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THE NORM OPTIMAL CONTROL PROBLEM FOR STOCHASTIC LINEAR
CONTROL SYSTEMS ∗

Yanqing Wang1 and Can Zhang2,∗∗

Abstract. In this paper we are concerned with two norm optimal control problems for different
stochastic linear control systems. One is for approximately controllable systems with the natural filtra-
tion, while another is for exactly controllable systems with a general filtration. For each aforementioned
norm optimal control problem, we construct the unique norm optimal control, through building up some
suitable quadratic functional and making use of a variational characterization on its minimizer.
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1. Introduction

Let (Ω,F ,F, P ) be a complete filtered probability space (satisfying the usual conditions), on which a standard
1-dimensional Brownian motion {W (t); t ≥ 0} is defined. Let T > 0. Consider the following stochastic linear
control system (with suitable coefficient matrices F , G, F1 and G1):{

dy(t) = (Fy(t) +Gu(t))dt+ (F1y(t) +G1u(t))dW (t), t ∈ [0, T ],
y(0) = y0.

(1.1)

In (1.1), y0 ∈ Rn (n ∈ N); while u(·) and y(·) are respectively the control and state variables. Suppose this
system is controllable (which will be defined precisely later). Then, for any target set, there exists a control
process u(·) steering the state process y(·) from any given y0 at the initial time t = 0 to the target set at some
specified time. We call such a control an admissible control. The purpose of this paper is to find a control û(·)
with the minimal norm among all admissible controls. Such a control is called a norm optimal control.

The controllability for the finite-dimensional deterministic linear control systems is completely characterized
by the well-known Kalman algebraic criterion. However, for stochastic control systems, the situation is much
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less satisfactory and there have been very limited publications (cf. [2,16]) about the controllability before 1990.
With the aid of backward stochastic differential equations (BSDEs, for short), some kinds of controllability
have been derived. In [11], the author defined the stochastic exact controllability for the system (1.1) with
natural filtration, and characterized it by an algebraic condition of Kalman-type. For the systems of jump
diffusions with general filtration, the exact controllability in the transposition sense was defined in [14] and the
corresponding Kalman-type condition was also established. For the stochastic approximate controllability of the
finite-dimensional systems and the related generalized Kalman-type condition, we refer to [1, 5] (without jump
diffusions) and [6] (with jump diffusions).

In the deterministic case, the existence of norm optimal controls is guaranteed by the controllability of the
corresponding system. In this case, the norm optimal control can be characterized by either the Pontryagin
maximum principle (cf. e.g. [4]) or a minimizer of some quadratic functional (cf. e.g. [13, 17]), for which the
desired coercivity is easily verified because the deterministic differential equation is invertible with respect to
the time variable. In this study, we adopt the minimization method (cf. e.g. [13, 17]) to obtain sufficient and
necessary conditions for the solvability of the norm optimal control problem for linear stochastic control systems.
We will face to a BSDE, instead of the time-invertible differential equation. We successfully pass this barrier to
prove the coercivity of a similar quadratic functional by using the unique continuation property for solutions to
BSDEs.

The norm optimal control problem considered in this work can be viewed as a stochastic control problem with
some terminal state constraints. The later has been studied in [7, 8, 15]. In [7], a forward-backward stochastic
differential equation controlled system is re-formulated as a purely backward system by treating the terminal
condition of the forward state as a “control”. By this way, a stochastic Pontryagin maximum principle is derived
by means of Ekeland’s variational principle. In [8], a stochastic linear quadratic regulator problem, with integral
quadratic constraints and indefinite control weights, is studied and under some conditions, the optimal control
is described by solutions to an optimal problem and a stochastic Riccati equation with parameters. Our method
(used to derive the norm optimal control) differs considerably from those developed in [7, 8]. It seems that our
method is more straightforward for our problem. Besides, the diffusion term of the system in our framework is
allowed to be state-dependent. This makes our controlled system different from that in [8].

In this paper, we study the norm optimal control problem under suitable conditions on the controllability
and the filtration. The rest of this paper is organized as follows. In Section 2, we consider the norm optimal
control problem for approximately controllable systems with the natural filtration, and obtain necessary and
sufficient conditions for its solvability. In Section 3, we study the same problem but for exactly controllable
systems (“stronger” condition than that of Sect. 2) with a general filtration (weaker than the natural one).
The main tools used in this section are the transposition solution to BSDEs and the Kalman-type condition
guaranteeing the exact controllability.

We end this section by introducing the following notations:

• For any t ∈ [0, T ], L2
Ft

(Ω;Rn) is the Hilbert space of all Ft-measurable, Rn-valued random variables ξ
satisfying ‖ξ‖2

L2
Ft

(Ω;Rn)
= E‖ξ‖2 <∞;

• L2
F
(Ω;D([0, T ];Rn)) is the Banach space of all F-adapted, càdlàg stochastic processes X satisfying

‖X‖2
L2

F
(Ω;D([0,T ];Rn))

= E(supt∈[0,T ] ‖X(t)‖2) <∞;
• L2

F
(Ω;C([0, T ];Rn)) is the subspace of L2

F
(Ω;D([0, T ];Rn)) consisting of all continuous processes;

• L2
F
((0, T )×Ω;Rn) is the Hilbert space of all F-adapted stochastic processes Y satisfying ‖Y ‖2

L2
F
((0,T )×Ω;Rn)

=(
E(
∫ T

0 ‖Y (t)‖2dt)
)
<∞.

All of the above spaces are endowed with the canonical norms. Besides, we denote by A∗ the transport matrix
of A; by 〈·, ·〉 and ‖ · ‖ the usual inner products and norms in different Euclidean spaces respectively, which can
be identified from the context.
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2. Approximately controllable systems with the natural filtration

Consider the following stochastic linear control system with the natural filtration:{
dy(t) =

(
Ay(t) +A1u1(t) +Bu2(t)

)
dt+

(
F1y(t) +Du1(t)

)
dW (t), t ∈ [0, T ],

y(0) = y0,
(2.1)

where y(·) ∈ L2
F
(Ω;C([0, T ];Rn)), u1(·) ∈ L2

F
((0, T )×Ω;Rk), u2(·) ∈ L2

F
((0, T )×Ω;Rl) with 0 ≤ k ≤ n, l ≥ 0,

A ∈ Rn×n, A1 ∈ Rn×k, B ∈ Rn×l, F1 ∈ Rn×n, D ∈ Rn×k and RankD = k. (It can be easily verified that
there exists a matrix H ∈ Rn×n such that H∗D + A1 = 0.) In the sequel, we denote by Ha the control space
L2

F
((0, T )×Ω;Rk) × L2

F
((0, T ) ×Ω;Rl), endowed with the canonical norm

‖(u1, u2)‖Ha =

(
E

∫ T

0

(‖u1(t)‖2 + ‖u2(t)‖2
)
dt

) 1
2

;

we denote by y(·;u1, u2) the solution to the equation (2.1) corresponding to the control process (u1, u2) ∈ Ha.

Definition 2.1. We say that the system (2.1) is approximately controllable (in the time interval [0, T ]) if for
any y0 ∈ Rn, yd ∈ L2

FT
(Ω,Rn) and r > 0, there exists a control (u1, u2) ∈ Ha such that the corresponding

solution to (2.1) satisfies ‖y(T ;u1, u2) − yd‖L2
FT

(Ω;Rn) ≤ r.

We quote the following known result (from [5], Prop. 5), which is a necessary and sufficient condition for the
approximate controllability of the system (2.1).

Proposition 2.2. The system (2.1) (with the natural filtration) is approximately controllable if and only if any
(ϕ(·), ψ(·)) solving the equation:{

−dϕ(t) =
(
(A∗ + F ∗

1H)ϕ(t) + F ∗
1 ψ(t)

)
dt− (Hϕ(t) + ψ(t))dW (t), t ∈ [0, T ],

ϕ(T ) ∈ L2
FT

(Ω;Rn),
(2.2)

and satisfying B∗ϕ(t) = 0 and D∗ψ(t) = 0, a.s., a.e. t ∈ [0, T ] is reduced trivially to 0. Here H is any matrix
such that H∗D +A1 = 0.

We refer to [10] for the well-posedness of the BSDE (2.2). Generally speaking, by the approximate control-
lability of the system, there exists at least one control steering the initial state to any neighborhood of a given
state over some finite time horizon. It is natural to ask whether one could find a control of minimum energy to
bring the initial state to the neighborhood of that given state. This is called the norm optimal control problem
in the context of control theory (cf. e.g., [4,13,17] and the references therein). In this section, we always assume
that the system (2.1) is approximately controllable. For any r > 0, y0 ∈ Rn and yd ∈ L2

FT
(Ω;Rn), the norm

optimal control problem (for (2.1)) is as follows:

(NP)a inf (u1,u2)∈Ua
‖(u1, u2)‖Ha ,

where the admissible control set Ua is defined by

Ua �
{
(u1, u2) ∈ Ha; ‖y(T ;u1, u2) − yd‖L2

FT
(Ω;Rn) ≤ r

}
.

Notice that Ua is not empty because the system (2.1) is approximately controllable. We call (ũ1, ũ2) a norm
optimal control pair to the problem (NP)a if

‖(ũ1, ũ2)‖Ha = inf (u1,u2)∈Ua
‖(u1, u2)‖Ha .
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To present the main result of this section, we define a functional Ja: L2
FT

(Ω;Rn) → R by setting

Ja(ϕT ) =
1
2

E

∫ T

0

(‖B∗ϕ(t)‖2 + ‖D∗ψ(t)‖2
)
dt

+ r‖ϕT ‖L2
FT

(Ω;Rn) + E〈ϕ(0), y0〉 − E〈ϕT , yd〉,
(2.3)

where (ϕ(·), ψ(·)) solves the BSDE (2.2) with ϕ(T ) = ϕT ∈ L2
FT

(Ω;Rn). Now, the main result in this section is
stated as follows:

Theorem 2.3. For the system (2.1), the following statements are equivalent:

(1) The system (2.1) is approximately controllable;
(2) For any r > 0, y0 ∈ Rn and yd ∈ L2

FT
(Ω;Rn), the functional Ja(·) admits a unique minimizer in

L2
FT

(Ω;Rn);
(3) For any r > 0, y0 ∈ Rn and yd ∈ L2

FT
(Ω;Rn), the problem (NP)a has a unique optimal control.

Moreover, the minimizer ϕ̂T of the functional Ja(·) over L2
FT

(Ω;Rn) reduces the unique norm optimal control
pair (û1, û2) to (NP)a by

û1(t) = D∗ψ̂(t), û2(t) = B∗ϕ̂(t), for a.e. t ∈ (0, T ), (2.4)

where (ϕ̂(·), ψ̂(·)) solves the equation (2.2) with the terminal condition ϕ(T ) = ϕ̂T .

Remark 2.4. For the following general controlled system{
dy(t) = (Fy(t) +Gu(t))dt+ (F1y(t) +G1u(t))dW (t), t ∈ [0, T ],
y(0) = y0,

(2.5)

we can transform it to the case (2.1). Indeed, suppose that Rank G1 = k ≤ min{m,n}. Then there exists an
invertible matrix M ∈ Rm×m such that G1M = (D, 0), where D ∈ Rn×k satisfying Rank D = k. Set

M−1u =
(
u1

u2

)
, GM = (A1, B),

where (u1(t), u2(t)) ∈ Rk×Rm−k, for a.e. t ∈ [0, T ] and A1 ∈ Rn×k, B ∈ Rn×(m−k). Therefore the system (2.5)
is equivalent to (2.1) by setting A = F and l = m− k.

If (û1(·), û2(·)) ∈ Ha and ŷ(·) are respectively the optimal control process and the optimal state process to

the problem (NP)a (for the system (2.1)), then û(·) = M

(
û1(·)
û2(·)

)
and ŷ(·) are respectively the optimal control

and state to the corresponding problem for the system (2.5).

Before giving the proof of Theorem 2.3, we study some properties of the functional Ja(·) defined by (2.3).
We say a functional L(·) is coercive in L2

FT
(Ω;Rn) if

L(ϕm
T ) → +∞, as m→ +∞,

where {ϕm
T }m≥1 ⊂ L2

FT
(Ω;Rn) is any sequence such that

lim
m→∞ ‖ϕm

T ‖L2
FT

(Ω;Rn) = +∞.

Lemma 2.5. Suppose that the system (2.1) is approximately controllable. Then the functional Ja(·) is coercive
in L2

FT
(Ω;Rn).
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Proof. Let {ϕm
T }m≥1 ⊂ L2

FT
(Ω;Rn) be an arbitrary sequence such that

lim
m→∞ ‖ϕm

T ‖L2
FT

(Ω;Rn) = +∞.

Set
ϕ̂m

T =
ϕm

T

‖ϕm
T ‖L2

FT
(Ω;Rn)

, for m ∈ N.

Clearly,
‖ϕ̂m

T ‖L2
FT

(Ω;Rn) = 1, m ≥ 1. (2.6)

By the definition (2.3) of Ja(·), we have

Ja(ϕm
T )

‖ϕm
T ‖L2

FT
(Ω;Rn)

=
‖ϕm

T ‖L2
FT

(Ω;Rn)

2
E

∫ T

0

(‖B∗ϕ̂m(t)‖2 +‖D∗ψ̂m(t)‖2
)
dt+ r+E〈ϕ̂m(0), y0〉−E〈ϕ̂m

T , yd〉, (2.7)

where (ϕ̂m, ψ̂m) solves the equation (2.2) with the terminal condition ϕ(T ) = ϕ̂m
T .

It suffices to prove that

lim
m→+∞

Ja(ϕm
T )

‖ϕm
T ‖L2

FT
(Ω;Rn)

≥ r. (2.8)

There are only two cases which are

lim
m→+∞

E

∫ T

0

(‖B∗ϕ̂m(t)‖2 + ‖D∗ψ̂m(t)‖2
)
dt > 0,

and

lim
m→+∞

E

∫ T

0

(‖B∗ϕ̂m(t)‖2 + ‖D∗ψ̂m(t)‖2
)
dt = 0. (2.9)

In the first case, (2.8) follows from (2.7) at once. In the second case, it follows from (2.6) that there are
ϕ̂0

T ∈ L2
FT

(Ω;Rn) and a subsequence of {ϕ̂m
T }m≥1, still denoted by itself, such that

ϕ̂m
T → ϕ̂0

T weakly in L2
FT

(Ω;Rn). (2.10)

We claim that

(ϕ̂m(·), ψ̂m(·)) → (ϕ̂(·), ψ̂(·)) weakly in L2
F
((0, T ) ×Ω;Rn) × L2

F
((0, T ) ×Ω;Rn), (2.11)

where (ϕ̂(·), ψ̂(·)) is the solution to the equation (2.2) with ϕ(T ) = ϕ̂0
T .

When (2.11) is proved, it follows from (2.9) and (2.11) that

E

∫ T

0

(‖B∗ϕ̂(t)‖2 + ‖D∗ψ̂(t)‖2
)
dt = 0.

Since the system (2.1) is approximately controllable, we derive from Proposition 2.2 that ϕ̂(t) ≡ 0 for all
t ∈ (0, T ). Then, (2.8) follows from (2.7) in this case.

The remainder is to show (2.11). For any (ξ(·), η(·)) ∈ L2
F
((0, T ) × Ω;Rn) × L2

F
((0, T ) × Ω;Rn), let S(·) be

the solution to the equation:{
dS(t) = (AS(t) + ξ(t))dt + (F1S(t) + η(t))dW (t), t ∈ [0, T ],
S(0) = 0.
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By Itô’s formula, we have that

E〈S(T ), ϕ̂m
T 〉 = E

∫ T

0

〈ξ(t), ϕ̂m(t)〉dt+ E

∫ T

0

〈η(t), Hϕ̂m(t) + ψ̂m(t)〉dt.

Similarly,

E〈S(T ), ϕ̂0
T 〉 = E

∫ T

0

〈ξ(t), ϕ̂(t)〉dt+ E

∫ T

0

〈η(t), Hϕ̂(t) + ψ̂(t)〉dt.

These two equalities, as well as (2.10), imply that, as m tends to +∞,

E

∫ T

0

〈ξ(t), ϕ̂m(t)〉dt → E

∫ T

0

〈ξ(t), ϕ̂(t)〉dt, ∀ξ ∈ L2
F
((0, T ) ×Ω;Rn)

and

E

∫ T

0

〈η(t), ψ̂m(t)〉dt → E

∫ T

0

〈η(t), ψ̂(t)〉dt, ∀η ∈ L2
F
((0, T ) ×Ω;Rn),

which lead to (2.11). �

Making use of Lemma 2.5, as well as Proposition 2.2, we can get the following properties of Ja(·).
Lemma 2.6. Suppose that the system (2.1) is approximately controllable. Then the functional Ja(·) is strictly
convex. Consequently, Ja(·) admits a unique minimizer ϕ̂T in L2

FT
(Ω;Rn). Furthermore, ϕ̂T = 0 if and only if

‖y(T ; 0, 0)− yd‖L2
FT

(Ω;Rn) ≤ r.

Proof. We first show the strict convexity of Ja(·), i.e., for any α ∈ (0, 1),

Ja

(
αϕT + (1 − α)ϕ̄T

)
< αJa(ϕT ) + (1 − α)Ja(ϕ̄T ), for any ϕT 
= ϕ̄T ∈ L2

FT
(Ω;Rn). (2.12)

Without loss of generality, we can assume that ϕT 
= 0. It follows from (2.3) that

Ja

(
αϕT + (1 − α)ϕ̄T

)
=αJa(ϕT ) + (1 − α)Ja(ϕ̄T )

+ r‖αϕT + (1 − α)ϕ̄T ‖L2
FT

(Ω;Rn) − r(‖αϕT ‖L2
FT

(Ω;Rn) + (1 − α)‖ϕ̄T ‖L2
FT

(Ω;Rn))

+
α(α− 1)

2
E

∫ T

0

(‖B∗ϕ(t) −B∗ϕ̄(t)‖2 +
∥∥D∗ψ(t) −D∗ψ̄(t)

∥∥2) dt.

(2.13)

Now, if
‖αϕT + (1 − α)ϕ̄T ‖L2

FT
(Ω;Rn) < α‖ϕT ‖L2

FT
(Ω;Rn) + (1 − α)‖ϕ̄T ‖L2

FT
(Ω;Rn),

then (2.12) is obviously valid from (2.13). On the other hand, if

‖αϕT + (1 − α)ϕ̄T ‖L2
FT

(Ω;Rn) = α‖ϕT ‖L2
FT

(Ω;Rn) + (1 − α)‖ϕ̄T ‖L2
FT

(Ω;Rn),

then ϕ̄T = kϕT for some k > 0 with k 
= 1. From the uniqueness of the solution to the equation (2.2), we have
that

ϕ̄(t) = kϕ(t), ψ̄(t) = kψ(t), a.e. t ∈ (0, T ).

Hence,

E

∫ T

0

(‖B∗ϕ(t) −B∗ϕ̄(t)‖2 + ‖D∗ψ(t) −D∗ψ̄(t)‖2
)
dt = (1 − k)2E

∫ T

0

(‖B∗ϕ(t)‖2 + ‖D∗ψ(t)‖2
)
dt. (2.14)



THE NORM OPTIMAL CONTROL PROBLEM FOR STOCHASTIC LINEAR CONTROL SYSTEMS 405

Since the system (2.1) is approximately controllable and ϕT 
= 0, it follows from Proposition 2.2 that

E

∫ T

0

(‖B∗ϕ(t)‖2 + ‖D∗ψ(t)‖2
)
dt > 0,

from which, as well as (2.13) and (2.14), the desired inequality (2.12) follows.
We next show the existence and uniqueness of the minimizer of Ja(·) in L2

FT
(Ω;Rn). Let d =

inf ϕT∈L2
FT

(Ω;Rn)Ja(ϕT ). By Lemma 2.5, we have that Ja(·) is coercive, and then d > −∞. Now, there ex-

ists a sequence {ϕm
T }m≥1 ⊂ L2

FT
(Ω;Rn), such that d ≤ Ja(ϕm

T ) < d+ 1
m . By the coercivity of Ja(·), we derive

that ‖ϕm
T ‖L2

FT
(Ω;Rn) ≤ M for some M > 0. Hence there exists a subsequence of {ϕm

T }m≥1 converging weakly

to ϕ̂T in L2
FT

(Ω;Rn). We still use {ϕm
T }m≥1 to denote this subsequence. By the same way to show (2.11) (in

the proof of Lemma 2.5), we can verify that

(ϕm, ψm) → (ϕ̂, ψ̂) weakly in L2
F
((0, T ) ×Ω;Rn) × L2

F
((0, T )×Ω;Rn).

Since Ja(·) is weakly semi-continuous, it holds that

d ≤ Ja(ϕ̂T ) ≤ lim
m→∞

Ja(ϕm
T ) ≤ lim

m→∞

(
d+

1
m

)
= d.

Hence ϕ̂T is a minimizer of Ja(·). The uniqueness of the minimizer of Ja(·) follows from the strictly convexity
of Ja(·).

Finally, we show that
ϕ̂T = 0 ⇔ ‖y(T ; 0, 0)− yd‖L2

FT
(Ω;Rn) ≤ r.

Suppose that ϕ̂T = 0. Then it follows from (2.3) that for each ϕT ∈ L2
FT

(Ω;Rn),

0 ≤ lim
h→0+

Ja(ϕ̂T + hϕT ) − Ja(ϕ̂T )
h

= r‖ϕT ‖L2
FT

(Ω;Rn) + E〈ϕ(0), y0〉 − E〈ϕT , yd〉.

By Itô’s formula, we see that

E〈ϕ(0), y0〉 − E〈ϕT , y(T ; 0, 0)〉 = 0, ∀ϕT ∈ L2
FT

(Ω;Rn).

Hence,
E〈ϕT , yd − y(T ; 0, 0)〉 ≤ r‖ϕT ‖L2

FT
(Ω;Rn), ∀ϕT ∈ L2

FT
(Ω;Rn),

which leads to ‖y(T ; 0, 0)− yd‖L2
FT

(Ω;Rn) ≤ r.

Conversely, we suppose that ‖y(T ; 0, 0)− yd‖L2
FT

(Ω;Rn) ≤ r. Then for any ϕT ∈ L2
FT

(Ω;Rn),

Ja(ϕT ) ≥ r‖ϕT ‖L2
FT

(Ω;Rn) + E〈ϕ(0), y0〉 − E〈ϕT , yd〉
= r‖ϕT ‖L2

FT
(Ω;Rn) + E 〈ϕT , y(T ; 0, 0)− yd 〉

≥ r‖ϕT ‖L2
FT

(Ω;Rn) − ‖ϕT ‖L2
FT

(Ω;Rn)‖y(T ; 0, 0)− yd‖L2
FT

(Ω;Rn)

≥ 0 = Ja(0),

which leads to ϕ̂T = 0. This completes the proof. �

We are now in a position to prove Theorem 2.3.
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Proof of Theorem 2.3.
(1) ⇒ (2). It is clear from Lemma 2.6.
(3) ⇒ (1). Since for any r > 0, y0 ∈ Rn and yd ∈ L2

FT
(Ω;Rn), the problem (NP)a admits an optimal control

pair, then the system (2.1) is approximately controllable.
(2) ⇒ (3). Let ϕ̂T be the minimizer of Ja(·). Then, the Euler−Lagrange equation associated to Ja(·) reads as
follows:

E

∫ T

0

(〈B∗ϕ̂(t), B∗ϕ(t)〉 + 〈D∗ψ̂(t), D∗ψ(t)〉) dt

+ E〈ϕ(0), y0〉 + rE

〈
ϕ̂T

‖ϕ̂T ‖L2
FT

(Ω;Rn)

, ϕT

〉
− E〈ϕT , yd〉 = 0, ∀ϕT ∈ L2

FT
(Ω;Rn).

(2.15)

By Itô’s formula, we see that for each ϕT ∈ L2
FT

(Ω;Rn),

E〈ϕT , y(T ;u1, u2)〉 − E〈ϕ(0), y0〉 = E

∫ T

0

(〈u2(t), B∗ϕ(t)〉 + 〈u1(t), D∗ψ(t)〉) dt. (2.16)

Let (û1, û2) be given by (2.4). We first claim that it is an admissible control pair to the problem (NP)a.
Indeed, it follows from (2.15), (2.16) and (2.4) that

E

〈
y(T ; û1, û2) − yd + r

ϕ̂T

‖ϕ̂T ‖L2
FT

(Ω;Rn)

, ϕT

〉
= 0, ∀ϕT ∈ L2

FT
(Ω;Rn).

That is

y(T ; û1, û2) = yd − r
ϕ̂T

‖ϕ̂T ‖L2
FT

(Ω;Rn)

·

Hence, (û1, û2) is admissible to (NP)a.
We then claim that (û1, û2) is the unique optimal control to the problem (NP)a. To this end, let (u1, u2) be

any admissible control pair to (NP)a. Consequently,

E〈y(T ;u1, u2), ϕT 〉 ≥ −r‖ϕT ‖L2
FT

(Ω;Rn) + E〈yd, ϕT 〉, ∀ϕT ∈ L2
FT

(Ω;Rn). (2.17)

By letting ϕT = ϕ̂T in both (2.15) and (2.16), we obtain from (2.4), as well as (2.17), that

E

∫ T

0

(‖û1(t)‖2 + ‖û2(t)‖2
)
dt = E

∫ T

0

(‖B∗ϕ̂(t)‖2 + ‖D∗ψ̂(t)‖2
)
dt

= − E〈ϕ̂(0), y0〉 − r‖ϕ̂T ‖L2
FT

(Ω;Rn) + E〈ϕ̂T , yd〉

≤ E〈ϕ̂T , y(T ;u1, u2)〉 − E〈ϕ̂(0), y0〉 = E

∫ T

0

(〈u1(t), û1(t)〉 + 〈u2(t), û2(t)〉
)
dt.

Hence,

E

∫ T

0

(‖û1(t)‖2 + ‖û2(t)‖2
)
dt ≤ E

∫ T

0

(〈u1(t), û1(t)〉 + 〈u2(t), û2(t)〉
)
dt.

This, together with the Cauchy−Schwartz inequality, implies the optimality of the control pair (û1, û2). The
uniqueness of the optimal control pair to (NP)a follows immediately from the classical parallelogram rule of
the norm ‖ · ‖Ha . Hence, the proof is completed. �
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Remark 2.7. If F1 = 0, k = 0, then A1 = D = 0, hence the system (2.1) degenerates to{
dy(t) =

(
Ay(t) +Bu2(t)

)
dt, t ∈ [0, T ],

y(0) = y0.
(2.18)

Meanwhile, the dual equation (2.2) degenerates to

{−dϕ(t) = A∗ϕ(t)dt − ψ(t)dW (t), t ∈ [0, T ],
ϕ(T ) ∈ L2

FT
(Ω;Rn).

(2.19)

(NP)a and Ja(·) turn to respectively

(NP)∗a inf u2∈Ua‖u2‖L2
F
((0,T )×Ω;Rl)

and

J∗
a (ϕT ) =

1
2

E

∫ T

0

‖B∗ϕ(t)‖2 dt+ r‖ϕT ‖L2
FT

(Ω;Rn) + E〈ϕ(0), y0〉 − E〈ϕT , yd〉. (2.20)

From Theorem 2.3, J∗
a (·) admits a unique minimizer ϕ̂T ∈ L2

FT
(Ω;Rn), and the unique optimal control to

(NP)∗a is given by û2(·) = B∗ϕ̂(·) ∈ L2
F
((0, T ) ×Ω;Rl).

We now view the system (2.18) as a deterministic control system

{ ˙̄y(t) = Aȳ(t) +Bū2(t), t ∈ [0, T ],
ȳ(0) = y0,

(2.21)

with ū2(·) ∈ L2(0, T ;Rl). Since the stochastic system (2.18) is approximately controllable, the deterministic
one (2.21) is approximately/exactly controllable as well. Hence for any r > 0 and ȳd ∈ Rn, we can also consider
the norm control problem

(NP)∗∗a inf u2∈U∗
a
‖u2‖L2(0,T ;Rl),

with
U∗

a �
{
u2(·) ∈ L2(0, T ;Rl); ‖ȳ(T ;u2) − ȳd‖ ≤ r

}
.

Define a functional J∗∗
a : Rn → R by setting

J∗∗
a (ϕ̄T ) =

1
2

∫ T

0

‖B∗ϕ̄(t)‖2 dt+ r‖ϕ̄T ‖ + 〈ϕ̄(0), y0〉 − 〈ϕ̄T , ȳd〉, (2.22)

where ϕ(·) solves the following deterministic equation:

{− ˙̄ϕ(t) = A∗ϕ̄(t), t ∈ [0, T ],
ϕ̄(T ) = ϕ̄T .

(2.23)

By a similar method as that to prove Theorem 2.3, we can show that J∗∗
a (·) admits a unique minimizer ˆ̄ϕT ∈ Rn,

and the unique optimal control to (NP)∗∗a is ˆ̄u2(·) = B∗ ˆ̄ϕ(·) ∈ L2(0, T ;Rl).
In the above two problems (NP)∗a and (NP)∗∗a , if we take yd = ȳd ∈ Rn, then

ϕ̂T = ˆ̄ϕT , û2(·) = ˆ̄u2(·).

In fact, it is obvious to get the second equality if we have ϕ̂T = ˆ̄ϕT , hence we need only to prove the first
one. It is easy to see that (Eϕ̂(·), 0) solves the equation (2.19) with ϕ(T ) = Eϕ̂T . Notice that for each random
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variable ξ, it holds that E‖ξ‖2 ≥ ‖Eξ‖2. Then, we see that

J∗
a (Eϕ̂T ) =

1
2

E

∫ T

0

‖B∗(Eϕ̂(t))‖2 dt+ r‖Eϕ̂T ‖L2
FT

(Ω;Rn) + E〈Eϕ̂(0), y0〉 − E〈Eϕ̂T , yd〉

≤ 1
2

E

∫ T

0

‖B∗ϕ̂(t)‖2 dt+ r‖ϕ̂T ‖L2
FT

(Ω;Rn) + E〈ϕ̂(0), y0〉 − E〈ϕ̂T , yd〉
= J∗

a (ϕ̂T ).

Hence, ϕ̂T = Eϕ̂T . Furthermore, using yd = ȳd and the uniquely minimal property of ˆ̄ϕT for J∗∗
a (·), we have

J∗
a (ϕ̂T ) = J∗∗

a (ϕ̂T ) ≥ J∗∗
a ( ˆ̄ϕT ) = J∗

a ( ˆ̄ϕT ) ≥ J∗
a (ϕ̂T ),

which yields that
ϕ̂T = ˆ̄ϕT .

Remark 2.8. Now we consider the norm optimal control problem for the following system driving by a 1-
dimensional Brownian motion {W (t); t ≥ 0} and a Poisson random measure N on R+×E (E = R\{0}) defined
on (Ω,F ,FW,N

t , P ; t ≥ 0):

⎧⎨
⎩ dy(t) = (Ay(t) +Bu(t))dt+ Cy(t)dW (t) +

∫
E

D(z)y(t)Ñ(dt, dz), t ∈ (0, T ),

y(0) = y0.

(2.24)

Here y(·) ∈ L2
F
(Ω;D([0, T ];Rn)), u(·) ∈ L2

F
((0, T ) × Ω;Rm), A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×n and D : E →

Rn×n is B(E)-measurable satisfying
∫

E

‖D(z)‖2λ(dz) <∞, where λ is the intensity (Lévy measure) of N with

the property that ∫
E

(1 ∧ |z|2)λ(dz) <∞.

In this case, the norm optimal control problem reads as follows: Fixed T > 0, r > 0, y0 ∈ Rn and yd ∈
L2
FT

(Ω;Rn), consider
(NP)′a inf u∈U ′

a
‖u‖L2

F
((0,T )×Ω;Rm),

where the admissible control set U ′
a is defined by

U ′
a �

{
u ∈ L2

F
((0, T ) ×Ω;Rm); ‖y(T ;u)− yd‖L2

FT
(Ω;Rn) ≤ r

}
.

Also, we define for each ϕT ∈ L2
FT

(Ω;Rn), a functional J ′
a: L2

FT
(Ω;Rn) → R by setting

J ′
a(ϕT ) =

1
2

E

∫ T

0

‖B∗ϕ(t)‖2 dt+ r‖ϕT ‖L2
FT

(Ω;Rn) + E〈ϕ(0), y0〉 − E〈ϕT , yd〉,

where (ϕ(·), ψ(·), φ(·)) solves the following BSDE with jump

⎧⎨
⎩−dϕ(t) =

(
A∗ϕ(t) + C∗ψ(t) +

∫
E

D∗(z)λ(dz)
)
dt− ψ(t)dW (t) −

∫
E

φ(z, t)Ñ(dtdz),

ϕ(T ) = ϕT .

(2.25)
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We refer to [12] for the well-posedness of the equation (2.25). Following the same arguments as those in the
proof of Theorem 2.3, we can obtain the following result:

Theorem 2.9. The following statements are equivalent:

(1) The system (2.24) is approximately controllable;
(2) For any r > 0, y0 ∈ Rn and yd ∈ L2

FT
(Ω;Rn), the functional J ′

a(·) admits a unique minimizer in
L2
FT

(Ω;Rn);
(3) For any r > 0, y0 ∈ Rn and yd ∈ L2

FT
(Ω;Rn), the norm control problem (NP)′a has a unique optimal

control.

Moreover, if ϕ̂T is the minimizer of the functional J ′
a(·) in L2

FT
(Ω;Rn), then û defined by

û(t) = B∗ϕ̂(t), as, a.e. t ∈ (0, T ),

is the unique norm optimal control to the problem (NP)′a, where ϕ̂(·) solves the equation (2.25) with the terminal
condition ϕ(T ) = ϕ̂T .

3. Exactly controllable systems with a general filtration

In this section, we do not assume that (Ω,F ,F, P ) is the natural filtration space. Let us consider the following
exactly controllable stochastic linear control system:{

dy(t) =
(
Ay(t) +A1u1(t) +Bu2(t)

)
dt+ u1(t)dW (t), t ∈ [0, T ],

y(0) = y0,
(3.1)

where u1(·) ∈ L2
F
((0, T )×Ω;Rn) and u2(·) ∈ L2

F
((0, T )×Ω;Rl) are controls, and A ∈ Rn×n, A1 ∈ Rn×n, B ∈

Rn×l. For simplicity, let H denote the space L2
F
((0, T )×Ω;Rn)×L2

F
((0, T )×Ω;Rl) endowed with the canonical

norm.
Since (Ω,F ,F, P ) is a general complete filtration space, similar to [9], we define the transposition solution

(which is different from the strong solution defined by Pardoux and Peng [10]) to BSDE, and then give the
definition of exact controllability of the system (3.1).

Let us assume that f : Ω× [0, T ]×Rn×Rn → Rn is measurable with respect to P⊗B(Rn)⊗B(Rn)/B(Rn),
and g : Rn → Rn is measurable with respect to B(Rn)/B(Rn), where P denotes the σ-field of Ft-progressively
measurable subsets of Ω× [0, T ]. We assume moreover that f(·, 0, 0) ∈ L2

F
(Ω;L1(0, T ;Rn)), f(·, ·, ·) is uniformly

Lipschitz with respect to its second and third arguments, and g(·) is uniformly Lipschitz continuous.

Definition 3.1. We call that (y(·), Y (·)) ∈ L2
F
(Ω;D([0, T ];Rn))×L2

F
(Ω×(0, T );Rn) is a transposition solution

to the following BSDE {
dy(t) = f(t, y(t), Y (t))dt + g(Y (t))dW (t), t ∈ [0, T ],

y(T ) = ξ,
(3.2)

if for any t ∈ (0, T ), ξ ∈ L2
FT

(Ω;Rn) and (u(·), v(·), η) ∈ (L2
F
(Ω × (t, T );Rn))2 × L2

Ft
(Ω;Rn), it holds that

E 〈x(T ), y(T ) 〉−E 〈 η, y(t) 〉 = E

∫ T

t

〈x(τ), f(τ, y(τ), Y (τ)) 〉 dτ

+E

∫ T

t

〈 u(τ), y(τ) 〉 dτ + E

∫ T

t

〈 v(τ), g(Y (τ)) 〉 dτ,

where x(·) is the strong solution to the following forward stochastic differential equation:{
dx(τ) = u(τ)dτ + v(τ)dW (τ), τ ∈ [t, T ],
x(t) = η.

(3.3)
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It is worth mentioning that the equation (3.2) admits a unique transposition solution under g(Y (t)) = Y (t)
(cf. [9], Thm. 4.1).

The following definition of exact controllability is quoted from [14], Definition 4.2.

Definition 3.2. The system (3.1) is said to be exactly controllable in the transposition sense, if for any y0 ∈ Rn

and ξ ∈ L2
FT

(Ω,Rn), one can find a u2(·) ∈ L2
F
((0, T )×Ω;Rl) such that the following BSDE

{
dy(t) =

(
Ay(t) +A1u1(t) +Bu2(t)

)
dt+ u1(t)dW (t), t ∈ (0, T ],

y(T ) = ξ

admits a transposition solution (y(·), u1(·)) satisfying y(0) = y0.

Let r > 0 and yd ∈ L2
FT

(Ω;Rn). We consider a norm optimal control problem as follows:

(NP) inf (u1,u2)∈U‖(u1, u2)‖H,

where the admissible control set U is defined by

U ≡
{

(u1, u2) ∈ H; ‖y(T ;u1, u2) − yd‖L2
FT

(Ω;Rn) ≤ r
}
.

Note that U is not empty if the system (3.1) is exactly controllable. We call (ũ1, ũ2) ∈ U a norm optimal control
pair to the problem (NP) if

‖(ũ1, ũ2)‖H = inf (u1,u2)∈U‖(u1, u2)‖H.
To present the main result of this section, we first define a functional J : L2

FT
(Ω;Rn) → R by setting

J(ϕT ) =
1
2

E

∫ T

0

(‖B∗ϕ(t)‖2 + ‖A∗
1ϕ(t) − ψ(t)‖2

)
dt+ r‖ϕT ‖L2

FT
(Ω;Rn) + E〈ϕ(0), y0〉 − E〈ϕT , yd〉, (3.4)

where (ϕ(·), ψ(·)) solves the following BSDE (in the transposition sense):

{−dϕ(t) = A∗ϕ(t)dt + ψ(t)dW (t), t ∈ [0, T ],

ϕ(T ) = ϕT

(3.5)

with ϕT ∈ L2
FT

(Ω;Rn). Our main result in this section is stated as follows.

Theorem 3.3. Suppose that (3.1) is exactly controllable in the transposition sense. Let ϕ̂T be the minimizer of
the functional J(·) in L2

FT
(Ω;Rn). Then (û1, û2) defined by

û1(t) = A∗
1ϕ̂(t) − ψ̂(t), û2(t) = B∗ϕ̂(t), t ∈ (0, T ),

is the unique norm optimal control pair to the problem (NP). Here (ϕ̂(·), ψ̂(·)) is the transposition solution to
the equation (3.5) with terminal condition ϕ̂(T ) = ϕ̂T .

Remark 3.4. For the following general control system{
dy(t) =

(
Fy(t) +Gu(t)

)
dt+G1u(t)dW (t), t ≥ 0,

y(0) = y0,
(3.6)

similar to Definition 3.2, one can define its exact controllability in the transposition sense. By ([14], Rem. 4.4)
a necessary condition for (3.6) to be exactly controllable is RankG1 = n. In this case, we can also define the
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norm optimal control problem, and by the same method used in Remark 2.4 the general system (3.6) can be
reduced to a standard form like (3.1), i.e.,{

dy(t) =
(
Fy(t) +A1u1(t) +Bu2(t)

)
dt+ u1(t)dW (t), t ∈ [0, T ],

y(0) =y0.
(3.7)

Suppose that (û1(·), û2(·)) ∈ H and ŷ(·) are respectively the optimal control pair and the optimal state of the

system (3.7). Then û(·) = M

(
û1(·)
û2(·)

)
and ŷ(·) are respectively the optimal control and state of the system (3.6),

where A1, B,M satisfying G1M = (In, 0), GM = (A1, B).

If we verify the existence of minimizers of the functional J(·) defined by (3.4) (see Lem. 3.9 below), then we
can prove Theorem 3.3 by the same approach as that in the proof of Theorem 2.3, hence the details are omitted
here. To show the existence and uniqueness of minimizers of J(·), we need several lemmas to be given below.

The following lemma, quoted from ([14], Rem. 4.4) provides a Kalman-type rank condition for the system (3.1)
to be exactly controllable. It will play a crucial role in proving not only the unique continuation property of
solutions to BSDE (3.5) (cf. Lem. 3.8 below), but also the strict convexity of J(·) (cf. Lem. 3.9).

Lemma 3.5 ([14]). The system (3.1) is exactly controllable (in the transposition sense) if and only if

Rank{B,AB,A1B,A
2B,AA1B,A1AB,A

2
1B, . . .} = n. (3.8)

Lemma 3.6. Suppose that the sequence {ϕm
T }m≥1 ⊂ L2

FT
(Ω;Rn) satisfies

ϕm
T → ϕ0

T weakly in L2
FT

(Ω;Rn). (3.9)

Then
(ϕm(·), ψm(·)) → (ϕ0(·), ψ0(·)) weakly in

(
L2

F
((0, T ) ×Ω;Rn)

)2
,

where (ϕm(·), ψm(·)) is the transposition solution to the equation (3.5) with ϕ(T ) = ϕm
T , for each m ≥ 0.

Proof. For any (ξ(·), η(·)) ∈ (L2
F
((0, T )×Ω;Rn)

)2, denote by x(·) the strong solution to the following equation:{
dx(t) = (Ax(t) + ξ(t))dt+ η(t)dW (t), t ∈ [0, T ],
x(0) = 0.

(3.10)

From the definition of transposition solution (taking the testing equation (3.3) to be (3.10)), we obtain that,
for any m ≥ 0,

E〈x(T ), ϕm
T 〉 =E

∫ T

0

〈ξ(t), ϕm(t)〉dt− E

∫ T

0

〈η(t), ψm(t)〉dt. (3.11)

In view of (3.9), (3.11) and the arbitrariness of (ξ(·), η(·)), as m tends to +∞, we have

E

∫ T

0

〈ξ(t), ϕm(t)〉dt → E

∫ T

0

〈ξ(t), ϕ0(t)〉dt,

and

E

∫ T

0

〈η(t), ψm(t)〉dt → E

∫ T

0

〈η(t), ψ0(t)〉dt.

This completes the proof. �

Remark 3.7. The previous result is similar to the conclusion (2.11) in Lemma 2.5. But we use a different
method (based on the definition of transposition solution) to prove it. The main reason is that Itô’s formula
cannot be used directly in the present setting.
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Lemma 3.8. Suppose that the system (3.1) is exactly controllable in the transposition sense. Assume that

E

∫ T

0

(‖B∗ϕ(t)‖2 + ‖A∗
1ϕ(t) − ψ(t)‖2

)
dt = 0. (3.12)

Then
ϕ(t) = 0, ∀ t ∈ [0, T ],
ψ(t) = 0, a.e. t ∈ [0, T ],

where (ϕ(·), ψ(·)) is the transposition solution to the equation (3.5).

Proof. We borrow some idea from [11]. By virtue of Theorem 5.1 from [3], it is clear that the equation (3.5)
admits a unique solution (ϕ(·), ψ(·),M(·)) ∈ L2

F
(Ω;D([0, T ];Rn)) × L2

F
((0, T ) ×Ω;Rn) ×M2(0, T ) satisfying

ϕ(t) − ϕT =
∫ T

t

A∗ϕ(s)ds+
∫ T

0

ψ(s)dW (s) +
∫ T

0

dM(s), ∀t ∈ [0, T ],

where M2(0, T ) is the space of square integrable martingales. From (3.12) and the càdlàg property of ϕ(·), it
follows that

B∗ϕ(t) = 0, ∀ t ∈ [0, T ],

A∗
1ϕ(t) − ψ(t) = 0, a.e. t ∈ [0, T ].

(3.13)

Since (ϕ(·), ψ(·),M(·)) is the solution to the equation (3.5), and noting (3.13), we have that for each t ∈ [0, T ],

0 = B∗ϕ(0) −B∗ϕ(t) =
∫ t

0

B∗A∗ϕ(s)ds +
∫ t

0

B∗ψ(s)dW (s) +
∫ t

0

B∗dM(s).

From the uniqueness for the decomposition of a semimartingale and the strong orthogonality of the martingales
M(·) and

∫ ·
0
ψ(s)dW (s), we conclude that

B∗A∗ϕ(t) = 0, ∀ t ∈ [0, T ],
B∗ψ(t) = 0, a.e. t ∈ [0, T ].

(3.14)

From (3.13) and (3.14), using the same method we have that

B∗A∗
1ϕ(t) = 0, a.e. t ∈ [0, T ].

Similarly,
B∗A∗A∗ϕ(t) = 0, B∗A∗A∗

1ϕ(t) = 0, ∀ t ∈ [0, T ],
B∗A∗

1A
∗ϕ(t) = 0, B∗A∗

1A
∗
1ϕ(t) = 0, ∀ t ∈ [0, T ],

. . .

(3.15)

From (3.13)−(3.15), we obtain that{
B∗, B∗A∗, B∗A∗

1, B
∗A∗A∗, B∗A∗

1A
∗
1, B

∗A∗A∗
1, B

∗A∗
1A

∗, . . .
}
ϕ(t) = 0, ∀ t ∈ (0, T ).

Since the system (3.1) is exactly controllable in the transposition sense, it follows from Lemma 3.5 that (3.8)
holds. Then, ϕ(t) = 0, ∀ t ∈ [0, T ]; hence ψ(t) = 0, M(t) = 0, a.e. t ∈ [0, T ] for the uniqueness of the solution
to (3.5). By Remark 4.3 from [9], (ϕ(·), ψ(·)), the first two components of the solution to the equation (3.5),
coincides with the transposition solution. This completes the proof. �

Lemma 3.9. Suppose that the system (3.1) is exactly controllable in the transposition sense. Then the functional
J(·) defined by (3.4) admits a unique minimizer ϕ̂T in L2

FT
(Ω;Rn).
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Since the proofs are similar to those of Lemmas 2.5 and 2.6, we only give a sketch.

Sketched Proof of Lemma 3.9. We proceed in the following three steps:

Step 1. The functional J(·) is coercive in L2
FT

(Ω;Rn). This statement can be verified by using arguments
analogous to the ones described in the proof of Lemma 2.5 with the claim (2.11) replaced by Lemma 3.6.
Step 2. J(·) is strictly convex. Its proof is analogous to the first part of the proof of Lemma 2.6 with the use
of Proposition 2.2 replaced by that of Lemma 3.8.
Step 3. J(·) admits a unique minimizer ϕ̂T in L2

FT
(Ω;Rn). The proof of this assertion is similar to the second

part of the proof of Lemma 2.6. �
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