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UNIQUE CONTINUATION FOR STOCHASTIC HEAT EQUATIONS ∗
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Abstract. We establish a unique continuation property for stochastic heat equations evolving in a
domain G ⊂ R

n(n ∈ N). Our result shows that the value of the solution can be determined uniquely by
means of its value on an arbitrary open subdomain of G at any given positive time constant. Further,
when G is convex and bounded, we also give a quantitative version of the unique continuation property.
As applications, we get an observability estimate for stochastic heat equations, an approximate result
and a null controllability result for a backward stochastic heat equation.
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1. Introduction

We are concerned with the unique continuation for solutions to stochastic heat equations and its application
in approximate and null controllability problems for backward stochastic heat equation. Let us consider the
following stochastic heat equation:

dy − Δydt = aydt + bydB(t) in G × (0, T ). (1.1)

Here, T > 0 is arbitrarily given and G ⊂ R
n(n ∈ N) is a domain. Let G0 ⊂⊂ G be a subdomain.

We need to introduce some notations to be used in the context. By (Ω,F , {Ft}t≥0, P ), we denote a complete
filtered probability space, on which a standard one dimensional Brownian motion {B(t)}t≥0 is defined. Let H
be a Fréchet space. We use the symbol L2

F(0, T ; H) to stand for the Fréchet space of all H-valued and {Ft}t≥0-

adapted processes X(·) such that E

(
‖X(·)‖2

L2(0,T ;H)

)
< ∞. By the same manner, we adopt the symbols

L∞
F (0, T ; H) to denote the Fréchet space consisting of all H-valued {Ft}t≥0-adapted bounded processes and

L2
F (Ω; C([0, T ]; H)) the Fréchet space consisting of all H-valued {Ft}t≥0-adapted continuous processes X(·)

such that E(‖X(·)‖2
C([0,T ];H)) < ∞. By L2

Ft
(Ω; H), 0 ≤ t ≤ T , we mean the Fréchet space consisting of all

H-valued Ft measurable variables. All the above spaces are endowed with the canonical quasi-norms.
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We assume that the coefficients of equation (1.1) satisfy the following condition:

a ∈ L∞
F (0, T ; L∞

loc(G)) , b ∈ L∞
F
(
0, T ; W 1,∞

loc (G)
)

.

The definition to the solution of equation (1.1) is given as follows.

Definition 1.1. We call y ∈ L2
F(Ω; C([0, T ]; L2

loc(G))) ∩ L2
F(0, T ; H1

loc(G)) a solution to equation (1.1) if for
any t ∈ [0, T ], any open set G′ ⊂⊂ G and any ϕ ∈ H1

0 (G′), it holds that∫
G′

y(t, x)ϕ(x)dx −
∫

G′
y(0, x)ϕ(x)dx =

∫ t

0

∫
G′

[−∇y(s, x) · ∇ϕ(x) + a(s, x)y(s, x)ϕ(x)] dxds

+
∫ t

0

∫
G′

b(s, x)y(s, x)ϕ(x)dxdB(s), P -a.s. (1.2)

We have the following result.

Theorem 1.2. For any given time T0 ∈ (0, T ], let y be a solution to equation (1.1) such that y(·, T0) = 0 in G0,
P -a.s. Then, y(·, T0) = 0 in G, P -a.s. Suppose, in addition, that a ∈ L∞

F (0, T ; L∞(G)), b ∈ L∞
F (0, T ; W 1,∞(G))

and y = 0 on ∂G × (0, T ), P -a.s. Then y = 0 in G × (0, T ), P -a.s.

Remark 1.3. If b ∈ L∞
F (0, T ; W 2,∞

loc (G)) and bt ∈ L∞
F (0, T ; W 2,∞

loc (G)), one can obtain Theorem 1.2 in a simple
way.

Let
z = e�y, � = −b(t, x)B(t).

In light of Itô’s formula, it follows that

dz = yde� + e�dy + dyde�

= −ye�[btBdt + bdB(t)] + e�[Δydt + aydt + bydB(t)] − b2e�ydt

= (−btBz + e�Δy + az − b2z)dt

= Δzdt − (btB − a + b2 + BΔb)zdt + 2e�B∇b · ∇ydt

= Δzdt − (btB − a + b2 + BΔb + |∇b|2B2)zdt + 2B∇b · ∇zdt.

Hence, we know that z solves the following heat equation with random coefficients

zt − Δz = 2e�B∇b · ∇z − (btB − a + b2 + BΔb + |∇b|2B2
)
z in G × (0, T ). (1.3)

For a fixed ω ∈ Ω, z(·, ·, ω) is a solution of a heat equation. From the unique continuation property of heat
equations (see [3,22,23] for example), we have that z(·, T0, ω) = 0 in G, provided that z(·, T0, ω) = 0 in G0. On
the other hand, since y(·, T0, ·) = 0 in G0, P -a.s., we have z(·, T0, ·) = 0 in G0, P -a.s. Thus, we conclude that
z(·, T0, ·) = 0 in G, P -a.s., which leads to that y(·, T0, ·) = 0 in G, P -a.s. Further, if y = 0 on ∂G × (0, T ), we
get z = 0 on ∂G × (0, T ). This, together with z(·, T0, ·) = 0 in G, P -a.s., implies that y = z = 0 in G × (0, T ).

Although the strategy given in this remark is simple, it does not work for our purpose in the present paper.
Our method has its own interest.

First, we can relax the regularity for the coefficients. This is especially important when one deals with
semilinear equations. Let us consider the following example.

dw − ∂xxwdt = wmdB(t) in (0, L) × (0, T ). (1.4)

Here L > 0 and m ∈ N. From Theorem 1.2, we can conclude that if

w1, w2 ∈ CF
(
[0, T ]; H2

loc(0, L)
) ∩ L2

F
(
Ω; C

(
[0, T ]; H1

loc(0, L)
))
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solves (1.4) and w1(·, T0) = w2(·, T0) in G0, P -a.s., then w1(·, T0) = w2(·, T0) in G, P -a.s. Indeed, let w3 =
w1 − w2, then w3 solves

dw3 − ∂xxw3dt = b̃w3dB(t) in (0, L) × (0, T ), (1.5)

where b̃ =
∑m−1

j=0 wj
1w

m−1−j
2 . By Sobolev’s embedding theorem, b̃ ∈ L∞

F (0, T ; W 1,∞
loc (0, L)). Then, by Theo-

rem 1.2, w3(·, T0) = 0 in G, P -a.s. Clearly, b̃ will never be absolutely continuous in the time variable t. Hence,
b̃t /∈ L∞

F (0, T ; W 2,∞
loc (0, L)).

Second, if G is convex, by our method, we can establish a quantitative version of the unique continuation
property. It seems that this cannot be obtained by the strategy introduced above. Indeed, as far as we know,
to obtain an inequality like (1.8) for the solution to equation (1.3), we need the coefficients of ∇z and z to be
essentially bounded with respect to ω. However, it is known that the Brownian motion B does not meet this
condition.

Further, if we put some more assumptions on G, a, b and y, we can get a better result than Theorem 1.2.
More precisely, we assume that

Condition 1.4. (1) The domain G is bounded and convex;

(2) a ∈ L∞
F (0, T ; L∞(G)), b ∈ L∞

F (0, T ; W 1,∞(G)), y = 0 on ∂G × (0, T ).

Under Condition 1.4, the solution to equation (1.1) is now given in the following sense.

Definition 1.5. We call y ∈ L2
F(Ω; C([0, T ]; L2(G))) ∩ L2

F(0, T ; H1
0 (G)) a solution to equation (1.1) if for any

t ∈ [0, T ] and any ϕ ∈ H1
0 (G), it holds that∫

G

y(t, x)ϕ(x)dx −
∫

G

y(0, x)ϕ(x)dx =
∫ t

0

∫
G

[−∇y(s, x) · ∇ϕ(x) + a(s, x)y(s, x)ϕ(x)
]
dxds

+
∫ t

0

∫
G

b(s, x)y(s, x)ϕ(x)dxdB(s), P -a.s. (1.6)

Clearly, the y satisfing Definition 1.5 must satisfy Definition 1.1.
We have the following result.

Theorem 1.6. Assume that Condition 1.4 holds. For any T0 ∈ (0, T ], there exist two constants C > 0 and
δ ∈ (0, 1) such that for any solution y of (1.1), it holds that

‖y(T0)‖L2(Ω;L2(G)) ≤ C ‖y(0)‖1−δ
L2(Ω;L2(G)) ‖y(T0)‖δ

L2(Ω;L2(G0))
. (1.7)

Remark 1.7. Inequality (1.7) is a quantitative version of the unique continuation property for the solution y
with respect to G0 × {T0}. Indeed, if y solves equation (1.1) and y(·, T0) = 0 in G0, P -a.s., then by (1.7) and
the backward uniqueness of the stochastic heat equations (see Lem. 2.3 given in the next section), it is clear
that y vanishes in G, P -a.s.

An obvious drawback of Theorem 1.6 is that we need the convexity of G, which is crucial in the proof. How
to drop it has its own independent interest.

The research of unique continuation for solutions to partial differential equations originated from the classical
Cauchy-Kovalevskaya theorem. It was studied extensively in the literature. We refer the readers to [12, 31] and
the rich references therein in this respect. Besides its own interest in the partial differential equation theory, it
also plays very important roles in both Inverse Problems and Control Theory (see [13, 30] for example). The
classical unique continuation property is of qualitative nature. It guarantees that the value of the solution in
a given domain M1 can be uniquely determined by that of the solution in a suitable subdomain M2 of M1.
Once the unique continuation property holds, a natural question is whether one can find a way to recover the
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solution in M1 by the values of the solution in M2. It is well known that the noncharacteristic Cauchy problem
is ill-posed, i.e., a small error on the data in M2 may cause uncontrollable effects on the solution in M1 (see [11]
for example). Therefore, it is important to have stability estimate for the solution. We refer the readers to [13]
for an introduction for this subject. In general, such kind of estimates can be divided into two classes:

1. Observability estimate. The common form reads

‖y‖M1
≤ C ‖y‖M2

, (1.8)

where ‖·‖Mi
, i = 1, 2 denote some suitable norms for the restriction of the solution y on Mi, i = 1, 2,

respectively, and C is a constant independent of y. We refer the readers to [10, 25] for the observability
estimate for heat equations and stochastic heat equations, respectively.

2. Quantitative version of unique continuation. It also appears in the form of (1.8) but with C depending on
y. One can turn to [3, 4, 15, 20] for such kind of estimates for heat equations and its stochastic counterpart,
respectively.

Although there are numerous references addressing to unique continuation properties for deterministic heat
equations (see [3, 4, 16, 20, 22, 23, 26] for example), very little is known for the stochastic counterpart and it
remains to be further understood. As far as we know, [15, 28] are the only two publications in this field. The
result in reference [28] shows that a solution to the stochastic heat equation (without boundary condition)
evolving in G would vanish almost surely, provided that it vanishes in G0 × (0, T ), P -a.s. In reference [15], the
authors proved that a solution to the stochastic heat equation (with a partial homogeneous Dirichlet boundary
condition on arbitrary open subset Γ0 of ∂G) evolving in G vanishes almost surely, provided that its normal
derivative equals 0 in Γ0×(0, T ), P -a.s. Compared with the result in Theorem 1.2, the results in reference [15,28]
do not need the homogeneous Dirichlet boundary condition. However, they have to utilize the information of the
solution in the whole time duration (0, T ). On the other hand, Theorem 1.2 means that the solution vanishes
almost surely if it vanishes in G0 × {T0}. That is, we need only the information of the solution to (1.1) in G0

at any fixed positive time constant T0 rather than the whole time duration.
As an application of Theorem 1.2, we give an approximate controllability result for backward stochastic heat

equations. We denote by {Wt}t≥0 the natural filtration generated by {B(t)}t≥0, which is augmented by all
the P -null sets. Let H be a Banach space. We denote by L2

W(0, T ; H) the Banach space of all H-valued and

{Wt}t≥0-adapted processes X(·) with E

(
‖X(·)‖2

L2(0,T ;H)

)
< ∞; by L∞

W(0, T ; H) the Banach space consisting

of all H-valued {Wt}t≥0-adapted bounded processes and by L2
W(Ω; C([0, T ]; H)) the Banach space consisting

of all H-valued {Wt}t≥0-adapted continuous processes X(·) such that E

(
‖X(·)‖2

C([0,T ];H)

)
< ∞. All the above

spaces are endowed with the canonical norms.
Assume that ∂G is C2. Consider the following controlled backward stochastic heat equation⎧⎪⎨⎪⎩

dz + Δzdt = a1zdt + b1Zdt + hdt + χE1χG0fdt + ZdB(t) in G × (0, T ),

z = 0 on ∂G × (0, T ),

z(T ) = zT in G.

(1.9)

Here E1 ⊂ [0, T ] is a Lebesgue measurable subset with positive measure, zT ∈ L2(Ω,WT , P ; L2(G)), a1 ∈
L∞
W(0, T ; L∞(G)), b1 ∈ L∞

W(0, T ; W 1,∞(G)), h ∈ L2
W(0, T ; L2(G)), and f ∈ L2

W(0, T ; L2(G)) is the control.
Following the duality analysis in [29], one can show that (1.9) admits a unique solution

(z, Z) ∈ [L2
W
(
Ω; C

(
[0, T ]; L2(G)

)) ∩ L2
W
(
0, T ; H1

0(G)
)]× L2

W
(
0, T ; L2(G)

)
.

Definition 1.8. System (1.9) is approximately controllable if for any zT ∈ L2(Ω,WT , P ; L2(G)), any z0 ∈
L2(G) and any ε > 0, there exists a control f ∈ L2

W(0, T ; L2(G)) such that the solution to the system (1.9) with
terminal state zT and control f satisfying that ‖z(0) − z0‖L2(G) ≤ ε.
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Making use of Theorem 1.2, we obtain the following result.

Theorem 1.9. System (1.9) is approximately controllable.

The approximate controllability for deterministic heat equations is a classical topic in control theory and
almost well understood now. We refer the readers to [2, 5, 7, 8] and the rich references therein for this topic.
However, the approximate controllability problems for forward and backward stochastic heat equations are quite
open. Some special cases in which the approximate controllability problem for stochastic heat equations can
be reduced to the same problem for deterministic ones were studied in reference [1, 9, 19, 24]. In reference [17],
the author shows that the null controllability of a stochastic heat equation does not imply its approximate
controllability. As a direct consequence of the observability estimate in reference [25], one can deduce the
approximate controllability of backward stochastic heat equations evolving in bounded domains. Compared
with the result in reference [25], in the present paper, the control acts only on a measurable subset of [0, T ]
rather than the whole interval and the domain G can be unbounded.

As another application of Theorem 1.6, we have the following observability inequality.

Theorem 1.10. Assume that Condition 1.4 holds. Let E ⊂ (0, T ) be a subset with positive Lebesgue measure
and G0 be a nonempty open subset of G. Then any solution y to (1.1) satisfies the estimate

‖y(T )‖2
L2

FT
(Ω;L2(G)) ≤ C E

∫
E

∫
G0

y2(x, t)dxdt. (1.10)

Observability inequalities play important roles in the study of controllability problems and state observation
problems (see [27, 30] for example). The observability estimate for heat equations with lower order potentials
depending both on x and t was first proved in reference [10] by a global Carleman estimate. In that work, the
integral with respect to t is over [0, T ] rather than only a measurable set. The inequality in the form of (1.10)
was obtained in reference [21] and was used to get the null controllability and the Bang-bang principle for the
time optimal control of heat equations.

As an immediate consequence of Theorem 1.10, we can get the null controllability of backward stochastic
heat equations. Let us first recall the following definition.

Definition 1.11. System (1.9) is said to be null controllable if for any zT ∈ L2(Ω,WT , P ; L2(G)), there exists
a control f ∈ L2

W(0, T ; L2(G)) such that the solution of the system (1.9) with terminal state zT and control f
satisfying that z(0) = 0.

We have the following result.

Theorem 1.12. Assume that h = 0 in (1.9). Then (1.9) is null controllable, provided that G is bounded and
convex.

The null controllability for heat equations is also a classical topic in the control theory of partial differential
equations. There are a large of literatures about it (see [6,8,10,14] and the references therein). Similar to the case
of approximate controllability problems, the study of null controllability problems for forward and backward
stochastic heat equations are very uncomplete. In reference [25], the authors got the null controllability of
backward stochastic heat equations evolving in bounded domains. Compared with the result in reference [25],
in the present paper, the control acts only on a measurable subset of [0, T ] rather than the whole interval but
the domain G should be convex.

The rest of this paper is organized as follows: in Section 2, we introduce some standing notations and
derive some lemmas as preliminaries for the proof of Theorem 1.2. Section 3 is devoted to the proof of
Theorem 1.2. Section 4 is devoted to the proof of Theorem 1.6. In Section 5, we prove the observability re-
sult, i.e., Theorem 1.10. Finally, Section 6 is devoted to the proof of Theorems 1.9 and 1.12.
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2. Some preliminaries

This section is devoted to some preliminaries for the proof of Theorem 1.2. In what follows, for simplicity
of notations, we adopt ϑ(·, x, x0) = exp(−|x − x0|2/4(·)) and ‖a‖· , ‖b‖· for ‖a‖L∞

F (0,T ;L∞(·)), ‖b‖L∞
F (0,T ;W 1,∞(·))

respectively. We fix a point x0 ∈ G0. For λ > 0, define

K(x, t)
�
= (T − t + λ)−

n
2 ϑ(T − t + λ, x, x0), (x, t) ∈ G × [0, T ]. (2.1)

It is clear that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Kt + ΔK = 0, ∇K = − x−x0
2(T−t+λ)K,

ΔK = −n
2(T−t+λ)K + |x−x0|2

4(T−t+λ)2 K,

Kxixj = (xi−x0i)(xj−x0j)
4(T−t+λ)2 K, i 	= j.

(2.2)

Let ϕ be a C∞ function with support G̃ ⊂ G and Φ = ϕy. Let F = aΦ − yΔϕ − 2∇ϕ · ∇y. It follows that

dΦ − ΔΦdt = Fdt + bΦdB. (2.3)

For t ∈ [0, T ], we put ⎧⎪⎪⎨⎪⎪⎩
H(t) = E

∫
G |Φ(x, t)|2K(x, t)dx,

D(t) = E
∫

G |∇Φ(x, t)|2K(x, t)dx,

N(t) = 2D(t)
H(t) provided that H(t) 	= 0.

(2.4)

Throughout this section, we always work under the assumption H(·) 	= 0.

Lemma 2.1. For the function H(·) defined in (2.4), involving the solution y to equation (1.1), it holds that

H ′(t) = −2D(t) + 2E

∫
G

ΦFKdx + E

∫
G

b2Φ2Kdx. (2.5)

Proof. Following Itô’s formula and noticing that Φ has zero boundary condition, we have that

H(t) − H(s) = 2E

∫ t

s

∫
ΦdΦKdx + E

∫ t

s

∫
G

(dΦ)2Kdx + E

∫ t

s

∫
G

Φ2Ktdxdτ

= 2E

∫ t

s

∫
G

Φ
[
ΔΦdτ + Fdτ + bΦdB(τ)

]
Kdx + E

∫ t

s

∫
G

(dΦ)2Kdx − E

∫ t

s

∫
G

Φ2ΔKdxdτ

= 2E

∫ t

s

∫
G

ΦΔΦKdxdτ − E

∫ t

s

∫
G

Φ2ΔKdxdt + 2E

∫ t

s

∫
G

ΦFKdxdτ

+E

∫ t

s

∫
G

(dΦ)2Kdx + 2E

∫ t

s

∫
G

bΦ2KdxdB(τ)

= −2E

∫ t

s

∫
G

|∇Φ|2Kdxdτ + 2E

∫ t

s

∫
G

ΦFKdxdτ + E

∫ t

s

∫
G

(dΦ)2Kdx

= −2E

∫ t

s

∫
G

|∇Φ|2Kdxdτ + 2E

∫ t

s

∫
G

ΦFKdxdτ + E

∫ t

s

∫
G

b2Φ2Kdxdτ. (2.6)

As a result, it is easy to derive from (2.6) that

H ′(t) = −2D(t) + 2E

∫
G

ΦFKdx + E

∫
G

b2Φ2Kdx.

Thus, we complete the proof. �
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Lemma 2.2. For 0 ≤ s < t ≤ T , it follows that

N(t) − N(s) ≤
∫ t

s

(
1

T − τ + λ
+ 2 ‖b‖2

G̃

)
N(τ)dτ + 2 ‖b‖2

G̃ (t − s) +
∫ t

s

E
∫

G
F 2Kdx

H
dτ. (2.7)

Proof. First, we have that

D(t) − D(s) = 2E

∫ t

s

∫
G

ΦdΦKdx + E

∫ t

s

∫
G

(dΦ)2Kdx + E

∫ t

s

∫
G

Φ2Ktdxdτ

= 2E

∫ t

s

∫
G

ΦdΦKdx + E

∫ t

s

∫
G

(dΦ)2Kdx − E

∫ t

s

∫
G

Φ2ΔKdxdτ

= 2E

∫ t

s

∫
G

ΦdΦKdx + E

∫ t

s

∫
G

(dΦ)2Kdx

−E

∫ t

s

∫
G

∇ · (Φ2∇K)dxdτ + E

∫ t

s

∫
G

∇(Φ2) · ∇Kdxdτ

= 2E

∫ t

s

∫
G

Φ(ΔΦ + F )Kdxdτ + 2E

∫ t

s

∫
G

bΦ2KdxdB(τ) + E

∫ t

s

∫
G

b2Φ2Kdxdτ

−2E

∫ t

s

∫
G

Φ
x − x0

2(T − τ + λ)
· ∇ΦKdxdτ

= 2E

∫ t

s

∫
G

Φ

(
ΔΦ +

F

2
− x − x0

2(T − τ + λ)
· ∇Φ

)
Kdxdτ

+E

∫ t

s

∫
G

ΦFKdxdτ + E

∫ t

s

∫
G

b2Φ2Kdxdτ. (2.8)

Next, following some straightforward calculations, we have that

D(t) − D(s) = 2E

∫ t

s

∫
∇Φd∇ΦKdx + E

∫ t

s

∫
G

|d∇Φ|2Kdx − E

∫ t

s

∫
G

|∇Φ|2ΔKdxdτ

= −2E

∫ t

s

∫
G

dΦΔΦKdx + 2E

∫ t

s

∫
G

dΦ
x − x0

2(T − τ + λ)
· ∇ΦKdx

+E

∫ t

s

∫
G

|d∇Φ|2Kdx − 2E

∫ t

s

∫
G

ΔΦ∇Φ · ∇Kdxdτ − 2
n∑

i=1

E

∫ t

s

∫
G

Φxi∇Φ · ∇Kxidxdτ

= −2E

∫ t

s

∫
G

dΦΔΦKdx + 2E

∫ t

s

∫
G

(dΦ + ΔΦdτ)
x − x0

2(T − τ + λ)
· ∇ΦKdx

+E

∫ t

s

∫
G

|d∇Φ|2Kdx + E

∫ t

s

1
T − τ + λ

∫
G

|∇Φ|2Kdxdτ

−2E

∫ t

s

∫
G

(
x − x0

2(T − τ + λ)
· ∇Φ

)2

Kdxdτ.

In the above equality, no boundary terms appear due to the fact that Φ vanishes in a neighborhood of the
boundary of G.
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Aided by equation (2.3) and regrouping the right hand side of the above equality follows that

D(t) − D(s) = E

∫ t

s

1
T − τ + λ

∫
G

|∇Φ|2Kdxdτ + E

∫ t

s

∫
G

|d∇Φ|2Kdx

−2

[
E

∫ t

s

∫
G

(
x − x0

2(T − τ + λ)
· ∇Φ

)2

Kdxdτ + E

∫ t

s

∫
G

(ΔΦ + F )ΔΦKdxdτ

−E

∫ t

s

∫
G

(2ΔΦ + F )
x − x0

2(T − τ + λ)
· ∇ΦKdxdτ

]
−2E

∫ t

s

∫
G

bΦΔΦKdxdB(τ) + 2E

∫ t

s

∫
G

bΦ
x − x0

2(T − τ + λ)
· ∇ΦKdxdB(τ)

= −2E

∫ t

s

∫
G

[
ΔΦ +

F

2
− x − x0

2(T − τ + λ)
· ∇Φ

]2

Kdxdτ +
1
2

E

∫ t

s

∫
G

F 2Kdxdτ

+E

∫ t

s

1
T − τ + λ

∫
G

|∇Φ|2Kdxdτ + E

∫ t

s

∫
G

|∇(bΦ)|2Kdxdτ

−2E

∫ t

s

∫
G

bΦΔΦKdxdB(τ) + 2E

∫ t

s

∫
G

bΦ
x − x0

2(T − τ + λ)
· ∇ΦKdxdB(τ). (2.9)

On the other hand, we have that

D(t) = E

∫
G

|∇Φ|2Kdx

= E

∫
G

∇ · (Φ∇ΦK)dx − E

∫
G

ΦΔΦKdx − E

∫
G

Φ∇Φ · ∇Kdx

= −E

∫
G

ΦΔΦdx + E

∫
G

Φ∇Φ · x − x0

2(T − t + λ)
Kdx

= −E

∫
G

Φ

(
ΔΦ +

F

2
− x − x0

2(T − t + λ)
· ∇Φ

)
Kdx +

1
2

E

∫
G

FΦKdx. (2.10)

Based on (2.5), (2.9) and (2.10), for any 0 ≤ s < t ≤ T , it follows that

N(t) − N(s) = 2
∫ t

s

HdD − DdH

H2

= −
∫ t

s

4
H

E

∫
G

[
ΔΦ +

F

2
− x − x0

2(T − τ + λ)
· ∇Φ

]2

Kdxdτ

+
∫ t

s

4
H2

[
E

∫
G

Φ

(
ΔΦ +

F

2
− x − x0

2(T − τ + λ)
· ∇Φ

)
Kdx

]2
dτ

−
∫ t

s

1
H2

(
E

∫
G

FKdx

)2

dτ −
∫ t

s

2D

H
E

∫
G

b2Φ2Kdxdτ

+
∫ t

s

2
H

E

∫
G

|∇(bΦ)|2Kdxdτ +
∫ t

s

1
T − τ + λ

2D

H
dτ +

∫ t

s

E
∫

G
F 2Kdx

H
dτ.

Applying Cauchy–Schwarz’s inequality to the second term of the right hand side of the above equality and
noticing that Φ = ϕy is supported in G̃, we arrive at that

N(t) − N(s) ≤
∫ t

s

N(τ)
T − τ + λ

dτ +
∫ t

s

2
H

E

∫
G

|∇(bΦ)|2Kdxdτ +
∫ t

s

E
∫

G
F 2Kdx

H
dτ

≤
∫ t

s

(
1

T − τ + λ
+ 2 ‖b‖2

G̃

)
N(τ)dτ + 2 ‖b‖2

G̃ (t − s) +
∫ t

s

E
∫

G F 2Kdx

H
dτ.
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As a result, we complete the proof. �
At last, we introduce the following backward uniqueness for solutions to (1.1).

Lemma 2.3. Assume that Condition 1.4 holds. Let y be a solution to equation (1.1). If y(T ) = 0 in G, P -a.s.,
then y(t) = 0 in G, P -a.s., for all t ∈ [0, T ].

Remark 2.4. Lemma 2.3 was first proved in [18] (see [18], Cor. 1.1 for the details) for bounded domain G. By
a very similar but lengthy argument, the same result can be obtained for unbounded G. Hence, we omit the
detailed proof here.

3. Proof of Theorem 1.2

This section is devoted to the Proof of Theorem 1.2.

Let Bri , i = 1, 2, 3, 4 be balls with center x0 and radius ri respectively. These balls have the property Br =
Br1 ⊂ G0, Brj ⊂⊂ Brj+1 ⊂⊂ G(j = 1, 2, 3). We also choose a special truncated function ϕ for the transformation
Φ = ϕy such that ϕ satisfies the properties

suppϕ ⊂ Br4 and ϕ = 1 in Br3 .

We borrow some ideas from [20,22]. In those papers, the author defined functions like N, H, D in our paper
and discussed the relations among them to obtain a quantitative unique continuation for deterministic heat
equations involving in a bounded domain with Dirichlet boundary condition. But for the stochastic settings,
though the idea can be borrowed, the case is much different for that there are random terms involved.

Proof of Theorem 1.2. Without loss of generality and for the simplicity of the notations, we only consider the
case T0 = T here. The general case can be handled similarly.

We first prove that if y(x, T ) = 0, P -a.s. in Br1 , then it also vanishes in Br2 . We do this by contradiction
argument. In fact, if this claim does not hold, then E

∫
Br2

y2(x, T )dx 	= 0. Therefore, from the continuity of the
solution y of (1.1) with respect to t, there must be some small positive constant ε, such that

E

∫
Br2

y2(x, t)dx 	= 0 for all t ∈ [T − 2ε, T ].

Let us consider the following inequality:∫
G

∣∣∣∇ [Φ(x, T )ϑ(2λ, x, x0)]
∣∣∣2dx ≥ 0,

from which we can obtain some information about N(T ). By some straightforward computations, one has that∫
G

∣∣∣∇Φ(x, T )− x − x0

4λ
Φ(x, T )

∣∣∣2ϑ(λ, x, x0)dx ≤
∫

G

|∇Φ(x, T )|2ϑ(λ, x, x0)dx+
∫

G

|x−x0|2
16λ2

Φ2(x, T )ϑ(λ, x, x0)dx

−2
∫

G

x − x0

4λ
· ∇Φ(x, T )Φ(x, T )ϑ(λ, x, x0)dx

≤
∫

G

|∇Φ(x, T )|2ϑ(λ, x, x0)dx +
∫

G

|x − x0|2
16λ2

Φ2(x, T )ϑ(λ, x, x0)dx

+
n

4λ

∫
G

Φ2(x, T )ϑ(λ, x, x0)dx

−
∫

G

|x − x0|2
8λ2

Φ2(x, T )ϑ(λ, x, x0)dx. (3.1)

In the above process, we adopt integration by parts in the last step. It is easy to find that∫
G

|x − x0|2
8λ

Φ2(x, T )ϑ(λ, x, x0)dx ≤ n

2

∫
G

Φ2(x, T )ϑ(λ, x, x0)dx + 2λ

∫
G

|∇Φ(x, T )|2ϑ(λ, x, x0)dx. (3.2)
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Taking mathematical expectation from both sides of (3.2) and noticing that

E

∫
G

|∇Φ(x, T )|2ϑ(λ, x, x0)dx =
E
∫

G |∇Φ(x, T )|2ϑ(λ, x, x0)dx

E
∫

G
Φ2(x, T )ϑ(λ, x, x0)dx

[
E

∫
G

Φ2(x, T )ϑ(λ, x, x0)dx

]
=

1
2
N(T )E

∫
G

Φ2(x, T )ϑ(λ, x, x0)dx,

we have that

E

∫
G

|x − x0|2Φ2(x, T )ϑ(λ, x, x0)dx ≤ 8λ
(
λN(T ) +

n

2

)
E

∫
G

Φ2(x, T )ϑ(λ, x, x0)dx

≤ 8λ
(
λN(T ) +

n

2

) [
E

∫
Br

Φ2(x, T )ϑ(λ, x, x0)dx

+ E

∫
G\Br

Φ2(x, T0)ϑ(λ, x, x0)dx

]
≤ 8λ

(
λN(T ) +

n

2

) [
E

∫
Br

Φ2(x, T0)ϑ(λ, x, x0)dx

+
1
r2

E

∫
G\Br

|x − x0|2Φ2(x, T )ϑ(λ, x, x0)dx

]
. (3.3)

From this inequality, we immediately obtain that[
1 − 8λ

r2

(
λN(T ) +

n

2

)]
E

∫
G

|x − x0|2Φ2(x, T )ϑ(λ, x, x0)dx ≤ 8λ
(
λN(T ) +

n

2

)
E

∫
Br

Φ2(x, T )ϑ(λ, x, x0)dx.

(3.4)
Now, (3.4) shows that we should give an estimate for λN(T ).
Based on Lemma 2.2 and Gronwall’s inequality, it follows for t ∈ [T − 2ε, T ] that

N(T ) ≤
[
N(t) + 2T ‖b‖2

Br4
+
∫ T

t

E
∫

G F 2Kdx

H
dτ

]
exp

[∫ T

t

(
1

T − τ + λ
+ 2 ‖b‖2

Br4

)
dτ

]
,

which implies that

λN(T ) ≤ (T + λ) exp
(
2T ‖b‖2

Br4

)
N(t)

+ (T + λ) exp
(
2T ‖b‖2

Br4

)(
2T ‖b‖2

Br4
+
∫ T

t

E
∫

G F 2Kdx

H
dτ

)
. (3.5)

Integrating (3.5) with respect to t over [T − 2ε, T − ε], we find that

ελN(T ) ≤ (T + λ) exp
(
2T ‖b‖2

Br4

)∫ T−ε

T−2ε

N(t)dt

+ε(T + λ) exp
(
2T ‖b‖2

Br4

)(
2T ‖b‖2

Br4
+
∫ T

T−2ε

E
∫

G
F 2Kdx

H
dτ

)
. (3.6)

By Lemma 2.1, we have that∫ T−ε

T−2ε

N(t)dt ≤ ln
H(T − 2ε)
H(T − ε)

+ 2
∫ T−ε

T−2ε

E
∫

G
ΦFKdx

H
dt + ε ‖b‖2

Br4
. (3.7)
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From (3.6) and (3.7), we see that

λN(T ) ≤ T + λ

ε
exp

(
2T ‖b‖2

Br4

)[
ln

H(T − 2ε)
H(T − ε)

+ 2
∫ T−ε

T−2ε

E
∫

G ΦFKdx

H
dtε(1 + 2T ) ‖b‖2

Br4

+ε

∫ T

0

E
∫

G F 2Kdx

H
dτ

]

≤ T + λ

ε
exp

(
2T ‖b‖2

Br4

)[
ln

H(T − 2ε)
H(T − ε)

+ ε + ε(1 + 2T ) ‖b‖2
Br4

+(ε + 1)
∫ T

T−2ε

E
∫

G F 2Kdx

H
dt

]
. (3.8)

For brevity of notations, we denote by A(λ) the right hand side of (3.8). We claim that the term involving
F in A(λ) are uniformly bounded with respect to λ ∈ [0, 1] for fixed y solving (1.1).

Recalling that Φ = ϕy and F = aϕy − 2∇ϕ · ∇y − yΔϕ, we get that∫ T

T−2ε

E
∫

G
F 2Kdx

H
dt ≤ 2T ‖a‖2

Br4
+ 8

∫ T

T−2ε

E
∫

G
|∇ϕ|2|∇y|2Kdx

H
dt + 2

∫ T

T−2ε

E
∫

G
|Δϕ|2y2K

H
dt

≤ 2T ‖a‖2
Br4

+ 8
∫ T

T−2ε

E
∫

G\Br3
|∇ϕ|2|∇y|2Kdx

E
∫

Br2
y2Kdx

dt + 2
∫ T

T−2ε

E
∫

G\Br3
|Δϕ|2y2K

E
∫

Br2
y2Kdx

dt

≤ 2T ‖a‖2
Br4

+ 8 max |∇ϕ|2 exp
(
−r3 − r2

4λ

)∫ T

T−2ε

E
∫

G\Br3
|∇y|2dx

E
∫

Br2
y2dx

dt

+2 max |Δϕ|2 exp
(
−r3 − r2

4λ

)∫ T

T−2ε

E
∫

G\Br3
y2dx

E
∫

Br2
y2dx

dt.

Note that r3 > r2, then for fixed y, we proved the claim that the term involving F is uniformly bounded with
respect to λ ∈ [0, 1].

From the definition of H(·), we see that

H(T − 2ε)
H(T − ε)

=
E
∫

G
Φ2(x, T − 2ε)K(x, T − 2ε)dx

E
∫

G Φ2(x, T − ε)K(x, T − ε)dx

≤
(

λ + ε

λ + 2ε

)n
2 E

∫
G Φ2(x, T − 2ε)ϑ(λ + 2ε, x, x0)dx

E
∫

G
Φ2(x, T − ε)ϑ(λ + ε, x, x0)dx

·

Denote the right hand side of the above inequality by E(λ). Then for fixed ε and Φ, it is clear that E(λ) is
continuous in (0, 1] with respect to λ. Then, we know that E(λ) is uniformly bounded in [0, 1]. So is A(λ).

Now returning to (3.4), noticing that λN(T ) ≤ A(λ), we arrive at the following inequality:[
1 − 8λ

r2

(
A(λ) +

n

2

)]
E

∫
G

|x − x0|2Φ2(x, T )ϑ(λ, x, x0)dx ≤ 8λ
(
A(λ) +

n

2

)
E

∫
Br

Φ2(x, T )ϑ(λ, x, x0)dx. (3.9)

Since A(·) is uniformly bounded in (0, 1], we can choose a λ1 ∈ (0, 1] such that[
1 − 8λ1

r2

(
A(λ1) +

n

2

)]
≥ 1

2
·
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This, together with (3.9), implies that

E

∫
G

|x − x0|2Φ2(x, T )ϑ(λ1, x, x0)dx ≤ r2
E

∫
Br

Φ2(x, T )ϑ(λ1, x, x0)dx.

Returning to the definition of Φ = ϕy and the special properties of ϕ and r = r1, we arrive at that

E

∫
Br2

|x − x0|2y2(x, T )ϑ(λ1, x, x0)dx ≤ r2
1E

∫
Br1

y2(x, T )ϑ(λ1, x, x0)dx. (3.10)

From (3.10), we know that we can use the data in a small ball to estimate that in a larger one. It follows
that if y(x, T ) vanishes in Br1 , P -a.s., then so does in Br2 .

Next, we show that if y, which is the solution of (1.1), vanishes in a given small ball, it may vanishes
everywhere in G. We prove this in the following manner.

For brevity, we use B in place of Br1 in (3.10). For any ball B̃ contained in G, we can construct two sequences
of balls {Si}m

i=1 and {S̃i}m−1
i=1 containing in G for some finite natural number m, such that⎧⎪⎪⎨⎪⎪⎩

B ⊂ S1, B and S1 have the same center,

S̃i ⊂⊂ Si ∩ Si+1, S̃i and Si+1 have the same center, i = 1, 2, . . . , m − 1,

Sm ⊂ B̃, Sm and B̃ have the same center.

By (3.10), if y(·, T ) = 0 in B, so does it in S1. Then by the selection of {Si}m
i=1 and {S̃i}m−1

i=1 , y(·, T ) = 0
in S̃1 follows. So y = 0 in S2, . . ., and so on. By induction, we conclude that if y(·, T ) = 0 in Si, so does it
in S̃i ⊂⊂ Si ∩ Si+1, i = 1, 2, . . . , m − 1. So y(·, T ) = 0 in Si+1 follows. we conclude that y = 0 in Sm. At last,
noticing that Sm ⊂ B̃. Then use the same argument to get (3.10), we can conclude y(·, T ) = 0 in B̃.

Following the arbitrariness of B̃, we conclude that if y, the solution of (1.1), vanishes P -a.s. in a small ball
containing in G at some fixed time T , so it vanishes P -a.s in G at time T .

Next, if y = 0 on ∂G × (0, T ), then according to the backward uniqueness of stochastic heat equations (see
Lem. 2.3), we know y = 0 in G× (0, T ), P -a.s. Recalling also that Br1 = Br ⊂ G0, we complete the proof. �

4. Proof of Theorem 1.6

In this section, we give the quantitative unique continuation for the solution of equation (1.1) subject to
Condition 1.4. For convenience, we adopt some notations.

For K defined as in (2.1), we introduce that for t ∈ [0, T ],⎧⎪⎪⎪⎨⎪⎪⎪⎩
H̃(t) = E

∫
G |y(x, t)|2K(x, t)dx,

D̃(t) = E
∫

G
|∇y(x, t)|2K(x, t)dx,

Ñ(t) = 2D̃(t)

H̃(t)
provided that H̃(t) 	= 0.

(4.1)

Similar to the process of establishing Lemmas 2.1 and 2.2, we have the following two results.

Lemma 4.1. For H̃ defined in (4.1), it holds that

H̃ ′(t) = −2D̃(t) + 2E

∫
G

ay2Kdx + E

∫
G

b2y2Kdx. (4.2)

Proof. The process is exactly following that of proving Lemma 2.1. �
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Lemma 4.2. Assume that H̃ 	= 0. For each T > 0 and 0 ≤ s < t ≤ T , it follows that

Ñ(t) − Ñ(s) ≤
∫ t

s

(
1

T − τ + λ
+ ‖b‖2

G

)
Ñ(τ)dτ +

∫ t

s

(
‖a‖2

G + 2 ‖b‖2
G

)
dτ. (4.3)

Proof. The process is mimicking that for Lemma 2.2, so we omit some concrete calculations. The thing we
should put more attention to is how to use the convex condition to deal with the boundary term appearing in
the proof.

First, we can arrive at that

H̃(t) − H̃(s) = 2E

∫ t

s

∫
G

y

(
Δy +

1
2
ay − x − x0

2(T − t + λ)
· ∇y

)
Kdxdτ + E

∫ t

s

∫
G

ay2Kdxdτ

+E

∫ t

s

∫
G

b2y2Kdxdτ. (4.4)

Denote

B = ∇ · (|∇y|2∇K
)− 2∇ · (∇y(∇y · ∇K)) . (4.5)

We have that We have that

D̃(t) − D̃(s) = −2E

∫ t

s

∫
G

[
Δy +

1
2
ay − x − x0

2(T − t + λ)
· ∇y

]2
Kdxdτ

+
1
2

E

∫ t

s

∫
G

a2y2Kdxdτ − E

∫ t

s

∫
G

Bdxdt

+
1

T − t + λ

∫
G

|∇y|2Kdxdt +
∫

G

|∇(by)|2Kdxdt. (4.6)

We also have that

D̃(t) = −E

∫
G

y

[
Δy +

1
2
ay − x − x0

2(T − t + λ)
· ∇y

]
Kdx +

1
2

E

∫
G

ay2Kdx. (4.7)

According to (4.4)–(4.7), we can find that for any 0 ≤ s < t ≤ T ,

Ñ(t) − Ñ(s) = −
∫ t

s

4

H̃
E

∫
G

[
Δy +

1
2
ay − x − x0

2(T − τ + λ)
· ∇y

]2
Kdxdτ

−
∫ t

s

2

H̃
E

∫
G

Bdxdτ +
∫ t

s

1
T − τ + λ

2D̃

H̃
dτ +

∫ t

s

2

H̃
E

∫
G

|∇(by)|2dxdτ

+
∫ t

s

4

H̃2

[
E

∫
G

y

(
Δy +

1
2
ay − x − x0

2(T − τ + λ)
· ∇ydt

)
Kdx

]2
dτ

−
∫ t

s

1

H̃2

(
E

∫
G

ay2Kdx

)2

dτ −
∫ t

s

2D̃

H̃2
E

∫
G

b2y2Kdxdt +
∫ t

s

1

H̃
E

∫
G

a2y2Kdxdτ. (4.8)
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For G being convex, then (x − x0) · ν ≥ 0 for each x ∈ ∂G with ν the out unit normal vector at x. Also,
noting that y, which solves the equation (1.1), vanishes on the boundary ∂G, one finds that∫ t

s

E

∫
G

Bdxdτ =
∫ t

s

E

∫
G

[∇ · (|∇y|2∇K
)− 2∇ · (∇y(∇y · ∇K))

]
dxdτ

=
∫ t

s

E

∫
∂G

[(|∇y|2∇K
)− 2(∇y(∇y · ∇K))

] · ν dSdτ

=
∫ t

s

E

∫
∂G

[
−|∇y|2 (x − x0) · ν

2(T−τ+λ)
+ 2

x − x0

2(T−τ+λ)
· ∇y(∇y · ν)

]
KdSdτ

=
∫ t

s

E

∫
∂G

[
−|∇y|2 (x − x0) · ν

2(T − τ + λ)
+ 2|∇y|2 (x − x0) · ν

2(T − τ + λ)

]
KdSdτ

≥ 0, (4.9)

where we use the symbol dS to represent the boundary measure.
Combining (4.8) with (4.9), it follows that

Ñ(t) − Ñ(s) ≤
∫ t

s

1
T − τ + λ

2D̃

H̃
dτ +

∫ t

s

2

H̃
E

∫
G

|∇(by)|2dxdτ +
∫ t

s

1

H̃
E

∫
G

a2y2Kdxdτ

≤
∫ t

s

(
1

T − τ + λ
+ ‖b‖2

G

)
Ñ(τ)dτ +

∫ t

s

(
‖a‖2

G + 2 ‖b‖2
G

)
dτ. (4.10)

�

Remark 4.3. For Theorem 1.6, we assume the convexity of the domain G. We use this assumption to deal
with the boundary terms as shown in (4.9). How to get rid of this condition has its independent interest.

We are now in a position to give the Proof of Theorem 1.6.

Proof of Theorem 1.6. For simplicity, we always assume that T0 = T in this section. If y(·, T ) = 0 in G, P -a.s.,
then the inequality (1.7) holds. Now we only consider the case that y(·, T ) 	= 0 in G, P -a.s. In this case, due to
Lemma 2.3, we know that y(·, t) 	= 0 in G, P -a.s.

Note that Br ⊂ G0 ⊂⊂ G is the ball centered at x0 with radius r. As in the proof for Theorem 1.2, we begin
with calculating ∫

G

∣∣∣∇ [y(x, T )ϑ(2λ, x, x0)]
∣∣∣2dx ≥ 0.

Via some straightforward calculations, similar to the process of getting (3.4), we arrive at that[
1 − 8λ

r2

(
λÑ (T ) +

n

2

)]
E

∫
G

|x − x0|2y2(x, T )ϑ(λ, x, x0)dx ≤ 8λ
(
λÑ(T ) +

n

2

)
E

∫
Br

y2(x, T )ϑ(λ, x, x0)dx.

(4.11)
In what follows, we turn to estimate λÑ(T ).
From the estimate for Ñ in Lemma 4.2 and Gronwall’s inequality, it follows that

λÑ(T ) ≤ exp
(
(T − t) ‖b‖2

G

)
(T − t + λ)Ñ(t)

+ exp
(
(T − t) ‖b‖2

G

)
(T − t + λ)(T − t)

(
‖a‖2

G + 2 ‖b‖2
G

)
≤ exp

(
T ‖b‖2

G

)
(T + λ)Ñ (t) + exp

(
T ‖b‖2

G

)
(T + λ)T

(
‖a‖2

G + 2 ‖b‖2
G

)
. (4.12)
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Integrating (4.12) with time variable t over [0, T
2 ], we have that

T

2
λÑ(T ) ≤ (T + λ) exp

(
T ‖b‖2

G

) ∫ T
2

0

Ñ(τ)dτ + (T + λ)
T 2

2
exp

(
T ‖b‖2

G

)(
‖a‖2

G + 2 ‖b‖2
G

)
.

Turning to the result of Lemma 4.1, say (4.2), it is easy to show that∫ T
2

0

Ñ(τ)dτ ≤ ln
H̃(0)

H̃(T
2 )

+ T
(
‖a‖G + 2 ‖b‖2

G

)
.

Thus, we obtain that

λÑ(T ) ≤ 2(T + λ)
T

exp
(
T ‖b‖2

G

)[
ln

H̃(0)

H̃(T
2 )

+
T

2

(
2 ‖a‖G + T ‖a‖2

G + (1 + 2T ) ‖b‖2
G

)]
. (4.13)

Denote m = maxx∈G |x − x0|2. By some elementary calculations, we find that

H̃(0)

H̃(T
2 )

=

(
T
2 + λ

T + λ

)n
2

E
∫

G
y2(x, 0)ϑ(T + λ, x, x0)dx

E
∫

G y2
(
x, T

2

)
ϑ(T/2 + λ, x, x0)dx

≤ exp

(
m

4(λ + T
2 )

)
E
∫

G y2(x, 0)dx

E
∫

G y2
(
x, T

2

)
dx

≤ exp
( m

2T

)
E
∫

G
y2(x, 0)dx

E
∫

G
y2
(
x, T

2

)
dx

· (4.14)

Note that y solves equation (1.1). By Itô’s formula, we have that

E

∫
G

y2(x, t)dx = E

∫
G

y2(x, s)dx+ E

∫ t

s

∫
G

(
2ay2 + b2y2 − 2|∇y|2)dxdτ

≤ E

∫
G

y2(x, s)dx + E

∫ t

s

∫
G

(
2ay2 + b2y2

)
dxdτ

≤ E

∫
G

y2(x, s)dx+
(
2 ‖a‖G + ‖b‖2

G

)
E

∫ t

s

∫
G

y2dxdτ

holds for 0 ≤ s ≤ t ≤ T . Due to Gronwall’s inequality, it follows that

E

∫
G

y2(x, T )dx ≤ exp

(
T

(
‖a‖G +

‖b‖2
G

2

))
E

∫
G

y2

(
x,

T

2

)
dx. (4.15)

According to (4.14) and (4.15), we obtain that

H̃(0)

H̃(T
2 )

≤ exp

(
m

2T
+ T

(
‖a‖G +

‖b‖2
G

2

))
E
∫

G
y2(x, 0)dx

E
∫

G y2(x, T )dx
· (4.16)

Making use of (4.13) and (4.16), it is easy to show that

λÑ(T ) ≤ (T + λ) exp
(
T ‖b‖2

G

)[ 2
T

ln
E
∫

G
y2(x, 0)dx

E
∫

G y2(x, T )dx
+

m

T 2

+
(
4 ‖a‖G + T ‖a‖2

G + 2(1 + T ) ‖b‖2
G

)]
. (4.17)
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Fix λ ∈ (0, 1]. Denote

D = (T + 1) exp
(
T ‖b‖2

G

)[ 2
T

ln
E
∫

G y2(x, 0)dx

E
∫

G y2(x, T )dx

+
m

T 2
+
(
4 ‖a‖G + T ‖a‖2

G + 2(1 + T ) ‖b‖2
G

)]
+

n

2
·

We find that
λÑ(T ) +

n

2
≤ D.

This together with (4.11) implies(
1 − 8λ

r2
D
)

E

∫
G

|x − x0|2y2(x, T )ϑ(λ, x, x0)dx ≤ 8λDE

∫
Br

y2(x, T )ϑ(λ, x, x0)dx.

Letting λ̃ = r2

16D , we arrive at that

E

∫
G

|x − x0|2y2(x, T )ϑ
(
λ̃, x, x0

)
dx ≤ r2

E

∫
Br

y2(x, T )ϑ
(
λ̃, x, x0

)
dx. (4.18)

Due to (4.18), an elementary computation gives that

E

∫
G

y2(x, T )ϑ
(
λ̃, x, x0

)
dx = E

∫
G\Br

y2(x, T )ϑ
(
λ̃, x, x0

)
dx + E

∫
Br

y2(x, T )ϑ
(
λ̃, x, x0

)
dx

≤ 1
r2

E

∫
G

|x − x0|2y2(x, T )ϑ
(
λ̃, x, x0

)
dx + E

∫
Br

y2(x, T )ϑ
(
λ̃, x, x0

)
dx

≤ 2E

∫
Br

y2(x, T )ϑ
(
λ̃, x, x0

)
dx. (4.19)

Noting the definition of m and the choice of λ̃, we follows from (4.19) that

E

∫
G

y2(x, T )dx ≤ 2 exp
(

4mD
r2

)
E

∫
Br

y2(x, T )dx. (4.20)

Put

J = D − 2(T + 1)
T

exp
(
T ‖b‖2

G

)
ln

E
∫

G y2(x, 0)dx

E
∫

G y2(x, T )dx

= (T + 1) exp
(
T ‖b‖2

G

) [ m

T 2
+
(
4 ‖a‖G + T ‖a‖2

G + 2(1 + T ) ‖b‖2
G

)]
+

n

2
·

Plugging J into (4.20), one has that

E

∫
G

y2(x, T )dx ≤ 2 exp
(

4mJ
r2

)(
E
∫

G
y2(x, 0)dx

E
∫

G y2(x, T )dx

)θ

E

∫
Br

y2(x, T )dx,

where θ = 8m(T+1) exp(T‖b‖2
G)

r2T .
After some elementary calculations, one finds that

E

∫
G

y2(x, T )dx ≤ 2δ exp(β)
(

E

∫
G

y2(x, 0)dx

)1−δ (
E

∫
Br

y2(x, T )dx

)δ

. (4.21)
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In (4.21), the simple notations δ and β are given as follows:⎧⎨⎩δ = r2T

r2T+8m(T+1) exp(T‖b‖2
G) ,

β = 4mTJ
r2T+8m(T+1) exp(T‖b‖2

G) ·

Noting that Br ⊂ G0, we then complete the Proof of Theorem 1.6. �

5. Proof of Theorem 1.10

This section is devoted to the Proof of Theorem 1.10. To begin with, we first introduce the following lemma,
whose proof can be found in reference [21].

Lemma 5.1. Let E ⊂ (0, T ) be a measurable set of positive measure. Let t0 be a density point of E. Then for
each z > 1, there exists an t1 ∈ (t0, T ) such that the sequence {tm}∞m=1, given by

tm+1 = t0 +
1

zm
(t1 − t0), (5.1)

satisfies
tm − tm+1 ≤ 3|E ∩ (tm+1, tm)|. (5.2)

Proof of Theorem 1.10. Let t0 be a density point of E. Let {tm}∞m=1 be a sequence provided by Lemma 5.1.
From (4.21), it follows that for any t ∈ [0, T ],

E

∫
G

y2(x, t)dx ≤ 2
εγ

exp(Θ)E
∫

Br

y2(x, t)dx + εE

∫
G

y2(x, 0)dx, (5.3)

where

Θ = max
t∈[0,T ]

tJ
2(t + 1) exp

(
t ‖b‖2

G

) , γ = max
t∈[0,T ]

8m(t + 1) exp
(
t ‖b‖2

G

)
r2t + 8m(t + 1) exp

(
t ‖b‖2

G

) ·
For the solution to (1.1), by standard argument, it is easy to verify the following energy estimate:

E

∫
G

y2(x, t)dx ≤ exp (C(a, b)t) E

∫
G

y2(x, 0)dx, (5.4)

where
C(a, b, t) =

(
2 ‖a‖2

G + ‖b‖2
G

)
t.

For t ∈ (tm+1, tm], combining (5.3) and (5.4), one finds that

exp(−C(a, b, T ))E
∫

G

y2(x, tm)dx ≤ E

∫
G

y2(x, t)dx

≤ 2
εγ

exp(Θ)E
∫

Br

y2(x, t)dx + εE

∫
G

y2(x, tm+1)dx.

As a direct result of this inequality, we get that

εγ exp(−C(a, b, T ))E
∫

G

y2(x, tm)dx − εγ+1
E

∫
G

y2(x, tm+1)dx ≤ 2 exp(Θ)E
∫

Br

y2(x, t)dx.
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Integrating over E ∩ (tm+1, tm) shows that

|E ∩ (tm+1, tm)|
[
εγ exp(−C(a, b, T ))E

∫
G

y2(x, tm)dx − εγ+1
E

∫
G

y2(x, tm+1)dx

]
≤ 2 exp(Θ)E

∫
E∩(tm+1,tm)

∫
Br

y2(x, t)dx. (5.5)

Letting αm = εγ |E ∩ (tm+1, tm)|, σm = εγ+1|E ∩ (tm+1, tm)|, then it is clear that

αm exp(−C(a, b, T ))E
∫

G

y2(x, tm)dx − σmE

∫
G

y2(x, tm+1)dx ≤ 2 exp(Θ)E
∫

E∩(tm+1,tm)

∫
Br

y2(x, t)dx.

We choose a sequence of {εm}∞m=1 in the following way: Let σm = αm+1 exp(−C(a, b, T )) such that

εγ+1
m

εγ
m+1

exp(C(a, b, T )) =
|E ∩ (tm+2, tm+1)|
|E ∩ (tm+1, tm)| ·

By means of the properties of {tm}∞m=1 mentioned in Lemma 5.1, this implies that for any m ∈ N,

εγ
m+1 = εγ+1

m exp(C(a, b, T ))
|E ∩ (tm+1, tm)|

|E ∩ (tm+2, tm+1)|
≤ εγ+1

m exp(C(a, b, T ))
3|(tm+1, tm)|
|(tm+2, tm+1)|

≤ 3zεγ+1
m exp(C(a, b, T )). (5.6)

Let us choose ε1 = 1
3z exp(C(a,b,T )) . Then from (5.6), we see that εγ

2 ≤ εγ
1 . Hence, we know that ε2 ≤

1
3z exp(C(a,b,T )) . This, together with (5.6), implies that ε3 ≤ 1

3z exp(C(a,b)) . By induction, we find that

εm ≤ 1
3z exp(C(a, b, T ))

for any m ∈ N.

Consequently, following (5), one finds that

n∑
m=1

(
αm exp(−C(a, b, T ))E

∫
G

y2(x, tm)dx − σmE

∫
G

y2(x, tm+1)dx

)

≤ 2 exp(Θ)
n∑

m=1

E

∫
E∩(tm+1,tm)

∫
Br

y2(x, t)dx,

which implies that

α1 exp(−C(a, b, T ))E
∫

G

y2(x, t1)dx − σnE

∫
G

y2(x, tn+1)dx ≤ 2 exp(Θ)E
∫

E

∫
Br

y2(x, t)dx. (5.7)

It is noted that
lim

n→∞ σn = lim
n→∞ εγ+1

n |E ∩ (tn+1, tn)| = 0

following the construction of {tn}∞n=1 and that 0 < εn < 1
3z exp(C(a,b,T )) . Therefore, in light of (5.7), we imme-

diately arrive at

E

∫
G

y2(x, t1)dx ≤ 2α−1
1 exp(C(a, b, T )) exp(Θ)E

∫
E

∫
Br

y2(x, t)dx.

This inequality together with the energy estimate (5.4) shows that

E

∫
G

y2(x, T )dx ≤ 2α−1
1 exp(2C(a, b, T )) exp(Θ)E

∫
E

∫
Br

y2(x, t)dx.

Letting C = 2α−1
1 exp(2C(a, b, T )) exp(Θ) and noting that Br ⊂ G0, we complete the desired result. �



396 Q. LÜ AND Z. YIN

6. Proof of Theorems 1.9 and 1.12

Proof of Theorem 1.9. Due to the linearity of (1.9), it suffices to show that its attainable set AT at time T with
final datum z(T ) = 0 is dense in L2(G). Let us prove this by the contradiction argument.

If AT is not dense in L2(G), then there exists an η ∈ L2(G) such that η 	= 0 and∫
G

z(0)ηdx = 0 for any z(0) ∈ AT .

Let us consider the following equation⎧⎪⎪⎨⎪⎪⎩
dỹ − Δỹdt = −a1ỹdt − b1ỹdB(t) in G × (0, T ),

ỹ = 0 on ∂G × (0, T ),

ỹ(0) = η in G.

(6.1)

It is clear that the solution ỹ to (6.1) belongs to L2
W(Ω; C([0, T ]; L2(G))) ∩ L2

W(0, T ; H1
0 (G)).

From Itô’s formula, we find that

E

∫
G

ỹ(T )z(T )dx− E

∫
G

ỹ0z(0)dx = E

∫ T

0

∫
G

[ỹ (−Δz + a1z + b1Z + h + χE1χG0f)

+z (Δy − a1ỹ) − b1ỹZ] dxdt

= E

∫ T

0

∫
G

ỹh dxdt + E

∫ T

0

∫
G

ỹχE1χG0f dxdt. (6.2)

Let z(T ) = 0, we obtain that

0 = E

∫
G

z(0)ηdx = E

∫ T

0

∫
G

ỹh dxdt + E

∫ T

0

∫
G

ỹχE1χG0fdxdt. (6.3)

Hence,

E

∫ T

0

∫
G

ỹh dxdt + E

∫ T

0

∫
G

ỹχE1χG0fdxdt = 0

for any f ∈ L2
W(0, T ; L2(G)). Therefore we get

ỹ = 0 in G0 × E1, P -a.s.

Then, from Theorem 1.2, we arrive at η = 0, a contradiction. �
Proof of Theorem 1.12. Consider the following equation:{

dŷ − Δŷdt = −a1ŷdt − b1ŷdB(t) in G × (0, T ),
ŷ = 0 on ∂G × (0, T ).

(6.4)

We introduce a linear subspace of L2
W(0, T ; L2(G0)):

X �
=
{
ŷ|G0×E1 : ŷ solves equation (6.4) with some initial datum ŷ0 ∈ L2(G)

}
,

and define a linear functional L on X as follows:

L(ŷ|G0×E1) = −E

∫
G

y(T )zT dx.
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By Theorem 1.10, we see that

|L (ŷ|G0×E1) | ≤ ‖y(T )‖L2(Ω,FT ,P ;L2(G)) ‖zT‖L2(Ω,FT ,P ;L2(G))

≤ C ‖zT ‖L2(Ω,FT ,P ;L2(G))

(
E

∫ T

0

∫
G0

|χ̂E1y|2dxdt

) 1
2

.

Therefore, L is a bounded linear functional on X . By Hahn–Banach Theorem, L can be extended to a bounded
linear functional with the same norm on L2

F(0, T ; L2(G0)). For simplicity, we use the same notation for this
extension. Now, Riesz Representation Theorem allows us to find a random field f ∈ L2

F (0, T ; L2(G0)) so that

E

∫ T

0

∫
G

ŷχE1χG0f dxdt = E

∫
G

y(T )zT dx. (6.5)

We claim that this f is the control we need. In fact, for any zT ∈ L2
WT

(Ω; L2(G)), for the solution ŷ of
equation (6.4) and the solution (z, Z) of equation (1.9), by Itô’s formula, we get that

E

∫
G

ŷ(T )z(T )dx − E

∫
G

ŷ0z(0)dx = E

∫ T

0

∫
G

[ŷ (−Δz + a1z + b1Z + χE1χG0f) + z (Δy − a1ŷ) − b1ŷZ] dxdt

= E

∫ T

0

∫
G

ŷχE1χG0f dxdt. (6.6)

Combining (6.5) and (6.6), we find that

E

∫
G

ŷ0z(0)dx = 0.

Since ŷ0 can be chosen arbitrarily, we know that z(0) = 0 in G. �
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	Introduction
	Some preliminaries
	Proof of Theorem 1.2
	Proof of Theorem 1.6
	Proof of Theorem 1.10
	Proof of Theorems 1.9 and 1.12
	References

