.

We proved that the system (1.6) and (1.7) is not null controllable when initial condition lies in Z. So the
natural question is if the system is null controllable or not when the initial conditions are regular. In case
of barotropic fluid, if initial density lies in H} (0, L) then the system is null controllable (See [4,5]). In this
section we choose (po, ug,6p) € HL (0, L) x L2(0,L) x L*(0,L). We will first show that (1.6) and (1.7) is null
controllable by velocity and temperature control only (i.e. when f = 0) acting everywhere in the domain with
this initial regular condition. Then we will show that we cannot achieve null controllability by localizing velocity
and temperature control.

We consider the following interior control system

pt+pu, =0,in (0,L) x (0,7),

RO .
Uy — VoUge + 7 Pz + RO, = gxXo,, 1 (OvL) X (O’T)’

00— kollea + . = iy, in (0,L) x (0.7),

p(0) = po, u(t)) =ug, 6(0) =40, in (0,L)
w0,8) =0=w(L,t) ¥ t>0, 6(0,t)=0=0(L,t) ¥ t>0. (2.51)
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Here g and h are velocity and temperature control respectively. Let us first explain why we need average
zero condition for initial density. Integrating the density equation of (2.51) in (0, L) and using the boundary

conditions we deduce that
d L
— t)d =0.

L L
/Op(:r,T)dx:/O po(z)dz. (2.52)

Thus if the system (2.51) is null controllable in time 7' > 0 then necessarily

Therefore

L
/ po(z)dx = 0. (2.53)
0
Let us define
V = H}(0,L) x L*(0, L) x L*(0, L).

We have the following lemma about existence and uniqueness of solution to the system (2.51) follows easily
from semigroup theory.

Lemma 2.16. Given (po,uo,00) € V, g € L?(0,T;L?(0,L)) and h € L*(0,T;L?(0, L)), the system (2.51) has
a unique solution (p,u,0) with p € L*(0,T;H}(0,L)) and (u,0) € (L?(0,T; H}(0,L)))?. Moreover (p,u,0)
belongs to C([0,T]; V).

Proof of Theorem 1.3. Let us first take the following system with interior control §

pt+pu, =0, in (0,L)x (0,7),

Ut — VoUzy + R?Jg pr =¢g, in(0,L)x(0,T),

p(0) = po, u(0)=wup, in(0,L),

u(0,t) =0=wu(L,t) V t>0. (2.54)
By Theorem 5.1 of [5], we know that for every (po,uo) € HL (0,L) x L?(0,L), there exists a control g €
L2(0,T; L*(0, L)), such that the solution of (2.54) satisfies

(p,u)(z,T) =0, for all z € (0, L). (2.55)
Now we consider the following heat equation
0; — kobux = h(z,1), in (0,L) x (0,T),

(2.56)
0(z,0) = Oo(z),z € (0,L), 0(0,t)=0=0(L,t) YV t>0.

By Theorem 2.66 of [6], for every 6y € L%(0,L) there exists a control h € L2(0,T;L*(0,L)) such that the
solution of (2.56) satisfies

O(z,T) =0 for all z € (0, L).
Now define

g(x,t) = g(x,t) + RO, (x,t), h(z,t)=h(x,t)+ Ij—euw(aj, t),

where u, 6 are the solutions of (2.54) and (2.56) respectively. Thus (p, u, #) is the solution of the system (2.51)
with g and A defined as above and it satisfies

(p,u,8)(x, T)=0.

Therefore the theorem follows. O
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Now we want to show that even if (pg, ug, 6p) € V, null controllability cannot be achieved by localized velocity
and temperature controls, i.e., we want to prove Theorem 1.4. First we will derive an observability inequality.
In order to do this we introduce,

az,t) = pe(,t). (2.57)

Differentiating the first equation of (2.51), we obtain the following system
ar+ pug, =0, 1in (0,L) x (0,7),

RO
Ut — VoUgg + ? a+ RO, = 9X0Oz; in (Oa L) X (O,T),

Or(x,t) — koblye + Ij—euw = hxo,, in (0,L) x (0,7),

a(0) = ap = (po)z, u(0) =wug, 6(0) =0, in (0,L),
uw(0,t) =0=wu(L,t) V t>0, 6(0,t)=0=06(L,t) V t>0. (2.58)

Here (ag,uo,6p) € Z. The system (2.58) is well posed in Z. Note that, to prove Theorem 1.4, it is enough to
show system (2.51) is not null controllable in Z by localized interior controls g and h. As before we have the
following proposition.

Proposition 2.17. For every (oo, uo,00) € Z, the system (2.58) is null controllable in time T by localized
interior controls g € L?(0,T;L?*(O2)) and h € L*(0,T; L*(03)) if and only if for every (or,vr,dr) € Z, the
solution of the following adjoint system

—oi+pv =0, in (0,L) % (0,T),
RO ‘
— Ut — VoUgg + ? Opz — Ry =0, in (0,L) x (0,7T),

- ¢t - k0¢xm - f_0¢z = 07 in (OvL) X (OaT)a

o(T)=or, o(T)=vr, &T)=ér, in(0,L),
o(0,t)=0=0c(L,t) ¥V t>0, v(0,)=0=uv(L,t) ¥ t>0,
$(0,4) =0=¢(L,t) ¥ t>0. (2.59)

satisfies

lo (-, 0)l[720, ) + (- 0) 120,y + 160 0120, < C (/T/ vidadt + /T ¢2dxdt> : (2.60)
0o Jo, 0 Jos
The system (2.59) is well posed in Z. Let us consider the adjoint problem in R x (0,T)
—oi+pv =0, inRx (0,7),
— U — VoUps + R7§ Ozz — R, =0, in R x (0,7),

RO
=& —koder — ¢z =0, MR (0,T),
v

o(T) = or, o(T)=vp, &T)=or, inR. (2.61)
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Applying the Fourier transform in (2.61), we obtain the following system of ODE

(6,9, 0)(&,T) = (67,01, ¢1), (2.62)
where
0 5 0
RO .
A(¢) = ?52 _V?£2 Ric | (2.63)

RO
0 —=iE —kot?

Eigenvalues of A(€) are the same as eigenvalues of A(€). Let —6(€) be the eigenvalue satisfying lim ¢, 0(§) =

wo. The eigenfunction of A(¢) corresponding to —4&(€) is (1, &p_’i)’ —igdg(f)) , where ds(€) is as in Lemma 2.7.
Thus if we choose
L . o )
(or.or.81)©) = or(6) (1.2, —ieao))
the solution of (2.61) can be written in the following way
o(x,t) = 1 / &T(g)eiwie*tS(&)(T*t) de,
2 R
1 .
v(z,t) = — / or(€)eie X o500 g
27 Jr P
1 ~ iz . — —
o) = 5= [ or(pe(—itds©)e O de (2.64)

We have the following Theorem.

Theorem 2.18. Let 65 be as in Theorem 2.9 and (0¢(z,t),v"(x,t), ¢ (x,t)) be as in (2.64). They satisfy the
following
(i) %672’“71 < ||06("0)||2L2(R) < %

(ii) For any n > 0, there exists a constant C' independent of € such that

HUEH%2(O,T;L2(\x—xo|2n)) < C\/Ev H'UE||%2(O,T;L2(|x—xo\2n)) < (7\/E (265)
(iil)
H¢EH%2(0,T;L2(R)) <Cé (2.66)
for some positive constant C independent of €.
Proof. The proof is similar to Theorem 2.9. d

Now we can proceed in a similar way as in Theorem 2.13 to prove Theorem 1.4.
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3. NULL CONTROLLABILITY OF COMPRESSIBLE NON-BAROTROPIC NAVIER—STOKES
SYSTEM IN ONE DIMENSION LINEARIZED ABOUT (p,7,6).

In this section we will discuss null controllability of system (1.9). We want to prove Theorem 1.5. First we
have the following Proposition about existence and uniqueness of the system (1.9).

Proposition 3.1. Let (po,uo,00) € Z. Let us assume that f € L*(0,T; L*(01)),
g € L?(0,T;L*(O2)) and h € L*(0,T;L*(O3)). Then (1.9) has a unique solution (p,u,0) with p €
L2(0,T; L*(0,L)), u € L*(0,T; H}(0, L)) and 6 € L?(0,T; H}(0, L)). Moreover (p,u,0) belongs to C([0,T]; Z).

Proceeding as before we have the following proposition about the equivalence of null controllability and observ-
ability inequality.

Proposition 3.2. For every initial state (po,uo,00) € (L*(0,L))3, the system (1.9) is null controllable in any
time T by localized interior controls f € L?(0,T; L*(01)), g € L*(0,T; L*(03)) and h € L?(0,T; L*(O3)) if and
only if for every (or,vr, ¢r) € (L2(0,L))3, (0,v, ), the solution of the following adjoint system

—op— Vo, —pu, =0, in(0,L)x(0,T),

—vp(x,t) — VoUge — R—? 0y — U0y — Roy =0, in (0,L) x (0,7T),
p

k RO
o= 2= P06, (at) =0, 0 (0.0)x 0.7),
o(T) =or, o(T) =vp, and ¢(T) = ¢r, in (0,L) x (0,7),,
o(L,t) =0, v(0,t)=0=0v(L,t), te(0,T),
#(0,¢) =0=¢(L,t), t€(0,T). (3.1)

satisfies the following observability inequality

lo s Ol Z2 0,2y + I10(, 0)IF20, 1y + 6 0) 1220,

T T T
<C / / azdxdt+/ / uzdxdt+/ p2dzdt | . (3.2)
0 01 0 02 0 OS

The above adjoint system is well posed in (L2(0, L))?. We want to show the the observability inequality (3.2)
does not hold for small time 7. Let us first consider the adjoint problem (3.1), in R x (0,7') as a terminal value
problem only

—op— V0, —pv, =0, inRx(0,7T),

0
—vt—z/ovm—RT 0y — 00y — Rop, =0, in R x (0,7),
p

— Pt — 7k Pra — R_va —0¢, =0, in R x (0,7),
pCy Cy
o(T) =or, o(T) = vy, and ¢(T) = ¢r, in R. (3.3)

We have the following theorem.

Theorem 3.3. Let (05,05, ¢%) be as in Theorem 2.9. Let (o€, v, ¢¢) be the solution of (3.3) with this terminal
condition. Then they satisfy the following estimates

: 1 —2a1T € 1
() 5o < o (Ol < 5
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(ii) For any n > 0, there exists a constant C' independent of € such that

100220722 (e -2y 20y < CVE (3.4)
where z(t) = xg — (T —t).
(iii) There exists a constant C, independent of €, such that
1012 20,7, L2 () < C€, 16172 0,7 12 (my) < Ce™. (3.5)

Proof. Let (o,v,¢) be a solution of (3.3). Let us define the transformed functions for (z,t) € R x (0,T)

5(xat) = 0(1’ - @(T - t)vt)a ’lN}(ZL',t) = U(x - @(T - t),t)v ¢(xat) = ¢(x - 'D(T - t)vt)'
Then (5,7, $) is a solution of the system (2.6). Thus from Theorem 2.9, we easily prove the theorem. O
We now give the proof of Theorem 1.5.

Proof of Theorem 1.5. We will proceed in a similar way as in Theorem 2.13. In order to obtain a cotradiction to
the observability inequality (3.2), we need (x(t) —n, z(t)+n) C (0, L) and does not intersect the set Oy = (I3, l2)
for all ¢. In particular (xg —n — 0T, 29 +n — v7T) must lie inside (0, L) and does not intersect (I1,l2). Thus we
have to choose zg and n properly so that (xg —n — 0T, xo+n — 0T) is either a proper subset of (0,11) or (I, L).

Let us first choose z¢ € (0,11) and n > 0 such that (zo —n,z0 +n) C (0,{1). Thus if we want (v — 7 —

T, xg +n —T) to be a proper subset of (0,11), we need xg —n — 0T > 0. This implies T < * Similarly if we
v

L-1
choose g € (l2, L) then we need T' < 2.

I —
Thus when T' < max lfl, — L2
i

} , the observability inequality (3.2) does not hold and hence the system is

not null controllable. O

4. NULL CONTROLLABILITY OF COMPRESSIBLE BAROTROPIC NAVIER—STOKES SYSTEM IN
TWO DIMENSION LINEARIZED ABOUT (p,0,0).

In this section, we will prove Theorem 1.8. We will construct highly localized solutions, as we did in one
dimension. Let us introduce the following constants

Ho = B o= b= ayp’ 2.
p
The system (1.10) is well posed in (L?(£2))%. As before we have the equivalence between null controllability

and observability inequality

Proposition 4.1. For every initial state (po,up) € (L3(£2))3, the system (1.10) is null controllable by localized
interior controls f € L?(0,T; L*(01)) and g € L*(0,T; (L*(02))?) if and only if for every (or,vr) € (L*(£2))3
the solution of the following adjoint system

—o(z,t)—pdivv =0, in2x(0,T),

—vi — pAv — v Vdiv v — 01 Vo = 0, in 2 x(0,T),

o(T)=o0r and v(T)=vy, inf2,

v=0 on 0£2x(0,7T). (4.1)

satisfies the observability inequality

T T
0 Oy 0 Oz
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Here v(z,t) = (v1,v2)(z,t). The above adjoint system is well posed in (L%(£2))3. We will now use “Gaussian
Beam” construction to show that the observability inequality (4.2) does not hold. Let us first consider the
adjoint problem (4.1) in R? x (0,7") as a terminal value problem only. Applying the Fourier transformation, we
obtain the following system of ODE

o o
- 1:)1 = 121(5) 1:)1 ) (&’61762)(5»11) = (&Ta'ﬁl,Ta'ﬁZT)» (f,t) € R? x (OvT) (4'3)
V2 ‘ V2
where
_ 0 pi&1 pia
A(E) = | bri& —polél* =70 —0&iée : (4.4)

biils  —v0&1 — & —polél* —0é
We have the following lemma.
Lemma 4.2.

e The eigenvalues of fl(g) are
- ) -
5(6) = —polel?, ) = — 10T HNED <1 " \/1 - (L)

2 Yo + po)l€]?

fo_ (otm)lE? ([0 4bip
M= (1 \/1 <%+uo>5|2>

e For all £ € R?, there exists a constant as > 0, such that
0 < —Re 0(§) < as.
o There exists & > 0, such that for all |€] > &, N€), i(€) and 6(€) are all real and distinct. The eigenvalues

satisfy
—i(¢) . z bip
= 1o+, lim —06(§) = .
A TR oo i 08 =
e For |€] > &, the eigenvalues are differentiable and we have
= C
263(6)] < g

for some positive constant C.

e The eigenfunction of A(€) corresponding to §(€) is (1 §(6)& (5(5)52) .

L pilgl? T pilgl?

Now if we choose

" pilg? T pilg]?
the solution of (4.1) in R? x (0,7T'), can be written in the following way

(67, 97)(€) = 61(E) (1 ) 5<5)§2> ,

Tt = (271r)2 /R o7 (€)@ 04z,

niet) = gy [ onle ‘;(f'f; HOT-0ge.
s R2

va(a,t) = (21)2 / o (€)ei®s ‘;(jéfj RIGICEURTS (4.5)
s R2
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Theorem 4.3. Let £ € R? with |£| = 1 and o € R?. Let 1/; be a smooth function compactly supported in the
unit ball and of unit L2(R?) norm. For any e > 0, define

o5(6) = et (Ve (6= &) ) et
€
and (o€, v§,v5) as in (4.5). Then they satisfy the following estimates
. 1 1
W @y 27
(ii) For any n > 0, there exists a constant C' independent of € such that
1002 20,7, L2 (2 —z0 5 < CVE (4.6)

(iii) There exists a positive constant C' independent of € such that

ef2a2T < ||0'6('a0)HL2(R2) <

V¥l 20,7522 (R))2) < Ce2 (4.7)

Proof. We will only give proof of estimate (4.6). Other estimates can be proved in a similar manner as before.
From (4.5) we have

of(x,t) = L)Q /R2 6%1; (\/E (g _ %)) el(=20)€ (3 (6)(T—1) d¢
/

- / (GG g,
<11

Note that . ) .
A ei(w—xo)(%-‘r%) . |1' - xO‘ ei(w—xo)(%-‘r%).
‘ Ve
Thus for |z — z¢| > 1 > 0, we have

1/4 c

A¢ (ei(‘”“)(ﬁ*f)) B()P G T=D g¢
c<t

€
O'E(x,t) = _74772@ — $0|2 |

< / i(z—20) (S +$) (~ S(‘+£)(T—t>>
= e verel AN e Ve e dc. 4.8
42|z — a2 <1 ¢ ¥(Q) ¢ (4.8)

Thus for € small, we have

Notice that the constant C' is independent of e. Therefore for € small enough and |z — 29| > 7 > 0 we have

Ve. (4.9)

€

(2,8)| <O

o (. D)l < 42|z — x0|?
Thus there exists a positive constant C (T, n), such that

”06||%2(0,T;L2(|x—xo\2n)) < C\/E (410)
This proves (ii). O

Remark 4.4. Now we can proceed as before to prove Theorem 1.8.
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