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ROBUST OPTIMAL SHAPE DESIGN FOR AN ELLIPTIC PDE
WITH UNCERTAINTY IN ITS INPUT DATA

JESUS MARTINEZ-FRUTOS!, MATHIEU KESSLER? AND FRANCISCO PERIAGO?

Abstract. We consider a shape optimization problem for an elliptic partial differential equation with
uncertainty in its input data. The design variable enters the lower-order term of the state equation and
is modeled through the characteristic function of a measurable subset of the spatial domain. As usual, a
measure constraint is imposed on the design variable. In order to compute a robust optimal shape, the
objective function involves a weighted sum of both the mean and the variance of the compliance. Since
the optimization problem is not convex, a full relaxation of it is first obtained. The relaxed problem
is then solved numerically by using a gradient-based optimization algorithm. To this end, the adjoint
method is used to compute the continuous gradient of the cost function. Since the variance enters the
cost function, the underlying adjoint equation is non-local in the probabilistic space. Both the direct
and adjoint equations are solved numerically by using a sparse grid stochastic collocation method.
Three numerical experiments in 2D illustrate the theoretical results and show the computational issues
which arise when uncertainty is quantified through random fields.
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1. INTRODUCTION

Shape optimization amounts to find the optimal shape of a domain which minimizes or maximizes a given
criterion (often called ‘objective’ or ‘cost’ function). In view of its many possible engineering applications, it is
a widely addressed problem and many aspects of shape optimization are addressed in the literature. We refer
for instance to [1,6,9,15,30,39] and the references therein.

Probably because of its physical meaning, the compliance is the most studied criterion. Compliance, which
is defined as the work done by a load, measures the global rigidity of a physical structure under the action of
that load. However, if a shape is optimized for some fixed data (e.g., loads, elastic and/or geometrical material
properties, etc..), it is well-known (see for instance [3]) that it could be far from being optimal for small
perturbations on that data. Engineering problems are affected by a certain amount of uncertainty in its input
data. This uncertainty has several causes (for example, variabilities in the fabrication process of a material)
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and should be properly quantified. In many applications, Gaussian fields are the model of choice. Uncertainty
Quantification (UQ) is at present a very active field of research in Engineering (see [23]), but is not the object
of the present paper.

Several approaches have been suggested to include uncertainty in the shape optimization process [35]. One of
them is the robust design optimization (RDO) that aims at obtaining optimal designs less sensitive to variations
in the input data [7]. Two methods in this field are the worst-case scenario analysis, which leads to a min-
max type optimization problem (see for instance [16,21]), and the so-called average approach [24], where the
optimization problem is described in a probabilistic framework. We refer the reader to [7] for an overview
of robust optimization. RDO has been applied both to shape and to topology optimization problems e.g.
in [14,21,22,25,37].

Unlike the robust optimization, which aims at minimizing the variation of the performance function, other
approaches seek to guarantee the system safety in extreme events. To fulfill this new goal, two formulations are
commonly used in the literature, namely the reliability-based design optimization and the risk averse optimiza-
tion. The former is concerned with satisfying a target reliability level by means of failure probabilities [2,31],
whereas the latter minimizes a risk functional that quantifies the expected loss related with the damages caused
by catastrophic failures [19,27]. In this paper we are concerned with the problem of robust shape optimization
of elliptic PDEs considering uncertainties in its input data. Thus an average approach which involves the mean
and the variance of the compliance in the objective function [24].

It is worth pointing out that most of the engineering-oriented works [14,25,37] dealing with shape optimization
under uncertainty are based on mathematical programming models. Thus, when the original problem comes
from a continuous model (for example, a partial differential equation like the conductivity equation or the
elasticity system), a full discretization of all ingredients entering the problem, namely, the underlying state law
(typically by using finite elements), the set of admissible shapes and the objective function, is performed at the
very beginning. Optimization then applies to the resulting discrete (finite-dimensional) model.

On the contrary, mathematical-oriented papers typically address continuous (infinite-dimensional) optimiza-
tion problems. A few recent works have for example addressed the issue of shape optimization under uncertainty
by using the average approach, see [11,18]. Three common features of these two works are: (1) uncertainty
enters in the problem formulation through the loads; (2) only the expected value of the deterministic objective
function is considered. Although the expectation gives a first indication of robustness, it is reasonable, in order
to achieve a more robust design, to consider as well at least the variance of the objective function. And (3); (ap-
proximations of) Gaussian fields as sources of uncertainty in the numerical simulation results presented are not
considered. Consequently, the computational complexity involved when Gaussian fields enter into the problem
is not shown.

Even if the discrete and continuous methodologies in shape optimization seem at first glance to be equivalent
(because even if a continuous model is considered, its numerical resolution necessarily involves a discretization
process), they can lead to different results. The subtle difference is that, as proved in some specific optimization
problems (see e.g., [13,28,44]), the diagrams (a) first discretize and then optimize, and (b) first optimize and
then discretize are, in general, not equivalent.

In this paper, we consider a shape optimization problem for an elliptic partial differential equation with
uncertainty in the diffusion coefficient, the load and the boundary conditions (see Sect. 2.1). The design variable
enters the lower order term of the stochastic equation and is subject to a typical measure constraint which makes
the problem non-trivial. The objective function is a weighted sum of the expected value of the compliance and
of its variance (Sect. 2.2). We focus on the numerical resolution of the problem. For that purpose, since the set
of admissible shapes is not convex, we follow the relaxation method. Concretely, the relaxed problem involves a
simple convexification of the original set of admissible shapes. The existence of a solution for this new problem
and the coincidence of the minimum value of the relaxed cost function with the infimum of the original one is
established in Theorem 3.1. The numerical resolution of the relaxed problem is then addressed by following a
classical (deterministic) gradient-based minimization algorithm. The novelty here is that, due to the presence of
the variance in the cost function, the problem becomes non self-adjoint. Consequently, the explicit computation of
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the continuous gradient (Thm. 4.1) involves the numerical resolution of a Stochastic Elliptic Partial Differential
Equation (SEPDE) for the state law and a non-local SEPDE for the adjoint system. We follow a stochastic
collocation method, as described in [5], for the numerical resolution of these two problems. To illustrate the
theoretical results of this paper, Section 4 describes three numerical experiments where uncertainty appears in
the force term (Case 1), in the diffusion coefficient (Case 2), and in the boundary conditions (Case 3). The
paper concludes with a final section of further remarks and conclusion where the mathematical and numerical
approaches proposed are extended to risk averse shape optimization.

2. PROBLEM STATEMENT

2.1. The state law

Let D C R? be a bounded domain with a Lipschitz boundary 0D, and let (§2, F, P) be a complete probability
space. If X € L'(£2) is a real random variable, we denote its expected value by

- [ X@apw)

Consider the stochastic linear elliptic boundary value problem: find a random function u : £2 x D — R such
that P-almost surely, the following equation holds

-V la(-,w)Vu(-,w lou(-,w) = f(-,w) in D
{u@wgi0> el +Loulw) = S in D )

where 1o stands for the characteristic function associated to a (Lebesgue) measurable subset O C D. Here both
the gradient (V) and the divergence (V-) operators refer to differentiation with respect to the spatial variable
rzeD.

In order to rewrite (2.1) in a variational form we consider the following Hilbert spaces:

e [2(Dx )= {f DxQ—>R [ Elf dac<oo}
o Vp=L3(02;Hy(D)) = {v: DXQ—>R [vll}, = [p E[|Vv]?]dz < oo} .

. VP,aZ{UEVP~ ||’UHVP,Q = [p Ela|Vv| ]dx<oo}.
Following Babuska et al.[5] we make the following assumptions:

(A1) There exists a random variable amin(w), With 1/amin € L%(£2), such that
a(x,w) > amin(w) >0 as. we 2 and ae z € D. (2.2)

(A2) f e L3(D x Q).

Notice that condition (2.2) is satisfied with a lognormal diffusion coefficient. For instance, if
a(x,w) —ap(r) = exp (Z b ( ) Y,, ~ N(0,1) independent and identically distributed (i.i.d.),

with ag(z) > g > 0 a.e. z € D.

The variational or weak form of problem (2.1) is

find u € Vp, such that / ElaVu - Vv + louv]dz = / E[fv]dz Yv € Vpg. (2.3)
D D
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As a consequence of assumptions (Al) and (A2) above, the Lax—Milgram lemma ensures the existence and
uniqueness of a solution to problem (2.3). Moreover, if f € L%L(D x 2) and 1/amin € L%(£2), then u €
L%(£2; H}(D)) and there exists a constant Cp > 0 such that the moment estimates

2 ”f(‘aw)HLQ(D)
[u(, @)Dy < CPW (2.4)
and
HUHL2 @y 0y < Cplll/aminllLz (o) 1 f 22 (px o) (2.5)
hold (see [5], Lem. 1.2).
2.2. The robust optimization problem
The following shape optimization problem with uncertainty is considered:
Minimize in 1o : J (1) = aE ([, fudz) 4+ (1 — &) Var ([, fudz)
(OP) « subject to
lo € U,
where the set of admissible designs Uy, is given by
U, ={1p € L*=(D; {0, 1}) :|O|=L|D|, 0<L<1}, (2.6)

u = up(z,w) is the associated state, i.e., u solves (

(/ fudx) //fxw (z,w) dz dP(w) (2.7)

is the expected value of the compliance, and

ar(/Dfudx):/ (/ fudx) dP(w) (//fudde( ))2 (2.8)

is its variance. As usual, | - | stands for the Lebesgue measure and 0 < o < 1 is a weighting parameter.

Notice that as a consequence of the estimate (2.5), the cost function in problem (OP) is well-defined.

The problem (OP) presents an average approach, commonly used in the field of robust optimization [24],
that combines lower statistical moments of the system performance to find a trade-off between performance and
robustness. As indicated in the Introduction, the variance of the compliance is used as a dispersion measure that
has the effect of increasing the robustness (minimizing the dispersion) of the optimal design w.r.t. the random
perturbations that appear in the state law (2.1).

A physical interpretation of problem (OP) follows: the spatial domain D C R? could model a string (d = 1)
or a membrane (d = 2) which is fixed at the end-points of the string or the boundary of the membrane, and f
is a vertical load acting on D. In this case, a = Fh, with E the modulus of elasticity and h the thickness. These
input data (also the force f) are taken to be random, which models a certain amount of uncertainty in the
material properties (E), in the geometry (h) and in the loads (f). The random output u(z,w) then represents
the vertical displacement of the point € D. In problem (OP) we aim at reinforcing a part of the string or
the membrane by setting the stiffness of a sub-domain O of given measure (length in the case of the string and
area for the membrane) to 1, in order to maximize the global rigidity of the new structure. In this case, the
compliance is the opposite of the rigidity, which implies that, the smaller the compliance, the larger the rigidity.
In other words, in the optimization problem (OP) we search for the best (i.e. the ones that achieves the minimal
compliance) shape and position of the domain O among all domains which have a fixed measure equal to L|D)|.

The deterministic version of problem (OP) was considered for the first time in [29] (see also [30], Chap. 7).
The results in [29] were extended to the case in which the design variable is not a characteristic function but a
measure in [10]. More general nonlinear cost functionals were studied in [42].
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3. EXISTENCE OF A SOLUTION OF THE RELAXED PROBLEM

In order to ensure the existence of a solution for the deterministic version of problem (OP), some sufficient
conditions on the source term f and on the domain D are introduced in [29]. However, a general result which
states the existence of a solution for this problem is unknown. It is thus quite reasonable to think that the same
applies for the probabilistic version considered in this paper. However, even if (OP) admits a solution, it is very
convenient to introduce a relaxed version for the numerical resolution of (OP). This is the main goal of this
section. For this purpose, we consider the new problem

Minimize in s : J (s) = aF ([, fudz) + (1 — ) Var (f,, fudz)
(ROP) « subject to
S € UL

where now the set of admissible relazed designs U, is defined as
Uy = {s € L>®(D;[0,1)) : [|s|lprpy = LID|, 0<L <1} (3.1)
and u = ug(x,w) is the weak solution of problem
find u € Vp, such that / ElaVu - Vv + suv]dr = / E[fv]de Yv € Vp,. (3.2)
D D
Notice that (ROP) involves a simple convexification of the space of admissible designs for (OP). From now
on, we consider the space L>(D; [0, 1]) endowed with the weak-x topology.

Theorem 3.1. (ROP) is a full relazation of (OP). Precisely, the functional J(s) is continuous for the weak-x
topology. In particular, there exists s* € U such that

inf J(lp) = min J(s) = J(s*).
Jnf J(1o) min (s) =J(s")

Moreover, if a =1, then J(s) is convez.
Proof. Let s,, s be admissible for (ROP) and assume that
Sn — s weak — % in L*°(D).

Denoting by wu,, and u the corresponding weak solutions of (3.2), we have that the function v,, = u,, —u solves
the problem

{ =V - [a(-,w)Vo,(-,w)] + spop (-, w) = (s — sp)u(-,w) in D (3.3)

Up(,w) =0 on dD.

From (2.4), it is deduced that v, (-,w) is bounded in H}(D) a.s.. Thus, by the Rellich theorem, there exists
a sub-sequence, still denoted by v,,, and a function v = v(-,w) such that

v, — v strongly in L*(D) a.s.

As a consequence,
uv, — uv strongly in L'(D) a.s.

and since s, = s weak — % in L*°(D), we have that

/ (s — sp)uv,dr — 0 a.s.
D
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By dominated convergence,
/ / (s — sp)uv, dedP(w) — 0. (3.4)
2JD

Moreover, from the weak form of (3.3) we have that

//a\an\ dzdP(w //snv dzdP(w // (s — sp)uv, dedP(w).

Taking limits in this expression, by (3.4), we conclude that
Un — 0 in VP,a (35)

and also strongly in H}(D) a.s. Since 0 is the single accumulation point of v,,, the whole sequence converges to
0. Taking into account (2.7) and (2.8), the continuity of the term of J(s) corresponding to the expected value
of the compliance follows easily. The continuity of the variance term is a direct consequence of the result just
proved and of the dominated convergence theorem.

The existence of a solution for problem (ROP) is a consequence of the continuity of J(s) and of the com-
pactness of U, w.r.t. the weak-x topology. By density, the infimum of J(1¢) in Uy, equals the minimum of J(s)
in HL.

Let us now take o = 1, i.e., the cost function J(s) only involves the expectation of the compliance. Since us
achieves the minimum of the functional

// a|Vo|* + sv®] dadP(w) //fvdde (w),

by (3.2),
1 1 9 9
—§J(s) =—= [a|Vu| + su®| dedP(w)
= min { / / [a|Vo|* + sv?] dzdP(w / / fodzdP(w }
'UEVP a
which is concave as a minimum of affine functions. This proves that J(s), with oo = 1, is convex. O

4. NUMERICAL RESOLUTION OF THE RELAXED PROBLEM

For the numerical resolution of problem (ROP) we use a gradient-based optimization algorithm. Precisely,
we shall use the well-known (in structural optimization) Method of Moving Asymptotes (MMA) as described
in [40,41]. We first focus on the numerical computation of the continuous gradient of the cost function in problem

(ROP).
4.1. Explicit computation of the continuous gradient

Theorem 4.1. The functional J(s) is Gateauz differentiable at each admissible s € Uy,. Moreover, its derivative
at s is given by

J(5)(@) = —a /Q W2(z, ) dP(w)
+(1-a) /Q us(z,w)ps(z,w) dP(w)

+2(1 - «a) <//fusdde )/Q (z,w)dP(w) (4.1)
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where ug solves the direct problem (3.2) and the adjoint stale ps is the solution of the following non-local
stochastic elliptic problem: find ps € Vp,q such that

// [aVps - Vv + spsv] dadP(w :—2/ [/ fusdx/ fvdx} dP(w) Vv e Vp,. (4.2)

Proof. Let § € L*(D;[0,1]) be an admissible direction, i.e., for & > 0 small enough, s + 5 € Uy. We first
consider the term (2.7) in J(s) corresponding to the expected value of the compliance. To begin with, we notice
that the solution us4.3 associated to the perturbation s + €5 can be decomposed as us4c5 = us + ., where .
solves the boundary value problem

-V - (aVie) + (s + €8)le = —eSus in D x 2 (4.3)
e =0 on 0D x 2. )
Moreover, thanks to the moment estimate (2.5),
Hu6||[,2 2 (2;HL(D)) <eC, (4.4)

where C' > 0 depends on the L%-norm of 1/an;, and f. Subtracting the equations for s+¢3 and for s, multiplying
the result by (usies + us), and finally integrating over {2 and D we get

// [alVusies? + (s + e8)ul, ] ded P(w // [a|Vu,|* + su2] dzdP(w)

=—¢ /Q /D suldadP(w) — ¢ /Q /D dtusdrdP(w).  (4.5)

E(fp fusiesdz) — E ([, fus) _ / / suldrd P(w / / Sticusdzd P(w).

e

Therefore,

Applying (2.5) to us and considering (4.4), a direct application of Holder’s inequality shows that the second
term in the right-hand side of this expression vanishes as ¢ — 0. The first term in the right-hand side of (4.1)
is then derived.

The third term in (4.1) comes from the second term in (2.8) just as a straightforward application of the chain
rule and the result just proved.

Finally, let us compute the second term in the right-hand side of (4.1). Using again the decomposition
Ustes = Us + Ue, We have

/(/ fu”ssdx) dP(w) /(/ f“sdff> dP(w) /(/ fugd:c> dP(w)
+2/Q(/Dfusdas/Dfa5daz) dP(w).

By (2.4), the first term in the right-hand side of this expression behaves as 2 and hence

. Jo (fous+Egdx) dP(w) — [, (fou daz) dP(w ) _meQ (fousdfofagdx)dP(w)'

e—0 £ =) e
On the other hand, putting v = @, in (4.2) yields

/(/ fusdw/ fugdw> dP(w // [aVDps - Vi + spstie] dedP(w)
//esuqudde //gsuqudxdp( ),

(4.6)
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the second equality being a consequence of the variational formulation of (4.3). We now are able to compute
the limit in (4.6) and, thanks to the estimate (4.4), obtain the desired result. O

From (4.1) it is deduced that the gradient of the cost function depends on the solution of the direct prob-
lem (3.2), on the solution of its associated adjoint equation (4.2), and on the corresponding integrals over the
probability space. We now describe how to solve numerically these three problems.

4.2. Numerical resolution of the state and adjoint state equations, and numerical
approximation of the related statistical quantities

Following [5] we make the following assumption, which is not too restrictive since in many problems the
source of randomness can be approximated by a finite number of random variables (see, for instance, the case
of a truncated Karhunen-Loe¢ve expansion [32,33]).

Assumption 4.2 (Finite dimensional noise). The random input data take the form:
a(z,w) = a(z,V1(w),- -+, Yn(w)) and f(z,0) = f(z,Y1(w), -, Yn(w))
where {Yn}nN=1 are real-valued random variables with mean value zero and unit variance.
Denote by I, = Y,,(£2) the image of Y;,, I = HnN:1 I, and assume that [Y7,--- ,Yx] have a joint probability
density function p: I' — Ry, with p € L(I).
4.2.1. The direct problem

For all x, w — u(x,w) is measurable with respect to F. As a consequence of Assumption 4.2, the Doob-
Dynkin’s lemma therefore ensures that the solution u(x,w) of (3.2) can be represented as

u(r,w) = u(z, Y1 (w), -, Yn(w)).

The stochastic boundary value problem (3.2) thus becomes the following deterministic Dirichlet boundary
value problem for an elliptic PDE with an N-dimensional parameter:

find u € V,,, such that /

pl(aVu, Vv)p2py + s(u,v) L2(pyldy = / p(f,v)2pydy, Vv €V, (4.7)
r r

Here (-, -)z2(p) stands for the inner product in L3(D) and V,, , is the analogue of Vp , with (£2,F, P) replaced
by (I, BN, pdy), with BY the o-algebra of the Borel sets in RY. This problem is equivalent to

/ [a(y)Vu- Vo + sug|da = / fly)odx, Vo e H&(D), p—a.e. in I (4.8)
D D

Assuming that both a and f admit a smooth extension on the pdy-zero sets, (4.8) can be extended a.e. in I"
w.r.t. the Lebesgue measure.
To approximate numerically the solution of (4.7), the spaces are considered V), j, = Pp(I") @ Hp (D), where:

e H,(D) C H}(D) is a standard finite element approximation of H{(D); and
o P,(I') C LIQ)(F ) is the span of tensor product of suitable orthogonal polynomials with degree at most
p=(p1,-..,PN), t.e., Pp(I') = Q@ Pp, (), with P, (I3,) =span(y)',m=0,...,p,), n=1,...,N.
The numerical algorithm to solve (4.7) consists of three main steps:

Step 1. Project equation (4.7) onto Hy(D):

/ l[a(y)Vuy, - Vp, + supdp] de = / f(y)onda,Vor, € Hy(D),ae. y € I.
D D
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Step 2. Collocate the above equation at the zeros yj, of the corresponding orthogonal polynomials.
Step 3. Build the discrete solution uy , € Pp(I") @ Hp (D) by interpolating in y the collocated solutions.

4.2.2. The adjoint problem

To solve the adjoint problem (4.2) we follow the same lines as for the direct problem just described. In this
case, the main difference w.r.t. the direct problem refers to the non-local term that appears in the right-hand
side of (4.2). We next explain how to overcome this difficulty.

First, the continuous equation (4.2) is projected onto the discrete space Hp(D). Let us denote by pp(y)
the solution of this equation. Second, we collocate the resulting equation at the zeros y; of the orthogonal
polynomials of P,(I"). Then, at each node y;, of the probability space, we get

/D [a(yr)Vpn - Von + spugn] dz = <—2 /D f(yk)uh(yk)dx> /D Fly)bn da.

Hence,

o (yi) = crun(yr), with ¢ = —Q/D I yr)up (yg) da.

4.2.8. Numerical approximation of integrals over the probability space

As indicated above, to compute the gradient of the cost function and also to compute the cost function of
problem (ROP) itself, it is required to approximate numerically integrals over the space I". More precisely, given
a continuous function g : I' — R we use a Gauss quadrature formula approximating || r9(y)p(y) dy. Here p is
an auxiliary probability density function that satisfies

< 0oQ.

N
ﬁ(yla"'ayn): Hﬁn(yn) and p
n=1

Le=(I)

We refer to [5] for more details. Denoting by yr = (Y151 Y2,k0s - - -» YN, ky) & Point in I', we introduce, for
n=1,..., N, the Lagrange basis {Zn’j};’;l of the space P, , i.e.,

n?

anePn(Fn)’ ZN,j(yn,k):djkv jvkzla"'a pn+1

where §, is the Kronecker symbol. Finally, we set Ix(y) = ngl Lok, (yn). With this notation, the Gauss
quadrature formula Ef; l9] approximating [ g(y)p(y) dy is given by

N N
EPlg) = wrgy), wi = [ wknr @, / i (9)p(y) dy. (4.9)
k=1 n=1

n

5. NUMERICAL RESULTS

Next, we consider three numerical examples for problem (ROP). These examples have been studied previously
from a deterministic point of view in [29]. For comparison reasons, we slightly adapt those examples in order
to deal with uncertainties in the force term (Case 1), in the diffusion coefficient (Case 2), and in the boundary
conditions (Case 3).

The numerical experiments treated in this section are characterized by the following common features:

e Finite element approximation in the physical domain. A stochastic collocation method is used to
numerically solve both the direct and adjoint PDE, as well as to perform the integration required to consider
the statistical moments of the compliance. The stochastic collocation method requires the resolution of a
set of uncoupled deterministic sub-problems in several nodes in the stochastic domain. Each sub-problem is
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discretized in the physical domain through Finite Elements, using P1 elements on a triangular mesh. The
maximum allowed element edge length is fixed to a maximum of A = 0.01 in all the numerical experiments.

Uncertainty modeling. Two random fields are used to model uncertainty in the first two experiments. In
order to satisfy the ellipticity condition (2.2), a lognormal random field is selected for the diffusion coefficient.
Consider

F(z) = exp (n(x) + (x) U(x)) (5.1)

where n(x) and £(x) are the location and scale parameters of the lognormal distribution, that may depend
on x € D. The Gaussian random field U is assumed to have a zero mean, a unit variance and the following
isotropic squared exponential correlation function:

x; — ah)?
C(x,2') = exp l— Z (%721)] , (5.2)

i=1

where © = (x1,22),2" = (2}, 25) € D, and | > 0 is the correlation length. The Gaussian random field U is
discretized through the truncated Karhunen-Loéve expansion [32,33]:

N
U@) =YV Anbn(2)Yn (), (5.3)

where \,, and b,, are, respectively, the eigenvalues and eigenvectors of the compact and self-adjoint operator
v [ Clae)ar, ve (o),
D

and Y, (w) is a vector of independent normal random variables with zero mean and unit variance.

In this work, the LU triangular decomposition of the covariance matrix proposed by [20] is used in order
to generate the random fields simulations. The decay rate of the eigenvalues is analyzed and the size N of
the expansion is fixed in order to capture a 95% of the energy field. More precisely, we set N to be the
smallest positive integer such that

S M
= > 0.95 5.4
trace(Cr) — ’ (54)

where A" are the numerical approximation of the eigenvalues considered in (5.3), ordered in non-increasing
order, and trace(C},) is the trace of the discrete (over the spatial discretization of D) correlation function
given in (5.2). The parameter h stands for the size of the mesh in the spatial domain. Uncertainty in the
third numerical example is fully characterized by one single normal random variable.

Collocation approximation in stochastic domain. Since the random variables Y, come from a
Karhunen—Loéve expansion, they are independent standard Gaussian. Hence, the corresponding colloca-
tion nodes y; are the Cartesian products determined by the roots of Hermite polynomials. In order to
reduce the computational cost related to the full tensor product rules, an isotropic sparse grid, as proposed
in [38], has been applied. Given a 1D quadrature rule QF of level k, the M-dimensional Smolyak isotropic
product rule is defined as follows:

.A(ki,M) = Z (—1)k+M—|i‘ (k—f]—’\_fj% ,L) (Qll R ® QiM) . (55)

k—M+1<]i|<k
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The dimension of the product rule is equal to the size N of the Karhunen—Loeéve expansion. The non-
intrusive characteristic of the stochastic collocation method allows to carry out the parallel computation of
the deterministic solver at all of the collocation nodes.

e Optimization algorithm. Our robust optimal shape design problem (OP) aims to find a trade-off between
optimality and robustness. Actually, the problem should be formulated as a multi-objective optimization
problem encompassing two objective functions: the mean and the variance of the compliance. This opti-
mization problem yields a set of optimal solutions in the Pareto sense [34]. In the present work, the set
of Pareto optimal solutions is obtained by a previous scalarization of the multi-objective problem into a
single-objective one using a weighted-sum approach. To ensure the same order of magnitude [17], the mean
and the variance of the compliance are scaled using the following strategy:

7(s) = aE (fDEJiu dz) Var (f‘?*fu daz)

where « € [0, 1] is the weight balancing the influence of each objective functional. E* and V* are the mean
and the variance of the compliance obtained for the initial design which are used as scale factors. The Method
of Moving Asymptotes (MMA), developed by Svanberg in [40,41] is used to solve the optimization problem.
The MMA solves a sequence of sub-problems generated from local convex approximations of the objective
function and its constraints, based on their values and sensitivities. Using the MMA our problem can be
reformulated as follows:

+(1-a) (5.6)

1
Minimize in s = (s1,...,5,) : J (s) + apz + cy + 5dy?
subject to PDE constraint,
||5HL1(D) (5 7)
L|D| oY=
0<s;<1 j=1,...,n
z220,y=0,

where n is the number of nodes used to discretize the design variable s, y € R and z € R are “artificial”
variables [41], while ag, a, ¢, and d are given real numbers such that ag > 0, a > 0, ¢ > 0, d > 0, and
¢+ d > 0. As indicated above, the PDE constraint in problem (ROP) has been discretized and solved by
using finite elements in the physical domain and a stochastic sparse grid in the random domain. Following
Svanberg’s suggestion [41], the values ag = 1, a = 0, ¢ = 1000 and d = 0 are selected for all the numerical
experiments. The maximum number of iterations is set to 300, and the tolerance of the objective function,
constraint, and variables is set to le-6. We refer the reader to [40,41] for a more detailed description of the
algorithm.

5.1. Case 1: Uncertainty in the force term

The computational domain is a two dimensional unit square D =]0, 1[2. The diffusion coefficient @ = 1 and
the force term f(z,y,w) is the piece-wise function:

20 0<x<04,0<y<1,
flz,y,w) = 0.001 04<2x<06,0<y<I1, (5.8)
falz,y,w) 06 <2 <1,0<y<1,

where fa(x,y,w) is a lognormal random field obtained through the transformations (5.1)—(5.3) with n = 2.9761
and & = 0.1980. An isotropic correlation length | = 0.3 is considered. The size of the Karhunen—Loeéve expansion
is N = 10 and captures the 95% of the energy field. The level of the 1D quadrature rules is kK = 3. Using P1
finite elements in space and an isotropic sparse grid collocation approximation with Gauss—Hermite collocation



912 J. MARTINEZ-FRUTOS ET AL.

0.4 0.6
T

(a) (b)

FIGURE 1. Case 1. Expectation (a) and standard deviation (b) of u(z,y,w) without optimiza-
tion, i.e. s = 0.

nodes, the solution u(z,w) is computed on each finite element node of 11662 nodes in D and each collocation
node of 221 in £2. The expectation and standard deviation of the uncontrolled (i.e., s = 0) solution u(z,w) are
represented in Figure 1. Due to the uncertainty introduced in the force term, the region {0.6 < x < 1} presents
the largest standard deviation.

The optimization problem (ROP) has been solved for values of the weight factor o = 0, 0.2, 0.4, 0.6, 0.8, 0.85,
0.9, 0.95 and 1. The measure constraint is |O| = 0.1|D|. In order to analyze the effectiveness of the analytical
expression for the sensitivities of the statistical moments, the convergence history of the optimization algorithm,
for a = 0, is plotted in Figure 2. Notice that the objective function presents a peak after the first iteration due
to the in-feasibility of the chosen initial design. Once the algorithm has achieved a feasible design, the objective
function exponentially decreases until convergence (iteration 53). Figures 3 and 4 show the Pareto front of
optimal solutions and the optimal designs s(x,y), respectively. The mean value and variance of the solution
u(x,y,w) associated with the deterministic optimal solution (which is plotted in Fig. 4f) have been computed
and plotted along the Pareto front of optimal solutions (see star in Fig. 3).

The optimal solutions for the robust shape optimization problem can be compared to the deterministic one. In
this example, the optimal solution for the case of minimal expectation is very close to the deterministic solution
(Figs. 4e—4f). As expected, for the most robust design (minimal variance) all the reinforcement is devoted to
strengthen the region of maximum variability of the solution (see Figs. 1b and 4a). When only the expectation
of the compliance is considered, the optimal design (Fig. 4e) adopts the region where the displacement is the
largest (Fig. 1a). The solutions of the optimization problems for intermediate values of the weight parameter
a=0.2,04,0.6, 0.8, 0.85, 0.9 and 0.95 yield a trade-off between robustness and performance (Fig. 4), providing
a designer with a set of compromise solutions.

5.2. Case 2: Uncertainty in the diffusion coefficient

As in Case 1, the physical domain is the unit square D =]0, 1[2. In order to produce more realistic results, the
lower-order term s(z,y)u(x, y,w) in (3.2) has been replaced by bs(z, y)u(z,y,w), with b = 100. The force term
is f(z,y) = 100sin(37x)sin(57y), and the diffusion coefficient a(x,y,w) is a lognormal random field obtained
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FIGURE 5. Case 2. Expectation (a) and standard deviation (b) of u(x,y,w) without optimiza-
tion (s = 0).

through the transformations (5.1)—(5.3) with

1
77(35,1/) = log (W) )
E(a,y) = (log (1 + ¥ (x,))"/?,

U(x,y) = % (—2% + 33)2 (—y*+ y)z. (5.9)

An isotropic correlation length [ = 0.3 is considered. The size of the Karhunen—Loeve expansion is N = 14
capturing the 95% of the energy field. The level of the 1D quadrature rules is k = 4.

Figure 5 plots the expectation and standard deviation of the uncontrolled (s = 0) state variable u(z,w).
The parameter for the measure constraint L = 0.1. Seven single-objective optimization problems are derived
from the multi-objective scalarization by modifying the weight factor o = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1. The
convergence of the objective function and the evolution of the constraint fulfillment is similar to Case 1. The
solution of the single-objective problems yield different optimal relaxed shapes, which are shown in Figure 7
over the physical domain and in Figure 6 over the objective function domain. Similarly to Case 1, as shown
in Figure 7, the minimal expectation design is very close to the deterministic one. However, the design that
provides more robustness (minimal variance) consists of a reinforcement in the region of the domain with the
largest variability in the diffusion coefficient.

5.3. Case 3: Uncertainty in the boundary conditions

The goal of this numerical experiment is to obtain a reinforcement configuration of an elastic membrane less
sensitive to modifications in the boundary conditions and with a better performance. Concretely, we consider
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the following boundary value problem with uncertainty in the boundary conditions:

-V - Vu(,w)+s(-)u(-,w) =1in D
811;(~,w) =0on I'p(w), (5.10)
a—n(~,w) =0on I'y(w),

where the physical domain is the unit circle D = {(x,y) € R? : 22 + y? < 1}, and n denotes the unit outward
normal vector. The boundary of D is decomposed into two disjoint random parts I' = I'p(w) U I'y(w), with
I'p(w)NI'n(w)=0. I'p(w) is parametrized as

w T w T W w w 3T w 3w w
=, === -+ =T = = - — — = — + =27 — — R2
7o) {2’2 2}U[2+2’7T Q]U{”JFQ’ 2 Q}U{ e 2]—’

0 — vp(0) = (cosb,sin6)
(5.11)
where w is a random variable that follows a truncated normal distribution with zero mean and o = /12 rad
standard deviation. The lower/upper truncation point of the distribution is —20/ 4 20. The variational form of
problem (5.10) is: find u € L%(2; H'(D)) such that

/E[Vu-Vv—Fsuv]dx:/E[fv]dx Yo € L3(02; HY(D)).
D D
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and the boundary conditions are satisfied a.s. w € (2. Precisely,

u(-,w) =0 on I'p(w) in the sense of traces and a.s. w € {2,

0
and —u(-,w) =0, a.s. w € 2, as an element of H~Y/2(I'y(w)), i.e.

on

<Z—Z,¢> =0 Voe HY*(I'yw)).

We notice that, with almost no changes, the theoretical results in Sections 2 and 3 easily extend to the case
of problem (5.10). In the numerical implementation of this experiment the level of the 1D quadrature rule is
k=4.

Contrary to the previous cases, in this experiment the minimal expectation design differs slightly from the
deterministic one. This difference can be explained by the qualitative change in the contours of the solution
of problem (5.10) (Fig. 9a) in comparison to the deterministic solution. This change is related to the type of
uncertainty introduced into the problem. Figure 9b presents the standard deviation of the uncontrolled (s = 0)
state variable u(z,w), showing the maximum deviation at 6 = 0,7/2, 7,37 /2 rad.

The parameter for the measure constraint is L = 0.25. Five single-objective optimization problems are derived
from the multi-objective scalarization by modifying the weight factor o = 0,0.25,0.5,0.75, 1. The convergence
history of the algorithm is similar to the two previous examples. The Pareto front is depicted in Figure 10. As
in the previous cases, the weighted-sum approach allows us effectively approximate the convex Pareto front of
optimal solutions. Each solution represents a different configuration of the membrane reinforcement as shown in
Figure 8. The most robust design (Fig. 8a) balances the reinforcement between the central region of the domain
(Fig. 9a) and the region with a largest deviation of the compliance (Fig. 9b). However, the design with minimal
expectation of the compliance concentrates all the allowed reinforcement over a region close to a circle centered
at the origin and with radius 0.5 (solution of the deterministic problem).

6. FURTHER REMARKS AND CONCLUSION

It is worth pointing out that although the mathematical and numerical approaches presented above have
been developed in the context of robust shape optimization, they can be extended to the resolution of other
problems in the field of shape optimization under uncertainty such as risk averse shape optimization.

6.1. Extension to risk averse shape optimization

The variance is widely used as a measure of deviation in the context of robust optimization [7,24]. However, in
risk aversion optimization the use of the variance as a risk functional is not the best choice because it treats the
excess over the mean equally as the shortfall. This is not appropriate in minimization problems where the main
concern is whether the random output is too large. In this section we extend the mathematical and numerical
approaches presented in previous sections to be applied to the field of risk averse optimization by using the
upper semi-deviation as a risk measure.

Denoting by

X(w) = /D flz,w)u(z,w)dz (6.1)

the compliance random variable associated to problem (OP), the upper semi-deviation of order 1 of X is defined
as [36]
E(max{X — E(X),0})

where F(X) is the expected value of X. Since the max-function is not differentiable, it is convenient to approx-
imate it, for instance by using the so-called Chen-Harker-Kanzow—Smale function (see [8]). Thus, a measure of



FIGURE 8. Case 3. Optimal design s(x,y) for different values of «. Case (a) corresponds to
minimal variance, case (e) to minimal expectation, and case (f) is the optimal deterministic
design.
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FIGURE 9. Case 3: Expectation (a) and standard deviation (b) of the uncontrolled (s = 0) solution.

risk aversion is the non-linear functional cost

1

s10) = [ VX = B0 42 4 (xX(0) - B0 apo) (62)

where € > 0 is a (small enough) parameter.

Similarly to the proof of Theorem 3.1, it can be proved that a relaxed formulation of problem (OP), with the
new functional cost (6.2), is obtained by replacing the design variable 1o € U, by the density s € Uy. Then,
the new relaxed cost, from now on denoted by J.(s), is Gateaux differentiable at each admissible s € U, and
its derivative at s is given by

, 1 us(z,w)ps(z,w) + 2 (E(X)) u?(z,w)
Ts)(@) = & aP(w)
4 /9 V(X(@) - X)) +¢
1

-5 /Q s (2, )5 (1, ) AP(w) (6.3)

where ug solves the direct problem (3.2), py is the solution of (4.2), and ¢, solves the variational problem: find
gs € Vp,q such that

/Q /D [aVgs - Vv + sqsv] dadP(w) = /Q {/D (f—E(f)vdz| dP(w) Yv € Vp,. (6.4)

Once we have computed the gradient (6.3) of the new functional cost, the optimization algorithm proposed
in this paper applies to this context.

Using equations (6.2) and (6.3), the numerical experiment presented in Case 3 is extended to the problem of
risk averse shape optimization. Only the case of & = 0 (minimization of upper semi-deviation) is carried out.
The optimal solution is compared with the optimal design previously obtained for robust shape optimization
(minimization of variance). Both designs are shown in Figure 11. In contrast to the solution obtained mini-
mizing the variance of the compliance, the minimization of the upper semi-deviation leads to designs in which
the reinforcement is totally placed over a region close to the lost boundary constraint. The results obtained
highlight the differences between both approaches: whereas in risk averse optimization particular care is paid
on minimizing the risk of the system in extreme events, in the robust design optimization more emphasis is put
on the system performance under everyday fluctuations.
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We notice that the approach described in this paper may be adapted to deal with other risk aversion measures
like semi-deviations below some specific target, weighted mean deviations from quantiles or from a preselected
tolerance level, etc. (we refer the reader to [19,27,36] for more details).

6.2. Conclusion

In this paper, a robust shape optimization problem for an elliptic PDE under uncertainties in the diffusion
coefficient, force term and boundary conditions has been addressed. Previous works in this field [14, 25, 37]
address the robust shape optimization problem through semi-analytical expressions of the gradient of the cost
functional, which are obtained from a discrete version of the state equation both in the physical and in the
stochastic domains. This paper proposes a continuous approach for robust shape optimization. Since the space
of admissible shapes is not convex, a well posed full relaxation of the original problem is obtained. The relaxed
problem is numerically solved by using a descent method which is based on the computation of the continuous
gradient of the cost function. To this end, the adjoint method is used leading to the numerical resolution of both
the direct and the adjoint equations. The main contributions of the present paper are within the field of robust
shape optimization. Indeed, up to the best knowledge of the authors, this continuous approach (considering the
variance in the cost function and uncertainties modeled by Gaussian fields entering in all the input data of the
problem, namely the diffusion coefficient, force term and boundary conditions) has not been addressed so far.
Finally, it is illustrated that the approach proposed in this paper can be extended to other formulations of the
problem of shape optimization under uncertainty such us risk averse shape optimization.
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