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OPTIMAL FEEDBACK CONTROL FOR UNDAMPED WAVE EQUATIONS
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Abstract. An optimal finite-time horizon feedback control problem for (semi-linear) wave equations
is presented. The feedback law can be derived from the dynamic programming principle and requires to
solve the evolutionary Hamilton−Jacobi Bellman (HJB) equation. Classical discretization methods
based on finite elements lead to approximated problems governed by ODEs in high dimensional spaces
which makes the numerical resolution by the HJB approach infeasible. In the present paper, an ap-
proximation based on spectral elements is used to discretize the wave equation. The effect of noise is
considered and numerical simulations are presented to show the relevance of the approach.
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1. Introduction

In this paper we consider optimal feedback control for one-dimensional (semi-linear) wave equations. Let
Ω ⊂ �1 be an open interval, T > 0. We consider control problems of the following type⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
u∈U

J(u) =
∫ T

0

l(y(s), u(s))e−μsds,

d
ds

y(s) = F(y(s), u(s)),

y(0) = y0

(1.1)
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for given distributed costs l : L2(Ω) × L2(Ω) → �, discount factor μ, set of admissible controls U , dynamics F
given by a (semi-linear) wave equation, and initial point y0 at time t = 0. The state y is defined as the solution
of the wave equation under the control u. A precise definition is given in the next section.

Although there are many publications for numerical methods for open-loop optimal control problems with
partial differential equations, there are only few results on numerical methods for closed-loop optimal control
of partial differential equations which are conceived for nonlinear problems. Riccati-based methods and their
numerical approximations for the linear regulator problem in the context of infinite dimensional systems have
received a significant amount of attention in the past. The linear-quadratic regulator for infinite dimensional,
second order (in time) linear oscillators is considered in [19]. In [3] an approximation framework for the com-
putation (in finite dimensional spaces) of Riccati operators is presented that converges to the Riccati operator
for the linear regulator problem for a large class of parabolic systems. In [20] a hybrid method for computing
feedback gains in linear quadratic regulator problems is analyzed which is in particular appropriate when used
with large dimensional systems like control systems for partial differential equations and in [27] a regularity
result for solutions of Riccati equation is shown which is essential to obtain a rate of convergence for numerical
approximations. A review article on continuous and approximation theory for Riccati equations can be found
in [34].

For recent results on Riccati-based methods in the context of control of partial differential equations see,
e.g., [36], where an explicit solution for Riccati equations arising in transport theory is considered. In [4] the
authors study a Riccati approach for the two dimensional Navier Stokes equation, and in [13, 39] the authors
consider feedback stabilization for Burgers and Navier–Stokes equations.

For optimal feedback control of partial differential equations based on Hamilton−Jacobi Bellman (HJB) equa-
tions there exists only few publications. Here we mention some of them. In [16] internal approximation schemes
for optimal control problems in Hilbert spaces are considered and conditions for convergence of the approximate
value function are given. In [21] HJB equations for optimal control problems of semi-linear parabolic equations
are analyzed. For optimal feedback control of the Burgers equation using proper orthogonal decomposition
(POD) we refer to [31, 33]. For an optimal feedback control approach of an advection-diffusion equation with
an adaptive POD method see [1].

For existing results in the context of feedback control of the wave equation we refer to [19], for the strongly
damped wave equation and the Timoshenko beam to [24, 25]. For open-loop control of the wave equation
see [18, 23, 29, 30, 32] and the references cited therein.

In this paper we use a feedback law for the semi-discrete problem of (1.1) which is based on the solution of
the corresponding HJB equation. We study the stabilizing effect of the feedback control with respect to noise
effecting the dynamics or the observation for linear and nonlinear equations. For validation purposes we compare
the results with a linearized Riccati approach. We observe that in the case of the linear wave equation the HJB
and the Riccati approach lead to similar results. In case of a nonlinear equation the Riccati approach may fail
while the HJB approach still stabilizes the system.

The discretization of partial differential equations in space usually leads to high dimensional dynamical
systems and it is therefore very challenging to solve the corresponding HJB equation (so-called curse of
dimensionality). In the last decades, several theoretical and numerical developments in HJB theory led to
powerful and efficient numerical approaches that can be used for control problems up to 6-dimensional prob-
lems [2,7,8,10,15,37,40]. For higher dimensional problems, various approaches have been studied in the literature,
including model reduction or advanced numerical schemes as, e.g., sparse grids, see [11]. Finally, we also point
out that a general introduction for Hamilton−Jacobi Bellman equations and the numerical treatment can be
found in the monograph [6].

In our approach we overcome the difficulty (curse of dimensionality) by discretizing the wave equation with
spectral elements in space. In many situations already few basis functions are sufficient to obtain a useful
approximation. This choice of basis functions leads to diagonal stiffness and mass matrices which allow in
certain situations a decomposition of the originally problem in lower dimensional subproblems which can be
solved in parallel.
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The paper is organized as follows. In Section 2 we formulate the continuous control problem, in Section 3
we present a semi-discretization in space of (semi-linear) wave equations and formulate the DPP and the
corresponding HJB equation, in Section 4 we describe the decomposition in subproblems in case of optimal
control of the linear wave equation, in Section 5 we formulate the discrete scheme for solving the HJB equation,
in Section 6 we formulate the numerical feedback law, and in Section 7 we present some numerical examples.

2. The control problem

In this section we introduce the control problem in its functional analytic setting. Let

A : H1
0 (Ω) × L2(Ω) → L2(Ω) × H−1(Ω), A =

(
0 id

cΔ 0

)
with the negative Laplacian (−Δ) : H1

0 (Ω) → H−1(Ω), parameter c > 0, and identity map id: L2(Ω) → L2(Ω).
We consider semi-linear wave equations (written as a first order system in time) of the following type⎧⎨⎩

d
ds

y(s) − Ay(s) − g(y1(s)) = f̄(s), s ∈ (0, T ),

y(0) = y0

(2.1)

with solution y = (y1,y2)T , t ∈ [0, T ), T > 0, f̄ = (0, f(·))T , f ∈ L2(L2(Ω)), initial point y0 ∈ H1
0 (Ω)×L2(Ω),

and nonlinearity
g : L2(Ω) → { 0 } × L2(Ω), z �→ (0, g2(z))T

with

‖g(z)− g(w)‖L2(Ω) ≤ Lg ‖z − w‖L2(Ω) ∀z, w ∈ L2(Ω) (2.2)

for Lipschitz constant Lg > 0. We assume that there exists a unique bounded solution in C([0, T ]; H1
0 (Ω) ×

L2(Ω)).

Remark 2.1. For the linear wave equation (i.e. g ≡ 0) there exists a unique solution y ∈ C([0, T ]; H1
0 (Ω) ×

L2(Ω)) (see [35], p. 275). Existence and uniqueness for the semi-linear wave equation can be shown under further
conditions on the nonlinear source term g, see [41]. The Lipschitz continuity assumption (2.2) of g will be used
for the HJB approach in next section.

To set up a control problem we introduce the set of admissible controls

U = L2((0, T ); U) (2.3)

with

U = { u ∈ �m | ui
a ≤ ui ≤ ui

b for i = 1, . . . , m } (2.4)

and ui
a, ui

b ∈ �, i = 1, . . . , m, m ∈ �. Further, we define the operator

B : �m → { 0 } × L2(Ω), Bu = (0, ũ)T , ũ =
m∑

i=1

ui sin(πix), (2.5)

i.e. for every input u ∈ U , the function B is a control of the amplitudes of the basis modes. Now, consider the
distributed cost given by:

l : L2(Ω)2 ×�m → �, l(z, u) =
1
2
‖Cz − yd‖2

L2(Ω) +
α

2
‖u‖2 (2.6)

for parameter α > 0, C = (id, 0), and a given desired state yd ∈ L2(Ω), respectively. Here, ‖·‖ denotes the
Euclidean norm.
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Then the control problem is defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min
u∈U

∫ T

0

l(y(s), u(s))e−μsds,

d
ds

y(s) = F(y(s), u(s)),

y(0) = y0

(2.7)

for y0 ∈ Y 1, a discount factor μ ≥ 0, and operator F defined by

F : Y 1 × L2(Ω) → L2(Ω) × L2(Ω), F(x, u) = Ax + Bu + g
(
x1
)

(2.8)

with x = (x1, x2)T ∈ Y 1.
In the sequel, we assume that for each control u ∈ U , there exists a unique state y solution of (2.7).

3. Semi-discrete formulation and HJB equation

In this section a semi-discretization in space of the wave equation is presented. This allows to formulate
the dynamic programming principle for the corresponding semi-discrete control problem and to derive a HJB
equation whose solution is the value function of the semi-discrete problem.

The curse of dimensionality (i.e. the infeasibility to solve high dimensional HJB equations) requires to consider
semi-discrete approximations with low dimensional discrete dynamical systems. This is the case when discretizing
the wave equation by spectral elements in space. Then the obtained approximated control problem governed by
ordinary differential equations has a reasonable number of state variables which allow the problem to be solved
by a low dimensional HJB equation.

3.1. Discretization in space

For the semi-discretization in space we make the following ansatz. Let the state be given by yh = (yh
1 , yh

2 )
with

yh
1 (x, t) =

N∑
k=1

yh
1,k(t)ϕk(x), yh

2 (x, t) =
N∑

k=1

yh
2,k(t)ϕk(x) (3.1)

for given basis functions ϕk ∈ H1
0 (Ω), k = 1, . . . , N , and set

yh := (y1,1, . . . , y1,N , y2,1, . . . , y2,N )T ∈ L2
(
(0, T );�2N

)
.

In the following we will always assume that N = m.
As mentioned above it is important to choose a low order of approximation N , since the HJB equation that

will be associated to the approximated control problem will be in a 2N -dimensional space, see Section 3.3 where
we will specify the choice of the basis functions in more detail.

Further, we define the stiffness and mass matrices

Ah = ((∇ϕi,∇ϕj)L2(Ω))i=1,...,N,j=1,...,N ,

Mh = ((ϕi, ϕj)L2(Ω))i=1,...,N,j=1,...,N
(3.2)

with respect to the basis ϕi, i = 1, . . . , N .
We introduce the discrete dynamics

Fh : �2N ×�N → �
2N , Fh(z, u) = M−1

h (Ahz + Bhu + gh (z)) (3.3)
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with matrices

Mh =
(

Mh 0
0 Mh

)
, Ah =

(
0 Mh

−cAh 0

)
, Bh =

(
0

Mh

)
,

and nonlinearity

gh(z) = (0, gh,2(z))T , gh,2(z) =

⎛⎝((g2(
N∑

k=1

zkϕk), ϕi)L2(Ω)

)
i=1,...,N

⎞⎠
with z = (z1, . . . , zN , zN+1, . . . , z2N)T and the discrete distributed cost

lh : �2N ×�N → �, lh(z, u) =
1
2
(Chz − yh

d)T Mh(Chz − yh
d) +

α

2
uT u (3.4)

for α > 0, yh
d ∈ �N , where yh

d is the vector containing the coordinates of yd with respect to the spectral basis
functions, Ch ∈ �2N×2N with Ch = (idN , 0)T . Here, idN denotes the identity on �N . The Lipschitz continuity
of g implies the Lipschitz continuity of gh. The semi-discrete control problem is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
u∈U

Jh(u) =
∫ T

0

lh(yh
x,t(s), u(s))e−μsds, s.t.

d
ds

yh(s) = Fh(yh(s), u(s)) for s ∈ (0, T ),

yh(0) = yh
0 ,

(3.5)

for initial value yh
0 ∈ �2N . The initial state yh

0 is the projection of y0 on the finite dimensional space Vh × Vh

with Vh = span(ϕ1, . . . , ϕN ).
To simplify the notation we will henceforth omit the index h.

3.2. Dynamic programming principle and Hamilton−Jacobi Bellman equation

For x ∈ �2N and t ∈ [0, T ), we consider the parameterized control problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf
u∈U

∫ T

t

lh(yx,t(s), u(s))e−μsds,

d
ds

yx,t(s) = Fh(yx,t(s), u(s)) for s ∈ (t, T ),

yx,t(t) = x.

(Px,t)

In the above problem, the notation yx,t denotes the solution of the ODE system that starts in the position x
at time t. To the family of problems (Px,t), we consider the value function v : �2N × [0, T ] → � that associates
to each initial condition (x, t) the infimum value of the problem (Px,t):

v(x, t) = inf(Px,t).

The value function v satisfies the dynamic programming principle (DPP), see [6], pp. 154–155

v(x, t) = inf
u∈U

(∫ τ

t

eμ(t−s)lh(yx,t(s), u(s))ds + eμ(t−τ)v(yx,t(τ), τ)
)

, (3.6)

for τ ∈ [t, T ], t ∈ [0, T ].
From the DPP we derive the value function v is given as the viscosity solution of the evolutionary

Hamilton−Jacobi Bellman (HJB) equation (cf. [6], p. 155),{
−∂tv(x, t) + μv(x, t) + H(x,∇xv(x, t)) = 0 (x, t) ∈ �2N × (0, T ),

v(x, T ) = 0 x ∈ �2N ,
(3.7)
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with Hamiltonian
H : �2N ×�2N −→ �,

H(x, p) = sup
u∈U

(−Fh(x, u)T p − lh(x, u)
)
.

(3.8)

Moreover, from [26] we know that v is the unique viscosity solution of (3.7) with quadratic growth.
Finally, let us point out that by straightforward calculations, the Hamiltonian can be reformulated as:

H(x, p) =
(
− xT (M−1

h Ah)T p − (M−1
h g(x1))T p − u(p)T (M−1

h Bh)T p (3.9)

−
(

1
2
(Chx − yh

d)T Mh(Chx − yh
d)
)
− α

2
u(p)T u(p)

)
(3.10)

with

u(p) := argmaxu∈U

(−Fh(x, u)T p − lh(x, u)
)

= P[ua,ub]

(
− 1

α
BT

h M−T
h p

)
(3.11)

for any p ∈ �2N , and projection P[ua,ub] defined by

P[ua,ub](z) = ẑ, ẑi = min(ui
b, max(ui

a, zi))

for z ∈ �2N . In case of inactive control constraints this reduces to

H(x, p) = −xT
(
M−1

h Ah

)T
p − (

M−1
h g(x1)

)T
p −

(
1
2
(Chx − yh

d)T Mh

(
Chx − yh

d

))
+

1
2α

pTBBT p

with B = M−1
h Bh.

3.3. Spectral elements

In general it is very challenging to solve the HJB (3.7) in high dimensions. To obtain a low dimensional
problem we use spectral elements for the discretization of the wave equation in space. This allows to use only
few basis functions to obtain an appropriate approximation. Spectral elements play an important role and are
widely used for the numerical discretization of partial differential equations, see, e.g. [14, 22, 38] and in the
context of optimal control [17]. To discretize the wave equation by spectral elements we specify the domain
Ω = (0, 1) and choose the basis functions by

ϕk(x) = sin(kπx), k = 1, . . . , N, x ∈ Ω.

The corresponding mass and stiffness matrix are diagonal and are given by

Mh = diag
(
(1/2)k=1,...,N

)
, Ah = diag

((
1
2

(kπ)2
)

k=1,...,N

)
.

The following numerical example shows, that for the corresponding open-loop control problem only few
spectral basis functions are necessary to obtain a good approximation.

Example 3.1. We consider problem (2.7) and allow that the distributed costs also depend on time. We choose
T = 1, Ω = (0, 1), μ = 0, c = 1, and the distributed costs as

l : L2(Ω) × L2(Ω) × [0, T ] → �,

l(z, u, t) =
1
2
‖z − yd(t)‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)
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with α = 1, and the desired state by

yd(z, t) = (t − T )4z3(1 − z)3 + 24z3(1 − z)3 − 12(t− T )2(6z(1 − z)3 − 18z2(1 − z)2

+ 6z3(1 − z)) − 12(t − T )2(6z(1 − z)3 − 18z2(1 − z)2 + 6z3(1 − z))
+ (t − T )4

(−18(1 − z)2 + 216z(1− z) − 54(1 − z)2 − 72z2
)
.

The initial values are given by

x(z) = (T 4z3(1 − z)3,−4T 3z3(1 − z)3)T .

The constraints on the control are chosen in such a way that they remain inactive. Then the exact state is
given by

y∗(z, t) = ((t − T )4z3(1 − z)3, 4(t − T )3z3(1 − z)3)T .

For N = 5 spectral basis functions the error between the exact solution y∗ and the numerical approximation
ỹ is ‖ỹ − y∗‖L2(L2(Ω)) ≈ 1.29× 10−4. For time discretization a Crank Nicolson scheme is applied with temporal
mesh parameter k = 1.0 × 10−4. This example shows that already few spatial basis functions lead to a good
approximation of the state.

Remark 3.2. As already known and mentioned earlier in the paper, the theory of the HJB approach is valid in
any dimension. However, in practice, the implementation of the method in high dimension requires, in general,
a huge numerical effort (data storage and computing time).

Several works have dealt with model reduction of optimal control problems governed by partial differential
equations leading to a reduced controlled system that can be studied numerically by using the HJB approach,
see, e.g., [31, 33], where proper orthogonal decomposition (POD) is applied to reduce the dimension of the
underlying dynamical system, and in [1], where for adaptively chosen small time horizons the dynamical system
is reduced by POD.

Note also that it would be interesting to reduce the dimension not in the definition of the control problem, but
in the HJB equation associated to it. However, for such a nonlinear PDE the analysis of reduction techniques
is still an open problem, see [11] for a method based on sparse grids.

4. Decomposition in two dimensional subproblems

The discretization by spectral elements leads to diagonal mass and stiffness matrices, i.e. the set of basis
functions is an orthogonal basis with respect to the L2(Ω)- and H1

0 (Ω)-inner product. In certain situations this
allows to decompose the 2N -dimensional HJB equation in N 2-dimensional decoupled HJB equations which
can be solved in parallel. In this section we assume that the problem is of linear-quadratic type with possibly
constraints on the control, i.e.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
u∈U

Jh(x, t, u) =
∫ T

t

lh(yx,t(s), u(s))e−μsds, s.t.

d
ds

yx,t = M−1
h (Ahyx,t + Bhu) ,

yx,t(t) = x.

(4.1)

We introduce N subproblems defined, for i = 1, . . . , N by⎧⎪⎪⎪⎨⎪⎪⎪⎩
vi(ẑ, t) = min

u(·)∈Ui

1
2

∫ T

t

(
1
2
‖z1

i (s)‖2 + αu2(s)
)

e−μsds,

żi(s) = Aizi(s) + Bu(s),
zi(t) = ẑ,

(4.2)
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for zi = (z1
i , z2

i )T and with Ui = L2((0, T ); Ui) for Ui = { u ∈ � | ui
a ≤ u ≤ ui

b } and

Ai =
(

0 1
ai 0

)
, B =

(
0
1

)
,

and where ai = (M−1
h Ah)ii. For every i = 1, . . . , N , the value functions vi of the subproblem (4.2) satisfy the

following HJB equation:{
−∂tvi(z, t) + μvi(z, t) + Hi(z,∇zvi(z, t)) = 0 (z, t) ∈ �2 × (0, T ),

vi(z, T ) = 0 z ∈ �2
(4.3)

with Hi(z, p) := supu∈Ui
(−(Aiz + Bu)T p − 1

2 (1
2‖z‖2 + αu2)) for z, p ∈ �2. There holds the following relation

between the value function of problem (4.1) and the value functions of the subproblems (4.2).

Theorem 4.1. Let vi be the solution of the subproblem (4.2) for i = 1, . . . , N and let v be the solution of (4.1).
Then there holds the relation

v(x, t) =
N∑

i=1

vi

([
xi

xi+N

]
, t

)
for every t ∈ (0, T ), x =

⎡⎢⎣ x1

...
x2N

⎤⎥⎦ ∈ �2N .

Proof. The arguments are straightforward since in the present case (when g ≡ 0) the controlled system can be
split into N decoupled systems. Also the minimisation over the control set U can be split into N independent
minimisation problems. �

The above result means that instead of solving (3.7), one can solve N independent 2-dimensional HJB equa-
tions (4.3) with different data. These computations can be done in parallel, which has as a consequence a
significant reduction of the computational effort (in terms of data storage and of cpu time).

Remark 4.2. It is well-known that in general the stiffness matrix for spectral elements is ill-conditioned. By
the decomposition the drawback of this property is reduced since in every subproblem only two dimensional
matrices are considered.

5. Discretization of the HJB

Several discretization schemes for HJB equations have been studied in the literature. For an overview on
finite differences schemes, we refer to [37]. Another recent reference [15] gives an overview on semi-Lagrangian
schemes and the features of this class of methods. For a finite element approach we refer to [28], and for
discontinuous Galerkin methods to [7]. A class of anti-diffusive methods has been studied in [8, 12]. Here, we
use a finite difference scheme method, more precisely, an ENO scheme for space discretization is coupled with
a Runge−Kutta time discretization scheme of second order.

5.1. Numerical scheme

Following [10, 37] we shortly recall the scheme for a given continuous Hamiltonian H : �2N ×�2N → �. For
given temporal mesh parameter Δt and spatial mesh parameter Δx = (Δx1, . . . , Δx2N ) we define a spatial
mesh

G = { xI = (I1Δx1, . . . , I2NΔx2N ) for I ∈ �2N }
and temporal mesh

t = t0 < t1 < . . . < tM = T, tj+1 − tj = Δt, j = 0, . . . , MT − 1, MT ∈ �.
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Further, we introduce difference quotients for x ∈ G by

D+v(x) = (D+
x1

v(x), . . . , D+
x2N

v(x)), D−v(x) = (D−
x1

v(x), . . . , D−
x2N

v(x))

with
D±

xi
v(xI) = ±v(xIi,±) − v(xI)

Δx

and Ik,± = (i1, . . . , ik−1, ik ± 1, ik+1, . . . , i2N ). Then the Lax−Friedrichs scheme for the HJB equation reads as
follows: vM

I = 0 for every I ∈ �2N , and

vn−1
I = vn

I − Δtμvn
I − ΔtHLF (xI , D

+vn(xI), D−vn(xI)) for n = M, . . . , 1

with Lax−Friedrichs Hamiltonian

HLF (x, p+, p−) = H
(

x,
p+ + p−

2

)
−

2N∑
i=1

Ci(x)
2

(p+
i − p−i ) (5.1)

and the stabilizing functions Ci(x) satisfying

max
p∈�2N

∣∣∣∣∂H∂pi
(x, p)

∣∣∣∣ ≤ Ci(x)

for i = 1, . . . , 2N . It is well-known that the Lax−Friedrichs scheme is monotone and the convergence is of first
order as far as the CFL condition

k max
x∈G

(
2N∑
i=1

Ci(x)
Δxi

)
≤ 1

is satisfied.
An ENO scheme can be obtained by considering a variant of the LF scheme

vn−1
I = vn

I − Δtμvn
I − ΔtHLF

(
xI , D̃

+vn(xI), D̃−vn(xI)
)

,

where D̃±vn(xI) are higher approximations of the gradient ∂xiv coupled with a Runge−Kutta time discretization
scheme of second order, see [10, 37]. Convergence of this method is not proved but various numerical examples
confirm its relevance.

5.2. Boundary condition for HJB equation on the computational domain

Since the HJB is defined on the full space we have to define a bounded computational domain K × (0, T ),
with K ⊂ �2N , to solve the problem numerically. For simplicity K will be chosen as

K := Π2N
i=1[ci, di],

for some c, d ∈ �2N and the considered grid is as follows:

G0 = { xI = (c1 + (I1 − 1)Δx1, . . . , c2N + (I2N − 1)Δx2N ) for I ∈ Π2N
i=1[1, Mi] },

with Δxi := di−ci

Mi−1 . However, due the boundedness of K an appropriate choice of a boundary condition is
required to get a well define numerical scheme.

When a strong invariance condition

Fh(x, u) · n(x) < 0 ∀x ∈ ∂K, ∀u ∈ U,
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(with exterior normal n to the boundary of K at x) is satisfied then all trajectories starting in D will remain
within Ω forever, see [6], p. 485. In this case, there is no need to impose a boundary condition. However, the
strong invariance condition is very restrictive and cannot be insured even in the simple case when g ≡ 0.

Here, we introduce an artificial boundary condition by setting the second derivative on the boundary to zero:

∂xxv(x, t) = 0 ∀(x, t) ∈ ∂Ω × (0, T ).

This means that at a time step tn, for n = MT , . . . , 1, if xI ∈ ∂Ω, then there exists i such that Ii = 1 or
Ii = Mi. In this case the upwind derivatives on the boundary should be defined as:⎧⎪⎪⎨⎪⎪⎩

D±
xi

v(xI) =
v(xIi,+) − v(xI)

hi
if Ii = 0,

D±
xi

v(xI) = −v(xIi,−) − v(xI)
hi

if Ii = Mi.

Since the value function is continuous, this approximation is reasonable. For a more sophisticated treatment
of the boundary condition using state constraints we refer to [2].

6. Reconstruction of the trajectory

For the reconstruction of the trajectories we formulate a feedback law based on the HJB approach and present
different numerical realizations. This approach is applicable on a large class of (nonlinear) problems without
modifications of the general setting.

Notice that besides the HJB approach, to study optimal feedback control problems for nonlinear dynamical
systems, it is possible in some situations to use a Riccati based approach. In this case, a Riccati feedback
operator can be derived from the linearized state equation. This approach has been considered, for instance,
in [39] to study boundary control problems governed by Navier Stokes equation. In [13] the authors consider an
infinite horizon problem and propose a method using formally a quadratic Taylor approximation of the solution
of the HJB equation. For a non-autonomous system that appears in the internal stabilization of Navier Stokes
equation to a non-stationary solution a feedback law satisfying a differential Riccati equation can be found
in [5].

According to the HJB approach and its associated dynamic programming principle, the optimal feedback
control u∗

x for state x at time t ∈ [0, T ) satisfies

u∗
x = argmin

u∈U [t,t+τ]

(
e−μτv (yx,t(t + τ), t + τ)) +

∫ t+τ

t

eμ(t−s)lh(yx,t(s), u(s))ds

)
(6.1)

for τ ≥ 0 with t + τ ≤ T (see [6], pp. 149/155), and

U [t,t+τ ] =
{
u : [t, t + τ ] → �

N |∃w ∈ U : w|[t,t+τ ] = u
}

.

The feedback operator K is defined as

K : �2N × (t, T ) −→ U, (x, τ) �→ K(x, τ) = u∗
x(τ). (6.2)

Once the feedback operator is defined, to reconstruct the optimal trajectory starting in x0 at the initial
time 0, one needs just to solve the dynamical system

y′(s) = Fh(y(s),K(y(s), s)), y(0) = x0, s ∈ (0, T ].

To realize the feedback law (6.2) numerically there are several methods. We give an overview about three of
them. Let vΔ be the discrete value function computed on G0 by the ENO scheme described in Section 5.
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1. The dynamics and distributed cost are given in a separable form, i.e.

F(z, u) = F (z) + Bu, l(z, u) = j(z) +
α

2
uT u

with F : �2N → �
2N , matrix B ∈ �2N×N , and j : U → � as it is the case in the problem under consideration.

If the value function satisfy v ∈ C1(�2N ) the feedback operator is determined by the projection of the
gradient of the value function on the set of admissible controls (cf. (3.11)), i.e.

K(x, t) = P[ua,ub]

(
− 1

α
BT∇xv(x, t)

)
. (6.3)

Since only an approximation vΔ of v can be computed, an approximation of the feedback can be given by:

KΔ(x, t) = P[ua,ub]

(
− 1

α
BT∇xvΔ(x, t)

)
, (6.4)

where the gradient ∇xvΔ can be approximated component-by-component by a central difference quotient.
2. The control minimizing the Hamiltonian H can be saved at every time point and in every mesh point of G0

when solving the HJB equation. For all xI ∈ G0, k ∈ { 0, . . . , MT }, we set

KΔ(xI , tk) = argmax
u∈U

(−Fh(xI , u)T∇xvΔ(xI , tk) + lh(xI , u)),

where vΔ denotes the discrete value function. This leads to a set of discrete controls { uI }I∈�2N ,xI∈K whose
elements correspond to the mesh points. The advantage of this approach is that it gives directly the set
of discrete controls without any additional effort. A drawback of this approach is that this set has to be
saved and could be very large (as big as the set of all stored values of the value function). Furthermore,
to compute a feedback control which corresponds to a state which is not a mesh point in G0 one has to
compute the control by an interpolation method. This procedure requires the feedback control operator K
to be continuous, which usually is not the case.

3. In this approach the dynamic programming principle is directly used to reconstruct the trajectories, i.e.
using a discrete version of (6.1). We choose the feedback control by

u∗
x(tk) = argmin

u∈U

(
[vΔ](x + ΔtFh(yx,tk

(tk), u)) + Δtlh(yxI ,tk
(tk), u)

)
,

=: argmin
u∈U

G(x, yx,tk
(tk), u).

(6.5)

Here, [·] is an interpolation of the value function vΔ on G0. A broadly used method to determine the
argmin consists in choosing a finite set Ufinite ⊂ U and computing the argmin with respect to this set by
evaluating the expression G(xI , yx,tk

(tk), u) for all u ∈ Ufinite and taking the control value which minimizes
the expression, see [6], p. 475. If the control space is low dimensional, the approach works well. But in
case of higher dimensions or a large control set Ufinite the approach is only feasible in combination with a
strategy which reduces the number of evaluations of G(xI , yx,tk

(tk), u) in each time step. If the problem can
be decomposed as described in Section 4 the number of evaluations reduces strongly.

In all the simulations performed in this paper, we apply the first of these three methods assuming that the value
function is sufficiently smooth. This method gives us a direct formula for the feedback control and saves much
computational time in comparison to the third option.

7. Numerical examples

Several numerical examples are presented studying the stabilizing effect of the feedback control. For solving
the HJB equation we use the software package ROC-HJ-Solver, see [9], which is parallized with OpenMP. For
the reconstruction of the feedback controls and the corresponding trajectories MATLAB is used.
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In the first three examples we consider an optimal feedback control problem for the linear wave equation and
in the fourth one an optimal control problem for a semi-linear wave equation. In all examples we set Ω = (0, 1),
μ = 0, yd = 0.

7.1. Linear wave equation − without noise

In this example we consider the control problem under consideration for the linear wave equation with data

c = 0.025, T = 8, y0(z) =

(
5∑

i=1

0.3 sin(iπz), 0

)T

, z ∈ Ω (7.1)

and α = 0.1. To validate the numerical algorithm we compare the trajectory we obtain via the HJB approach
with the trajectory via the Riccati approach. The differential Riccati equation for the problem is given by

−P ′(t) = AT P (t) + P (t)A − P (t)BR−1BT P (t) + Q, P (T ) = 0 (7.2)

with Q = Mh, R = α idN , A = M−1
h Ah, and B = M−1

h Bh. The feedback operator for the Riccati approach
which maps the optimal state at time t namely y∗(t) to the corresponding optimal control u∗(t) is given by

K(t) = −R−1BT P (t).

For the reconstruction of the trajectories via the HJB approach we choose the first method presented in
Section 6. The computational domain for the HJB equation is chosen to be K = [−1, 1]10. For the temporal
discretization we choose the mesh size Δt = 2 × 10−3. For the spatial discretization we choose a mesh uniform
in every spatial direction with the following numbers of discretization points

10 × 16 × 30 × 50 × 60 × 10 × 16 × 30 × 50 × 60.

That means for the spatial directions which correspond to higher modes we use more grid points. Further, we
decompose the equation in subproblems as described in Section 4. For the discretization of the dynamical system
as well as the Riccati equation (7.2) we apply a explicit Euler scheme and set the temporal mesh parameter to
kds = 10Δt = 0.02.

In Figure 1 we see the first and fifth component of the state y1 and velocity y2 obtained by the HJB (blue
curves) and the Riccati (red curves) approach and the corresponding components of the feedback control of these
two approaches. The other components show a corresponding behaviour, therefore we skip the plots here. For
the chosen discretization both approaches lead to nearly the same results. If we choose finer spatial mesh sizes
when solving the HJB equation the trajectory of the HJB approach approximates the trajectory of the Riccati
approach more closely. Further numerical experiments show that for a fixed and sufficiently small temporal mesh
size the discretization of the subproblems for the higher modes require a finer spatial mesh to obtain a good
approximation. The corresponding state and velocity of the wave equation which correspond to the computed
trajectories are shown in Figure 2. The example confirms that the chosen boundary condition described in
Section 5.2 leads to appropriate numerical results.

7.2. Linear wave equation − with noise

We study the stabilizing effect of the feedback control on the trajectories in presence of random noise which
either effects the dynamics or the observation. In this example we choose the parameter α = 0.01 which will
lead to a stronger decrease of the trajectories to zero than in the previous example.
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Figure 1. Components of the trajectory and the feedback control via HJB (blue) and Riccati
(red) approach, (α = 0.1). (In color online)

(a) HJB approach (b) Riccati approach

Figure 2. State and velocity of the wave equation by the HJB and Riccati approach, (α = 0.1).
(In color online)

7.2.1. Noise in the dynamics

The noise enters the dynamics, i.e. we consider

yt = Fh(y, u) + M−1
h Bhδ, δ = (δ1, . . . , δ5)T (7.3)

with random functions δi : [0, T ] → [δa, δb], i = 1, . . . , 5, for δa, δb ∈ �. The value function is, of course, computed
for the dynamical system without noise and the feedback law is applied to the state resulting from the perturbed
system. For data as in (7.1) we compute the numerical solution of (7.3) for noise scaled to the following interval

δi(s) ∈ [−4, 4], i = 1, . . . , 5, s ∈ (0, T ]. (7.4)
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Figure 3. Noise in the dynamics: components of the trajectory and the feedback control via
the HJB (blue) approach for the problem with noise and via the Riccati approach (red) for the
equation without noise as well as the components of the trajectory (green) when applying the
optimal control of the noise free system to the perturbed system, (α = 0.01). (In color online)

For solving the HJB equation we proceed as in the previous example. The components of the corresponding
trajectory and feedback control are presented in Figure 3. Again, the blue curves are the components of the
trajectory computed via the HJB approach (the corresponding Riccati approach leads to quite similar results,
why we omit the corresponding curves here). The red curves we obtain by the Riccati approach applied to the
equation without noise. If we plug the resulting control in the perturbed system we obtain the green curves.

In contrast to the latter control we see that the feedback control stabilizes the dynamical system. The
components y2,i, i = 1, . . . , 5, are more susceptible to noise than y1,i, since the noise enters the corresponding
right hand sides.

In Figures 4a and 4b the state and velocity for the HJB and Riccati approach are shown, respectively. Both
approaches drive the state and velocity to zero. We compare these results with the state and velocity when
applying the optimal control for the noise free dynamics to the perturbed system, see Figure 4c. In this case
the control fails to drive state and velocity to zero.

7.2.2. Noise in the observation

The noise enters the observation, i.e. we consider the disturbed feedback law

u(s) = KΔ(x(s) + δ(s)e10, s), e10 = (1, . . . , 1)T

with noise δ(s) : (0, T ] → �. In Figure 5 we see the components of the trajectory and the control. Although we
apply the feedback operator on the perturbed state the resulting control stabilizes the trajectories. Numerical
examples show that the amplitude of the oscillations increase with the amplitude of the noise. We have to choose
the noise level smaller than in the first example namely δ(s) ∈ [0.01, 0.01]. The noise has a much stronger effect
on the trajectory than in the previous examples. As in the previous example the HJB and Riccati approach for
the system with noise lead to very similar curves.

7.3. Linear wave equation − control of high order system

In Example 3.1 we saw that we can expect a good approximation when discretizing the wave equation
with 5 basis functions as we did in the previous examples. However, when considering nondiagonal operators
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(a) HJB approach (b) Riccati approach (c) Comparative solution

Figure 4. Noise in the dynamics: State and velocity of the wave equation via the HJB and
Riccati approach as well as the state and velocity of a noisy dynamical system controlled by
the optimal control of the noise free problem, (α = 0.01). (In color online)
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Figure 5. Noise in the observation: components of the trajectory and the feedback control via
the HJB approach (blue) for the system with noise and via the Riccati approach (red) for the
equation without noise as well as the components of the trajectory (green) when applying the
optimal control of the noise free system to the perturbed system, (α = 0.01). (In color online)

Bh or nonlinear problems the decomposition in subproblems is no longer possible since the equations of the
corresponding dynamical system are coupled. In these cases we restrict the discretization to 3 basis functions for
the state and for the velocity, because of the curse of dimensionality, which results in a six dimensional dynamical
system. Nevertheless we can use the feedback control of this low order system to control a corresponding high
order system. In the following we present an example, where we see the effects of the feedback control obtained
from a low order system on a high order one.
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For the high order system we use a finite element discretization. For given τ > 0 we define the spatial mesh

xi = iτ,

with i = 0, . . . , q, q = 1/τ and consider a standard linear finite element space

V H
τ = {φ ∈ C0(Ω) | φ|Iq ∈ P1(Iq), Iq = [iτ, (i + 1)τ ], i = 0, . . . , q − 1 } ,

where P1(Iq) consist of linear functions on Iq. Further we define the stiffness matrix AFEM and mass matrix
MFEM as in (3.2) with respect to the finite element basis and the corresponding discrete dynamics FFEM as
in (3.3) with gh ≡ 0. Then the semi-discrete system is given by⎧⎨⎩

d
ds

yτ
x,t = FFEM

τ (yτ
x,t, u

τ ) + (0, MFEM)T δ(s)e, s ∈ (0, T ],

yτ
x,t(0) = x

(7.5)

with noise δ : [0, T ] → �, e ∈ �q−1, e(i) = 1 for i = 1, . . . , q − 1, and initial point x ∈ �q−1. For the time
discretization we apply a Crank−Nicolson scheme and use the same temporal mesh as for the low order system.

To set up an algorithm to compute the feedback control for the full order system we introduce the projection
on the low dimensional space

PL : V H
τ → �

3, φ �→ PLφ

with
(PLφ)i = 2

∫
Ω

φ(x) sin(iπx)dx, i = 1, 2, 3

and the pointwise evaluation operator

E : C(Ω) → V H
τ , E(φ) = φ̄, φ̄i = φ(xi), i = 1, . . . , q − 1, φ ∈ C(Ω). (7.6)

The feedback rule for the full order system is presented in Algorithm 1.
For the numerical example we choose the data as follows

c = 0.025, T = 8, y0(z) = (1.5 sin(πz) + sin(2πz) + sin(3πz), 0)T , z ∈ Ω (7.7)

with α = 0.1. We solve the HJB equation on K = [−2.5, 2.5]6 with Δt = 2 × 10−3. For the discretization in
space we choose a spatial mesh with the following numbers of discretization points

4 × 8 × 20 × 4 × 8 × 20.

For the discretization of the wave equation we set the temporal step size to kds = 0.02 and τ = 1/32.
In Figure 6 we compare the components of the trajectory and control for the HJB and Riccati approach. For

the chosen discretization of the HJB equation we observe very similar results for both approaches. In Figure 7
we see the optimal state and velocity of the low order system and the full order system without noise. As one
can expect the results are the same. For the case with noise δ(s) ∈ [−10, 10], s ∈ (0, T ], we see in Figure 8 the
state and velocity for the uncontrolled full order system and when applying the feedback control. In contrast to
the uncontrolled case the state and velocity are stabilized by the feedback control.

If the initial data of the full order problem has components not lying in the low dimensional subspace they
cannot be controlled as we see in Figure 9 where we choose the initial data as

y0(z) = (1.5 sin(πz) + sin(2πz) + sin(3πx) + sin(4πz), 0)T , z ∈ Ω.

We observe that the component of the solution with respect to the fourth basis function remains in the
system.
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Algorithm 1. Feedback control for high order system.
1: Set n = 0.
2: Initial data: yL

0 = P L(yH
0 ) for initial data yH

0 ∈ V H
τ .

3: Repeat
4: Compute the low order feedback control

uL
n = KΔ

(
yL

n , nkds

)
.

5: Compute the high order feedback control

uH
n = E

(
3∑

i=1

uL
n,iϕi

)
.

6: Time step for high order system

yH
n+1 = yH

n +
kds

2

(
FFEM

τ

(
yH

n+1, u
H
n

)
+ FFEM

τ

(
yH

n , uH
n

))
.

7: Project yH
n+1 in the low dimensional space

yL
n+1 = P L

(
yH

n+1

)
.

8: n = n + 1.
9: Until nkds = T .

Next, let the control act only on an open subset ω of Ω, i.e.

Bω = χωB

with characteristic function χω of ω. We choose ω = (0, 0.75) and obtain a discrete operator given by

Bω
h = (0, B2)T , B2 =

⎛⎝ 0.455 0.075 −0.079
0.075 0.375 0.135
−0.079 0.135 0.349

⎞⎠ .

This leads to a dynamics given by
Fh(x, u) = M−1

h (Ahx + Bω
hu) .

The functions pi(x) = χω sin(iπx), i = 1, 2, . . . , are not eigenfunctions of the Laplacian. Therefore, since in
every time step we project the state in the low dimensional space there will always remain components which
cannot be controlled as wee see in Figure 10 where the state, velocity and control for the low and the full order
system are shown for data as given (7.7).

7.4. Semilinear wave equation − with noise

In this example we consider an optimal control problem for a semilinear wave equation. Let the dynamics F
be given as in (2.8) with

g(y) =
1
2
(0, y3)T , y ∈ L2(Ω). (7.8)

Since we consider the HJB equation on a bounded domain we can without loss of generality replace g by a
Lipschitz continuous function satisfying (2.2). We set c = 0.025, T = 4, and α = 0.1. Using (3.1) for N = 3 we
have for the nonlinear term∫

Ω

gh,2(yh
1 (x, t))T ϕ(x)dx = N(yh

1 )(t), ϕ = (ϕ1, ϕ2, ϕ3)T ,
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Figure 6. Components of the trajectory and the control of the HJB (blue curves) and Riccati
(red curves) approach. (In color online)

0
2

4
6

8

0

0.5

1
−1

0

1

2

3

timespace

ve
lo

ci
ty

2
4

6
8

0.5

0
2

4
6

8

0

0.5

1
−4

−2

0

 

timespace
 

ve
lo

ci
ty

(a) Low order system

0
2

4
6

8

0

0.5

1
−1

0

1

2

3

timespace

st
at

e

0
2

4
6

8

0

0.5

1
−4

−2

0

timespace
 

ve
lo

ci
ty

(b) High order system

Figure 7. State and velocity for low order system and high order system without noise in the
dynamics. (In color online)
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(a) Uncontrolled high order system with noise
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(b) Controlled high order system with noise

Figure 8. Uncontrolled and controlled state and velocity for high order system with noise in
the dynamics. (In color online)
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Figure 9. State and velocity of the high order system with initial data x(z) = (1.5 sin(πz) +
sin(2πz) + sin(4πz), 0)T not lying in the low order subspace. (In color online)
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with yh

1 = (y1,1, y1,2, y1,3)T . We compare the results with a linearized Riccati approach. We solve the differential
Riccati equation for the linearized state equation (cf. Sect. 6), i.e. we consider

zt − M−1
h Ahz − M−1

h 3ȳ2z = M−1
h Bhu.

and linearize around the target ȳ = 0.
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Figure 10. Local control of the low and high order system. (In color online)
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Figure 11. Components of the trajectory for the linearized Riccati approach and HJB approach
for nonlinear dynamics with initial point y0 = ỹ0. (In color online)

For the discretization of the HJB equation we choose the computational domain as

[−2, 2]× [−1, 1]× [−1, 1]× [−4, 4]× [−1, 1]× [−1, 1]

and the numbers of discretization points as

10 × 8 × 16 × 10 × 8 × 16.

For time discretization we set Δt = 3.2 × 10−3. For the discretization of the wave equation we choose
kds = 3.2 × 10−2.
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Figure 12. Components of the trajectory for the HJB approach for nonlinear dynamics with
noise. (In color online)
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Figure 13. Components of the trajectories and the feedback control for the HJB (blue) and
linearized Riccati approach with (green) and without (red) noise for nonlinear dynamics with
initial point y0 = ŷ0. (In color online)

We consider two different initial values

ỹ0(z) =
(

1.8 sin(πz) + 0.8 sin(2πz) + 0.5 sin(3πz)
1.8 sin(πz) + 0.5 sin(2πz) + 0.8 sin(3πz)

)
,

ŷ0(z) =
(

1.5 sin(πz) + 0.5 sin(2πz) + 0.5 sin(3πz)
1.5 sin(πz)

)
for z ∈ Ω.

7.4.1. Stabilization via HJB approach for initial data ỹ0 (linearized Riccati approach fails)

The linearized Riccati approach fails to stabilize the system for initial data ỹ0. It leads to a blow up in finite
time as we can see in Figure 11a. This is due to the fact that the initial data is not in the set [−1, 1]6, which
leads to a stronger dominance of the nonlinear term. Nevertheless, the HJB approach stabilizes the system, see
Figure 11b.

For noise δi : [0, T ] → [−3, 3], i = 1, 2, 3, effecting the dynamics as

yt = Fh(y, u) + M−1
h Bhδ, δ = (δ1, δ2, δ3)T (7.9)

Figure 12 shows the components of the trajectory.
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7.4.2. Stabilization via HJB approach for initial data ŷ0 (linearized Riccati approach works)

Finally, we consider the problem with noise in the dynamics for initial point ŷ0. The components of the
trajectory are shown in Figure 13. For t > 2.5 the state is already close to zero and in particular smaller than
1 which implies that the linear term becomes dominant and the nonlinear very small. The influence of the
nonlinear term is hence very small and thus the two feedback laws lead to similar curves. Thus in this case the
initial point is sufficiently close to zero so that the Riccati approach still works.
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Birkhäuser, Boston (2008).

[7] O. Bokanowski, Y. Cheng and C.-W. Shu, A discontinuous Galerkin scheme for front propagation with obstacles. Numer.
Math. (2013) 1–31.

[8] O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems.
J. Sci. Comput. 42 (2010) 251–273.

[9] O. Bokanowski, A. Desilles and H. Zidani, ROC-HJ-Solver. A C++ library for solving HJ equations (2013).

[10] O. Bokanowski, N. Forcadel and H. Zidani, A general Hamilton-Jacobi framework for non-linear state constrained control
problems. SIAM J. Control Optim. 48 (2010) 4292–4316.

[11] O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order
Hamilton-Jacobi Bellman Equations. J. Sci. Comput. 55 (2012) 575–605.

[12] O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton−Jacobi-Bellman equations
with discontinuous initial data. Numer. Math. 115 (2010) 1–44.

[13] J.-M. Buchot, L. Thevenet and J.P. Raymond, Nonlinear feedback stabilization of a two dimensional Burgers equation. ESAIM:
COCV 16 (2010) 929–955.

[14] C. Canuto, M.Y. Hussaini., A. Quarteroni and T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applica-
tions to Fluid Dynamics. Scientific Computation. Springer-Verlag, Berlin, Heidelberg (2007).

[15] M. Falcone and R. Ferreti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton−Jacobi Equations. Appl. Math.
Society for Industrial and Applied Mathematics (2014).

[16] R. Ferretti, Internal approximation schemes for optimal control problems in Hilbert spaces J. Math. Systems 7 (1997) 1–25.

[17] L. Gaudio and A. Quarteroni, Spectral element discretization of optimal control problems. Spectral and High Order Methods
for Partial Differential Equations. Edited by J.S. Hesthaven and E.M. Rønquist. In vol. 76 of Lect. Notes in Comput. Sci.
Engrg. Springer Berlin Heidelberg (2011) 393–401.

[18] M. Gerdts, G. Greif and H.J. Pesch, Numerical optimal control of the wave equation: Optimal boundary control of a string to
rest in finite time. Math. Comput. Simul. 79 (2008) 1020–1032.

[19] J.S. Gibson, An analysis of optimal modal regulation: convergence and stability. SIAM J. Control. Optim. 19 (1981) 686–707.

[20] J.S. Gibson, A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM
J. Control Optim. 29 (1991) 499–515.

[21] S. Gombao and J.-P. Raymond, Hamilton−Jacobi equations for control problems of parabolic equations. ESAIM: COCV 12
(2006) 311–349.

[22] D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications. Capital City Press, Mont-
pelier, Vermont, USA (1991).

[23] M. Gugat and G. Leugering, L∞-norm minimal control of the wave equation: on the weakness of the bang-bang principle.
ESAIM: COCV 14 (2008) 254–283.
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