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Abstract. The aim of this paper is to study the boundary feedback stabilization of a two dimensional
Burgers type equation with a Dirichlet boundary control and boundary measurements. Thus we have
to deal with highly unbounded control and observation operators. We study the well posedness of the
infinite dimensional system obtained by coupling a linear estimator with a linear feedback control law
for the corresponding linearized parabolic system in a neighborhood of an unstable stationary solution.
We prove the local stabilization of the system obtained by applying to the nonlinear equation the linear
feedback control coupled with the linear compensator. Numerical experiments confirm the theoretical
results.
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1. Introduction

We are interested in coupling a feedback control law and a state estimation based on boundary measurements
for a 2D Burgers type equation. The two dimensional domain Ω in which we consider the Burgers equation is
the rectangle Ω = (0, L1) × (0, L2), with L1 > 0 and L2 > 0. Its boundary Γ is split into two parts. Dirichlet
boundary conditions are prescribed on Γd = [0, L1]×{0}, while Neumann boundary conditions are imposed on
Γn = Γ \ Γd. The system is controlled by a Dirichlet control of finite dimension, prescribed on Γd, and it is
subject to disturbances of finite dimension in the Neumann boundary conditions. More precisely, we consider
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the following partial differential equation

∂w

∂t
− νΔw + (∂1w + ∂2w)w = fs in Ω × (0,∞),

ν
∂w

∂n
= hs +

Nd∑
i=1

ζi hi on Γn × (0,∞), w = gs +
Nc∑
i=1

ui gi on Γd × (0,∞),

w(0) = w0 + μ0 in Ω. (1.1)

In this setting, ν is a positive constant, for j = 1 or j = 2, ∂j stands for
∂

∂xj
, fs, gs, hs, (gi)1≤i≤Nc and

(hi)1≤i≤Nd
are stationary data (independent of t), while u = (u1, . . . , uNc) ∈ L2(0,∞; RNc) is the control

variable depending only on t, μ0 is an uncertainty in the initial condition,
∑Nd

i=1 ζi hi is a disturbance model in a
boundary condition, ζ = (ζ1, . . . , ζNd

) ∈ H1(0,∞; RNd). We assume that gi ∈ H3/2(Γd)∩H1
0 (Γd) for 1 ≤ i ≤ Nc,

and that hj ∈ H3/2(Γn) for 1 ≤ j ≤ Nd.
We denote by ws a solution in H2(Ω) to the following stationary equation

−νΔws + (∂1ws + ∂2ws)ws = fs in Ω,

ν
∂ws

∂n
= hs on Γn, ws = gs on Γd. (1.2)

We are interested in the local feedback stabilization of equation (1.1) around the stationary solution ws, with
a prescribed exponential decay rate −ω, in the case of partial information. This means that we look for a control
u of the form

u(t) = K(we(t) − ws), (1.3)

where we is an estimation of the state variable w, such that the solution w of equation (1.1) corresponding to
u defined by (1.3) obeys

‖eωt(w(t) − ws)‖Hε(Ω) ≤ ϑ(‖w0‖Hε(Ω)) for all t ≥ 0,

provided that ‖w0 − ws‖Hε(Ω) is small enough for some ε > 0 (here ϑ(‖w0‖Hε(Ω)) denotes a function of
‖w0‖Hε(Ω)).

It is convenient to write the nonlinear equation satisfied by v = w − ws:

∂v

∂t
− νΔv + (∂1ws + ∂2ws)v + (∂1v + ∂2v)ws + (∂1v + ∂2v)v = 0 in Ω × (0,∞),

ν
∂v

∂n
=

Nd∑
i=1

ζi hi on Γn × (0,∞), v =
Nc∑
i=1

ui gi on Γd × (0,∞),

v(0) = w0 + μ0 − ws = v0 + μ0 in Ω. (1.4)

Next, we denote by wζ(t) the solution to the equation

λ0 wζ(t) − νΔwζ(t) + (∂1ws + ∂2ws)wζ(t) + (∂1wζ(t) + ∂2wζ(t))ws = 0 in Ω,

ν
∂wζ(t)
∂n

=
Nd∑
i=1

ζi(t)hi on Γn, wζ(t) = 0 on Γd, (1.5)
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where λ0 > 0 is chosen large enough so that (2.3) is satisfied. If ζ = (ζi)1≤i≤Nd
∈ H1(0,∞; RNd), we can verify

that z = v − wζ satisfy the following equation

∂z

∂t
− νΔz + (∂1ws + ∂2ws)z + (∂1z + ∂2z)ws + (∂1(wζ + z) + ∂2(wζ + z))(wζ + z) = μ

in Ω × (0,∞),

ν
∂z

∂n
= 0 on Γn × (0,∞), z =

Nc∑
i=1

ui gi on Γd × (0,∞),

z(0) = v0 + μ0 − wζ(0) = z0 + μ0 in Ω, (1.6)

with μ = −∂wζ

∂t
+ λ0 wζ . The corresponding linearized equation is

∂z

∂t
− νΔz + (∂1ws + ∂2ws)z + (∂1z + ∂2z)ws = μ in Ω × (0,∞),

ν
∂z

∂n
= 0 on Γn × (0,∞), z =

Nc∑
i=1

ui gi on Γd × (0,∞),

z(0) = z0 + μ0 in Ω. (1.7)

In Section 2, we shall explain that equation (1.6) may be rewritten in the form

z′ = Az + F (wζ + z) +Bu+ μ, z(0) = z0 + μ0, (1.8)

where A, with domain D(A) in L2(Ω), is the infinitesimal generator of an analytic semigroup on L2(Ω), and B
is a bounded operator from RNc into (D(A∗))′.

We shall choose some measurements depending on w(t)|Γn or on z(t)|Γn , of the form

Hz(t) =

(
1

|Γ1|

∫
Γ1

z(t), . . . ,
1

|ΓNo |

∫
ΓNo

z(t)

)
∈ R

No , (1.9)

where Γ1, . . . , ΓNo are nonempty open intervals in Γn.
We have already studied similar problems, in the case of full information, for the Burgers equation in [38], and

for the Navier–Stokes equations in [31, 32, 34]. In [31, 34], the feedback control law is determined by stabilizing
the linearized model and this feedback law is next applied to the nonlinear system. Here we are going to follow
the same approach but in the case of partial information.

We denote by Z = L2(Ω) the state space, by U = RNc the control space and by Y = RNo the observation
space. In Section 2, we shall see that the following assumptions are satisfied.

(H1) The operator A, with domain D(A), is the infinitesimal generator of an analytic semigroup on Z. The
resolvent of A is compact.

(H2) The operator B ∈ L(U, (D(A∗))′) satisfies

(λ0I −A)−αB ∈ L(U,Z), for some 0 ≤ α < 1, (1.10)

where λ0 > 0 is chosen so that λ0I −A is a positive operator.
(H3) The operator H is defined in D(H), a subspace of Z. We assume that D(A) ⊂ D(H) and that

H(λ0I −A)−β ∈ L(Z, Y ), for some 0 ≤ β < 1. (1.11)

Our goal is to find K ∈ L(Z,U) and L ∈ L(Y, Z) such that the system

z′ = Az + F (wζ + z) +BKze + μ, z(0) = z0 + μ0,

z′e = Aze +BKze + L(Hze − yobs), ze(0) = z0,

yobs(t) = Hz(t) + η(t), (1.12)



538 J.-M. BUCHOT ET AL.

is well posed and that its solution (z, ze) satisfies∥∥eωtz(t)
∥∥

Z
+
∥∥eωtze(t)

∥∥
Z
−→ 0 as t −→ ∞, (1.13)

for some ω > 0, provided that z0, μ0, μ and η are small enough in appropriate norms.
Since we want to deal with systems corresponding to boundary controls and boundary measurements, we

are interested in the case when α + β > 1. To the best of our knowledge, there is no result in the literature
on the feedback stabilization with partial information of nonlinear systems of the form (1.8) in the case when
α+ β > 1.

The local stabilization result for system (1.12) will be obtained by determining K ∈ L(Z,U) and L ∈ L(Y, Z)
such that the solution (z, ze) to the linearized system

z′ = Az +BKze + μ, z(0) = z0 + μ0,

z′e = Aze +BKze + L(Hze − yobs), ze(0) = z0,

yobs(t) = Hz(t) + η(t), (1.14)

with z0 ∈ Z and μ0 ∈ Z, obeys (1.13) provided that μ and η are bounded in appropriate norms. In order that
the solution (z, ze) to system (1.14) obeys (1.13), we have to prove (or to assume) that

(A+ ωI,B) is stabilizable and (A+ ωI,H) is detectable.

The equation

z′e = Aze +BKze + L(Hze − yobs), ze(0) = z0, (1.15)

is called ‘the estimation equation’ or the ‘compensator’. It is the equation used to determine the control BKze

involved in the system satisfied by z.
Schumacher [36], Curtain [11], and Curtain and Salamon [13] have proposed finite dimensional compensators

of the form (1.14)2 for linear systems in the case when α + β ≤ 1/2. One way to find a finite dimensional
compensator consists in using a finite dimensional approximation of equation (1.15). This is the way followed
by Lasiecka [25] in the case when α+ β < 1, and next by Ji and Lasiecka [20] in the case when α+ β > 1.

In pratical applications, it is convenient to have a compensator of finite dimension. It is not the case of
equation (1.15). Following [20], we use a finite element approximation in our numerical simulations. Our future
goal will be to construct a finite dimensional estimator of small dimension. But for the applications we have in
view (stabilization of fluid flows), an estimator based on the approximation of A by a finite element method (or
another classical approximation method) leads to a finite dimensional estimator of too large dimension to be
useful. We shall present in a future work new estimators of finite dimension. In Section 2.4, we are going to see
that the assumptions (H1) − (H3) are not sufficient to establish the well posedness of equation (1.14)2.

Additional references on compensators for infinite dimensional systems are [4, 7, 12, 24].
The plan of the paper is as follows. We study the feedback control law and the estimation equation for

the linearized Burgers equation (1.7) in Section 2. The local stabilization of the nonlinear system (1.12) is
studied in Section 3. In Section 4, we introduce the finite element approximation used in the numerical tests.
Some numerical experiments, in which we test the efficiency of the compensator both for the linearized Burgers
equation and for the corresponding nonlinear model, are provided in Section 5.

2. Feedback law and filtering operator

The aim of this section is to study the feedback law and the estimation of the linearized Burgers equation (1.7).
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2.1. Assumptions and preliminary results for the Burgers equation

In order to write equation (1.7) as a controlled system, we set

D(A) =
{
z ∈ H2(Ω) | z = 0 on Γd and

∂z

∂n
= 0 on Γn

}
,

and
Az = νΔz − (∂1ws + ∂2ws)z − (∂1z + ∂2z)ws for all z ∈ D(A). (2.1)

Since ws ∈ H2(Ω), it is clear that Az ∈ Z = L2(Ω) when z ∈ D(A). We also introduce the operator A0

corresponding to the particular case when ws = 0:

D(A0) =
{
z ∈ H2(Ω) | z = 0 on Γd and

∂z

∂n
= 0 on Γn

}
,

and
A0z = νΔz for all z ∈ D(A0). (2.2)

Theorem 2.1. The operator (A,D(A)) defined in (2.1) is the infinitesimal generator of an analytic semigroup
on L2(Ω). Its resolvent is compact.

Proof. The proof relies on the following inequality(
(λ0I −A)z, z

)
L2(Ω)

≥ ν

2
‖z‖2

H1(Ω) ∀z ∈ D(A), (2.3)

with λ0 > 0 large enough. See e.g. [38], or [31] where a similar estimate is established for the Oseen
operator. �

Notice that (A∗,D(A∗)) is defined by

D(A∗) =
{
φ ∈ H2(Ω) | φ = 0 on Γd and ν

∂φ

∂n
+ wsφ = 0 on Γn

}
,

and
A∗φ = νΔφ+ (∂1φ+ ∂2φ)ws for all φ ∈ D(A∗). (2.4)

With the extrapolation method, the operator A can be extended as an unbounded operator in (D(A∗))′ with
domain D(A; (D(A∗))′) = Z.

We introduce the Dirichlet operator D ∈ L(L2(Γd), L2(Ω)), by setting Dv = ξ, where ξ is the solution to the
following elliptic equation

λ0ξ − νΔξ + (∂1ws + ∂2ws)ξ + (∂1ξ + ∂2ξ)ws = 0 in Ω, ν
∂ξ

∂n
= 0 on Γn, ξ = v on Γd, (2.5)

where λ0 > 0 is chosen so that (2.3) is true. From elliptic regularity results, it follows that D is also continuous
from L2(Γd) into H1/2−ε(Ω) = D((λ0I − A)1/4−ε/2) for all ε > 0. For the definition of fractional power of
positive operators we refer to [5]. We define B ∈ L(U, (D(A∗))′) by

Bu =
Nc∑
i=1

ui(λ0 −A)Dgi for all u = (u1, . . . , uNc)
T ∈ U = R

Nc .

The operator B is well defined because D ∈ L(L2(Γd), L2(Ω)) and A ∈ L(L2(Ω), (D(A∗))′). We
use here the extension of A defined via the extrapolation method. Moreover since D also belongs to
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L(L2(Γd),D((λ0I −A)1/4−ε/2)), it follows that B ∈ L(U, (D((λ0I − A)3/4+ε/2)))′). In particular (λ0I −
A)−3/4−ε/2B ∈ L(U,L2(Ω)). Thus

(λ0I −A)−αB ∈ L(U,Z) for all 3/4 < α ≤ 1.

When gi ∈ L2(Γd) and ui ∈ L2(0,∞), the solutions to equation (1.7) may be defined by transposition [28],
or they can also be defined as solutions to the evolution equation

z′ = Az +Bu, z(0) = z0. (2.6)

Proposition 2.2. The adjoint of B ∈ L(RNc , (D(A∗))′) is the operator B∗ ∈ L(D(A∗),RNc) defined by

B∗φ =
(
−ν

∫
Γc

∂φ

∂n
gi

)
1≤i≤Nc

.

Proof. The result follows from the Green formula. �

Since (A,D(A)) is the infinitesimal generator of an analytic semigroup and since its resolvent is compact,
the eigenvalues of A are isolated, with finite multiplicity, and for any ω > 0, there is only a finite number of
eigenvalues with real part greater than −ω. We denote by (λi)1≤i≤∞ the eigenvalues of A and we assume that
the eigenvalues are numbered so that Reλi ≥ Reλi+1 for all i ∈ N∗. In order to look for a feedback control law
providing a prescribed exponential decay rate −ω < 0, we choose ω such that −ω �∈ Reσ(A). Thus we have

. . . ≤ ReλNω+1 < −ω < ReλNω ≤ . . . ≤ Reλ1,

and Nω is the number of eigenvalues with real part greater than −ω. For each 1 ≤ j ≤ Nω, we denote by
(φk

j )1≤k≤	j a basis of Ker(A∗ − λj) (thus �j = dim(Ker(A∗ − λj))). Since A is not selfadjoint the eigenvalues
λj may be complex (there are pairs of complex conjugate eigenvalues), and the eigenfunctions φk

j of A∗ may be
with complex values.

In order that the pair (A+ ωI,B) is stabilizable, we choose the family (gi)1≤i≤Nc so that

(H4)

for all 1 ≤ j ≤ Nω,

Nc ≥ �j and the family

(∫
Γc

∂φk
j

∂n
g1, . . . ,

∫
Γc

∂φk
j

∂n
gNc

)
1≤k≤	j

is of rank �j .

In this setting, the functions
∂φk

j

∂n take values in C, while the functions gi take values in R. It is always possible
to choose the family (gi)1≤i≤Nc so that (H4) is satisfied (see e.g. [34]).

We need to introduce the following spaces

H1
Γd

(Ω) = {z ∈ H1(Ω) | z = 0 on Γd} and H−1
Γd

(Ω) = (H1
Γd

(Ω))′.

We have the following continuous and dense imbeddings

H1
Γd

(Ω) ↪→ L2(Ω) ↪→ H−1
Γd

(Ω).

We have the following proposition.

Proposition 2.3. If assumption (H4) is fulfilled, then the pair (A + ωI,B) is stabilizable in Z = L2(Ω) and
in H−1

Γd
(Ω), with controls in U .

Proof. It is a consequence of the Hautus criterion, see [6, 10] or [39], see also [33]. �
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2.2. Feedback control law

In order to obtain the feedback stabilization of equation (2.6) with a given exponential decay rate ω > 0, we
consider the equation

z′ = (A+ ωI)z +Bu, z(0) = z0. (2.7)

A way for finding a stabilizing feedback operator for equation (2.7) consists in looking for the solution to the
following algebraic Riccati equation

P ∈ L(Z), P ∗ = P, P ≥ 0, (A+ ωI) −BR−1B∗P is stable,
P (A+ ωI) + (A∗ + ωI)P − PBR−1B∗P +Q = 0, (2.8)

where R ∈ L(U), R = R∗ > 0, Q ∈ L(Z), Q = Q∗ ≥ 0. The operator Q can be rewritten as Q1/2Q1/2. When
the pair (A+ ωI,B) is stabilizable and the pair (A+ ωI,Q1/2) is detectable, the equation

P ∈ L(Z), P ∗ = P, P ≥ 0, P (A+ ωI) + (A∗ + ωI)P − PBR−1B∗P +Q = 0,

admits a unique solution. If the pair (A + ωI,Q1/2) is not detectable, for example if Q = 0, the uniqueness of
solution to the above Riccati equation can be obtained by adding the condition that (A + ωI) − BR−1B∗P is
stable (see e.g. [23]). This is what is done in (2.8).

If P is the solution to (2.8), then K = −R−1B∗P is a feedback gain stabilizing equation (2.7) in Z. Thus
A + ωI + BK, with domain D(A + ωI + BK;Z) = {z ∈ Z | (A + BK)z ∈ Z}, is the generator of an
analytic semigroup on Z, exponentially stable on Z. Let us notice that D((A + BK)∗) = D(A∗) (see [1, 2]).
Thus, the operator A + BK can be extended by extrapolation to (D((−A − BK)∗))′ = (D(A∗))′ and to
H−1

Γd
(Ω) = (D(λ0I −A∗)1/2)′ = (D(((−A −BK)∗)1/2))′. This is summarized in the following theorem.

Theorem 2.4. We assume that (H4) is satisfied. There exists an operator K ∈ L(H−1
Γd

(Ω), U) such that the
following properties are satisfied.

(i) A + ωI + BK, with domain D(A + ωI + BK;Z) = {z ∈ Z | (A + BK)z ∈ Z}, is the generator of an
analytic semigroup on Z, exponentially stable on Z. Moreover

D(A+ ωI +BK;Z) =

{
z ∈ H2(Ω) | z =

Nc∑
i=1

(Kz)i gi on Γd,
∂z

∂n
= 0 on Γn

}
.

(ii) A+ωI+BK, with domain D(A+ωI+BK;H−1
Γd

(Ω)) = {z ∈ Z | (A+BK)z ∈ H−1
Γd

(Ω)}, is the generator
of an analytic semigroup on H−1

Γd
(Ω), exponentially stable on H−1

Γd
(Ω).

Proof. The existence of an operator K ∈ L(Z,U) for which (i) is satisfied is well known, see e.g. [26]. What is
new in this statement is the existence of K ∈ L(H−1

Γd
(Ω), U) for which (i) and (ii) are satisfied with the same

operator K.
Let us notice that, due to (2.1), we have H−1

Γd
(Ω) = [(D(A∗))′, Z]1/2. The existence of a feedback K ∈

L(H−1
Γd

(Ω), U) for which (i) and (ii) are satisfied simultaneously is established in [32] for the Oseen equation.
The adaptation to the linearized Burgers equation is straightforward. Next, other feedback operators satisfying
the properties (i) and (ii) have been constructed in [34] by using control spaces of finite dimension. The same
approach can be followed here. The identity D(A + ωI + BK;Z) = {z ∈ H2(Ω) | z = Kz on Γd,

∂z
∂n =

0 on Γn} follows from elliptic regularity results (see e.g. [18, 19]). In the particular case of a rectangle with
either a Dirichlet boundary condition or a Neumann boundary condition on each side of the rectangle, the
H2(Ω)-regularity can be also obtained by using symmetry arguments. �
Corollary 2.5. We assume that (H4) is satisfied. Let K ∈ L(H−1

Γd
(Ω), U) satisfy the conclusions of Theo-

rem 2.4. The operator A + BK is an isomorphism from H1
F(Ω) = {z ∈ H1(Ω) | (A + BK)z ∈ H−1

Γd
(Ω)},

equipped with the H1(Ω) norm, into H−1
Γd

(Ω). Moreover H1
F (Ω) = [Z,D(A +BK)]1/2.

Proof. This is an easy consequence of Theorem 2.4. �
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2.3. Filtering operator

Let us recall that H is the operator defined in (1.9). Let us study the detectability of the pair (A + ωI,H).
For each 1 ≤ j ≤ Nω, we denote by (ψk

j )1≤k≤	j a basis of Ker(A− λj). We assume that

(H5)

for all 1 ≤ j ≤ Nω,

No ≥ �j and the family

(
1

|Γ1|

∫
Γ1

ψk
j , . . . ,

1
|ΓNo |

∫
ΓNo

ψk
j

)
1≤k≤	j

is of rank �j .

In the case when ws ≡ 0, it could be proved, by using the explicit expression of the families (ψk
j )1≤k≤	j , that

the family of intervals (Γi)1≤i≤No can be chosen so that (H5) is satisfied. We conjecture that this is still the
case when ws �≡ 0, but we do not investigate that issue since it is not our main objective. Numerical tests may
also be used to check that assumption (see Sect. 5.3).

Proposition 2.6. If assumption (H5) is fulfilled, then the pair (A+ ωI,H) is detectable in Z.

Proof. It is still a consequence of the Hautus criterion, see [6, 10, 39]. �

It is clear that the operator H obeys

‖Hz‖Y ≤ C‖z|Γn‖L2(Γn). (2.9)

Due to (2.9), we have
H(λ0I −A)−β ∈ L(Z, Y ), for all 1/4 < β < 1.

We look for L ∈ L(Y, Z) such that A + ωI + LH , with domain D(A + ωI + LH) = {z ∈ Z | (A + LH)z ∈
Z} = D(A), is the generator of an analytic semigroup on Z, exponentially stable on Z.

Under the above conditions, if Rη ∈ L(Y ), Rη = R∗
η > 0, Qμ ∈ L(Z), Qμ = Q∗

μ ≥ 0, the equation

Pe ∈ L(Z), P ∗
e = Pe, Pe ≥ 0, A− PeH

∗R−1
η H is stable,

(A+ ωI)Pe + Pe(A∗ + ωI) − PeH
∗R−1

η HPe +Qμ = 0, (2.10)

admits a unique solution (see e.g. [26]). We choose L ∈ L(Y, Z) as

L = −PeH
∗R−1

η . (2.11)

2.4. The estimation equation

In this section, we want to study the equation

z′e = Aze + L(Hze − yobs) +BKze, ze(0) = ze,0. (2.12)

We already know that A + ωI + BK, with domain D(A + ωI + BK) = {z ∈ Z | (A + BK)z ∈ Z}, is the
infinitesimal generator of an analytic semigroup exponentially stable on Z.

In order to study equation (2.12), we need the additional condition

(H6) LH (−A−BK)−γ is bounded from Z into Z,

for some 0 ≤ γ < 1.

Proposition 2.7. Let us assume that (H4) and (H5) are satisfied, K satisfies the conclusions of Theorem 2.4,
and L is defined by (2.11). Then assumption (H6) is satisfied.



ESTIMATION AND CONTROL OF A BURGERS TYPE EQUATION 543

Proof. We are going to prove (H6) for γ = 1/2. It is sufficient to prove that H (−A−BK)−1/2 ∈ L(Z, Y ). Due
to a density argument, this is equivalent to showing that

‖H (−A−BK)−1/2 (−A−BK)−1/2f‖Y ≤ C‖(−A−BK)−1/2f‖Z ∀f ∈ Z.

Let us consider the elliptic equation

(A+BK)z = f, with f ∈ Z. (2.13)

This equation admits a unique solution defined by

z = −
∫ ∞

0

eτ(A+BK)f dτ = −(−A−BK)−1f.

Let us notice that (−A − BK)−1/2f = −(−A − BK)1/2z. It is easy to prove that, when f ∈ Z = L2(Ω),
equation (2.13) is equivalent to the elliptic boundary value problem

νΔz − (∂1ws + ∂2ws)z − (∂1z + ∂2z)ws = f in Ω,

ν
∂z

∂n
= 0 on Γn, z =

Nc∑
i=1

(Kz)i gi on Γd. (2.14)

Since A+BK is an isomorphism from H1
F (Ω into H−1

Γd
(Ω) (see Cor. 2.5), we have

c1‖z‖H1
F (Ω) ≤ ‖f‖H−1

Γd
(Ω) ≤ c2‖z‖H1

F(Ω), with 0 < c1 < c2,

for all f ∈ H−1
Γd

(Ω). In particular, we have

‖z|Γn‖L2(Γn) ≤ C‖f‖H−1
Γd

(Ω).

Knowing that H1
F (Ω) = [Z,D(A+ BK)]1/2, we have

‖z‖H1
F(Ω) ≤ C‖(−A−BK)1/2z‖L2(Ω).

Collecting these different results, we obtain

‖H (−A−BK)−1f‖Y ≤ C‖z|Γn‖L2(Γn) ≤ C‖f‖H−1
Γd

(Ω) ≤ C‖z‖H1
F(Ω)

≤ C‖(−A− BK)1/2z‖L2(Ω) = C‖(−A−BK)−1/2f‖L2(Ω).

Which implies that (H6) is satisfied for γ = 1/2. �

Proposition 2.8. Let us assume that (H4) and (H5) are satisfied, K satisfies the conclusions of Theorem 2.4,
and L is defined by (2.11). Then the operator A+ BK + LH, with domain D(A+ BK + LH) = D(A+ BK),
generates an analytic semigroup on Z. If yobs ∈ L2(0,∞;Y ) and ze,0 ∈ Z, then the solution ze to equation (2.12)
belongs to L2

loc([0,∞);D((−A− BK)1/2)) ∩H1
loc([0,∞);D((λ0I −A∗)−1/2)).

Proof. Since (H6) is satisfied, from ([30], Chap. 3, Cor. 2.4), it follows that A+BK +LH , with domain D(A+
BK+LH) = D(A+BK) is also the infinitesimal generator of an analytic semigroup on Z. Thus equation (2.12)
will be well posed for any yobs ∈ L2(0,∞;Y ). The existence of the solution in L2

loc([0,∞);D((−A−BK)1/2))∩
H1

loc([0,∞); (D((λ0I −A∗ −K∗B∗ −H∗L∗)1/2))′) follows from ([5], Chap. 3, Thm. 2.2). Once we know that ze

belongs to L2
loc([0,∞);D((−A−BK)1/2)), the term LHze can be considered as a source term in equation (2.12),

and we can prove that ze also belongs to L2
loc([0,∞);D((−A−BK)1/2))∩H1

loc([0,∞);D((λ0I−A∗)−1/2)). �
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2.5. Additional results

Let us consider the system

z′ = Az +BKze, z(0) = z0 + μ0,

z′e = (A+BK + LH)ze − LHz, ze(0) = z0, (2.15)

and the associated system satisfied by (z, e) where e = z − ze:

z′ = (A+BK)z −BKe, z(0) = z0 + μ0,

e′ = (A+ LH)e, e(0) = μ0. (2.16)

The goal of this section is to analyze the above two systems and their interconnections.

Theorem 2.9. We assume that assumptions (H4)–(H5) are satisfied, K ∈ L(H−1
Γd

(Ω), U) fulfils the conclusion
of Theorem 2.4, and L ∈ L(Y, Z) is defined by (2.11). Then, we have∥∥∥et(A+BK)

∥∥∥
L(Z)

≤Mω e−ωt and
∥∥∥et(A+LH)

∥∥∥
L(Z)

≤Mω e−ωt, (2.17)

for some Mω ≥ 1. Moreover, the operator Ae defined in Z × Z by

D(Ae) =
{
(z, e) ∈ Z × Z | Az +BKz −BKe ∈ Z, (A+ LH)e ∈ Z

}
,

Ae =
(
A+BK −BK

0 A+ LH

)
,

generates an analytic semigroup exponentially stable on Z × Z.

Proof. When K ∈ L(H−1
Γd

(Ω), U) fulfils the conclusion of Theorem 2.4 and L ∈ L(Y, Z) is defined by (2.11), it
is well known that the semigroups (et(A+BK))t>0 and (et(A+BK))t>0 are analytic and satisfy (2.17). It is clear
that (Ae,D(Ae)) generates an exponentially stable semigroup on Z × Z, because BK is bounded from Z into
(D(λ0I−A∗)α)′ and (D(((−A−BK)∗)α))′ = (D(λ0I −A∗)α)′ (indeed D((A+BK)∗) = D(A∗)). We can verify
that the semigroup generated by Ae is analytic. We can use ([5], Part II, Chap. 3, Thm. 2.2) to obtain the
existence of a unique solution to system (2.16). �

From Theorem 2.9, it follows that the family of operators

((z0 + μ0, z0) 
→ (z(t), ze(t)))t≥0 , (2.18)

where ze(t) = z(t) − e(t) and (z, e) is the solution to (2.16) corresponding to the initial data (z0, e0) = (z0 +
μ0, μ0), is the infinitesimal generator of an exponentially stable semigroup on Z × Z. We set

D(A) =
{
(z, ze) ∈ Z × Z | Az +BKze ∈ Z, z − ze ∈ D(A), −LH(z − ze) + (A+BK)ze ∈ Z

}
and

A =
(

A BK
−LH A+BK + LH

)
. (2.19)

Let us notice that LH(z− ze) is meaningful because z− ze ∈ D(A), while LHz and LHze are not necessarily
defined separately. However in the particular situation corresponding to the linearized Burgers equation studied
here, if Az +BKze ∈ Z, then z ∈ H2(Ω), thus Hz and LHz are well defined and Hze and LHze are also well
defined. Thus in the particular case considered here, we can easily verify the results stated in the two following
theorems.
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Theorem 2.10. Let us assume that hypotheses (H4)–(H5) are satisfied, K ∈ L(H−1
Γd

(Ω), U) fulfills the con-
clusion of Theorem 2.4, and L ∈ L(Y, Z) is defined by (2.11). Then (z, e) belongs to D(Ae) if and only if
(z, ze) = (z, z − e) belongs to D(A).

Theorem 2.11. Let us assume that hypotheses (H4) − (H5) are satisfied, K ∈ L(H−1
Γd

(Ω), U) fulfills the con-
clusion of Theorem 2.4, and L ∈ L(Y, Z) is defined by (2.11). A pair (z, e) is the solution to equation (2.16)
if, and only if, (z, ze) = (z, z − e) is the solution to equation (2.15). Moreover the operator (A,D(A)) is the
infinitesimal generator of an exponentially stable semigroup on Z × Z.

3. Local stabilization of the nonlinear system

In this section, we want to prove a local stabilization result for the system

z′ = Az +BKze + F (wζ + z) + μ, z(0) = z0 + μ0,

z′e = Aze + L(Hze − yobs) +BKze, ze(0) = z0, (3.1)

with the observation
yobs(t) = Hz(t) + η(t). (3.2)

Let us recall that F (wζ + z) = (∂1(wζ + z) + ∂2(wζ + z))(wζ + z).
Since we look for solutions satisfying a prescribed exponential decay rate −ω, we make the following change

of unknowns
z̃ = eωtz, z̃e = eωtze, w̃ζ = eωtwζ , μ̃ = eωtμ,

and we denote by ỹobs the noisy observation of z̃, that is

ỹobs(t) = Hz̃ + η̃(t), with η̃(t) = eωtη(t).

Thus equation (3.1) may be rewritten in the form

z̃′ = (A+ ωI)z̃ +BKz̃e + e−ωtF (w̃ζ + z̃) + μ̃, z̃(0) = z0 + μ0,

z̃′e = (A+ ωI)z̃e + L(Hz̃e − ỹobs) +BKz̃e, z̃e(0) = z0. (3.3)

If we write the system satisfied by z̃ and ẽ = z̃ − z̃e, we obtain

z̃′ = (A+ ωI)z̃ +BKz̃ −BKẽ+ e−ωtF (w̃ζ + z̃) + μ̃, z̃(0) = z0 + μ0,

ẽ′ = (A+ ωI)ẽ+ LHẽ− LHη̃ + e−ωtF (w̃ζ + z̃) + μ̃, ẽ(0) = z0. (3.4)

Remark 3.1. We are going to assume that μ̃ belongs to L2(0,∞;H−1+ε
Γd

(Ω)). Since H−1
Γd

(Ω) = (D(λ0I −
A∗)1/2)′ = (D(((−A − BK)∗)1/2))′ (see the proof of Thm. 2.4), with the reiteration theorem in interpolation,
we can also show that H−1+ε

Γd
(Ω) = (D(λ0I − A∗)1/2−ε/2)′ = (D(((−A − BK)∗)1/2−ε/2))′. This result will be

very helpful to study the first equation in system (3.4).

Remark 3.2. To study the second equation in system (3.4), we need an additional assumption on A+LH , see
(H7) below, in order to take into account the nonlinear term e−ωtF (w̃ζ + z̃) of the equation. This assumption
can be easily verified when the measure oparator is defined by (1.9), see Proposition 3.3.

(H7) The following imbeddings are satisfied

D
(
((−A− LH)∗)1/2−ε/2

)
↪→ L1/ε(Ω) and L1/(1−ε)(Ω) ↪→

(
D
(
((−A− LH)∗)1/2−ε/2

))′
,

for all ε ∈ (0, 1/2).
Let us now verify that assumption (H7) is satisfied by the operators A and H respectively defined by (2.1)

and (1.9).
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Proposition 3.3. We assume that (H4) and H5 are satisfied, A is defined by (2.1), H is defined by (1.9) and
L is defined by (2.11). Then assumption (H7) is satisfied.

Proof.
Step 1. We first show that

‖φ‖H2−ε̃(Ω) ≤ Cε̃‖φ‖D(A∗+H∗L∗), ∀φ ∈ D(A∗ +H∗L∗), and all 0 < ε̃ < 1/2.

The operator L∗ belongs to L(L2(Ω),RNo). Let us set

L∗φ = (rφ
1 , . . . , r

φ
No

) ∈ R
No .

We have
‖(rφ

1 , . . . , r
φ
No

)‖RNo ≤ C‖φ‖Z .

Since A∗ +H∗L∗ is an isomorphism from D(A∗ +H∗L∗) into Z, we set ‖φ‖D(A∗+H∗L∗) = ‖(A∗ +H∗L∗)φ‖Z .
The equation (A∗ +H∗L∗)φ = f is equivalent to the system

λ0φ− νΔφ− (∂1φ+ ∂2φ)ws = λ0φ− f in Ω,

ν
∂φ

∂n
+ wsφ =

No∑
i=1

rφ
i

|Γi|
χΓi on Γn, φ = 0 on Γd,

(rφ
1 , . . . , r

φ
No

) ∈ R
No = L∗φ.

Since
∑No

i=1
rφ

i

|Γi| χΓi belongs to H1/2−ε̃(Γn) for all ε̃ ∈ (0, 1/2), from elliptic regularity results it follows that

‖φ‖H2−ε̃(Ω) ≤ C̃ε̃

(
‖(rφ

1 , . . . , r
φ
No

)‖RNo + ‖λ0φ− f‖Z

)
≤ Cε̃‖f‖Z = Cε̃‖φ‖D(A∗+H∗L∗),

for all ε̃ ∈ (0, 1/2) and all φ ∈ D(A∗ +H∗L∗).

Step 2. The identity mapping is linear and continuous from D(A∗ + H∗L∗) into H2−ε̃(Ω) and from
Z into Z. Thus it is also continuous from [Z,D(A∗ + H∗L∗)]1/2−ε/2 = D(((−A − LH)∗)1/2−ε/2) into
[Z,H2−ε̃(Ω)]1/2−ε/2 = H1−ε−ε̃/2+εε̃/2(Ω). Since H1−ε−ε̃/2+εε̃/2(Ω) ↪→ L1/ε(Ω) for ε̃ > 0 small enough,
we have D(((−A − LH)∗)1/2−ε/2) ↪→ H1−ε−ε̃/2+εε̃/2(Ω) ↪→ L1/ε(Ω), with continuous imbeddings. Since
D(((−A − LH)∗)1/2−ε/2) is dense in L1/ε(Ω), we also have L1/(1−ε)(Ω) ↪→ (D(((−A − LH)∗)1/2−ε/2))′. The
proof is complete. �

We rewrite system (3.4) in the form(
z̃

ẽ

)′
=

(
A+ ωI +BK −BK

0 A+ ωI + LH

)(
z̃

ẽ

)
+

(
e−ωtF (w̃ζ + z̃) + μ̃

e−ωtF (w̃ζ + z̃) + μ̃− LHη̃

)
,(

z̃

ẽ

)
(0) =

(
z0 + μ0

z0

)
. (3.5)

Before stating our local stabilization result, let us recall the following definition (see e.g. [29])

H1+ε,1/2+ε/2(Ω × (0,∞)) = L2(0,∞;H1+ε(Ω)) ∩H1/2+ε/2(0,∞;L2(Ω)).

Theorem 3.4. We assume that assumptions (H4) and (H5) are satisfied. Let ε ∈ (0, 1/2) be given fixed. There
exists a constant C0 > 0 and a nondecreasing function θ from R

+ into itself, such that, if C ∈ (0, C0), z0 and
μ0 belong to Hε(Ω), w̃ζ belongs to H1+ε,1/2+ε/2(Ω × (0,∞)), and

‖z0‖Hε(Ω) + ‖μ0‖Hε(Ω) + ‖eω ·μ‖L2(0,∞;H−1+ε
Γd

(Ω)) + ‖eω ·wζ‖H1+ε,1/2+ε/2(Ω×(0,∞)) + ‖eω ·η‖L2(0,∞;Y ) ≤ θ(C),
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then, the system (3.4) admits a unique solution in the space{
(z̃, ẽ) ∈ (H1+ε,1/2+ε/2(Ω × (0,∞)))2 | ‖(z̃, ẽ)‖(H1+ε,1/2+ε/2(Ω×(0,∞)))2 ≤ C

}
.

In particular the solution to system (3.1) obeys

‖z(t)‖Hε(Ω) + ‖z(t) − ze(t)‖Hε(Ω) ≤ Ce−ωt. (3.6)

Proof. The proof is based on the Banach fixed point Theorem. Let ξ belong to H1+ε,1/2+ε/2(Ω × (0,∞)). We
assume that w̃ζ belongs to H1+ε,1/2+ε/2(Ω×(0,∞)). We want to estimate F (w̃ζ +ξ) = (∂1 +∂2)(w̃ζ +ξ)(w̃ζ +ξ)
in L2(0,∞;H−1+ε

Γd
(Ω)). We have

‖∂1(w̃ζ + ξ)(w̃ζ + ξ)‖L2(0,∞;H−1+ε
Γd

(Ω)) ≤ C‖∂1(w̃ζ + ξ)(w̃ζ + ξ)‖L2(0,∞;L2/(2−ε)(Ω))

≤ C‖∂1(w̃ζ + ξ)(w̃ζ + ξ)‖L2(0,∞;L1/(1−ε)(Ω))

≤ C‖∂1(w̃ζ + ξ)‖L2(0,∞;L2/(1−ε)(Ω)) ‖w̃ζ + ξ‖L∞(0,∞;L2/(1−ε)(Ω))

≤ C‖∂1(w̃ζ + ξ)‖L2(0,∞;Hε(Ω)) ‖w̃ζ + ξ‖L∞(0,∞;Hε(Ω))

≤ C‖w̃ζ + ξ‖L2(0,∞;H1+ε(Ω)) ‖w̃ζ + ξ‖H1+ε,1/2+ε/2(Ω×(0,∞)).

The first inequality follows from the imbeddings H1−ε
Γd

(Ω) ↪→ L2/ε(Ω) and L2/(2−ε)(Ω) ↪→ H−1+ε
Γd

(Ω),
the fourth one follows from the imbedding Hε(Ω) ↪→ L2/(1−ε)(Ω), and the last one from the imbed-
ding H1+ε,1/2+ε/2(Ω × (0,∞)) ↪→ L∞(0,∞;Hε(Ω)) (see Lem. 3.5). Thus e−ωtF (w̃ζ + ξ) belongs to
L2(0,∞;H−1+ε

Γd
(Ω)). It also belongs to L2(0,∞;L1/(1−ε)(Ω)). This follows from the above inequality by omitting

the first line.
Let us denote by (zξ, eξ) the solution to the system

z′ξ = (A+ ωI)zξ +BKzξ −BKeξ + e−ωtF (w̃ζ + ξ) + μ̃, zξ(0) = z0 + μ0,

e′ξ = (A+ ωI)eξ + LHeξ − LHη̃ + e−ωtF (w̃ζ + ξ) + μ̃, eξ(0) = z0. (3.7)

Since H−1+ε
Γd

(Ω) ↪→ (D(((−A − BK)∗)1/2))′ and L1/(1−ε)(Ω) ↪→ (D(((−A − LH)∗)1/2−ε/2))′, we have the
estimate (see [5], Chap. 3, p. 165)

‖(zξ, eξ)‖(H1+ε,1/2+ε/2(Ω×(0,∞)))2 ≤ C1

(
‖e−ωtF (w̃ζ + ξ)‖L2(0,∞;H−1+ε

Γd
(Ω))

+ ‖e−ωtF (w̃ζ + ξ)‖L2(0,∞;L1/(1−ε)(Ω)) + ‖μ̃‖L2(0,∞;H−1+ε
Γd

(Ω))

+ ‖η̃‖L2(0,∞;Y ) + ‖z0‖Hε(Ω) + ‖μ0‖Hε(Ω)

)
≤ C1(‖w̃ζ + ξ‖2

H1+ε,1/2+ε/2(Ω×(0,∞)) + ‖μ̃‖L2(0,∞;H−1+ε
Γd

(Ω)) + ‖η̃‖L2(0,∞;Y )

+ ‖z0‖Hε(Ω) + ‖μ0‖Hε(Ω)).

As in [38], we can find C0 > 0 and θ such that the nonlinear mapping

ξ 
−→ (zξ, eξ)

is a mapping from

VC =
{
(z̃, ẽ) ∈ (H1+ε,1/2+ε/2(Ω × (0,∞)))2 | ‖(z̃, ẽ)‖(H1+ε,1/2+ε/2(Ω×(0,∞)))2 ≤ C

}
,

into itself, if 0 < C ≤ C0, and provided that

‖z0‖Hε(Ω) + ‖μ0‖Hε(Ω) + ‖eω ·μ‖L2(0,∞;H−1+ε
Γd

(Ω)) + ‖eω ·wζ‖H1+ε,1/2+ε/2(Ω×(0,∞)) + ‖eω ·η‖L2(0,∞;Y ) ≤ θ(C).
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Next, we can show that it is also a contraction for C0 suitably chosen. Thus system (3.4) admits a unique
solution in VC . From Theorem 2.11, it follows that (3.3) admits a unique solution in the metric space{

(z̃, z̃e) ∈ (H1+ε,1/2+ε/2(Ω × (0,∞)))2 | ‖(z̃, z̃ − z̃e)‖(H1+ε,1/2+ε/2(Ω×(0,∞)))2 ≤ C
}
,

equipped with the distance corresponding to the norm in (H1+ε,1/2+ε/2(Ω × (0,∞)))2. The existence of a
unique solution to system (3.1) follows from the fact that (z̃, z̃e) is a solution to system (3.3) if and only if
(z, ze) = e−ωt(z̃, z̃e) is a solution to system (3.3). The proof is complete. �
Lemma 3.5. We have the following continuous imbedding

H1+ε,1/2+ε/2(Ω × (0,∞)) ↪→ L∞(0,∞;Hε(Ω)).

Proof. This lemma is a direct consequence of a trace theorem by Grisvard ([17], Lem. 4.1). Let us explain why.
Let z belong to H1+ε,1/2+ε/2(Ω × (0,∞)). We first extend z as a function ẑ belonging to H1+ε,1/2+ε/2(Ω × R)
by setting ẑ(·,−t) = z(·, t) for t > 0. It is clear that the mapping z 
−→ ẑ is linear and continuous from
H1+ε,1/2+ε/2(Ω × (0,∞)) into H1+ε,1/2+ε/2(Ω × R). To prove the lemma, we have to show that

H1+ε,1/2+ε/2(Ω × R) ↪→ L∞(R;Hε(Ω)).

For that, it is sufficient to prove that there exists C > 0 such that

‖z(t)‖Hε(Ω) ≤ C‖z‖H1+ε,1/2+ε/2(Ω×R), ∀t ∈ R. (3.8)

If τt0 denotes the translation operator, i.e. the operator defined by

(τt0z)(t) = z(t− t0),

we know that
‖τt0z‖H1+ε,1/2+ε/2(Ω×R) = ‖z‖H1+ε,1/2+ε/2(Ω×R), ∀t0 ∈ R.

Therefore to prove (3.8), it is sufficient to prove it for t = 0. Let us denote by E a linear continuous extension
operator from H1+ε(Ω) to H1+ε(R2), which is also continuous from L2(Ω) to L2(R2). Thus E can be also
considered as a linear continuous extension operator from H1+ε,1/2+ε/2(Ω ×R) to H1+ε,1/2+ε/2(R2 ×R). From
Lemma 4.1 of [17], it follows that

‖z(0)‖Hε(Ω) ≤ C‖z‖H1+ε,1/2+ε/2(R2×R),

for all z ∈ H1+ε,1/2+ε/2(R2 × R), and therefore

‖z(0)‖Hε(Ω) ≤ C‖Ez‖H1+ε,1/2+ε/2(R2×R) ≤ C‖z‖H1+ε,1/2+ε/2(Ω×R),

for all z ∈ H1+ε,1/2+ε/2(Ω × R). The proof of the lemma is complete. �

4. Approximate finite dimensional model

4.1. The model

For the numerical simulations, we choose L1 = L2 = 1, Ω = (0, 1)× (0, 1), and we have Γd = [0, 1]× {0} and
Γn = Γ \Γd. We choose a control space of dimension 1, U = R, with g1(x) = sin(πx1) in (1.1). The perturbation
space is also choosen of dimension 1 in (1.1), with

h1(x) =

{
cos
(
(1 − x2)π

2

)
on Γn,ζ = {0} × (0, 1),

0 on Γn,0 = Γn \ Γn,ζ ,

see Figure 1. We choose
ws(x1, x2) = ax2 + b,
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Figure 1. Domain and boundary conditions.

with a = −0.068 and b = 0.0365 (see Sect. 5.2 where we explain this choice). This choice corresponds to
fs = a(ax2 + b), gs = b on Γd. The controlled system satisfied by v = w − ws is

∂v

∂t
= νΔv − (∂1v + ∂2v)ws − (∂1ws + ∂2ws) v − (∂1v + ∂2v)v in Ω × (0,∞),

ν
∂v

∂n
= h1(x) ζ(t) on Γn × (0,∞), v(x, t) = g1(x)u(t) on Γd × (0,∞),

v(0) = v0 + μ0 in Ω.

(4.1)

As explained in Section 2, the above equation can be written in the form

v′ = Av +Bu+Bdζ + F (v), v(0) = v0 + μ0,

with
Bu = u(λ0I −A)Dg1, Bdζ = ζ(λ0I −A)Nh1, F (v) = (∂1v + ∂2v)v,

and where ζ(λ0I − A)Nh1 = wζ is the solution to equation (1.5) when Nd = 1. The measurements are of the
form (1.9) and are precisely defined by

yobs(t) = Hv(t) + η(t), (4.2)

with

yobs(t) = (yobs,1(t), yobs,2(t), yobs,3(t)), η(t) = (η1(t), η2(t), η3(t))

Hv(t) =
(

1
0.05

∫ 0.25

0.2

v(x1, 1, t),
1

0.05

∫ 0.55

0.5

v(x1, 1, t),
1

0.05

∫ 0.85

0.8

v(x1, 1, t)
)
,

and η represents a measurement error. The sensor locations are drawn in red in Figure 1.
If we set v = wζ + z, where wζ is the solution to (1.5) with Nd = 1 and h1 defined as above, the equation

satisfied by z is

∂z

∂t
= νΔz − (∂1z + ∂2z)ws − (∂1ws + ∂2ws) z,

− (∂1(wζ + z) + ∂2(wζ + z))(wζ + z) + μ in Ω × (0,∞),

ν
∂z

∂n
= 0 on Γn × (0,∞), z(x, t) = g1(x)u(t) on Γd × (0,∞),

z(0) = v0 − wζ(0) + μ0 in Ω. (4.3)

with μ = −∂wζ

∂t
− λ0wζ . We can also choose a function wζ which is not the solution to (1.5), for example

wζ(x1, x2, t) = ζ(t)
ν

2
(1 − x1)2 cos

(π
2

(1 − x2)
)
,

and in that case, we have to choose μ = −∂wζ

∂t
+ νΔwζ − (∂1ws + ∂2ws)wζ − (∂1wζ + ∂2wζ)ws.
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Thus we have a dynamical system of the form

z′ = Az +Bu+ F (wζ + z) + μ, z(0) = z0 + μ0,

as the one introduced in (3.3)1. If we assume that ζ ∈ H1(0,∞), then μ belongs to L2(0,∞;L2(Ω)) and wζ

belongs to H1(0,∞;H2(Ω)).

4.2. Finite dimensional system

To compute numerically the feedback gains and the solution of the compensator, we use a finite element
method with P1 basis functions on a structured triangular mesh [15]. The mesh size h is equal to 1/n, which
corresponds to a subdivision of each side of Ω into n segments. We denote by Th the corresponding partition of
Ω into triangles. We introduce the two following finite dimensional spaces

Vh := {ψ ∈ C0(Ω) | ψ|K ∈ P1, ∀K ∈ Th},

and
V0h := {ψ ∈ C0(Ω) | ψ|K ∈ P1, ∀K ∈ Th, ψ = 0 on Γd}.

We have N := dim(V0h) = n(n− 1) and dim(Vh) = n2. We denote by (ϕj)j∈N the n2 basis functions of Vh,
where N is the set of nodes of the triangulation Th. We look for an approximate solution vh ∈ H1(0,∞;Vh) of
equation (4.1) of the form

vh(x, t) :=
∑

j∈NΩ∪Γn

vj(t)ϕj(x) +
∑

j∈NΓc

sin(πaj)ϕj(x)u(t), (4.4)

where NΩ∪Γn is the set of nodes of Th belonging to Ω ∪ Γn, NΓc is the set of nodes of Th belonging to Γc. Thus
the discrete evolution equation associated with (4.1) is

Find vh ∈ H1(0,∞; vh) of the form (4.4) such that for all ϕ ∈ V0h,

d
dt

∫
Ω

vh(t)ϕ = −ν
∫

Ω

∇vh · ∇ϕ−
∫

Ω

(
(∂x1ws,h + ∂x2ws,h) vh + (∂x1vh + ∂x2vh)ws,h

)
ϕ

−
∫

Ω

(
vh
∂vh

∂x1
+ vh

∂vh

∂x2

)
ϕ+

(∫ 1

0

cos
(π

2
(1 − x2)

)
ϕ(0, x2) dx2

)
ζ(t)

vh(0) = v0,h, (4.5)

where v0,h and ws,h are the finite element approximations of v0 and ws. By substituting vh defined by (4.4)
in (4.5), we obtain one term involving the time derivative of the control u:⎛⎝ ∑

j∈NΓc

sin(πaj)
∫

Ω

ϕjϕ

⎞⎠ u′(t). (4.6)

Hence the corresponding system of ordinary differential equations is not written in the form (1.8). To overcome
this difficulty, we use a mass lumping method that is well known to compute, with high order elements, the
solution of the wave equation [21] or parabolic equations [9]. For the space P1, this method consists in calculating
the integral on each triangle with a trapezoidal formula:∫

K

ψ ≈ |K|
3

(ψ(a1) + ψ(a2) + ψ(a3)), (4.7)

where the nodes a1, a2, a3 are the vertices of triangle K. It follows that the mass matrix becomes diagonal since

(ϕi, ϕj)h = δij
|K|
3
,
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where (·, ·)h is an approximation of the L2(Ω) inner product. Using this integration formula, we approximate
the integral in (4.6) by zero, because ϕ ∈ v0h and j ∈ NΓc . Thus, system (4.5) is of the form

Ev′ = Av + Bu+ Bdζ + F(v), v(0) = v0, (4.8)

where A ∈ RN×N is the stiffness matrix, E ∈ RN×N is the diagonal mass matrix, B ∈ RN×1 is the approximation
of the control operator B, Bd ∈ RN×1 is the approximation of the operator Bd, v ∈ RN is the vector of
coordinates of vh in the finite element basis and F : RN → RN stands for the nonlinear term in (4.1). Let us
notice that using a finite difference method, we would have obtained a similar system. Substituting v by vh

in (4.2) and using the trapezoidal formula (4.7), we obtain the observation for the discrete system (4.8):

yobs = Hv + η with H ∈ R
3×N and η =

[
η1 η2 η3

]T
.

For the numerical simulations, we shall simulate the measurement error η(t) and the model error ζ(t) with the
Matlab function ‘randn’ corresponding to uncorrelated zero-mean Gaussian random noises of covariance matrices
Rη and Rζ respectively. We shall use these matrices to determine the filtering gain in the estimation equation.

4.3. Feedback and filtering gains

We find the feedback gain Kω = −R−1B∗P by solving the equation (2.8) in which we choose Q = C∗C with
C = (−A0)−1. We obtain Cv(t) = z(t) by solving the equation

−νΔz(t) = v(t) in Ω,
∂z(t)
∂n

= 0 on Γn, z(t) = 0 on Γd. (4.9)

Here, we use the notation Kω in place of K as in Section 2 to emphasize that Kω depends on the parameter
ω ≥ 0 in equation (2.8). In the numerical tests, we shall compare the efficiency of different control laws for
different values of this parameter ω. Let us recall that the control space U = R is of dimension 1. Thus R > 0
is a real number. The operator K satisfies the conclusions of Theorem 2.4. From the Riesz Theorem, we deduce
that there exists a function kω ∈ L2(Ω), the kernel of the operator Kω, such that

Kωv(t) =
∫

Ω

kω(x)v(x, t) dx.

Next, the filtering operator Lω ∈ L(R3, L2(Ω)) is chosen of the form (2.11). The precise definition of Qμ and
Rη, or more precisely their discrete approximations used in the numerical tests, are given in Section 5.3 (see
also Eq. (4.14) and the definition of the discrete approximation of Qμ hereafter). If we denote by �1,ω, �2,ω and
�3,ω the corresponding filtering gains, the compensator for system (4.1) can be written in the form

∂v

∂t
= νΔv − (∂1v + ∂2v)ws − (∂1ws + ∂2ws) v − (∂1v + ∂2v)v in Ω × (0,∞),

v(0) = v0 + μ0 in Ω,

ν
∂v

∂n
= 0 on Γn,0 × (0,∞), ν

∂v

∂n
= h1(x)ζ(t) on Γn,ζ × (0,∞)

v(x, t) = g1(x)Kωve(t) on Γd × (0,∞), (4.10)

∂ve

∂t
= νΔve − (∂1ve + ∂2ve)ws − (∂1ws + ∂2ws) ve,

+
3∑

i=1

�i,ω(ye,i − yobs,i) in Ω × (0,∞), ve(0) = v0 in Ω,

ν
∂ve

∂n
= 0 on Γn × (0,∞), ve(x, t) = g1(x)Kωve(t) on Γd × (0,∞).

For the discrete system (4.8), the feedback gain Kω ∈ R1×N is defined by

Kω = −R−1BTPωE, (4.11)
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where Pω is the solution to the following Generalized Algebraic Riccati equation (GARE in brief)

Pω ∈ R
N×N , PT

ω = Pω, Pω ≥ 0,

(A + ωE)TPωE + EPω(A + ωE) − EPωBR−1 BTPωE + CTEC = 0, (4.12)

with C = −A−1
0 E and A0 is the stiffness matrix corresponding to equation (4.9). The operator C is the discrete

approximation of the operator C. As the matrix E is diagonal and the matrix −A0 is a band matrix, their
inversion are easily performed.

The filtering gain Lω ∈ R
N×3, the discrete approximation of Lω ∈ L(L2(Ω),R3), is defined by

Lω = −EPe,ωHTR−1
η , (4.13)

where Pe,ω is the solution to the following Riccati equation

Pe,ω ∈ R
N×N , PT

e,ω = Pe,ω , Pe,ω ≥ 0,

(A + ωE)Pe,ωE + EPe,ω(A + ωE)T − EPe,ωHTR−1
η HPe,ωE + BdRζBT

d = 0, (4.14)

the weight matrix Rη > 0 is the covariance of the noise η, and Rζ > 0 is the variance of ζ. (Rη > 0 and
Rζ > 0 are assumed to be known.) Notice that, since the uncertainty ζ acts in a boundary condition, the matrix
BdRζBT

d plays the role of the discrete approximation of the operator Qμ of equation (2.10).
The solution of the GAREs (4.12) and (4.14) are accomplished using a classical Schur decomposition of the

corresponding Hamiltonian matrix [27]. The corresponding semi-discrete version of the compensator (4.10) is

Ev′ = Av + BKωve + F(v) + Bdζ, v(0) = v0 + μ0,

Ev′
e = Ave + Lω(ye − yobs) + BKωve, ve(0) = v0,

yobs = Hv + η, ye = Hve, (4.15)

where v0 is the coordinate vector of v0h in the FEM basis.

5. Numerical experiments

In this section, we present numerical results for the stabilization of system (4.15). To define the mesh size we
set n = 60, which corresponds to N = 3540 degrees of freedom for the system (4.1). Throughout what follows,
we choose

ν =
1
50

·

5.1. Determination of the unstable steady state

Various unstable stationary solutions can be tested, see e.g. [8]. A very simple stationary solution is an affine
function constant with respect to the x1 variable, of the form ws(x1, x2) = ax2 + b. The coefficients a and b
are here determined from a series expansion of a tangent function. Our computation gives a = −0.068 and
b = 0.0365. This stationary solution is plotted in Figure 2.

5.2. Spectrum of the operator (A, D(A))

To study the stability of linearized system associated to (4.1), we have to solve the discrete generalized
eigenvalue problem corresponding to the system Az = λz, (λ, z) ∈ (C, D(A) \ {0}):

νΔz − (∂1z + ∂2z)ws − (∂1ws + ∂2ws) z = λz in Ω,

ν
∂z

∂n
= 0 on Γn, z = 0 on Γd. (5.1)
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Figure 2. Unstable stationary solution.

Table 1. Partial spectrum of (E,A).

i 1 2 3 4 5
λi 0.017 –0.184 –0.383 –0.588 –0.771

Figure 3. Graph of a normalized right unstable eigenvector ψ1,h and left unstable eigenvector φ1,h

of (E,A).

From a numerical view point, we look for (z, λ) ∈ (C \ {0})n × C solution of

Az = λEz.

A part of the spectrum of (E,A) is computed numerically with the procedure eigs in Matlab. The five
eigenvalues close to the imaginary axis are given in Table 1. We notice that only one eigenvalue of the pair (E,A)
is with non negative real part. The eigenfunction ψ1 associated with λ1 only depends on x2. The approximate
eigenfunctions ψ1,h and ψ2,h corresponding to respectively to λ1 and λ2 are represented in Figures 3 and 4.

5.3. Computation of functional gains

We have to verify that (H4) and (H5) are satisfied for some ω ≥ 0. If we choose ω = 0.078, the only unstable
eigenvalues of A + ωI are (λi + ω)1≤i≤5 where (λi)1≤i≤5 are the eigenvalues in Table 1. These eigenvalues are
simple. Let us denote by (ψi)1≤i≤5 the corresponding eigenfunctions of A and by (φi)1≤i≤5 the corresponding
eigenfunctions of A∗ chosen in such a way that the two families are bi-orthogonal.

To verify assumption (H4), we have to compute

Bi := B∗φi = −ν
∫

Γc

g1
∂φi

∂n
= ν

∫ 1

0

sin(πx1)
∂φi

∂x2
(x1, 0) dx1,

for 1 ≤ i ≤ 5.
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Figure 4. Graph of a normalized right stable eigenvector ψ2,h and left stable eigenvector φ2,h

of (E,A).

Figure 5. Graph of a normalized normal derivative of four left eigenvectors φi,h at the
boundary Γd.

To verify assumption (H5), we have to compute

Hψi =
(

1
0.05

∫ 0.25

0.2

ψi(x1, 1) dx1,
1

0.05

∫ 0.55

0.5

ψi(x1, 1) dx1,
1

0.05

∫ 0.85

0.8

ψi(x1, 1) dx1

)
,

for 1 ≤ i ≤ 5. We set Hi := |Hψi|, where |Hψi| stands for the Euclidian norm of the vector Hψi ∈ R3. The
values of |Bi| and Hi are reported below

|Bi| 0.0276 0.0016 0.0967 0.0098 0.0138
Hi 2.60 2.38 2.25 2.30 2.40

As all coefficients are different from 0, we conclude that, for all 0 < ω ≤ 0.078, the pair (A + ωI,B) is
stabilizable and the pair (A + ωI,H) is detectable. We notice that the second and the fourth mode are less
stabilizable than the other ones, because |B2| and |B4| are much smaller than |B1| and |B3|. To keep a control
force in acceptable values, we will choose two different values of ω, namely ω0 = 0 and ω1 = 0.21, which
corresponds to a value satisfying λ3 < −ω1 < λ2. The choice of having only one actuator with the function
g1(x) = sin(πx1) is not well adapted to stabilize the modes number 2 and 4 (see Fig. 5). If we would like to
improve the efficiency of the control law, we have to increase the dimension of the control space and to choose
other actuators (gi)2≤i≤Nc appropriately.

In the numerical simulations, we shall test two values for ω, namely

ω0 = 0 and ω1 = 0.21.
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Figure 6. Finite element approximation of functional gain −k for R = 1 and ω = ω0 (left),
ω = ω1 (right).

Figure 7. Finite element approximations of functional filter gains for ω = 0, Rη = 4× 10−6I3
and Rζ = 4 × 10−6.

To obtain a fast stabilization of the closed-loop system, we set R = 1 in (4.12). This parameter is sufficiently
small to allow large control amplitudes. From the expression of the feedback gain Kω in (4.11), we deduce the
coordinates of the finite element approximation kω,h of the functional gain kω. In Figure 6, we have plotted
the graph of kω,h with ω = ω0 and ω = ω1. For ω0, we notice that kω,h has the same behaviour as the adjoint
unstable eigenvector ψ1 of A. By increasing the dimension of the unstable subspace with a shift ω equal to ω1,
we increase dramatically the control force. In Figure 6 (right), we have plotted the feedback gain kω,h computed
with A + w1 I in (4.12). Note that the graph of the feedback gain is now very similar to the graph of ψ2. It is
the second mode that contributes the most significantly to the feedback stabilization.

The covariance matrix of measurements is Rη = 4 × 10−6I3 and Rζ = 4 × 10−6. In Figure 7, the three
kernels of Lω are plotted with ω = ω0. We notice that the values of �1,ω,h are globally greater than those of
�2,ω,h and �3,ω,h and more particularly close to {0} × (0, 1). Recall that these functions are involved in the
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Figure 8. (Left) Evolution of ‖vh(t)‖2 with respect to t for the linear uncontrolled and closed-
loop systems with ω = ω0 and ω = ω1. (Right) Evolution of corresponding control laws for the
linear closed-loop system.

differential equation (4.10) for the estimation we of w, in the expression
∑3

i=1 �i,ω(ye,i − yobs,i). Consequently,
a large difference between yobs,1(t) and ye,1(t) will have an impact on the solution we larger than that of
(ye,2(t) − yobs,2(t)) or (ye,3(t) − yobs,3(t)).

5.4. Numerical tests for the linearized system

First, we present the results for the integration of the linear closed-loop system associated to problem (4.15)
in which we set F = 0. We choose the initial condition v0 = 0 and μ0 as an eigenfunction corresponding to the
unstable eigenvalue of A

μ0 = δψ1.

where δ > 0 is used as a parameter to vary the magnitude of μ0. In practice, we take δ = 0.1. The time
integration is performed with the BDF scheme of order 2 [35]. The system (4.15) is solved up to T = 100,
a choice large enough to capture the effect of both feedback and filtering operators in the nonlinear coupled
system. On the left hand side in Figure 8, we have represented the L2 norm of the solutions vh(t) for the linear
uncontrolled and controlled systems. We see that, after an initial increase of the norm, the norm of the solution
to closed-loop system decreases quickly to 0. As expected, the decay rate is higher with ω1 than with ω0. The
uncontrolled solution explodes exponentially. On the right hand side in Figure 8, we have plotted the control u.
It shows a control acting strongly close to t = 0 and then oscillating around zero after t = 20.

In order to better understand the role of the filtering operator in the estimation process, we have represented
in Figure 9 the evolution of the three measurements with respect to time. We recall that yobs,1, yobs,2 and yobs,3

respectively correspond to the noisy measurements of v in (0.2, 0.25)×{1}, (0.5, 0.55)×{1} and (0.8, 0.85)×{1}.
As expected, we can see that the estimated measurements are much smoother than the noisy measurements.
Due to the large gain of �1,ω, we notice that the estimated measurement ye,1 converges rapidly to the noisy
measurement yobs,1. Notice that the convergence is faster when ω = ω1.

5.5. Numerical tests for the nonlinear system

Now we deal with the fully nonlinear system (4.15). Such a system evolves differently from the linear one. As
in the linear case, the numerical stabilization tests are done with δ = 0.1. In this case, the linearized system is
a good approximation of the nonlinear one.

In Figure 10, on the left, we have represented the L2 norm of the solution vh(t) for the nonlinear uncontrolled
and controlled systems (4.10). For ω = ω0, the solution behaves in the same way as in the linear case. In the case
where ω = ω1, the nonlinear terms become more significant and the approximation of the nonlinear system by
the linear one is less justified. The stabilization results show that the nonlinear controlled system with ω = ω1
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Figure 9. Evolution of the controlled and estimated measurements for the linear closed-loop
system satisfied by wh when ω = ω0 and ω = ω1.

Figure 10. (Left) Evolution of the L2 norm of the solution wh(t) for the nonlinear closed-
loop system and uncontrolled system. (Right) Evolution of the control laws for the nonlinear
closed-loop system.

is not better than the one controlled with ω = ω0. These results illustrate how the linear controller can locally
stabilize the nonlinear system when only partial observations are available. However, the choice of actuators
and sensors become fundamental to correctly stabilizes the nonlinear system.

To compare the quality of the estimation when we replace the linear system by the nonlinear one, we have
plotted in Figure 11 the time evolution of the noisy and estimated observations. We can verify that, as in
the linear case, the effect of the noise is highly reduced by the estimation process but the convergence of the
estimated observation towards the noisy observation is slower than in the linear case. In Figure 12, the nonlinear
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Figure 11. Evolution of the controlled and estimated measurements for the nonlinear closed-
loop system satisfied by wh.

Figure 12. Evolution of the solution vh for the nonlinear system in closed-loop (4.15) at times
t = 0, t = 5, t = 15 and t = 40.
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closed-loop solution vh is represented for four different times. We can check that the stabilization is achieved
up to small oscillations on the boundaries where the control and the model noise are acting.

6. Conclusion

In this paper, we studied theoretically and numerically the boundary stabilization of a Burger’s equation,
locally around an unstable stationary solution, in presence of measurement and model errors. A Luenberger com-
pensator is built from the linearized Burgers’ equation. The feedback gains are obtained by solving an algebraic
Riccati equation. In Sections 2 and 3, we give some assumptions on the control and observation operators that
allows us to study the well posedness of the infinite dimensional compensator. At the end of Section 3, we verify
on some particular examples whether these assumptions are satisfied or not. In Section 4, we prove that the
controlled nonlinear Burgers equation coupled with the linear estimator can be locally stabilized. In Section 5,
the numerical results illustrate these theoretical results: The solution estimated from noisy measurements may
be used into a feedback law to stabilize efficiently the nonlinear unstable system, when the initial data and the
boundary perturbation are not too large.
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Vol. 1. Birkhäuser, Boston (1992).

[6] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems.
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