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OPTIMAL ∞-QUASICONFORMAL IMMERSIONS

Nikos Katzourakis1

Abstract. For a Hamiltonian K ∈ C2(RN×n) and a map u : Ω ⊆ R
n −→ R

N , we consider the
supremal functional

E∞(u, Ω) :=
∥∥K(Du)

∥∥
L∞(Ω)

. (1)

The “Euler−Lagrange” PDE associated to (1) is the quasilinear system

A∞u :=
(
KP ⊗ KP + K[KP ]⊥KPP

)
(Du) : D2u = 0. (2)

Here KP is the derivative and [KP ]⊥ is the projection on its nullspace. (1) and (2) are the fundamental
objects of vector-valued Calculus of Variations in L∞ and first arose in recent work of the author [N.
Katzourakis, J. Differ. Eqs. 253 (2012) 2123–2139; Commun. Partial Differ. Eqs. 39 (2014) 2091–2124].
Herein we apply our results to Geometric Analysis by choosing as K the dilation function

K(P ) = |P |2det(P�P )−1/n

which measures the deviation of u from being conformal. Our main result is that appropriately defined
minimisers of (1) solve (2). Hence, PDE methods can be used to study optimised quasiconformal
maps. Nonconvexity of K and appearance of interfaces where [KP ]⊥ is discontinuous cause extra
difficulties. When n = N , this approach has previously been followed by Capogna−Raich [8] and
relates to Teichmüller’s theory. In particular, we disprove a conjecture appearing therein.
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1. Introduction

Let M0 be a topological submanifold of RN with boundary. In this paper we are interested in the problem
of finding a Riemannian manifold (M, g) which has minimal dilation and satisfies ∂M = ∂M0. In this setting,
dilation is a functional on L∞(M,⊗(2)T ∗M), defined as the L∞ norm of the trace of the Distortion Tensor

G :=
g

det(g)1/n
· (1.1)
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This problem is an extension of the classical Teichmüller Problem (see [5, 6, 20]). The scaling in (1.1) is such
that G is invariant under conformal tranformations and, as we explain later, the geometric meaning of tr(G)
being “minimal” is that “geometry is distorted as less as possible”. As a first step, we consider a simplified
problem for the case of immersions u : Ω ⊆ Rn −→ RN with prescribed boundary values on ∂Ω. Then, the
dilation functional for M = u(Ω) becomes

K∞(u, Ω) :=
∥∥K(Du)

∥∥
L∞(Ω)

, (1.2)

where K will be called the dilation function and is given by

K(P ) :=

⎧⎪⎨
⎪⎩

|P |2
det(P�P )1/n

, on S+,

+∞ , on RN×n \ S+.

(1.3)

In (1.3), |P | = tr(P�P )1/2 is the Euclidean norm on RN×n and

S+ :=
{

P ∈ R
N×n : det

(
P�P

)
> 0

}
. (1.4)

Important objects of Geometric Topology related to (1.2) arise for n = N . Homeomorphisms u : Ω ⊆ Rn −→
R

n in W 1,n
loc (Ω)N which satisfy K∞(u, Ω) < ∞ are called Quasiconformal Maps and constitute a class of

maps well studied in the literature; see for example [2, 7, 10, 19, 21]. Lp averages of Quasiconformal maps,
that is weakly differentable homeomorphisms for which ‖K(Du)‖Lp(Ω) < ∞ have also been systematically
considered. Conformal maps, namely those homeomorphisms u : Ω ⊆ Rn −→ Rn in C1(Ω)N which satisfy
Du�Du = 1

n |Du|2I form a special important class of Quasiconformal maps since for those K(Du) is constant
and equals n. Conformal maps preserve angles, but not necessarily lengths and hence distort the geometry of Ω
in a controlled fashion. However, by Liouville’s rigidity theorem, when n ≥ 3 the only conformal maps that exist
are compositions of rotations, dilations, and the inversion x 	→ x/|x|2. Hence, quasiconformal maps for which
K(Du) is merely bounded relax conformality but still deform Ω to u(Ω) in a fairly controlled fashion.

The problem with Quasiconformal maps is that too little information on their structure is provided by a mere
norm bound, and the same holds for the finite distortion problem when one restricts attention to minimisers
of the dilation functional. The subtle point is that (1.2) is nonlocal, in the sense that with respect to the Ω
argument (1.2) is not a measure. Simple examples certify that minimisers over a domain with fixed boundary
values are not local minimisers over subdomains and the direct method of Calculus of Variations when applied
to (1.2) generally does not produce PDE solutions.

In the very recent work, Capogna and Raich [8], remedied this problem by “optimising” Quasiconformal
maps. The idea is to consider an appropriate nonstandard L∞ variational problem for (1.2) and derive a PDE
governing Optimal Quasiconformal Maps that can be used as platform for their qualitative study. Motivated
by the classical results of Aronsson [3, 4] on Calculus of Variations in L∞, they developed an L∞ variational
approach for extremal (as they are called therein) quasiconformal maps. The essence of this approach is the
following: let Qpu = 0 be the Euler−Lagrange system associated to the functional ‖K(Du)‖Lp(Ω). Then, at
least formally Qp tends to a certain operator Q∞ and ‖K(Du)‖Lp(Ω) tends to ‖K(Du)‖L∞(Ω), both as p → ∞.
The operator Q∞ defines a quasilinear 2nd order system in non-divergence form. However, it is not a priori
clear that the following rectagle “commutes”

‖K(Du)‖Lp(Ω) −→ Qpu = 0
↓ p → ∞ ↓ p → ∞ (1.5)

‖K(Du)‖L∞(Ω) ��� Q∞u = 0

so that Q∞ has a variational structure with respect to K∞, in the sense that appropriately defined minimisers of
K∞ u : Ω ⊆ Rn −→ Rn solve Q∞u = 0. In such an event, Q∞u = 0 will play the role of “Euler−Lagrange PDE”
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for the dilation functional. This turns out to be the case, though. Among other far-reaching contributions which
include a deep study of dilations of extensions up to the boundary and quasiconformal gradient flows, Capogna
and Raich introduced in [8] a localized minimality notion for (1.2) and proved that those local minimisers among
“competitors” indeed solve the formally derived PDE.

Simultaneously and independently, the author, also inspired by Aronsson’s work and the successful modern
evolution of the field of Calculus of Variations in L∞ (see for example [9]), initiated the development of vector-
valued Calculus of Variations in L∞ for general supremal functionals in [12,17] with particular emphasis to the
model functional ‖Du‖L∞(Ω) = ess supΩ |Du|. For a Hamiltonian H ∈ C2(RN×n) and the respective supremal
functional

E∞(u, Ω) := ‖H(Du)‖L∞(Ω), (1.6)

the PDE system which plays the role of “Euler-Langrange PDE” for (1.6) is

A∞u :=
(
HP ⊗ HP + H [HP ]⊥HPP

)
(Du) : D2u = 0. (1.7)

Here [HP (Du(x))]⊥ is the projection on the nullspace of HP (Du(x))� : RN −→ Rn, and HP , HPP denotes
derivatives (for details see Preliminaries 2). The special case of H(P ) = |P |2 leads to the important ∞-Laplacian

Δ∞u :=
(
Du ⊗ Du + |Du|2[Du]⊥⊗ I

)
: D2u = 0. (1.8)

System (1.7) is a quasilinear 2nd order system in non-divergence form which arises in the limit of the
Euler−Lagrange system of the Lp functional ‖H(Du)‖Lp(Ω) as p → ∞. In the scalar case of n = 1 the normal
coefficient of (1.8) |Du|2[Du]⊥ vanishes, and the same holds for submersions in general. The scalar ∞-Laplacian
then becomes Du ⊗ Du : D2u = 0.

Unlike the scalar case of n = 1, in the full vector case of (1.7) intriguing phenomena appear. Except for
the emergence of “singular solutions” to (1.7), a further difficulty not present in the scalar case is that (1.7)
has discontinuous coefficients even for C∞ solutions. There exist C∞ solutions whose rank of HP (Du) is not
constant: such an example on R2 for (1.8) is given by u(x, y) = eix − eiy which is ∞-Harmonic near the origin
and has rk(Du) = 1 on the diagonal, but it has rk(Du) = 2 otherwise and hence the projection [Du]⊥ is
discontinuous [12]. More sophisticated examples with interfaces which have junction and corners appear in [15].
In general, ∞-Harmonic maps present a phase separation and on each phase the dimension of the tangent
space is constant and these phases are separated by interfaces whereon the rank of Du “jumps” and [Du]⊥ is
discontinuous [12, 17]. Extensions of the results of [12, 13] to the subelliptic setting appear in [14]. Moreover, it
has very recently been established that the celebrated scalar L∞ uniqueness theory has no counterpart when
N ≥ 2 [16].

In this paper we work towards the problem mentioned in the beginning by extending the theory of [8] to
the case of immersions u : Ω ⊆ Rn −→ RN and in the same time we elaborate it and make it more efficient
in certain respects. First of all, we allow for positive codimension N − n and take into account the exterior
geometry of immersions. Moreover, our maps are local diffeomorphisms onto their images, but in our analysis
we do not impose the global topological constraint that our maps are homemorphisms onto their image and
allow for self-intersections. However, all our results and notions are still valid and with the exact same proofs in
this restricted class. For distinction, we introduce the following terminology: an immersion u : Ω ⊆ Rn −→ RN

in C1(Ω)N is called p-Quasiconformal when ‖K(Du)‖Lp(Ω) < ∞, 1 ≤ p ≤ ∞. We begin by repeating part of
the program of [12,13] under the lens of [8] to the extended case. After some introductory material is Section 2,
in Section 3 we calculate the PDE system which Optimal p-Quasiconformal immersions satisfy (Eqs. (3.23)
and (3.24)), that is the Euler−Lagrange system of Kp(u, Ω) := ‖K(Du)‖Lp(Ω). Then, in Section 4 we formally
derive in the limit as p → ∞ the PDE system which Optimal ∞-Quasiconformal immersions u : Ω ⊆ Rn −→ RN

satisfy, that is the system associated to (1.2):

Q∞u :=
(
KP ⊗ KP + K[KP ]⊥KPP

)
(Du) : D2u = 0 (1.9)
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where the derivatives of the dilation are given by

KP (Du) = 2Du
g−1S(g)
det(g)1/n

, (1.10)

KPP (Du) = 2
(

I ⊗ g−1S(g)
det(g)1/n

+ Du ⊗ Du :
g−1E

det(g)1/n

)
+ O(Du). (1.11)

Here g = Du�Du, S is the Ahlfors operator given by (2.7), E is a constant tensor given by (3.11) and O(Du) is
a tensor annihilated by [KP (Du)]⊥ and does not appear in the PDE system (1.9) (for details see Lems. 3.1, 3.2).
The derivation has overlaps with the respective in [12], but is not a direct consequence since we utilise the specific
structure of the Hamiltonian (1.3). By restricting ourselves to n = N and employing Lemma 4.2 to relate the
seemingly different system (1.9) to that of [8], we see that the derivation as p → ∞ in [8] is incomplete and their
PDE is only a part of (1.9). System (1.9) consists of two systems whose defining vector-valued nonlinearities
are normal to each other:

KP (Du) ⊗ KP (Du) : D2u = 0, (1.12)

[KP (Du)]⊥KPP (Du) : D2u = 0. (1.13)

System (1.12) is the “tangential” part in (the range of the projection) [KP (Du)]� and system (1.13) is the
“normal” part in [KP (Du)]⊥ (see Fig. 1). The reason for this terminology is that [Du]� is (the projection on)
the tangent bundle of the immersion, [Du]⊥ is its normal bundle and by (1.10) we have that [KP (Du)]� ⊆ [Du]�.

Figure 1.

The derivation in [8] has lost information along directions in [KP (Du)]⊥ and reveals only system (1.12).
System (1.13) appears also in zero-codimension when n = N since generally KP (Du) does not have rank equal
to n, although by assumption the rank of Du equals n. More importantly, when the rank of KP (Du) becomes
nonconstant, the coefficients of (1.9) become discontinuous. This leads to the appearance of interfaces whereon
the projection [KP (Du)]⊥ is discontinuous. These interfaces are boundaries of the different phases to which
Optimal ∞-Quasiconformal maps naturally separate.

In Section 5 we move to the variational structure of Optimal ∞-Quasiconformal maps. Inspired from [13],
we introduce the variational notion of ∞-Minimal Dilation, which is Rank-One Locally Minimal Dilation with
“Minimally Distorted Area” of u(Ω) (Def. 5.1). Rank-one locally minimal dilation requires that an immersion
is a local minimiser for the dilation functional when the “set of competitors” is the one obtained by taking
essentially scalar local variations with fixed zero boundary values (Fig. 2). Minimally distorted area means that
the immersion is a local minimiser where the “set of competitors” is the one obtained by taking variations along
sections of the normal vector bundle [KP (Du)]⊥ over u(Ω) with free boundary values (Fig. 3). The appearance
of interfaces where the dimension of [KP (Du)]⊥ jumps causes substantial difficulties, even in the very definition
of the minimality notion. Our first main result is Theorem 5.2, wherein we prove that ∞-Quasiconformal maps
with ∞-Minimal Dilation are Optimal, at least off the interfaces of discontinuities in the coefficients. This
result follows closely Theorem 2.1 in [12] and Theorem 2.2 in [13], but nonconvexity of (1.3), appearance of
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discontinuities in (1.9) and the necessity of restriction to specific variations create complications not present in
the results just quoted. We note that the rank-one minimality notion gives rise to the tangential system and
the condition on the minimality of the area gives rise to the normal system.

In Section 6 we study some geometric aspects of (1.9) and of the interfaces of its solutions. In Section 6.1
we show that system (1.9) has a “geometric” rather coordinate-free reformulation, at least off interfaces of
discontinuities. More precisely, (1.12) and (1.13) are respectively equivalent to

S(G)D
(
tr(G)

)
= 0, (1.14)

B
⊥ :

(
tr(G)

)
P

= 0, (1.15)

where G is given by (1.1) for g = Du�Du and B⊥ is a “generalized 2nd fundamental form” with respect to normal
sections valued in [KP (Du)]⊥. If KP (Du) has full rank n, then [KP (Du)]⊥ coincides with the normal bundle
[Du]⊥ of the immersion and B⊥ reduces to the standard object. System (1.14) is quite “metrically invariant” but
system (1.15) depends on the exterior geometry and measures the “shape of u(Ω)”. In Section 6.2, by assuming
some a priori local C1 regularity on the interfaces but with possible self-intersections, we prove an identity
which shows that the covariant gradient of [KP (Du)]⊥ along the interface is differentiable when projected along
KP (Du).

In Section 7 we turn our attention to the converse statement of that in Theorem 5.2, that is the sufficiency
of (1.9) for the variational notion of ∞-Minimal Dilation. Nonconvexity of (1.3) and the resemblance to similar
phenomena in Minimal Surfaces leaves little hope for system (1.13) to be sufficient for minimally distorted
area. However, in Proposition 7.2 we establish that when n = 2 ≤ N there is a triple equivalence among
solutions of (1.12), the condition the dilation (1.3) to be constant and the immersion to have rank-one locally
minimal dilation. This result relates directly to the two-dimensional results in [1, 7, 11]. In particular, when
n = 2 interfaces disappear and the coefficients of (1.9) become continuous.

Moreover, as a consequence of Example 7.5 which certifies that rank-one locally minimal dilation is strictly
weaker than the variational notion utilized in [8] with respect to general vector-valued variations (among com-
petitors), we disprove the conjecture of Capogna−Raich on the sufficiency of (1.3) explicitely stated in p. 855.
Finally, at the end of Section 7 we loosely discuss the much more complicated case when n ≥ 3. In this case
results are less sharp. Although it is hardly conclusive, it seems that dilation may not be constant but we do
believe that (1.12) is still sufficient for rank-one locally minimal dilation.

Throughout this paper, as in [8] and also in [12, 17], we restrict our analysis to the unnatural class of C2

solutions. This is only the first step in our study and we can not go much further without an appropriate
“weak” theory of nondifferentiable solutions for (1.9). The latter much deeper problem, namely defining a
notion of solution for which we can also prove existence to the Dirichlet problem, will be considered in future
work.

2. Preliminaries

Throughout this paper we reserve n, N ∈ N for the dimensions of Euclidean spaces and SN−1 denotes the
unit sphere of RN . Greek indices α, β, γ, . . . run from 1 to N and Latin i, j, k, . . . form 1 to n. The summation
convention will always be employed in repeated indices in a product. Vectors are always viewed as columns
and we differentiate along rows. Hence, for a, b ∈ Rn, a�b is their inner product and ab� equals a ⊗ b. If
u = uαeα : Ω ⊆ Rn −→ RN is in C2(Ω)N , the gradient matrix Du is viewed as Diuαeα ⊗ ei : Ω −→ RN×n

and the Hessian tensor D2u as D2
ijuαeα ⊗ ei ⊗ ej : Ω −→ RN×n2

. The Euclidean (Frobenious) norm on RN×n

is |P | = (PαiPαi)1/2 = (tr(P�P ))1/2. We also introduce the following contraction operation for tensors which
extends the Euclidean inner product P : Q = tr(P�Q) = PαiQαi of RN×n = RN ⊗ Rn. Let “⊗(r)” denote the
r-fold tensor product. If S ∈ ⊗(q)RN ⊗(s) Rn, T ∈ ⊗(p)RN ⊗(s) Rn and q ≥ p, we define a tensor S : T in
⊗(q−p)RN by

S : T :=
(
Sαq,...αp,...α1 is,...i1Tαp,...α1 is,...i1

)
eαq⊗, . . . ⊗ eαp+1. (2.1)
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For example, for s = q = 2 and p = 1, the tensor S : T of (2.1) is a vector with components SαβijTβij with free
index α and the indices β, i, j are contracted. In particular, in view of (2.1), the 2nd order linear system

AαiβjD
2
ijuβ + BαγkDkuγ + Cαδuδ = fα, (2.2)

can be compactly written as A:D2u + B:Du + Cu = f , where the meaning of “:” in the respective dimensions
is made clear by the context. Let now P : Rn −→ RN be linear map. The identity map of RN splits as
I = [P ]� ⊕ [P ]⊥, where [P ]� and [P ]⊥ denote orthogonal projection on range R(P ) and nullspace N(P�)
respectively. Moreover, for the dilation function (1.3), we have K(P ) ≥ n and K(P ) = n if and only if P�P = λI
with λ = 1

n |P |2. This property of K is a simple consequence of the inequality of arithmetic-geometric mean
applied to the n eigenvalues of P�P by utilising the Spectral Theorem. Let us now recall some elementary
properties of determinants. If A = Aijei ⊗ ej ∈ Rn ⊗ Rn, we have

cof(A)ij := (−1)i+j det
(

Σ
k �=i,l �=j

Aklek ⊗ el

)
, (2.3)

cof(A) := cof(A)ijei ⊗ ej , (2.4)

A cof(A)� = cof(A)�A = det(A)I, (2.5)
DAij

(
det(A)

) ≡ (
det(A)

)
Aij

= cof(A)ij . (2.6)

Obviously, subscript denotes partial derivative. The Ahlfors operator is defined by

S(A) :=
1
2
(
A + A�) − 1

n
tr(A)I (2.7)

and has the property that for any A, S(A) is symmetric and traceless, that is tr(S(A)) = 0. Let now u : Ω ⊆
Rn −→ RN be an immersion in C1(Ω)N . Then, the rank of Du satisfies rk(Du) = n ≤ N . u is Conformal
when there is f ∈ C0(Ω) such that Du�Du = f2I on Ω, that is DiuαDjuα = f2δij . For immersions, the
Riemannian metric on u(Ω) induced from RN is g := Du�Du and g−1 denotes the pointwise inverse of the
positive symmetric tensor g. Since S(g) = g − 1

n tr(g)I, we have the commutativity relation

g−1S(g) = S(g)g−1 = I − tr(g)
n

g−1 (2.8)

which will be tacitly used in the sequel. In view of these conventions, the PDE system describing Optimal
Quasiconformal immersions in index form reads(

KPαiKPβj
+ K[KP ]⊥αγKPγiPβj

)
(Du)D2

ijuβ = 0. (2.9)

The derivatives KP , KPP of K appearing here and in (1.10), (1.11) are given in index form by (3.2), (3.10).
Finally, we will use the notation “Γ” for sections of vector bundles. We note that our terminology of
“p-Quasiconformal” slightly deviates from the usage of this term in the literature, but its purpose is to avoid
the less elegant term “Lp-Quasiconformal”. Since we are only interested in the extreme case of p = ∞, there will
be no confusion. We conclude by observing thatwhen Ω � Rn, all immersions u : Ω ⊆ Rn −→ RN in C1(Ω)N

are p-Quasiconformal for all p ∈ [1,∞].

3. Derivation of the Euler−Lagrange PDE system governing Optimal
p-Quasiconformal immersions

In this section we calculate the specific form of the Euler−Lagrange system associated to the functional
‖K(Du)‖p

Lp(Ω) which Optimal p-Quasiconformal immersions satisfy. We begin by calculating first and second
derivatives of (1.3).
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Lemma 3.1. Let K be given by (1.3). Then, K ∈ C1(S+) and its derivative is given by

KP (P ) = 2P

(
P�P

)−1
S
(
P�P

)
det

(
P�P

)1/n
· (3.1)

In index form (3.1) can be written as

KPαi(P ) = 2Pαm

(
δmi − 1

n |P |2(P�P
)−1

mi

det
(
P�P

)1/n

)
· (3.2)

Proof of Lemma 3.1. We begin by observing the triviality that for P ∈ S+, the matrix P�P is positive sym-
metric on Rn and also (

P�P
)−1,� =

(
P�P

)�,−1 =
(
P�P

)−1
. (3.3)

By differentiation of (1.3), we have

KPαi(P ) =
2Pαi det

(
P�P

) 1
n − |P |2

n
det

(
P�P

) 1
n−1cof

(
P�P

)
kl

(PβkPβl)Pαi

det
(
P�P

)2/n

=
2Pαi − |P |2

n det
(
P�P

)cof
(
P�P

)
kl

(
δαβδikPβl + δαβδilPβk

)
det

(
P�P

)1/n
· (3.4)

Thus,

KPαi(P ) =
2Pαi − |P |2

n det
(
P�P

)(cof
(
P�P

)
il
Pαl + cof

(
P�P

)
ki

Pαk

)
det

(
P�P

)1/n

= 2Pαm

δmi − |P |2
n det

(
P�P

) 1
2

(
cof

(
P�P

)
im

+ cof
(
P�P

)
mi

)
det

(
P�P

)1/n
· (3.5)

Hence, (3.5) gives

KP (P ) =
2P

det
(
P�P

)1/n

(
I − |P |2

n

(
cof

(
P�P

)� + cof
(
P�P

)
2 det

(
P�P

)
))

(3.6)

and by using that
cof

(
P�P

)� = cof
(
P�P

)
=

(
P�P

)−1 det
(
P�P

)
, (3.7)

equation (3.6) gives

KP (P ) =
2P

det
(
P�P

)1/n

(
I − |P |2

n

(
P�P

)−1
)

= 2P

(
P�P

)−1

det
(
P�P

)1/n

(
P�P − |P |2

n
I

)
· (3.8)

In view of (3.8), formula (3.1) has been established. �
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Lemma 3.2. Let K be given by (1.3). Then, K ∈ C2(S+) and its 2nd derivative is given by

KPP (P ) = 2I ⊗
(
P�P

)−1
S
(
P�P

)
det

(
P�P

)1/n
+ 2P ⊗ P :

(
P�P

)−1
E

det
(
P�P

)1/n
+ O(P ) (3.9)

which in index form can be written as

KPαiPβj
(P ) = 2δαβ

((
P�P

)−1

ik

(
PγkPγj − 1

n |P |2δkj

)
det

(
P�P

)1/n

)
+ 2PαmPβl

((
P�P

)−1

ik
Ekjlm

det
(
P�P

)1/n

)
+ Oαiβj(P ). (3.10)

Here Oαiβj(P ) is a tensor of the form KPαm(P )Amβij(P ) and is annihilated by [KP (P )]⊥γα, that is
[KP (P )]⊥O(P ) = 0. E is a constant 4th order tensor whose components Ekjlm are given by

Ekjlm := δmlδjk + δmjδkl − 2
n

δmkδjl. (3.11)

The explicit form of the tensor Oαiβj(P ) is a complicated formula which follows by the Proof of Lemma 3.2,
but we do not need this formula because is “killed” by [KP (P )]⊥ and doe not appear in (1.9).

Proof of Lemma 3.2. We begin by calculating the derivative
((

P�P
)−1

mi

)
Pβj

. We have

(
P�P

)−1

mi

(
P�P

)
ik

= δmk (3.12)

which gives ((
P�P

)−1

mi

)
Pβj

(
P�P

)
ik

= −(
P�P

)−1

mi
(PγiPγk)Pβj

= −(
P�P

)−1

mi
[δβγδijPγk + Pγiδβγδkj ] (3.13)

= −(
P�P

)−1

ml
[Pβkδlj + Pβlδkj ].

Hence, we have ((
P�P

)−1

mi

)
Pβj

= −(
P�P

)−1

ml
[Pβkδlj + Pβlδkj ]

(
P�P

)−1

ki
. (3.14)

Now we differentiate (3.2):

KPαiPβj
(P ) = 2δαβδmj

(
δmi − 1

n |P |2(P�P
)−1

mi

det
(
P�P

)1/n

)
− 2Pαm

⎛
⎝

(|P |2(P�P
)−1

mi

)
Pβj

n det
(
P�P

)1/n

⎞
⎠

−
[
2Pαm

(
δmi − 1

n |P |2(P�P
)−1

mi

det
(
P�P

)1/n

)](
det

(
P�P

)1/n)
Pβj

det
(
P�P

)1/n
· (3.15)

In view of (3.2), the last summand in (3.15) is annihilated by the projection [KP (P )]⊥γα. We rewrite (3.15) as

KPαiPβj
(P ) = 2δαβ

(
δij − 1

n |P |2(P�P
)−1

ij

det
(
P�P

)1/n

)
− 2Pαm

((|P |2(P�P
)−1

mi

)
Pβj

n det
(
P�P

)1/n

)
+ Oαiβj(P ). (3.16)

By using (3.14) in (3.16), we have

KPαiPβj
(P ) = 2δαβ

(
δij − 1

n |P |2(P�P
)−1

ij

det
(
P�P

)1/n

)
+ Sαiβj(P ) + Oαiβj(P ), (3.17)
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where we have set

Sαiβj(P ) :=
2
n

Pαm

2Pβj

(
P�P

)−1

mi
− |P |2(P�P

)−1

ml
[Pβkδlj + Pβlδkj ]

(
P�P

)−1

ki

det
(
P�P

)1/n
· (3.18)

Equation (3.18) gives

Sαiβj(P ) = − 4
n

PαmPβj

(
P�P

)−1

mi

det
(
P�P

)1/n

+ 2Pαm

⎛
⎝ 1

n |P |2(P�P
)−1

mj

det
(
P�P

)1/n

⎞
⎠(

P�P
)−1

ki
Pβk

+ 2Pαm

(
1
n |P |2(P�P

)−1

mk

det
(
P�P

)1/n

)(
P�P

)−1

ij
Pβk. (3.19)

We rewrite (3.19) as

Sαiβj(P ) = − 4
n

PαmPβj

(
P�P

)−1

mi

det
(
P�P

)1/n

+ 2Pαm

⎛
⎝−δmj + 1

n |P |2(P�P
)−1

mj

det
(
P�P

)1/n
+

δmj

det
(
P�P

)1/n

⎞
⎠(

P�P
)−1

ki
Pβk

+ 2Pαm

(
−δmk + 1

n |P |2(P�P
)−1

mk

det
(
P�P

)1/n
+

δmk

det
(
P�P

)1/n

)(
P�P

)−1

ij
Pβk (3.20)

and observe that in view of (3.2), [KP (Du)]⊥γα annihilates the first summands in the brackets of (3.20) and
Sαiβj(P ) simplifies to

Sαiβj(P ) = 2
PαkPβk

(
P�P

)−1

ij
+ PαjPβk

(
P�P

)−1

ki
− 2

nPαmPβj

(
P�P

)−1

mi

det
(
P�P

)1/n

+ Oαiβj(P ), (3.21)

for some tensor Oαiβj(P ) annihilated by [KP (Du)]⊥γα. We rewrite (3.21) as

Sαiβj(P ) = 2PαmPβl

(
P�P

)−1

ki

(
δmlδjk + δmjδkl − 2

nδmkδjl

det
(
P�P

)1/n

)
+ Oαiβj(P ). (3.22)

In view of (3.22), (3.18), (3.17) and (3.11), equation (3.10) follows. �

In view of Lemma 3.1, the Euler−Lagrange system describing Optimal p-Quasiconformal immersions u : Ω ⊆
Rn −→ RN is

Qpu := Div
(
K(Du)p−1KP (Du)

)
= 0. (3.23)

In view of (3.1), (3.23) can be written in index form as

Di

((
tr(g)

det(g)1/n

)p−1

Dkuα
g−1

kmS(g)mi

det(g)1/n

)
= 0, (3.24)

where g = Du�Du is the Riemannian metric and S is the Ahlfors operator of (2.7).
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4. Derivation of the PDE system governing Optimal ∞-Quasiconformal
immersions

The derivation we perform is this section can be deduced by a reworking of our results in [12, 13] and
application of Lemmas 3.1 and 3.2 proved previously, but for the reader’s convenience it is best to argue at the
outset. Let u : Ω ⊆ Rn −→ RN be an immersion in C2(Ω)N . By distributing derivatives in (3.23), we have

(p − 1)Kp−2KPαi(Du)KPβj
(Du)D2

ijuβ + Kp−1KPαiPβj
(Du)D2

ijuβ = 0. (4.1)

For each x ∈ Ω, KP

(
(Du)(x)

)
: Rn −→ RN is a linear map. We define the orthogonal projections

[KP (Du)]⊥ := ProjN((KP (Du))�), (4.2)

[KP (Du)]� := ProjR(KP (Du)), (4.3)

which are the projections on nullspace of (KP (Du))� and range of KP (Du) respectively. We rewrite (4.1) by
applying the expansion I = [KP (Du)]⊥ + [KP (Du)]� of the identity of R

N and contract the derivative in the
left hand side to obtain

KP (Du)D
(
K(Du)

)
+

K

p − 1
[KP (Du)]�KPP (Du) : D2u

= − K

p − 1
[KP (Du)]⊥KPP (Du) : D2u. (4.4)

The left hand side is a vector valued in [KP (Du)]� and the right hand side is a vector valued in [KP (Du)]⊥.
By orthogonality, left and right hand side vanish and actually (4.4) decouples to two systems. We rescale the
right hand side of (4.4) by multiplying by p − 1 and rearrange to obtain

KP (Du) ⊗ KP (Du) : D2u + K[KP (Du)]⊥KPP (Du) : D2u

= − K(Du)
p − 1

[KP (Du)]�KPP (Du) : D2u. (4.5)

We rewrite as (
KP ⊗ KP + K[KP ]⊥KPP

)
(Du) : D2u = −K[KP ]�KPP

p − 1
(Du) : D2u. (4.6)

As p → ∞, (4.6) leads to (1.9).

Remark 4.1. We note that we can also remove the dilation function K from the normal coefficient [KP ]⊥KPP

with the renormalisation because it is strictly positive: K(Du) ≥ n > 0. We do not have this option in the case
of the general system (1.7), because |H(Du)| may vanish. However, when n = 2 ≤ N and H(P ) = |P |2, in [17]
we show that non-constant ∞-Harmonic maps have no interior gradient zeros: either |Du| > 0 or |Du| ≡ 0.

The next differential identity relates our system (1.9) with the seemingly different Aronsson PDE system
of Capogna−Raich in [8]. In particular, it follows that even when n = N the PDE system derived in [8] is
only a projection of (1.9) along [KP (Du)]�. Hence, the PDE system in [8] seems to fail to encapsulate all the
information of optimised quasiconformal maps.

Lemma 4.2. Let u : Ω ⊆ Rn −→ Rn be a local diffeomorphism in C1(Ω)n. Then, we have the identity

KP (Du) = −2K(Du)
n

(
(Du)−1,� − n

Du

|Du|2
)

(4.7)

where K and KP are given by (1.3) and (3.1).
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Proof of Lemma 4.2. By observing that for any invertible A ∈ Rn ⊗ Rn there holds A−1,� = A�,−1, we have

(
Du�Du

)−1 = (Du)−1(Du)�,−1 = (Du)−1(Du)−1,�. (4.8)

Thus, we obtain

(Du)−1,� − n
Du

|Du|2 = − n

|Du|2
(

Du − |Du|2
n

(Du)−1,�
)

= − n

|Du|2
(

Du − |Du|2
n

Du(Du)−1(Du)−1,�
)

= − n

|Du|2 Du

(
I − |Du|2

n
(Du)−1(Du)−1,�

)
. (4.9)

Consequently, by (4.8) and (4.9), we obtain

−|Du|2
n

(
(Du)−1,� − n

Du

|Du|2
)

= Du

(
I − |Du|2

n

(
Du�Du

)−1
)

= Du
(
Du�Du

)−1
(

Du�Du − |Du|2
n

I

)
. (4.10)

Hence, by (3.1) and (1.3) we have

−2K(Du)
n

(
(Du)−1,� − n

Du

|Du|2
)

= 2Du
(
Du�Du

)−1

(
Du�Du − |Du|2

n I

det
(
Du�Du

)1/n

)

= KP (Du). (4.11)

The desired identity follows. �

5. Variational structure of Optimal ∞-Quasiconformal immersions

We begin by introducing a minimality notion of vector-valued Calculus of Variations in L∞ for the supremal
dilation functional (1.2). Let u : Ω ⊆ Rn −→ RN be an immersion in C1(Ω)N . In view of (3.1), we have the
identity

KP (Du) =

(
2

Du
(
Du�Du

)−1

det
(
Du�Du

)1/n

)
S
(
Du�Du

)
. (5.1)

Generally, the rank of KP (Du) may not be constant throughout Ω, although by assumption rk(Du) =
rk(Du�Du) ≡ n, because possibly rk(S(Du�Du)) < n on certain regions of Ω. We set

Ωk := int
{
rk

(
S(Du�Du)

)
= k

}
, k = 0, 1, . . . , n, (5.2)

where “int” denotes topological interior. The n + 1 open sets Ωk are the “phases” of the immersion u. Their
complement in Ω

S := Ω \ (∪n
0Ωk) (5.3)

is the set of “interfaces” and is closed in Ω with empty interior. We will also need the “augmented phases”

Ω∗
k :=

{
rk

(
S(Du�Du)

)
= k

}
, k = 0, 1 , . . . , n. (5.4)
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Obviously, {Ω∗
0 , . . . , Ω∗

n} is a partition of Ω to disjoint phases and S can be written as S = ∪n
0 (Ω∗

k \ Ωk). The
extreme cases of Ω∗

0 and Ω∗
n are particularly important. Ω∗

0 is the conformality set of the immersion and is
closed in Ω. Hence,

Ω∗
0 =

{
Du�Du =

|Du|2
n

I

}
. (5.5)

Similarly, by Corollary 6.3 that follows, if u solves KP (Du) ⊗ KP (Du) : D2u = 0, then Ω∗
n is the constant

dilation set of the immersion and coincides with Ωn:

Ω∗
n =

{ |Du|2
det(Du�Du)1/n

= const.
}

. (5.6)

If Ωn is not connected, then the constants may differ in connected cmponents.

Definition 5.1. Let u : Ω ⊆ Rn −→ RN be an immersion in C1(Ω)N .

(i) We say that u has Rank-One Locally Minimal Dilation when for all compactly contained subdomains D of Ω,
all functions g over D vanishing on ∂D and all directions ξ, u is a minimiser on D with respect to essentially
scalar variations u + fξ:

D ⊂⊂ Ω,

f ∈ C1
0 (D),

ξ ∈ SN−1

⎫⎪⎬
⎪⎭ =⇒ K∞(u, Ω) ≤ K∞(u + fξ, Ω). (5.7)

Figure 2.

(ii) We say that u(Ω) has Minimally Distorted Area when for all compactly contained subdomains D off the
interfaces, all functions h on D̄ (not only vanishing on ∂D) and all vector fields ν along u normal to KP (Du),
u is a minimiser on D with respect to normal free variations u + hν:

D ⊂⊂ Ω \ S,

h ∈ C1(D̄),

ν ∈ Γ ([KP (Du)]⊥)

⎫⎪⎬
⎪⎭ =⇒ K∞(u, Ω) ≤ K∞(u + hν, Ω). (5.8)

Figure 3.
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(iii) We call u Minimal ∞-Quasiconformal Immersion when u is has Rank-One Locally Minimal Dilation with
Minimally Distorted Area of u(Ω) ⊆ RN .

By employing the previous minimality notion, we have the next

Theorem 5.2 (Variational structure of Optimal ∞-Quasiconformal immersions). Let u : Ω ⊆ Rn −→ RN be
an immersion in C2(Ω)N . Then, if u is Minimal ∞-Quasiconformal, it follows that u solves

KP (Du) ⊗ KP (Du) : D2u = 0, on Ω, (5.9)

[KP (Du)]⊥KPP (Du) : D2u = 0, on Ω \ S, (5.10)

where S is the set of interfaces of rank discontinuities of S(Du�Du).

We note that by the results of Section 6 that follows, in the case n = 2 ≤ N Theorem 5.2 can be strengthend
to the following

Corollary 5.3 (2-Dimensional Optimal ∞-Quasiconformal immersions). Let u : Ω ⊆ R
2 −→ R

N be an immer-
sion in C2(Ω)N . If u is Minimal ∞-Quasiconformal, it follows that u is Optimal ∞-Quasiconformal.

The point in Corollary 5.3 is that (5.10) is satisfied on Ω and not only on Ω \ S. Actually, when n = 2 then
the set of interfaces is empty: S = ∅.

The proof of Theorem 5.2 is split in two lemmas.

Lemma 5.4. Let u : Ω ⊆ Rn −→ RN be an immersion in C2(Ω)N . If u has Rank-One Locally Minimal
Dilation, then u solves KP (Du) ⊗ KP (Du) : D2u = 0 on Ω.

The proof of Lemma 5.4 follows by Theorem 2.1 in [12] and relates to Lemma 2.3 in [13], but we present a
simplified more direct proof for the reader’s convenience.

Proof of Lemma 5.4. Fix x ∈ Ω, 0 < ε < dist(x, ∂Ω), δ > 0 and ξ ∈ SN−1. Choose D := Bε(x) and f ∈ C1
0 (D)

given by

f(z) :=
1
2
(
ε2 − |z − x|2). (5.11)

Since rk(Du) = n on Ω and Df(z) = −(z−x), by restricting δ sufficiently we obtain that rk(Du+δξ⊗Df) = n
on Bε(x). By Taylor expansions of K(Du) and K(Du + δξ ⊗ Df) at x we have

K(Du(z)) = K(Du(x)) + D
(
K(Du)

)
(x)�(z − x) + o(|z − x|), (5.12)

as z → x, and also by using that D2f = −I and Df(x) = 0 we have

K
(
(Du + δξ ⊗ Df)(z)

)
= K

(
(Du + δξ ⊗ Df)(x)

)
+ D

(
K(Du + δξ ⊗ Df)

)
(x)�(z − x) + o(|z − x|)

= K(Du(x)) + KP (Du(x))�
(
D2u(x) − δξ ⊗ I

)
(z − x) (5.13)

+ o(|z − x|)
= K(Du(x)) +

(
D

(
K(Du)

)�− δξ�KP (Du)
)
(x)(z − x)

+ o(|z − x|),
as z → x. By (5.12) we have the estimate

K∞
(
u, Bε(x)

) ≥ K(Du(x)) + max
{|z−x|≤ε}

{
D

(
K(Du)

)
(x)�(z − x)

}
+ o(ε)

= K(Du(x)) + ε
∣∣D(

K(Du)
)
(x)

∣∣ + o(ε), (5.14)
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as ε → 0, and also by (5.13) we have

K∞
(
u + δfξ, Bε(x)

) ≤ K(Du(x)) + max
{|z−x|≤ε}

{
D

(
K(Du)

)�
− δξ�KP (Du)

)
(x)(z − x)

}
+ o(ε)

= K(Du(x)) + ε
∣∣D(

K(Du)
)− δξ�KP (Du)

∣∣(x) + o(ε), (5.15)

as ε → 0. Then, since u has Rank-One Locally Minimal Dilation, by (5.14) and (5.15) we have

0 ≤ K∞
(
u + δfξ, Bε(x)

) − K∞
(
u, Bε(x)

)
≤ ε

(∣∣D(
K(Du)

)− δξ�KP (Du)
∣∣ − ∣∣D(

K(Du)
)∣∣)(x) + o(ε), (5.16)

as ε → 0. Suppose first D
(
K(Du)

)
(x) = 0. Since

KP (Du) ⊗ KP (Du) : D2u = KP (Du)D
(
K(Du)

)
(5.17)

we obtain that
(
KP (Du) ⊗ KP (Du) : D2u

)
(x) = 0 as desired. If D

(
K(Du)

)
(x) �= 0, then Taylor expansion of

the function
p 	→ ∣∣D(

K(Du)
)
(x) + p

∣∣− ∣∣D(
K(Du)

)
(x)

∣∣ (5.18)

at p0 = 0 and evaluated at p = − δξ�KP (Du(x)), (5.16) implies after letting ε → 0 that

0 ≤ −δ ξ�KP (Du(x))

(
D

(
K(Du)

)∣∣D(
K(Du)

)∣∣
)

(x) + o(δ). (5.19)

By letting δ → 0 in (5.19) we obtain ξ�
(
KP (Du) ⊗ KP (Du) : D2u

)
(x) ≥ 0 for any direction ξ. Since ξ and x

are arbitrary we get KP (Du) ⊗ KP (Du) : D2u = 0 on Ω. The lemma follows. �
Lemma 5.5. Let u : Ω ⊆ R

n −→ R
N be an immersion in C2(Ω)N with Minimally Distorted Area of u(Ω).

Then, u solves [KP (Du)]⊥KPP (Du) : D2u = 0 on Ω \ S.

Proof of Lemma 5.5. Fix x ∈ Ω\S. Then, x belongs to some phase Ωk of constant rank and rk
(
S(Du�Du)

) ≡ k
thereon. We choose 0 < ε < 1

2dist(x, ∂Ωk) and 0 < δ < 1. By the Rank Theorem (see e.g. [18]) and application
of the Gram−Schmidt procedure to a local frame field adapted to the immersion near u(x), we can construct
a local frame of sections {ν1, . . . , νN−k} spanning Γ ([KP (Du)]⊥, B2ε(x)) for ε small enough. Let ν be a linear
combination of these sections and choose an h ∈ C1

(
Bε(x)

)
. Since rk(Du) = n on Ω, by restricting δ sufficiently

we obtain rk
(
D(u + δhν)

)
= n on Bε(x). By differentiating ν�KP (Du) = 0 we obtain

DkναKPαi(Du) = −ναKPαiPβj
(Du)D2

kjuβ (5.20)

and by putting i = k and summing, we get

DiναKPαi(Du) = −ναKPαiPβj
(Du)D2

ijuβ (5.21)

that is
Dν : KP (Du) = −ν�KPP (Du) : D2u. (5.22)

By Taylor expansion of the dilation and usage of ν�KP (Du) = 0, we obtain

K
(
D(u + δhν)

)
= K(Du) + KP

(
Du) : D(δhν) + o(δ|hν|)

= K(Du) + δKP

(
Du) :

(
hDν + ν ⊗ Dh

)
+ o(δ) (5.23)

= K(Du) + δ
(
hDν : KP

(
Du) + ν�KP

(
Du)Dh

)
+ o(δ)

= K(Du) + δhDν : KP

(
Du) + o(δ)
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as δ → 0. By (5.23) and (5.22) we have

K
(
D(u + δhν)

)
= K(Du) − 2δh

(
ν�KPP (Du) : D2u

)
+ o(δ), (5.24)

as δ → 0. Hence, since u(Ω) has minimally distorted area, by (5.24) we have

K∞
(
u, Bε(x)

) ≤ K∞
(
u + δhν, Bε(x)

)
= sup

Bε(x)

{
K(Du) − 2δh

(
ν�KPP (Du) : D2u

)
+ o(δ)

}
(5.25)

as δ → 0, which gives

K∞
(
u, Bε(x)

) ≤ sup
Bε(x)

K(Du) − 2δ min
Bε(x)

{
h
(
ν�KPP (Du) : D2u

)}
+ o(δ)

= K∞
(
u, Bε(x)

) − 2δ min
Bε(x)

{
h
(
ν�KPP (Du) : D2u

)}
+ o(δ). (5.26)

Hence, by passing to the limit as δ → 0, (5.26) gives

min
Bε(x)

{
h
(
ν�KPP (Du) : D2u

)} ≤ 0. (5.27)

We now choose as h the constant function

h := sgn
(
ν�KPP (Du) : D2u

)
(x) (5.28)

and by (5.27) as ε → 0 we get
∣∣ν�KPP (Du) : D2u

∣∣(x) = 0. Since ν is an arbitrary normal section and x is an
arbitrary point on Ω \ S, we get ([KP ]⊥KPP )(Du) : D2u = 0 on Ω \ S and the lemma follows. �

6. Geometric properties of Optimal ∞-Quasiconformal immersions

6.1. Geometric form of the PDE system

In this subsection we show that system (1.1) decouples to two system one normal to to other which can
be written in geometric rather coordinate-free fashion, at least within the phases of solutions whereon the
coefficients of the system are continuous.

Proposition 6.1. Let u : Ω ⊆ Rn −→ RN be an immersion in C2(Ω)N . If K is the dilation (1.3) and its
derivatives are given by (3.1) and (3.9), then the Aronsson system

Q∞u =
(
KP ⊗ KP + [KP ]⊥KPP

)
(Du) : D2u = 0 (6.1)

is equivalent on each phase Ωk = int{rk(S(Du�Du)) = k} to the pair of systems

S(G)D
(
tr(G)

)
= 0, (6.2)

B
⊥ :

(
tr(G)

)
P

= 0, (6.3)

where G is given by (1.1), g = Du�Du is the Riemannian metric on u(Ω), S is the Ahlfors operator and B⊥

is the “generalized 2nd fundamental form”, defined for every local normal section ν ∈ Γ ([KP (Du)]⊥, D) over
D ⊆ Ω \ S as (B⊥)ν := Dν. Moreover, (6.2) is valid on all of Ω.
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We observe that system (6.2) can also be written as

S(g)D
(

tr(g)
det(g)1/n

)
= 0 (6.4)

and hence depends only on the metric structure of the immersion. System (6.2) is the “tangential system”. On
the other hand, (6.3) can be written also as

B
⊥ :

(
tr(g)

det(g)1/n

)
P

= 0 (6.5)

and depends on the exterior geometry as well, the “shape” of u(Ω). System (6.3) is the “normal system”.

Proof of Proposition 6.1. By applying the orthogonal projections (4.2) and (4.3) to (6.1), we decouple it to

KP (Du) ⊗ KP (Du) : D2u = 0, (6.6)

[KP (Du)]⊥KPP (Du) : D2u = 0. (6.7)

In view of (3.1), we rewrite (6.6) as

Dug−1S(g)D
(
K(Du)

)
= 0. (6.8)

By using that K(Du) = tr(G) and that Dug−1 has constant rank equal to n and hence is left invertible, we
obtain (

Dug−1
)−1

Dug−1S(g)D
(
tr(G)

)
= S(g)D

(
tr(G)

)
= 0. (6.9)

Since g = det(g)1/nG, system (6.9) leads to (6.2). To obtain (6.3), we observe that (6.7) is equivalent to

ν�KPP (Du) : D2u = 0, (6.10)

for all local normal sections ν ∈ Γ ([KP (Du)]⊥, D), D ⊆ Ω \ S. By (5.22), equation (6.10) is equivalent to
−Dν : KP (Du) = 0. Hence, we rewrite it as

−Dν :
(
tr(G)

)
P

= 0. (6.11)

By definition of B⊥, system (6.11) leads to (6.3) and the proposition follows. �

Remark 6.2. We will later show that the 2-dimensional case n = 2 ≤ N is prominent. In this case, interfaces
of discontinuities of the coefficients disappear and B⊥ conicides with the standard 2nd fundamental form.

Corollary 6.3 (Constant dilation on Ωn). Let u : Ω ⊆ R
n −→ R

N be an immersion in C2(Ω)N solving
KP (Du) ⊗ KP (Du) : D2u = 0. Then, on the n-phase Ωn given by (5.2), u has constant dilation on each
connected component of Ωn.

Proof of Corollary 6.3. By (5.2) and (6.9), we have that S(g) is invertible on Ωn and consequently we get
D

(
K(Du)

)
= 0 on Ωn. �

6.2. A Geometric property of interfaces of solutions

We begin with a differential identity valid on the interfaces of discontinuity, under a local regularity as-
sumption on the interface. We assume only C1 regularity, but we allow for possibly complicated topology and
self-intersections.
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Proposition 6.4 (Covariant derivatives on interfaces). Let u: Ω ⊆ Rn −→ RN be an immersion in C2(Ω)N .
Suppose the set of interfaces S inside Ω given by (5.3) contains a C1 immersed submanifold M and let ∇M be
its Riemannian gradient. Then, we have the identity

∇M
(
[KP (Du)]⊥

)
: KP (Du) = − (

[KP ]⊥KPP

)
(Du) : D2u

+
(
[KP ]⊥KPP

)
(Du) : ∇M⊥

Du, (6.12)

valid on M ⊆ S, where ∇M⊥
is the orthogonal complement of ∇M in Rn.

Figure 4.

Remark 6.5. The point in (6.12) is that [KP (Du)]⊥ has covariantly differentiable contraction with KP (Du)
along (part of the interface) M , without having assumed that S(Du�Du) has constant rank on M and hence
without having assumed that [KP (Du)]⊥ is differentiable on M ⊆ Ω.

Proof of Proposition 6.4. By assuming as we can that M is immersed by the inclusion into Ω, we fix a point
p ∈ M ⊆ Ω and consider coordinates near p adapted to the immersion. Let {∇M

1 , . . . ,∇M
n } denote the n

components of ∇M with respect to the standard coordinates of Rn. By differentiating covariantly near p the
identity

[KP (Du)]⊥αβKPβj
(Du) = 0 (6.13)

we obtain

∇M
i

(
[KP (Du)]⊥αβ

)
KPβj

(Du) = − [KP (Du)]⊥αβ∇M
i

(
KPβj

(Du)
)

= − [KP (Du)]⊥αβKPβjPγk
(Du)∇M

i Dkuγ . (6.14)

By applying the expansion ∇M = D − ∇M⊥
, putting i = j and summing, (6.14) implies (6.12) and the

proposition follows. �

The previous identity readily implies the next

Corollary 6.6. In the setting of Proposition 6.4 above, if u solves the system ([KP ]⊥KPP )(Du) : D2u = 0,
then we have

∇M
(
[KP (Du)]⊥

)
: KP (Du) =

(
[KP ]⊥KPP

)
(Du) : ∇M⊥

Du. (6.15)

In particular, the vector field

∇M
(
[KP (Du)]⊥

)
: KP (Du) : M −→ R

N (6.16)

is “normal”to u(M), namely, it is valued in [KP (Du)]⊥:

[KP (Du)]�
(
∇M

(
[KP (Du)]⊥

)
: KP (Du)

)
= 0. (6.17)
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Proof of Corollary 6.6. Since the immersion u solves [KP (Du)]⊥KPP (Du) : D2u = 0, (6.12) gives (6.15). By
applying the projection [KP (Du)]� to the latter, (6.17) follows. Hence, the vector field ∇M

(
[KP (Du)]⊥

)
:

KP (Du) equals its projection on [KP (Du)]⊥ and the corollary follows. �

7. Sufficiency of KP (Du) ⊗ KP (Du) : D2u = 0 for Rank-One Locally Minimal
Dilation when n = 2 ≤ N

In this section we show that in the case of 2-dimensional immersions when n = 2 ≤ N , the tangential system
KP (Du) ⊗ KP (Du) : D2u = 0 is sufficient for the minimality notion of Rank-One Locally Minimal Dilation.
This follows as a corollary of the fact that when n = 2, solutions of this system necessarily have constant
dilation. In particular, the rank of S(Du�Du) is constant throughout the domain and interfaces of discontinuity
on the coefficents of the normal system ([KP ]⊥KPP )(Du) : D2u = 0 disappear.

As a corollary, we show that when n = N = 2, the conjecture of Capogna−Raich in [8] on the sufficiency of
system (KP ⊗KP )(Du) : D2u = 0 for their stronger local minimality notion is false. This follows by Example 7.5
below in which we construct a diffeomorphism with constant dilation on a domain of the plane which has the
same boundary values with the identity.

Lemma 7.1 (Constant dilation). Let u: Ω ⊆ R
n −→ R

N be an immersion in C2(Ω)N which solves KP (Du)⊗
KP (Du) : D2u = 0 on Ω. Suppose Ω is connected and let Ω∗

0 , . . . , Ω∗
n be the augmented n + 1 phases of the

immersion given by (5.4). Then:

(i) S(Du�Du) has nowhere rank equal to one:

Ω∗
1 = ∅. (7.1)

(ii) If moreover n = 2, then Ω∗
0 ∈ {∅, Ω}. That is, Ω∗

0 is either empty or equals the whole Ω. Hence, u has
constant dilation everywhere on Ω:

K(Du) ≡ k ≥ 2. (7.2)

If it happens that Ω∗
0 �= ∅, then k = 2 and in this case u is conformal on Ω.

Proof of Lemma 7.1.

(i) On Ω∗
1 we have rk(S(Du�Du)) = 1 and also S(Du�Du) = S(Du�Du)�. Since S(Du�Du) is a rank-one

symmetric matrix, there exist λ : Ω∗
1 −→ R and a : Ω∗

1 −→ R
n such that λ > 0, |a| = 1 and S(Du�Du) = λa⊗a.

Hence, we obtain

λ = λ |a|2 = tr(λa ⊗ a) = tr
(
S(Du�Du)

)
= 0. (7.3)

Consequently, Ω∗
1 = ∅.

(ii) When n = 2, by (i) we have that Ω = Ω∗
0 ∪ Ω∗

2 . On Ω∗
0 the immersion u is conformal. By Corollary 6.3, on

Ω∗
2 u has constant dilation. Hence, u has constant dilation on each connected component of Ω∗

0 ∪Ω∗
2 = Ω. This

means that K(Du) is piecewise constant on Ω. By assumption, Ω is connected and also K(Du) ∈ C0(Ω). As a
result, necessarily either Ω∗

0 = ∅ or Ω∗
0 = Ω. If Ω∗

0 �= ∅, then u is conformal on Ω. The lemma follows. �

Proposition 7.2 (Equivalences in the 2-Dimensional case). Let u : Ω ⊆ R2 −→ RN be an immersion in
C2(Ω)N . Then, the following are equivalent:

(i) u has Rank-One Locally Minimal Dilation on Ω.

(ii) u solves KP (Du) ⊗ KP (Du) : D2u = 0 on Ω.

(iii) u has constant dilation on connected components of Ω.



OPTIMAL ∞-QUASICONFORMAL IMMERSIONS 579

Proof of Proposition 7.2. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) have already been estabished, so it suffices
to prove (iii) ⇒ (i). For, suppose u has constant dilation on connected components of Ω. Fix D ⊂⊂ Ω, f ∈ C1

0 (D)
and ξ ∈ SN−1. We may assume D is connected and that rk(Du + ξ ⊗ Df) = n on D. Then, since f |∂D ≡ 0,
there exists an interior critical point x̄ ∈ D of f . By using that Df(x̄) = 0, we estimate

K∞(u + fξ, D) = sup
D

K
(
Du + ξ ⊗ Df

)
≥ K

(
Du(x̄) + ξ ⊗ Df(x̄)

)
= K(Du(x̄)) (7.4)
= sup

D
K(Du)

= K∞(u, D).

Hence, u has rank-one locally minimal dilation and the proposition follows. �

Directly from Proposition 7.2 we obtain the following

Corollary 7.3 (Absence of interfaces in the 2-Dimensional case). Let u : Ω ⊆ R2 −→ RN be an immersion in
C2(Ω)N which solves Q∞u = 0 on the connected set Ω. Then the rank of S(Du�Du) is constant on Ω, and
equals either 0 or 2. If rk

(
S(Du�Du)

)
= 0 then u satisfies

K(Du) ≡ 2, (7.5)
KPP (Du) : D2u = 0. (7.6)

The condition K(Du) ≡ 2 is equivalent to Conformality: Du�Du = 1
n |Du|2I. If rk

(
S(Du�Du)

)
= 2, then u

satisfies

K(Du) ≡ const. > 2, (7.7)

[Du]⊥KPP (Du) : D2u = 0. (7.8)

Remark 7.4. Since the dilation (1.3) fails to be convex, it seems that sufficiency of the normal system
[KP (Du)]⊥KPP (Du) : D2u = 0 for minimally distorted area does not hold. In particular, the respective
convexity arguments used in the case of the ∞-Laplacian in [13] fail.

The following example certifies that the variational notion of rank-one locally minimal dilation is genuinely
weaker than the respective notion of “locally minimal dilation” used in [8], where general vector-valued variations
with the same boundary values are considered.

Example 7.5 (Rank-One locally minimal dilation is strictly weaker notion). (cf. [8], Cor. 1.6(2)) Let Ω :=
D2 \ {0} ⊆ R2 be the punctured unit disc on the plane. Fix γ > −1 and consider the maps u, uγ : Ω −→ Ω
where u(x) := x and uγ(x) := |x|γx. Then, u = uγ on ∂Ω = S1 ∪ {0} and u is conformal on Ω while uγ is
quasiconformal but has constant strictly greater dilation:

K(Du) ≡ 2 < 2 +
γ2

γ + 1
≡ K(Duγ). (7.9)

For completeness, we provide some details of our calculations. We readily have

Duγ(x) = |x|γ
(

I + γ
x

|x| ⊗
x

|x|
)

(7.10)
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and by setting x
|x| = (a, b)� we obtain

Duγ(x) = |x|γ
[

1 + γa2 γab
γba 1 + γb2

]
. (7.11)

By using that a2 + b2 = 1, we have

K(Duγ) =
|Duγ |2

(det(Duγ) det(Duγ))1/2

=
|x|2γ

[
(1 + γa2)2 + (1 + γb2)2 + 2(γab)2

]
|x|2γ

[
(1 + γa2)(1 + γb2) − (γab)2

] (7.12)

= 2 +
γ2

γ + 1
.

As a conclusion, in view of Corollary 7.2, uγ has rank-one minimal dilation over Ω, but does not have minimal
dilation over Ω since it has the same boundary values on ∂Ω with a conformal map. If moreover γ > 0, then
both u, uγ are in C1(Ω)2.

7.1. On the sufficiency of KP (Du) ⊗ KP (Du): D2u = 0 for Rank-One Locally Minimal
Dilation in the case of dimensions 3 ≤ n ≤ N

In this subsection we loosely discuss the much more complicated case of dimensions n ≥ 3. In this case results
are less sharp since Lemma 7.1 generally fails when n > 2.

To begin with, let u : Ω ⊆ R3 −→ RN be an immersion in C2(Ω)N . Obviously, we have rk(Du) = 3 ≤ N . By
Lemma 3.1 and Proposition 6.1, we may rewrite system KP (Du) ⊗ KP (Du) : D2u = 0 as

g−1S(g)D
(
K(Du)

)
= 0, (7.13)

where g = Du�Du. We recall that in the case of n = 2, Lemma 7.1 asserts that S(g) either has two nonzero
opposite eigenvalues (and hence has a saddle structure), or it vanishes. In the two-dimensional case this covers
all possible values of rank and it follows that the dilation is constant throughout connected domains.

When n = 3, Lemma 7.1 still works with the same proof, but now asserts only that

(i) there is no one-dimensional phase Ω∗
1 , and

(ii) Ω = Ω∗
0 ∪ Ω∗

2 ∪ Ω∗
3 with K(Du) constant on connected components of the set Ω∗

0 ∪ Ω∗
3 .

When n = 3 no information is provided for the two-dimensional phase Ω∗
2 . Let us analyse more closely

what happens in this case when Ω∗
2 �= ∅ and nontrivial interfaces of discontinuities may appear, where

Ω∗
2 = {rk(S(g)) = 2}. Let 0 < λ1 ≤ λ2 ≤ λ3 be the eigenvalue functions on Ω of the Riemannian metric

g. Then, the spectrum of S(g) is

σ
(
S(g)

)
= σ(g) − tr(g)

3

=
{

λ1 − λ1 + λ2 + λ3

3
, λ2 − λ1 + λ2 + λ3

3
, λ3 − λ1 + λ2 + λ3

3

}

=
{

2λ1 − λ2 − λ3

3
,

2λ2 − λ3 − λ1

3
,

2λ3 − λ2 − λ1

3

}
· (7.14)

We distinguish the following cases:

(a) 0 < λ1 = λ2 = λ3 =: λ. Then, by (7.14) we have that S(g) = 0.
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(b) 0 < λ1 = λ2 =: λ < λ3. Then, by (7.14) we have that

σ
(
S(g)

)
= {−μ,−μ, 2μ} (7.15)

where μ := λ3−λ
3 > 0. By the Spectral Theorem, there is an orthonormal frame {a1, a2, a3} of R3 such that

S(g) = −μ
(
a1 ⊗ a1 + a2 ⊗ a2

)
+ 2μ a3 ⊗ a3 (7.16)

and S(g) has rank three.
(c) 0 < λ1 < λ2 = λ3. Again as before S(g) has rank three.
(d) 0 < λ1 < λ2 < λ3. This is the only case where rank equal to two may appear. Since λ2 + λ3 > 2λ1 and

λ1 + λ2 < 2λ3, we get

μ1 :=
2λ1 − λ2 − λ3

3
< 0 , μ3 :=

2λ3 − λ2 − λ1

3
> 0 (7.17)

but it may happen that

μ2 :=
2λ2 − λ3 − λ1

3
(7.18)

vanishes, like for example in the extremal quasiconformal map u : R3 −→ R3 given by u(x, y, z) :=
(ex,

√
2yex,

√
3zex)�. We have

Du�Du (x, y, z) = e2x

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ (7.19)

and hence we get (λ1, λ2, λ3) = (e2x, 2e2x, 3e2x), which implies μ2 = 0. Generally, the set of interfaces of a
three-dimensional optimal quasiconformal map is given by

S = ∂{μ2 = 0} (7.20)

and the two-dimensional phase of u is given by

Ω2 = int{μ2 = 0}. (7.21)

Since S(g) is traceless, the condition tr(S(g)) = 0 implies −μ1 = μ3 =: μ > 0 and hence σ
(
S(g)

)
= {−μ, 0, μ}.

By the Spectral Theorem, there exists an orthonormal frame {a, b, c} of R3 such that

S(g) = −μ
(
a ⊗ a − c ⊗ c

)
. (7.22)

By (7.13), we have that D
(
K(Du)

)
is perpendicular to {a, c} and hence

D
(
K(Du)

)
= b ⊗ b D

(
K(Du)

)
(7.23)

which implies that the dilation of u varies only in the direction of b. Consequently, K(Du) depends only on b
through a certain function k:

K
(
Du(x)

)
= k

(
b(x)

)
. (7.24)

Unlike the case n = 2, when n = 3 we do not obtain that the dilation of three-dimensional optimal quasicon-
formal immersions is constant, at least not by the previous reasoning.

However, by Theorem 5.2 in all dimensions 2 ≤ n ≤ N Rank-One Locally Minimal Dilation implies solvability
of KP (Du) ⊗ KP (Du) : D2u = 0 and by the higher-dimensional extension of Example 7.5, rank-one locally
minimal dilation is genuinely weaker than locally minimal dilation. Although it seems reasonable that KP (Du)⊗
KP (Du) : D2u = 0 is sufficient for rank-one locally minimal dilation, we can not definitely conclude for the
validity of the conjecture of Capogna−Raich in [8] for n ≥ 3.

Acknowledgements. I am indebted to L. Capogna, J. Manfredi and Y. Yu for their interest in the author’s work, their
encouragenment and their constructive suggestions.
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