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UNCONSTRAINED VARIATIONAL PRINCIPLES FOR LINEAR
ELLIPTIC EIGENPROBLEMS ∗

G. Auchmuty
1

and M.A. Rivas
1

Abstract. This paper introduces and studies some unconstrained variational principles for finding
eigenvalues, and associated eigenvectors, of a pair of bilinear forms (a,m) on a Hilbert space V . The
functionals involve a parameter µ and are smooth with well-defined second variations. Their non-zero
critical points are eigenvectors of (a, m) with associated eigenvalues given by specific formulae. There
is an associated Morse-index theory that characterizes the eigenvector as being associated with the
jth eigenvalue. The requirements imposed on the forms (a,m) are appropriate for studying elliptic
eigenproblems in Hilbert−Sobolev spaces, including problems with indefinite weights. The general
results are illustrated by analyses of specific eigenproblems for second order elliptic Robin, Steklov
and general eigenproblems.
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1. Introduction

This paper describes a family of unconstrained variational principles for finding eigenvalues and eigenvectors
of a pair (a, m) of continuous symmetric bilinear forms on a real separable Hilbert space V . The requirements
on the forms a, m are appropriate for elliptic eigenproblems set in Hilbert−Sobolev spaces on bounded regions.
The framework is quite general but, in Sections 8−11, the variational principles for some Robin, Steklov and
general eigenproblems for second order elliptic equations on bounded regions in R

N are detailed.
The functionals have well-defined first and second variations and their non-zero critical points are eigenvectors

of (a, m). When μ is large enough, their global minimizers occur at critical points associated with the least
eigenvalue of (a, m). For fixed μ, the critical points of the functional G (·, μ) are associated with the smallest J
eigenvalues of (a, m) with J finite. Since the functionals are smooth, the second variation at a non-degenerate
critical point has a well-defined Morse index. The Morse index counts the number of eigenvalues that are less
than the current eigenvalue.

This analysis may well be compared with the corresponding analysis for constrained variational principles
using Rayleigh’s principle. Such theories are described in Chapter 8 of Attouch et al. [1] and also in the
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monograph of Edmunds and Evans [10]. An analysis of elliptic eigenproblems based on the use of two real
Hilbert spaces V, H may be found in Blanchard and Brüning [8], Chapter 6. In contrast to most of these
references the analysis here only involves continuous bilinear forms on the real Hilbert space V and avoids the
introduction of dual, or other, Sobolev spaces and linear transformations. This framework allows the application
to more general boundary conditions and eigenproblems than these texts.

The forms generally include boundary integrals with the eigenvalue equation being the weak form of the usual
elliptic problem. The basic assumptions are that a is continuous, symmetric and V -coercive on the real Hilbert
space V and m is symmetric, weakly continuous and positive on V . A description of the Rayleigh principle
analysis based on continuous bilinear forms may be found in Auchmuty [6] and results from that paper are
reprised in Section 2. Section 3 describes some basic results about (Morse) indices and the decomposition of
bilinear forms.

The unconstrained variational principle is introduced in Section 4 where some basic properties of the func-
tional are proved. This enables results about the existence of global minimizers of the variational problem and
the characterization of critical points as eigenvectors of the pair (a, m). Moreover, a bifurcation diagram for the
dependence of critical points on μ is provided.

Section 5 describes the evaluation of the Morse index and null index of critical points of the functional and
shows that non-degenerate critical points are precisely those associated with simple eigenvalues of (a, m). In
particular, non-degenerate critical points of G (·, μ) corresponding to the jth eigenvalue (counting multiplicity)
are saddle points of G (·, μ) of Morse index (j − 1) provided μ is large enough.

In Section 6, it is shown how an appropriate penalization of the functional G (·, μ) provides a functional whose
unconstrained minimizer occurs at a critical point associated with the second eigenvalue of (a, m).

In Section 7 some of the preceding results are extended to the case where the bilinear form m is allowed to
have varying sign. In this indefinite case, the variational principle for the positive eigenvalues and that for the
negative eigenvalues are different.

The last sections of this paper illustrate the application of this general theory to some different eigenproblems
for second-order divergence form elliptic problems. Section 8 treats problems with homogeneous (zero) Robin
boundary conditions. 9 treats Steklov eigenproblems that involve homogeneous equations with the eigenparame-
ter only in the boundary condition. 10 describes results for these variational principles for Steklov eigenproblems
with indefinite weight functions. Finally, Section 11 describes results for eigenproblems where the eigenparameter
enters both the differential equation and the boundary condition.

Some of the results here are related to results obtained by the first author on unconstrained variational
principles for various other eigenproblems described in [2, 6].

2. Bilinear forms and notation

Throughout this paper V is a real, separable, infinite dimensional, Hilbert space. The inner product and norm
on V are denoted 〈·, ·〉V and ‖ · ‖V . The dual space of V will be denoted V ∗ and is again a separable infinite
dimensional Hilbert space with the usual dual norm and inner product. Through Section 7 our treatment is
quite general but the aim is to provide the results appropriate for the examples studied thereafter that involve
eigenproblems for elliptic forms on H1(Ω).

A bilinear form b : V ×V → R is said to be symmetric if b(u, v) = b(v, u) for all (u, v) ∈ V ×V . Our interest
is in finding non-trivial solutions (λ, u) ∈ R × V of

a(u, v) = λ m(u, v) for all v ∈ V. (2.1)

Here a : V ×V → R and m : V ×V → R are continuous symmetric bilinear forms on V. This will be called the
(a, m) eigenproblem. The number λ is an eigenvalue of (a, m) if there is a non-zero vector u ∈ V satisfying (2.1).
Any such u is called an eigenvector of (a, m) corresponding to λ.

When λ is an eigenvalue, let Eλ be the set of all u ∈ V such that (2.1) holds. An eigenvector e of (a, m)
is said to be m-normalized provided m(e, e) = 1. The number of linearly independent eigenvectors of (a, m)
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corresponding to the eigenvalue λ is called the multiplicity of λ. When the multiplicity of λ is one, then λ is
said to be a simple eigenvalue.

Define A , M to be the quadratic forms on V associated with (a, m), respectively, so that

A (u) := a(u, u), and M (u) := m(u, u). (2.2)

Our results about the eigenproblem for (a, m) will be proved using variational methods subject to some of
the following conditions.

(A1) a(·, ·) is a continuous symmetric bilinear form that also is V -coercive. That is there are 0 < k0 ≤ k1 < ∞
such that

k0‖u‖2
V ≤ A (u) ≤ k1‖u‖2

V for all u ∈ V. (2.3)

(A2) m(·, ·) is a weakly continuous symmetric bilinear form on V .
(A3) M (u) ≥ 0 for all u in V and M (u) > 0 for some u in V .
(A4) M (u) > 0 for all non-zero u in V .

When (A1) holds then the bilinear form a(·, ·) defines an inner product on V that is equivalent to the V inner
product. The functional M is said to be positive when (A3) holds and then ‖u‖m :=

√
M (u) will be a

semi-norm on V . When M satisfies (A4) it is said to be strictly positive and m(·, ·) is an inner product on V .
If (A1)−(A3) hold let v = u in (2.1) to conclude that every eigenvalue λ must be strictly positive and the

eigenvectors obey m(u, u) > 0.
When b is a symmetric continuous bilinear form on V , then the null space N(b) of b is the set of all vectors

v ∈ V satisfying
b(v, w) = 0 for all w ∈ V. (2.4)

b is said to be non-degenerate if N(b) = {0}; otherwise, b is said to be degenerate. The dimension of N(b) is
called the null index of b and denoted i0(b). Moreover, we say b has finite rank M , with M ∈ N, provided there
are M linearly independent functionals f1, . . . , fM in V ∗ with

b(u, v) =
M∑

j=1

fj(u)fj(v) for all u, v ∈ V.

Two vectors u, v ∈ V are said to be b-orthogonal provided b(u, v) = 0. A subset E of V is b-orthonormal
provided any two vectors in E are b-orthogonal and b(e, e) = 1 for each e ∈ E . A subset E of V is said to be a
basis of V if it is a maximal linearly independent set in V with respect to inclusion. E is a b-orthogonal basis
of V when E is a basis that also is b-orthogonal. Note that if e is an eigenvector of (2.1) corresponding to an
eigenvalue λ 
= 0, then

m(u, e) = 0 ⇐⇒ a(u, e) = 0. (2.5)

In particular if ej , ek are eigenvectors of (a, m) corresponding to distinct eigenvalues λj , λk, then they are both
a-orthogonal and m-orthogonal.

When (A1)−(A3) hold, let N(m) be the null space of m and W be its orthogonal complement so

V = N(m) ⊕a W (2.6)

is an orthogonal decomposition of V with respect to the a-inner product. The eigenvectors of (a, m) lie in W .
When (A1)−(A3) hold, there are eigenvalues and eigenvectors of (a, m). Specifically the following result is a

restatement of results described in Auchmuty [6].
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Theorem 2.1. Assume the pair (a, m) satisfies (A1)–(A3). Then either

(i) there are finitely many m-orthonormal eigenvectors EN := {ej : 1 ≤ j ≤ N} corresponding to non-zero
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN of (a, m), or;

(ii) there are countably infinitely many m-orthonormal eigenvectors E := {ej : j ≥ 1} corresponding to
non-zero eigenvalues λ1 ≤ λ2 ≤ . . . of the pair (a, m), with no finite accumulation point.

In both cases, these eigenvalues can be found iteratively and are repeated according to multiplicity. When (A4)
holds, then (ii) holds, λ1 > 0 and E is an m-orthonormal basis of V .

Proof. The assumptions on the bilinear forms a(·, ·) and m(·, ·) are the requirements for the bilinear forms in
Theorem 4.2 and Theorem 4.3 in Auchmuty [6]. Those theorems yield the desired results with a-orthonormality
in place of m-orthonormality. As (2.5) holds for an eigenvector e corresponding to non-zero eigenvalue λ of
(a, m), a-orthogonality may be replaced by m-orthogonality. Moreover, m-normalized eigenvectors are obtained
from a-normalized eigenvectors by taking ẽ := λ1/2e for an a-normalized eigenvector e corresponding to the
eigenvalue λ. �

In this paper, various results from the calculus of variations will be used. Background material may be found
in Attouch, Buttazzo, and Michaille [1], Blanchard and Brüning [8] or Zeidler [12].

Let F : V → R be a given functional. The first variation of F at a point u ∈ V in the direction v ∈ V is
defined by

δF (u; v) :=
d
dt

F (u + tv)
∣∣∣
t=0

(2.7)

when this derivative exists. When δF (u; v) exists for all v ∈ V and is a continuous linear form in v, then F is
said to be Gâteaux differentiable at u and the linear functional v �→ δF (u; v) is the Gâteaux derivative of F at
u.

A point u ∈ V is a critical point of F provided F is Gâteaux differentiable at u and

δF (u; v) = 0 for all v ∈ V.

A number c is a critical value of F if there is a critical point u with F (u) = c. The second variation of F at u
in the directions v, w ∈ V is defined by

δ2F (u; v, w) :=
∂2

∂t2 ∂t1
F (u + t1v + t2w)

∣∣
t1=t2=0

(2.8)

whenever this derivative exists. If δ2F (u; v, w) exists for all v, w ∈ V and is a continuous bilinear form in (v, w),
then F is said to be twice Gâteaux differentiable at u and the bilinear form (v, w) �→ δ2F (u; v, w) is called the
Hessian form of the functional F at u.

3. Eigenproblems and indices

In this paper we shall prove results about the critical points of smooth unconstrained variational problems,
the critical points yielding solutions of certain eigenvalue problems. In particular the Morse index of a critical
point will be related to an ordering of the eigenvalues of (a, m). First the Morse index of forms that satisfy a
G̊arding type inequality will be defined. This proceeds along the lines outlined in Zeidler ([12], Sect. 37.27b)
but uses bilinear forms directly − not associated linear operators between dual spaces.

Assume that b satisfies:

(M1) b : V × V → R is a continuous symmetric bilinear form, and
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(M2) there is a bilinear form m satisfying (A2), (A4) and k2, k3 > 0 such that

B(v) := b(v, v) ≥ k2 ‖v‖2
V − k3 m(v, v) for all v ∈ V. (3.1)

The Morse index i(b) of a form b is defined to be the maximal dimension of subspaces W of V on which B is
strictly negative.

The following results show that the Morse index and the null index of b are finite and independent of m. In
particular these indices are related to the eigenproblem for (b, m):

b(v, w) = λ m(v, w) for all w ∈ V. (3.2)

In this section eigenvalues are counted with multiplicities. Note that the proof of Theorem 2.1 was based on a
constructive algorithm in [6] that determined successive eigenvalues.

Theorem 3.1. Assume the pair (b, m) satisfies (M1), (M2). Then the Morse index of b is the number of
negative eigenvalues of (3.2) counting multiplicities and is finite. The null index of b is the multiplicity of 0 as
an eigenvalue of (3.2) and is finite.

Proof. From (M2) we have B(v) + k3M (v) ≥ k2‖v‖2
V for all v ∈ V , i.e., the bilinear form b̃ := b + k3m is

V -coercive and thus satisfies the properties of the bilinear form in (A1). Since m satisfies (A2) and (A4), by
Theorem 2.1 there is an m-orthonormal basis E := {ej : j ≥ 1} of V consisting of eigenvectors for the pair
(b̃, m) corresponding to strictly positive eigenvalues λ̃1 ≤ λ̃2 ≤ . . . with limj→∞ λ̃j = ∞. That is,

b̃(ej , v) = λ̃jm(ej , v) for all v ∈ V,

and m(ej , ek) = δjk for all j, k ∈ N. Taking λj := λ̃j − k3 yields

b(ej, v) = λjm(ej , v) for all v ∈ V,

so that E is an m-orthonormal basis for V consisting of eigenvectors of the pair (b, m) corresponding to the
eigenvalues −∞ < λ1 ≤ λ2 ≤ . . . with limj→∞ λj = ∞. Hence, for each v ∈ V we have

v =
∞∑

j=1

m(v, ej)ej and b(v, w) =
∞∑

j=1

λjm(v, ej)m(w, ej). (3.3)

Let
W− = span{ej : λj < 0} and W0 = span{ej : λj = 0}.

The dimensions of W− and W0 are both finite as the λj ’s form an increasing sequence of real numbers with no
finite accumulation point. The representation of b in (3.3) yields

B(v) =
∞∑

j=1

λjm(ej , v)2,

so W− is a subspace of maximal dimension on which B is strictly negative and the first assertion holds.
From (3.3) we also have v ∈ W0 ⇐⇒ v ∈ N(b) so the second assertion holds. �

The next result shows that the Morse index of b is independent of the choice of m satisfying (A2), (A4). This
may be regarded as an infinite-dimensional version of Sylvester’s law of inertia for finite-dimensional quadratic
forms.
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Theorem 3.2. Assume b satisfies (M1), m1, m2 both satisfy (A2), (A4) and (b, m1) and (b, m2) both satisfy
inequalities of the form (3.1). Then:

(i) the number of negative eigenvalues of (b, m1) equals the number of negative eigenvalues of (b, m2), and,
(ii) the multiplicity of 0 as an eigenvalue of (b, m1) equals the multiplicity of 0 as an eigenvalue of (b, m2).

Proof. Denote by i(b, m1) the number of negative eigenvalues of (b, m1). By Theorem 3.1 i(b, m1) is finite, and
the dimension of any subspace W on which B is strictly negative satisfies dim W ≤ i(b, m1). Let W− be the
subspace of V generated by eigenvectors corresponding to negative eigenvalues of (b, m2). By Theorem 3.1 again,
W− has finite dimension, denoted i(b, m2), equal to the number of negative eigenvalues of (b, m2). Since B is
strictly negative on W− this implies i(b, m2) ≤ i(b, m1).

Interchanging the roles of i(b, m1) and i(b, m2) gives the reverse inequality so (i) holds. Assertion (ii) holds
as the equation for the null eigenvectors is independent of m. �

A consequence of these theorems is the following decomposition result.

Corollary 3.3. Assume the pair (b, m) satisfies (M1), (M2) and b is non-degenerate. Then there are continuous
symmetric bilinear forms b− and b+ such that b = b+−b− with b− having finite rank equal to the Morse index of
b. The corresponding quadratic forms satisfy B(v) = B+(v) − B−(v), with B+ and B− being positive, convex
functionals on V and B− weakly continuous.

Proof. By Theorem 3.1 a subspace of maximal dimension on which B is strictly negative is spanned by E− :=
{ej : 1 ≤ j ≤ i(b)}, where i(b) is the (finite) Morse index of b and the ej’s are m-orthonormal eigenvectors
associated to strictly negative eigenvalues λj of (b, m).

Define the bilinear form b− : V × V → R by

b−(v, w) := −
i(b)∑
j=1

λj m(ej, v) m(ej, w). (3.4)

Then b− has finite rank i(b), so (3.3) and (3.4) imply that the bilinear form b+ := b − b− is continuous and
symmetric on V , so the first assertion holds.

From (3.4), the quadratic form B−(v) := b−(v, v) is a positive, convex functional on V . It is weakly
continuous as b− has finite rank. From (3.3) and (3.4), the quadratic form B+ corresponding to b+ also is a
positive, convex functional on V so the second assertion holds. �

That is, each m satisfying (M2) yields a different decomposition b = b+−b−, but the rank of b− is independent
of the choice of m. This rank is the Morse index i(b) of b on V .

To prove results about the critical points of the unconstrained variational problems, the following terminology
is used.

Let F : V → R be a functional that is twice Gâteaux differentiable on V . A critical point u of F is said to
be degenerate or non-degenerate accordingly as the Hessian form δ2F (u; ·, ·) is a degenerate or non-degenerate
bilinear form. The Morse index and null index of a critical point u of F are defined to be the Morse index and
null index of the Hessian form δ2F (u; ·, ·), and are denoted i(u) and i0(u), respectively.

In the following sections, the Morse and null indices of the Hessian forms hu(·, ·) := δ2F (u; ·, ·) of functionals
at critical points will be evaluated. The preceding corollary is used to investigate the splitting of the quadratic
form Hu(v) := hu(v, v) into positive and negative parts.
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4. Unconstrained variational principles for the least eigenvalue

The standard variational principles for eigenvalues of symmetric matrices, bilinear forms and self-adjoint
linear operators have been based on Rayleigh’s principle which involves minimizing or maximizing the Rayleigh
Quotient. This is essentially a constrained optimization problem. Auchmuty in [3, 6], has described some un-
constrained variational principles for eigenproblems of matrices and compact linear operators. Here an uncon-
strained variational principle that applies to bilinear forms satisfying the G̊arding type inequality (M2) will be
investigated.

Define the functional G : V × (0,∞) → R by

G (u, μ) := A (u) − μ M (u) +
1
2

M (u)2 (4.1)

where A , M are given by (2.2).
Consider the unconstrained variational problem (Pμ) of minimizing G (·, μ) on V and finding

α(μ) := inf
u∈V

G (u, μ). (4.2)

This family of unconstrained variational principles has non-zero critical points that are eigenvectors of (a, m)
and a value that depends on the least eigenvalue of (a, m). Some essential properties of this functional may be
summarized as follows.

Theorem 4.1. Assume (A1)–(A2) hold, and G (·, μ) is defined by (4.1). Then

(i) G (·, μ) is continuous, coercive and weakly l.s.c. on V ,
(ii) G (·, μ) is Gâteaux differentiable at each u ∈ V with first variation at u given by

δG (u; v; μ) = 2a(u, v) + 2 [m(u, u) − μ] m(u, v), (4.3)

with direction vector v in V , and

(iii) G (·, μ) has second variation at u in the directions v, w in V given by

δ2G (u; v, w; μ) = 2 a(v, w) + 2 [m(u, u) − μ] m(v, w) + 4 m(u, v)m(u, w). (4.4)

Proof. By assumption A , M are continuous on V so G (·, μ) is continuous on V . A is weakly l.s.c. as it is
convex from (A1) so G (·, μ) is weakly l.s.c. as M is weakly continuous on V .

Now (2.3) and completing the square in (4.1) yields

G (u, μ) ≥ k0‖u‖2
V − μ2

2
·

Thus G is coercive on V .
Straightforward calculations show that the first variations of A , M at u are

δA (u; v) = 2a(u, v), δM (u; v) = 2m(u, v).

Then use of the chain rule on the last term in (4.1) leads to (4.3).
The second variations of A , M are easily seen to be

δ2A (u; v, w) = 2a(v, w) δ2M (u; v, w) = 2m(v, w)

as the functionals are quadratic and thus (4.4) follows. �
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Property (ii) for the functional G (·, μ) shows that 0 is always a critical point of G (·, μ). A non-zero vector
u ∈ V is a critical point of G (·, μ) on V if and only if u is an eigenvector of (a, m) corresponding to the eigenvalue
λ = μ − m(u, u).

When (A1)−(A3) hold, the only possible eigenvalues of (2.1) are positive. Let λ1 be the least eigenvalue of
(a, m) in this case, which exists and is finite from Theorem 2.1. Then the following result holds.

Theorem 4.2. Assume (A1)–(A3) hold, and G is defined by (4.1). If μ ≤ λ1, then 0 is the unique critical
point of G (·, μ) on V and it is the unique minimizer of G (·, μ) with α(μ) = 0.

Proof. From part (i) of Theorem 4.1, G (·, μ) attains a finite infimum on V , which by part (ii) must occur at a
critical point u which satisfies

a(u, v) = [μ − m(u, u)] m(u, v) (4.5)

for all v ∈ V . Since M is positive on V , this says that if u 
= 0 it must be an eigenvector of (a, m) with
eigenvalue λ < μ. This is impossible if μ ≤ λ1, so that u = 0 is the only critical point of G (·, μ) on V . Thus the
minimizer of G (·, μ) is u = 0, and α(μ) = G (0, μ) = 0. �

When μ > λ1, however, there will be a non-zero minimizer of G (·, μ) and the following results about this
minimization problem hold.

Theorem 4.3. Assume (A1)–(A3) hold, and G is defined by (4.1) . If μ > λ1, then:

(i) the non-zero critical points of G (·, μ) are (μ− λj)1/2e where λj is an eigenvalue of (a, m) with λj ∈ (0, μ)
and e an associated m-normalized eigenvector,

(ii) the minimizers of G (·, μ) on V are (μ− λ1)1/2e1 where e1 is an m-normalized eigenvector of (a, m) associated
with the least eigenvalue λ1, and 2 α(μ) = −(μ − λ1)2.

Proof. From (4.5), non-zero critical points of G (·, μ) are eigenvectors ũ corresponding to eigenvalues λj =
μ − m(ũ, ũ) of (a, m). Substituting this ũ into (4.5) yields

a(ũ, ũ) = [μ − m(ũ, ũ)] m(ũ, ũ) = λj(μ − λj).

The positivity of A implies that λj(μ− λj) > 0 as ũ 
= 0. Thus λj < μ, and λj ∈ (0, μ). From λj = μ−m(ũ, ũ)
we get that a critical eigenvector ũ corresponding to the eigenvalue λj is given by ũ = (μ − λj)1/2e with
M (e) = 1, and (i) holds.

Evaluation of G (·, μ) at ũ gives

G (ũ, μ) = −1
2
(μ − λj)2

as the associated critical value of G (·, μ). This will be minimized when j = 1, and then the minimizers of G (·, μ)
are ũ = (μ − λ1)1/2e with e an eigenvector corresponding to the first eigenvalue and M (e) = 1. �

That is, for given μ, the minimum value of this problem is a function of λ1, and the minimizers are eigenvectors
of (a, m) associated with λ1.

Given μ ∈ (0,∞), Theorems 4.2 and 4.3 show that the unconstrained variational principle (Pμ) provides
upper and lower bounds on λ1 as described in the next result.

Corollary 4.4. Assume (A1)–(A3) hold and G (·, μ) is defined by (4.1).

(i) If α(μ) = 0, then μ ≤ λ1.
(ii) If there exists w̃ ∈ V with G (w̃, μ) < 0, then

λ1 = inf
G (u,μ)<0

[
μ −

√
−2 G (u, μ)

]
≤ μ −

√
−2 G (w̃, μ). (4.6)
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Proof. The first assertion follows from Theorem 4.3. When w̃ ∈ V has G (w̃, μ) < 0, then the preceding theorem
yields

−1
2
(μ − λ1)2 = α(μ) ≤ G (w̃, μ)

so the second part holds on rearrangement. �

Given a distinct eigenvalue λ̃j of (a, m) in the interval (0, μ), let Ej be the eigenspace corresponding to λ̃j ,
mj be the dimension of Ej and C( λ̃j ; μ) be the subset in Ej defined by

C( λ̃j ; μ) :=
{
u ∈ Ej : ‖u‖2

m = μ − λ̃j

}
, (4.7)

where ‖u‖2
m := M (u). These sets may be characterized as follows.

Theorem 4.5. Assume (A1)–(A3) hold, μ > λ̃j and the set C( λ̃j ; μ) is defined as above.

(i) If λ̃j is a simple eigenvalue of (a, m), then C( λ̃j ; μ) consists of exactly two points.
(ii) If λ̃j is an eigenvalue of multiplicity mj ≥ 2, then C( λ̃j ; μ) is diffeomorphic to a sphere of dimension

mj − 1.

(iii) If ũj ∈ C( λ̃j ; μ) and ũk ∈ C(λ̃k; μ), with k 
= j, then

M (ũj − ũk) = 2μ −
(

λ̃j + λ̃k

)
. (4.8)

Proof. If the eigenvalue λ̃j ∈ (0, μ) is simple, then

C( λ̃j ; μ) = {±(μ − λ̃j)1/2ẽj}

where ẽj is an eigenvector of the pair (a, m) corresponding to λ̃j with ‖ẽj‖m = 1.
If λ̃j ∈ (0, μ) is an eigenvalue of (a, m) of multiplicity mj ≥ 2, let {ẽj, ẽj+1, . . . , ẽj+mj−1} be an m-orthonormal

basis of the eigenspace Ej . A calculation then shows that

C( λ̃j ; μ) =
{
u ∈ V : u =

mj∑
k=1

ckẽj+k−1 with
mj∑
k=1

c2
k = μ − λ̃j

}
,

which is diffeomorphic to to an (mj − 1)-dimensional sphere.
To obtain (iii), we see that for ũj ∈ C( λ̃j ; μ) and ũk ∈ C(λ̃k; μ),

ũj = (μ − λ̃j)1/2ẽj and ũk = (μ − λ̃k)1/2ẽk

for some m-normalized eigenvectors ẽj , ẽk of (a, m) corresponding to eigenvalues λ̃j , λ̃k. Then (4.8) follows upon
substitution. �

In view of this result, we can describe the set of all non-zero critical points of G (·, μ) to be the disjoint union
of finitely many finite-dimensional spheres C( λ̃j ; μ), the spheres being pairwise m-orthogonal. Let

C(μ) := ∪ λ̃j<μ C
(

λ̃j ; μ
)

. (4.9)

Corollary 4.6. Under the conditions of the preceding theorem, C(μ) is bounded and consists of finitely many
closed connected components and finitely many points. If each eigenvalue of (a, m) is simple then C(μ) consists
of 2M points where M is the number of eigenvalues of (a, m) less than μ.
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Figure 1. Bifurcation diagram for G (·, μ).

When the parameter μ increases, the number of critical points may increase. The above is a schematic
bifurcation diagram for the critical points of G (·, μ).

In Figure 1,
Cj =

{(
λ̃j + s, s1/2e

)
: s ≥ 0, e ∈ Ej , ‖e‖m = 1

}
is the bifurcation branch of the set of critical points corresponding to λ̃j , the jth distinct eigenvalue of (a, m).
The sphere C( λ̃j ; μ) is thought of as a point on the branch Cj .

From Theorem 4.2 we see that 0 is a critical point for any value of μ, and it is the unique critical point when
μ ≤ λ1. As μ increases through an eigenvalue λ̃j , a new sphere C( λ̃j ; μ) of critical points emanates from the
origin and moves along the branch Cj . That is, each sphere of non-zero critical points, centered at the origin,
persists and expands in V as the parameter μ increases, without any further bifurcations.

5. Types and morse indices of critical points

This section describes the degeneracy and indices of the critical points of the functional G (·, μ). We show that
a critical point is associated with a simple eigenvalue of (a, m) if and only if the critical point is non-degenerate
and then the Morse index of the critical point is related to the number of eigenvalues that are less than this
eigenvalue. The results are analogous to the famous Courant-Fischer-Weyl min-max results for constrained
variational problems associated with the use of Rayleigh quotients.

As in the previous section, the distinct eigenvalues of (a, m) will be denoted λ̃j so that 0 < λ̃1 < λ̃2 < . . .
and mj is the multiplicity of λ̃j as an eigenvalue of (a, m). Thus λ1 = λ̃1 but λ2 < λ̃2 when λ1 has multiplicity
m1 ≥ 2. The set of distinct eigenvalues of (a, m) will be called the spectrum of (a, m) and denoted σ(a, m).

The expression for the Hessian form of G (·, μ) described in Theorem 4.1 will be used to determine the
type of critical points of G (·, μ). First, the index of the critical point at the origin may be found by using
δ2G (0, μ)(v, w) = 2a(v, w) − 2 μ m(v, w). Denote this bilinear form by h0(μ)(v, w). Thus we have the following
result which implies that 0 is not a local minimizer of G (·, μ) when μ > λ1.

Theorem 5.1. Assume (A1)–(A4) hold, and G is defined by (4.1). Then 0 is a non-degenerate critical point
of G (·, μ) if and only if μ is not an eigenvalue of (a, m). The Morse index i(0; μ) of 0 is zero when μ < λ1 and
i(0; μ) =

∑
λ̃k<μ mk when μ > λ1 and μ /∈ σ(a, m). When 0 is a degenerate critical point of G (·, λ̃j) then its

null index is i0(0; λ̃j) = mj.

Proof. From Theorem 2.1, there is a set of eigenvectors E := {ej : j ≥ 1} corresponding to strictly positive
eigenvalues λ1 ≤ λ2 ≤ . . . of (a, m) that is an m-orthonormal basis of V .

Taking v = ej in the expression for the second variation at 0 gives

h0(μ)(ej , w) = 2(λj − μ) m(ej , w) for all w ∈ V. (5.1)
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so that E is an m-orthonormal set of eigenvectors for the pair (h0(μ), m) with eigenvalues 2(λj − μ). Thus the
first result follows.

Now
h0(μ)(v, v) ≥ 2k0‖v‖2

V − 2μ m(v, v) for all v ∈ V

so (M1), (M2) hold for (h0(μ), m). Then Theorem 3.1 and (5.1) imply the second statement as there are no
negative eigenvalues of (h0(μ), m) when μ < λ1. Implied also is that the Morse index of 0 will be the number of
eigenvalues λj of (a, m) with λj < μ, counting multiplicities, when μ > λ1 and μ /∈ σ(a, m). Thus the formula
for this Morse index i(0; μ) holds. The last statement is direct. �

When ũj is a non-zero critical point of G (·, μ) associated with the eigenvalue λ̃j , then the Hessian at ũj is

δ2G (ũj , μ) (v, w) = 2 a(v, w) − 2 λ̃j m(v, w) + 4 (μ − λ̃j)m(e, v)m(e, w) (5.2)

since ũj = (μ − λ̃j)1/2e with e an m-normalized eigenvector corresponding to λ̃j ∈ (0, μ). Denote this Hessian
bilinear form by hj(μ). Note that for all such ũj and μ, this bilinear form satisfies

hj(μ)(v, v) ≥ 2k0‖v‖2
V − 2 λ̃jm(v, v),

so that the pair (hj(μ), m) satisfies (M1), (M2) with hj(μ) in place of b.
The following result describes conditions for such critical points to be non-degenerate and what their Morse

indices may be.

Theorem 5.2. Assume (A1)−(A4) hold, μ > λ̃j, and G (·, μ) is defined by (4.1). Suppose ũj is a non-zero
critical point of G (·, μ) associated with the eigenvalue λ̃j of (a, m). Then ũj is a non-degenerate critical point
of G (·, μ) if and only if λ̃j is a simple eigenvalue of (a, m). In this case the Morse index of ũj is i(ũj; μ) =∑j−1

k=1 mk. If λ̃j has multiplicity mj ≥ 2 then ũj is a degenerate critical point of G (·, μ) that has null index
i0(ũj ; μ) = mj − 1.

Proof. Let E and λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . . be as in the previous theorem. Without loss of generality suppose
e = ek for some ek ∈ E ∩ E λ̃j

. Taking v = ei in (5.2) yields

hj(μ)(ei, w) =

{
4 (μ − λ̃j) m(ei, w) if i = k,

2 (λi − λ̃j) m(ei, w) if i 
= k.
(5.3)

This shows that E is an m-orthonormal set of eigenvectors for the pair (hj(μ), m) corresponding to eigenvalues
4(μ − λ̃j), and 2(λi − λ̃j) for i 
= k .

Suppose hj(μ) is non-degenerate. If the multiplicity of λ̃j is mj ≥ 2, then (5.3) implies that, for some
ei ∈ E ∩ E λ̃j

,
hj(μ)(ei, w) = 0 for all w ∈ V.

This contradicts the non-degeneracy of the Hessian hj(μ) of G (·, μ) at ũj , so λ̃j must be a simple eigenvalue of
(a, m).

On the other hand, if hj(μ) is degenerate, there is a nonzero v ∈ V satisfying

hj(μ)(v, w) = 0 for all w ∈ V.

By (5.3), this implies λi = λ̃j for some i 
= k, so that λ̃j is not simple and the first assertion holds.
When λ̃j is simple, Theorem 3.1 implies that the Morse index i(ũj; μ) of hj(μ) is equal to the number of

negative eigenvalues 2(λi − λ̃j) of the pair (hj(μ), m), counting multiplicities. This is the number of eigenvalues
λi that are strictly less than λ̃j , so the second assertion follows.

The null index i0(ũj; μ) of a degenerate critical point ũj of G (·, μ) is equal to the multiplicity of 0 as an
eigenvalue of the pair (hj(μ), m). Thus the last sentence holds. �
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Theorem 5.2 provides additional information on the schematic bifurcation diagram in Figure 1. From
Theorem 4.3, when μ > λ̃1, the minimizers of G (·, μ) are critical points ũ1 with Morse index zero and null
index i0(ũ1; μ) = m1 − 1. These indices are constant when C( λ̃1; μ) moves along the branch C1. When μ > λ̃j ,
where j ≥ 2 and λ̃j is the jth distinct smallest eigenvalue of (a, m), the points ũj on the sphere C( λ̃j ; μ) are
saddle points of G (·, μ) with Morse and null index, respectively,

i(ũj ; μ) =
j−1∑
k=1

mk and i0(ũj; μ) = mj − 1.

These indices are constant as C( λ̃j ; μ) moves along the branch Cj .
For the trivial branch, Theorem 5.1 says that as μ passes through λ̃j , an (mj − 1)-dimensional sphere

bifurcates from the origin. In particular the Morse index of 0 increases by mj when μ passes through λ̃j .

6. Penalization of the functional G (·, µ)

The preceding analysis shows that when μ > λ1, the global minimizer of the functional G (·, μ) is attained at
vectors in the eigenspace E1 corresponding to the least eigenvalue λ1. Here penalizations of the functional G
in a manner that has long been used by numerical analysts will be used to provide unconstrained variational
principles for the second eigenvalue and associated eigenvectors.

Suppose that we know an m-normalized eigenvector e1 corresponding to the first eigenvalue λ1 of (a, m).
Define a functional Gτ : V × (0,∞) → R by

Gτ (u, μ) := G (u, μ) + τ m(e1, u)2. (6.1)

Here τ ≥ 0 is often called a penalty parameter.
Consider the unconstrained variational problem (Pμ,τ ) of minimizing Gτ (·, μ) on V and evaluating

α(μ, τ) := inf
u∈V

Gτ (u, μ). (6.2)

The variations of the functional Gτ (·, μ) at u ∈ V are easily found to be

δGτ (u; v; μ) = 2{a(u, v) + [m(u, u) − μ] m(u, v) + τ m(e1, u)m(e1, v)} (6.3)
δ2Gτ (u; v, w; μ) = δ2G (u; v, w; μ) + 2 τ m(e1, v)m(e1, w). (6.4)

From (6.3), a vector u ∈ V is a critical point of Gτ (·, μ) provided

a(u, v) = [μ − m(u, u) ] m(u, v) − τ m(e1, u)m(e1, v) for all v ∈ V. (6.5)

Note that a critical point u of G (·, μ) remains a critical point of Gτ (·, μ) for all τ > 0 provided m(e1, u) = 0.
However their Morse indices may change. Also the zero vector is still a critical point of this penalized functional
but it is now a minimizer for a larger range of values of μ - at least when the least eigenvalue is simple. Let
μc := min {λ1 + 2τ, λ2}, and recall the λj ’s take multiplicity into account, whereas the λ̃j ’s do not.

Theorem 6.1. Assume (A1)–(A3) hold, the sets C( λ̃j ; μ) are given by (4.7), and Gτ is defined by (6.1).

(i) If 0 < μ < μc and λ1 is a simple eigenvalue of (a, m), then 0 minimizes Gτ (·, μ) on V .
(ii) If μ > μc, τ > λ2 − λ1 and λ1 is a simple eigenvalue of (a, m), then the minimizers of Gτ (·, μ) on V are

the vectors in C(λ̃2; μ) and

α(μ, τ) = − 1
2

(
μ − λ̃2

)2

> α(μ).
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(iii) If μ > μc and λ1 is an eigenvalue of multiplicity m1 ≥ 2, then the minimizers of Gτ (·, μ) on V are the
vectors u in C( λ̃1; μ) that also satisfy m(e1, u) = 0. In this case α(μ, τ) = α(μ).

Proof. Note that as the penalty parameter τ is positive, we have

Gτ (u, μ) ≥ G (u, μ) for all (u, μ) ∈ V × (0,∞).

Evaluating Gτ (·, μ) at a critical point ũj = (μ− λ̃j)1/2e of G (·, μ), with e an m-normalized eigenvector of (a, m)
in Ej gives Gτ (ũj , μ) = − 1

2 (μ − λ̃j)2 + τ (μ − λ̃j)m(e1, e)2 which becomes

Gτ (ũj , μ) =

⎧⎪⎨⎪⎩
−1

2
(μ − λ1)

2 + τ (μ − λ1) if m(e1, e) = 1,

−1
2

(
μ − λ̃j

)2

if m(e1, e) = 0.
(6.6)

When μ < μc, the only possible critical points ũj of G (·, μ) are the points ũ1 in E1.
From (6.6), we see that when λ1 is simple, the corresponding critical value of Gτ (·, μ) at ũ1 satisfies

Gτ (u1, μ) = −1
2
(μ − λ1)2 + τ(μ − λ1) > 0

as μ < λ1 + 2τ , so that α(μ, τ) = 0 and (i) holds.
The inequalities μ > μc, τ > λ2 − λ1 imply μ > λ2, when λ1 is simple. Thus we have critical points ũ1, ũ2

of G (·, μ), and consequently of Gτ (·, μ), in this case. These conditions also imply

Gτ (ũ2, μ) = −1
2
(μ − λ2)2 < −1

2
(μ − λ1)2 + τ (μ − λ1) = Gτ (ũ1, μ),

from (6.6), so that the vectors ũ2 in C(λ̃2; μ) are minimizers of Gτ (·, μ), and (ii) holds.
When μ > μc and λ1 has multiplicity m1 ≥ 2, from (6.6) we see that the corresponding critical value of

Gτ (·, μ) at any critical point u1 = (μ − λ1)1/2e of G (·, μ) with m(e1, u1) = 0, satisfies

Gτ (u1, μ) = −1
2
(μ − λ1)2 < −1

2

(
μ − λ̃j

)2

= Gτ (uj, μ)

for any critical point uj in C( λ̃j ; μ), j ≥ 2. Also from (6.6)

Gτ (u1, μ) < −1
2
(μ − λ1)2 + τ(μ − λ1)

for any value of τ , so that (iii) follows. �

It is worth noting that, when the least eigenvalue is simple, the difference between the value of the penalized
problem Pμ,τ and that of Pμ is a function of the spectral gap d := λ2 − λ1 between the first two eigenvalues of
(a, m).

When λ1 is a simple eigenvalue of (a, m) and τ > λ2 − λ1, μ > μc, then the minimizers of Gτ (·, μ) are eigen-
vectors of (a, m) corresponding to the eigenvalue λ2. That is, this penalized functional provides an unconstrained
variational problem whose minimizers yield the second eigenvalue and associated eigenvectors.

When we know a subspace V1 that is spanned by a finite number of eigenvectors of (a, m), there is a penalized
functional of this type with the property that when μ and τ are sufficiently large, the minimizers of the functional
will be eigenvectors of (a, m) that are m-orthogonal to V1.
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7. Indefinite elliptic eigenproblems

The preceding sections have treated the eigenproblem (2.1) subject to positivity of the functional M asso-
ciated with m. Much of the analysis extends to the case where M can take both positive and negative values.
In this section we typically require that m satisfies:

(A5) There exist v1, v2 ∈ V such that M (v1) < 0 < M (v2).

An eigenproblem for (a, m) where m satisfies (A2) and (A5) will be called an indefinite eigenproblem. The
monograph of Belgacem [7] provides a nice description of many results about such problems.

Results in [6] show that when (A1), (A2) and (A5) hold then there are sets of positive and negative eigenvalues
of (a, m). Let λ+

1 be the least strictly positive eigenvalue of (a, m) and λ−
1 be the strictly negative eigenvalue

of (a, m) closest to 0. These exist from Theorem 3.1 of [6].
Consider the problem of minimizing G (·, μ) defined by (4.1) and evaluating α(μ) defined by (4.2). As Theo-

rem 4.1 only assumes (A1) and (A2), it remains valid when (A5) also holds. Theorems 4.2 and 4.3 change to
the following.

Theorem 7.1. Assume (A1), (A2), and (A5) hold, and G is defined by (4.1). Let λ+
1 be the least positive

eigenvalue of (a, m).

(i) If 0 < μ ≤ λ+
1 , then 0 is the unique critical point of G (·, μ) on V and α(μ) = 0.

(ii) If μ > λ+
1 , then the minimizers of G (·, μ) on V are (μ − λ+

1 )1/2e, where e is an m-normalized eigenvector
of (a, m) corresponding to λ+

1 , and 2 α(μ) = − (μ − λ+
1 )2.

Proof. As in the proofs of Theorems 4.2 and 4.3 we see that a critical point u of G (·, μ) satisfies

a(u, v) = [μ − m(u, u)] m(u, v) for all v ∈ V. (7.1)

Thus 0 is always a critical point, and non-zero critical points u are eigenvectors corresponding to eigenvalues
λ = μ−m(u, u). By the coercivity of a(·, ·), the eigenvalues of (a, m) are non-zero. If λ = λ+ is a strictly positive
eigenvalue of (a, m), then put v = u in (7.1) to find

a(u, u) = [μ − m(u, u)]m(u, u) = λ+(μ − λ+)

which implies λ+(μ − λ+) > 0 as a(·, ·) is coercive on V . This shows λ+ < μ.
From (7.1), we also see that if u is an eigenvector associated with a positive eigenvalue λ+ of (a, m), then

m(u, u) > 0.
If λ = λ− is a strictly negative eigenvalue of (a, m), then substituting a corresponding eigenvector u for v

in (7.1) gives
λ−(μ − λ−) > 0,

again, by the coercivity of a(·, ·). This implies μ < λ−, a contradiction to μ being positive. Therefore, the only
possible non-zero critical points of G (·, μ) are eigenvectors of (a, m) corresponding to eigenvalues λj belonging
to the interval (0, μ).

As in Theorems 4.2 and 4.3, minimizers of G (·, μ) exist and are critical points. Therefore, when μ ∈ (0, λ+
1 ),

we conclude from the above work that 0 is the only critical point of G (·, μ) with value zero, so (i) holds. When
μ > λ+

1 , the non-zero critical points of G (·, μ) are(
μ − λ̃j

+
)1/2

ẽ+
j

with ẽ+
j an m-normalized eigenvector corresponding to the jth distinct, smallest, strictly positive eigenvalue

λ̃j
+

of (a, m) less than μ. By considering the corresponding critical values, (ii) follows. �
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When M satisfies (A5), then the negative eigenvalues λ−
j of (a, m) are precisely the positive eigenvalues of

(a,−m). Thus negative eigenvalues of (a, m) may be found by considering the problem of minimizing G−(·, μ),
with μ > 0, defined by

G−(u, μ) := A (u) + μ M (u) +
1
2

M (u)2. (7.2)

Let α−(μ) := infu∈V G−(u, μ). The following result about the critical points and minimizers of G−(·, μ) now
follows from this theorem.

Corollary 7.2. Assume (A1), (A2), and (A5) hold, and G− is defined by (7.2). Let λ−
1 be the largest negative

eigenvalue of (a,m).

(i) If 0 < μ ≤ −λ−
1 , then 0 is the unique critical point of G−(·, μ) on V and α−(μ) = 0.

(ii) If μ > −λ−
1 , then the minimizers of G−(·, μ) on V are (μ + λ−

1 )1/2e, where e is an eigenvector of (a, m)
corresponding to λ−

1 satisfying m(e, e) = −1, and 2 α(μ) = − (μ + λ−
1 )2.

The surprising result is that the Morse indices of critical points of G (·, μ) and G−(·, μ) are related to the ordering
of the associated positive and negative eigenvalues of (a, m).

We shall evaluate the Morse and null indices for the critical points for these problems by considering them
as critical points of the given functional restricted to a certain special subspace of V .

The decomposition
V = V+ ⊕a V0 ⊕a V− (7.3)

is given by Corollary 4.5 of [6], when (A1), (A2) and (A5) hold. . Here ⊕a indicates an a-orhogonal direct sum,
V+ is the closed subspace of V generated by the eigenvectors E+ := {e+

j : j ∈ J+} associated with strictly
positive eigenvalues of (a, m), V− is the closed subspace of V generated by the eigenvectors E− := {e−j : j ∈ J−}
associated with strictly negative eigenvalues of (a, m), and V0 = N(m) is the null space of m. Consider the closed
subspace

W := V+ ⊕a V− (7.4)

generated by the eigenvectors of (a, m), and let σ+(a, m) := { λ̃j
+

: j ∈ J}, and σ−(a, m) := {λ̃−
k : k ∈ K} be

the positive and negative parts of the spectrum σ(a, m) of (a, m) consisting, repectively, of the distinct strictly
positive and strictly negative eigenvalues of (a, m), so that

. . . < λ̃−
2 < λ̃−

1 < 0 < λ̃1
+

< λ̃+
2 < . . . .

Denoting by m+
j , m−

j the multiplicities of λ̃j
+
, λ̃j

−
, respectively, Theorems 5.1 and 5.2 now become

Theorem 7.3. Assume (A1), (A2), and (A5) hold, W is given by (7.4) and G : W → R is defined by (4.1).
Then:

(i) 0 is a non-degenerate critical point of G (·, μ) : W → R if and only if μ is not a positive eigenvalue of
(a, m). When μ < λ̃1

+
, the Morse index of 0 is i(0; μ) = 0, and when μ > λ̃1

+
then i(0; μ) =

∑
λ̃j

+
<μ

m+
j

if μ /∈ σ+(a, m). When 0 is a degenerate critical point of G (·, λ̃j
+

) : W → R then its null index is
i0(0; λ̃j

+
) = m+

j .

(ii) When μ > λ̃j
+
, then ũ+

j = (μ − λ̃j
+
)1/2e, with e an m-normalized eigenvector corresponding to λ̃j

+
, is

a non-degenerate critical point of G (·, μ) : W → R if and only if λ̃j
+

is a simple eigenvalue of (a, m). In
this case the Morse index of ũ+

j is i(ũ+
j ; μ) =

∑j−1
k=1 m+

k . If λ̃j
+

has multiplicity m+
j ≥ 2, then ũ+

j is a
degenerate critical point of G (·, μ) : W → R that has null index i0(ũ+

j ; μ) = m+
j − 1.
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Proof. Define the bilinear form |m| : W ×W → R, the absolute value of the bilinear form m, as follows. For an
eigenvector e corresponding to the eigenvalue λ of (a, m), let

|m|(e, e) :=

{
m(e, e) if λ > 0
−m(e, e) if λ < 0

and extend to the entire space W using the bilinearity of m. We note that for all w ∈ W ,

a(e, w) = λm(e, w) =

{
λ|m|(e, w) if λ > 0,

|λ||m|(e, w) if λ < 0.

Thus, the eigenvalues of (a, |m|) are the eigenvalues of (a, m) in absolute value. Moreover, the quadratic form
|M | associated to |m| is strictly positive on W and

M (u) ≤ |M |(u) for all u ∈ V.

Considering the Hessian form of G (·, μ) at 0 gives

δ2G (0, μ)(v, v) = 2a(v, v) − 2μ m(v, v) ≥ 2k0‖v‖2
V − 2μ |m|(v, v)

for all v ∈ W . Denote this Hessian bilinear form by h0(μ). Then the pair (h0(μ), |m|) satisfies (M1), (M2) with
(h0(μ), |m|) in place of (b, m). Taking e+

j ∈ E+ for v in h0(μ)(v, w) yields

h0(μ)(e+
j , w) = 2(λ+

j − μ)|m|(e+
j , w)

and by taking e−j ∈ E− for v instead we obtain

h0(μ)(e−j , w) = 2(|λ−
j | + μ)|m|(e−j , w).

A similar argument as in the proof of Theorem 5.1 now yields (i) as E+ ∪ E− is an eigenbasis for W .
When ũ+

j = (μ − λ̃j
+
)1/2e is a critical point of G (·, μ) corresponding to λ̃j

+ ∈ (0, μ), the Hessian form of
G (·, μ) at ũ+

j satisfies

δ2G (ũ+
j , μ)(v, v) ≥ 2a(v, v) − 2 λ̃j

+
m(v, v) ≥ 2k0‖v‖2

V − 2 λ̃j
+ |m|(v, v)

for all v ∈ W . Denote this Hessian bilinear form by hj+(μ). The pair (hj+(μ), |m|) thus satisfies (M1), (M2)
with (hj+(μ), |m|) in place of (b, m). Without loss of generality, suppose e = e+

k for some e+
k ∈ E+∩E

λ̃j
+ Taking

e+
i ∈ E+ for v in hj+(μ)(v, w) yields

hj+(μ)(e+
j , w) =

⎧⎨⎩4
(
μ − λ̃j

+
)
|m|(e+

i , w) if i = k

2
(
λ+

i − λ̃j
+
)
|m|(e+

i , w) if i 
= k.

Taking v = e−i instead results in

hj+(μ)(e−i , w) = 2
(
|λ−

j | + λ̃j
+
)
|m|(e−i , w).

Hence, E+ ∪E− is a set of eigenvectors for (hj+(μ), |m|), and a similar argument as in the proof of Theorem 5.2
now yields (ii). �

With an appropriate substitution of positive signs with negative signs, one obtains a similar result for the
functional G−(·, μ) : W → R defined by (7.2).

Moreover, higher positive eigenvalues and, respectively, lower negative eigenvalues of (a, m) may be found
using penalty methods for G (·, μ), respectively G−(·, μ), in a manner similar to that of Section 6.
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8. Unconstrained variational principles for robin eigenvalue problems

The following sections will describe the use of the preceding variational principles for various classes of elliptic
eigenproblems. In particular the principles will be applied to some of the problems studied in Auchmuty [6]. In
that paper the variational principles for the eigenvalues and eigenvectors are based on the use of constrained
optimization characterizations of the eigenvalues of (a, m) − so standard Morse theory is not directly applicable.

First we shall consider variational principles for Robin eigenfunctions and eigenvalues of second-order, diver-
gence form, elliptic equations. There is a (simpler) analogous description for the Dirichlet eigenproblem − but
the analysis of Robin eigenproblems illustrates the advantages of using bilinear and quadratic forms compared
to the associated linear operators. In particular the inclusion of boundary integrals in the quadratic forms avoids
many of the problems that arise in using theories based on closed densely defined linear operators on L2(Ω) for
characterizing the eigenvalues and eigenfunctions.

For all these examples 〈·, ·〉 denotes the usual Euclidean inner product on R
N , and |·| the corresponding

Euclidean norm. A region Ω is a non-empty open connected set in R
N and σ, dσ, respectively represent

Hausdorff (N − 1)-dimensional measure and integration with respect to this measure. All other definitions and
notation should be taken to be as in [6] if not given explicitly here. The first requirement on the region Ω is
the following

(B1) Ω is a bounded region in R
N with boundary ∂Ω being the union of a finite number of disjoint closed

Lipschitz surfaces.

Let Lp(Ω), Lq(∂Ω, dσ) be the usual real Lebesgue spaces on Ω and ∂Ω with norm ‖ · ‖p and ‖ · ‖q,∂Ω,
respectively. Let H1(Ω) be the real Sobolev space of functions on Ω with the standard H1-inner product

[u, v]1 :=
∫

Ω

[u(x)v(x) + ∇u(x) · ∇v(x)] dx.

This is a Hilbert space and the associated H1-norm is denoted ‖ · ‖1,2. Take V to be H1(Ω) in the following.
The region Ω is said to satisfy the Rellich−Kondrachov theorem provided the imbedding of H1(Ω) into Lp(Ω)

is compact for 1 ≤ p < pS and pS = 2N/(N − 2) when N ≥ 3 (pS = ∞ when N = 2).
The region Ω is said to satisfy the L2-compact trace theorem provided the trace map of H1(Ω) into

L2(∂Ω, dσ) is compact. We shall always require that the region satisfy

(B2) Ω is a region such that (B1), the Rellich−Kondrachov theorem, and the L2-compact trace theorem hold.

Consider the problem of finding non-trivial solutions (λ, u) of

Lu(x) := −div
(
A(x)∇u(x)

)
+ c(x)u(x) = λm0(x)u(x) on Ω (8.1)

subject to (
A(x)∇u(x)

) · ν(x) + b(x)u(x) = 0 on ∂Ω, (8.2)

where c, m0, b are given functions and A a given matrix-valued field.
This is the Neumann eigenproblem for (L, m0) on Ω when b ≡ 0 on ∂Ω. Otherwise it is the Robin eigenproblem

for (L, m0, b) on Ω.
The weak form of the boundary value problem (8.1) and (8.2) is to find non-trivial solutions (λ, u) ∈

R × H1(Ω) of∫
Ω

[(A∇u) · ∇v + c u v ] dx +
∫

∂Ω

b u v dσ = λ

∫
Ω

m0 u v dx for all v ∈ H1(Ω). (8.3)

The following conditions on these coefficients will be required.
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(B3) A(x) := (aij(x)) is a real symmetric matrix whose components are bounded Lebesgue-measurable functions
on Ω and there exist constants 0 < k2 ≤ k3 such that

k2|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ k3|ξ|2 for all ξ ∈ R
N , x ∈ Ω. (8.4)

(B4) c ≥ 0 and c ∈ Lp(Ω) for some p ≥ N/2 when N ≥ 3, or p > 1 when N = 2.
(B5) b ∈ L∞(∂Ω) with b ≥ 0 σ-a.e. on ∂Ω, and∫

Ω

c dx +
∫

∂Ω

b dσ = b0 > 0. (8.5)

(B6) m0 ∈ Lq(Ω) for some q > N/2 with m0 positive on Ω and ‖m0‖1 > 0.

The associated bilinear forms for this eigenvalue problem are, with u, v ∈ H1(Ω),

a(u, v) :=
∫

Ω

[(A∇u) · ∇v + c u v] dx +
∫

∂Ω

b u v dσ (8.6)

m(u, v) :=
∫

Ω

m0 u v dx. (8.7)

When (B2)–(B6) hold, Lemma 7.1 of [6] shows the bilinear form m satisfies (A2), (A3) with V = H1(Ω).
Theorem 7.2 in [6] shows a(·, ·) satisfies (A1) and gives the existence of an increasing sequence of strictly
positive eigenvalues Λ := {λj : j ∈ N}, counting multiplicities, and an associated sequence E := {ej : j ∈ N}
of m-orthonormal eigenfunctions for the pair (a, m) in (8.6) and (8.7). Thus there is a least strictly positive
eigenvalue λ1 of (8.3), and a corresponding eigenvector.

The parametrized functional, corresponding to G of (4.1), for this problem is R: H1(Ω) × (0,∞) → R

defined by

R(u, μ) =
∫

Ω

[(A∇u) · ∇u + (c − μm0)u2]dx +
∫

∂Ω

bu2 dσ +
1
2

[∫
Ω

m0u
2dx

]2

. (8.8)

Consider the (unconstrained) variational problem (Rμ) of minimizing R(·, μ) on H1(Ω) and finding

α(μ) = inf
u∈H1(Ω)

R(u, μ). (8.9)

The essential properties of this data and the functional R(·, μ) may be summarized as follows.

Lemma 8.1. Assume (B2)–(B6) hold, and a, m, R(·, μ) are defined by (8.6) and (8.8), respectively. Then a(·, ·)
is an equivalent inner product on H1(Ω),

(i) R(·, μ) is continuous, coercive and weakly l.s.c. on H1(Ω), and,
(ii) R(·, μ) is Gâteaux differentiable on H1(Ω) with first variation at u in the direction v given by

δR(u; v; μ) = 2a(u, v) + 2
[∫

Ω

m0u
2dx − μ

]
m(u, v) (8.10)

Proof. As discussed above, a(·, ·) satisfies (A1), hence is an equivalent inner product on H1(Ω) by (2.3) . As
the bilinear forms a, m satisfy (A1) and (A3), (i) follows as in the proof of Theorem 4.1. A straightforward
computation gives (8.10). �

Theorems 4.2 and and 4.3 now yield the following result.



LINEAR ELLIPTIC EIGENPROBLEMS 183

Theorem 8.2. Assume (B2)–(B6) hold, and a, m, R(·, μ) are defined by (8.6)–(8.8), respectively. Then R(·, μ)
attains its infimum on H1(Ω) and,

(i) the value of the problem (Rμ) is α(μ) =

{
0 if μ ≤ λ1

− 1
2 (μ − λ1)2 if μ > λ1

.

(ii) When μ ≤ λ1, the minimizer of R(·, μ) is 0. When μ > λ1, the minimizers of R(·, μ) are eigenfunctions
ũ of (a, m) corresponding to λ1 with

∫
Ω m0ũ

2 dx = μ − λ1.

As in Section 6, the following unconstrained variational principle can be used to obtain the second eigenvalue
and corresponding eigenfunctions of (8.3).

Let e1 be an m-normalized eigenfunction corresponding to the first eigenvalue λ1 of (8.3). Consider the
problem (Rμ,τ ) of minimizing the functional Rτ (·, μ) defined on H1(Ω) by

Rτ (u, μ) := R(u, μ) + τm(e1, u)2 (8.11)

with τ ∈ (0,∞), and finding
α(μ, τ) = inf

u∈H1(Ω)
Rτ (u, μ). (8.12)

Let μc := min{λ1 + 2τ, λ2}, and denote by λ̃j the distinct eigenvalues of (8.3) and by mj the multiplicity of
λ̃j , as done similarly in previous sections. The results for this unconstrained variational principle for finding
the second Robin eigenvalue and associated eigenfunctions may be summarized as follows.

Theorem 8.3. Assume (B2)–(B6) hold, the sets C( λ̃j ; μ) are given by (4.7), and a, m, Rτ (·, μ) are defined
by (8.6), (8.7), and (8.11), respectively.

(i) If 0 < μ < μc and λ1 is a simple eigenvalue of (a, m), then 0 minimizes Rτ (·, μ) on H1(Ω) and α(μ, τ) = 0.
(ii) If μ > μc, τ > λ2 − λ1 and λ1 is a simple eigenvalue of (a, m), then the minimizers of Rτ (·, μ) on H1(Ω)

are the functions in C(λ̃2; μ) and

α(μ, τ) = −1
2
(μ − λ̃2)2 > α(μ).

(iii) If μ > μc and λ1 is an eigenvalue of multiplicity m1 ≥ 2, then the minimizers of Rτ (·, μ) on H1(Ω) are
the functions u in C( λ̃1; μ) that also satisfy m(u, e1) = 0. In this case, α(μ, τ) = α(μ).

Proof. Lemma 7.1 in [6] shows m is strictly positive on an infinite dimensional subspace of H1(Ω), so that there
is a second distinct eigenvalue for (8.3). The proof is then similar to that of Theorem 6.1 as the pair of bilinear
forms (a, m) satisfy (A1)−(A3). �

To enable a Morse index theory for the functional R(·, μ) in (8.8), the next lemma shows that the functional
has a well-defined second derivative which may be computed just as in Theorem 4.1.

Lemma 8.4. Assume (B2)–(B6) hold and a, m, R(·, μ) are defined as above. Then R(·, μ) is twice Gâteaux
differentiable on H1(Ω) with second variation at u given by

δ2R(u; v, w; μ) = 2 a(v, w) + 2 [m(u, u)− μ] m(v, w) + 4 m(u, v)m(u, w). (8.13)

To describe the degeneracy of critical points of R(·, μ) and to compute their Morse index, we shall require
the weight function m0 in (B6) to also obey∫

Ω

m0u
2dx > 0 for all non-zero u ∈ H1(Ω). (8.14)

That is, we shall require the bilinear form m in (8.7) to also satisfy (A4). When this holds, taking b in (M1)
and (M2) equal to the Hessian form (v, w) �→ δ2R(u; v, w; μ) defined by (8.13) allows the use of Theorem 3.1
to obtain the following results. As in Section 5 let σ(a, m) be the spectrum of (a, m).
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Theorem 8.5. Assume (B2)–(B6), (8.14) hold, and R(·, μ) is defined by (8.8). Then

(i) 0 is a non-degenerate critical point of R(·, μ) if and only if μ is not an eigenvalue of (8.3). When μ < λ̃1,
the Morse index of 0 is i(0; μ) = 0, and when μ > λ̃1 then i(0; μ) =

∑
λ̃k<μ mk if μ /∈ σ(a, m). When 0 is

a degenerate critical point of R(·, λ̃j), then its null index is i0(0; λ̃j) = mj.
(ii) When μ > λ̃j, then ũj = (μ − λ̃j)1/2e, with e an m-normalized eigenfunction corresponding to λ̃j, is a

non-degenerate critical point of R(·, μ) if and only if λ̃j is a simple eigenvalue of (a, m). In this case, the
Morse index of ũj is i(ũj; μ) =

∑j−1
k=1 mk. If λ̃j has multiplicity mj ≥ 2, then ũj is a degenerate critical

point of R(·, μ) that has null index i0(ũj ; μ) = mj − 1.

Proof. As mentioned above, when the function m0 also satisfies (8.14) the Hessian form δ2R(u; ·, ·, μ) in
Lemma 8.4 satisfies (M1) and (M2), so the proofs of Theorems 5.1 and 5.2 yield the desired results as Theorem 3.1
holds for δ2R(u; ·, ·, μ). �

From the above results, the bifurcation diagram in Figure 1 can be used for the Robin eigenproblem to obtain
a bifurcation description for the functional R(·, μ) in (8.8) as discussed at the end of Section 4 and also at the
end of Section 5.

If we assume that the coefficient function m0 satisfies,
(B7) m0 ∈ L∞(Ω) and there is a constant k4 such that m0(x) ≥ k4 > 0 for all x ∈ Ω.

then the results in Theorem 8.5 also follow as the bilinear form m satisfies (A4). Note that Theorem 7.2 in [6]
shows that in this case the sequence of eigenfunctions of (8.3) forms also a basis of L2(Ω).

The results obtained here for Robin eigenproblems parallel those obtained in ([5], Sect. 8) for linear, second-
order, elliptic, boundary value eigenproblems with homogeneous Dirichlet condition.

9. Unconstrained variational principles for steklov eigenvalue problems

A Steklov eigenproblem for a homogeneous linear elliptic partial differential equation is one where the eigen-
parameter appears only in the boundary condition. Let Ω be a region in R

N with boundary ∂Ω that satisfies
(B1) and (B2).

This section will analyze an unconstrained variational principle for uniformly elliptic second order equations
of the form

Lu(x) := −div
(
A(x)∇u(x)

)
+ c(x)u(x) = 0 on Ω (9.1)

subject to
Bu(x) :=

(
A(x)∇u(x)

) · ν(x) + b(x)u(x) = λρ(x)u(x) on ∂Ω. (9.2)

The boundary weight function ρ : ∂Ω → [0,∞] is assumed to be Borel-measurable on ∂Ω and is said to be
normalized provided ∫

∂Ω

ρ dσ = 1 (9.3)

Here the interest is in finding non-trivial solutions (λ, u) ∈ R × H1(Ω) satisfying∫
Ω

[ (A∇u) · ∇v + c u v ] dx +
∫

∂Ω

b u vdσ = λ

∫
∂Ω

ρ u v dσ for all v ∈ H1(Ω). (9.4)

This is a weak form of the system (9.1) and (9.2). The requirement that ρ be normalized fixes a scaling of the
Steklov eigenvalues. This is an eigenproblem of the type introduced in Section 2 with V = H1(Ω), a(·, ·) defined
by (8.6), and m(·, ·) defined by

m(u, v) :=
∫

∂Ω

ρ u v dσ (9.5)
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The Borel measurable function ρ is required to satisfy,

(B8) ρ ∈ L∞(∂Ω, dσ) is normalized and ρ ≥ ρ0 > 0, σ a.e. on ∂Ω.

When (B2) and (B8) hold, m will satisfy (A2), (A3). Then Lemma 8.1 and Theorem 8.2 of [6] yield the
existence of an increasing sequence of strictly positive Steklov eigenvalues Λ := {λj : j ∈ N}, with limj→∞ λj =
∞, and a corresponding sequence E := {ej : j ∈ N} of eigenfunctions of (9.4). In particular, there is a least
positive eigenvalue λ1 and a corresponding eigenvector of (9.4).

Consider the parametrized functional S : H1(Ω) × (0,∞) → R defined by

S (u, μ) :=
∫

Ω

[(A∇u) · ∇u + cu2]dx +
∫

∂Ω

(b − μρ)u2dσ +
1
2

[∫
∂Ω

ρu2 dσ

]2

(9.6)

The variational principle (Sμ) is to minimize S (·, μ) on H1(Ω) and find

α(μ) := inf
u∈H1(Ω)

S (u, μ). (9.7)

The following lemma describes the essential properties of S (·, μ) for our analyses.

Lemma 9.1. Assume (B2)–(B5), (B8) hold, and a, m, S are defined by (8.6), (9.5), (9.6), respectively. Then

(i) S (·, μ) is continuous, coercive and weakly l.s.c. on H1(Ω),
(ii) S (·, μ) is Gâteaux differentiable on H1(Ω) with first variation at u given by

δS (u; v; μ) = 2a(u, v) + 2
[∫

∂Ω

ρ u2 dσ − μ

]
m(u, v) (9.8)

in the direction of the function v in H1(Ω), and

(iii) S (·, μ) is twice Gâteaux differentiable with second variation at u in the directions v, w given by

δ2S (u; v, w; μ) = 2a(v, w) + 2[m(u, u) − μ] m(v, w) + 4 m(u, v)m(u, w). (9.9)

Proof. As the pair of bilinear forms (a, m) satisfy (A1)−(A3), (i) follows as in the proof of Theorem 4.1.
Straightforward computations yield (9.8) and (9.9). �

Theorems 4.2 and 4.3 now yield the following result.

Theorem 9.2. Assume (B2)–(B5), (B8) hold, and a, m, S are defined by (8.6), (9.5), (9.6), respectively. Then
S (·, μ) attains its infimum on H1(Ω) and,

(i) the value of the problem (Sμ) is α(μ) =

{
0 if μ ≤ λ1

− 1
2 (μ − λ1)2 if μ > λ1

.

(ii) When μ ≤ λ1, the minimizer of S (·, μ) is 0. When μ > λ1, the minimizers of S (·, μ) are eigenfunctions
ũ of (a, m) corresponding to λ1 with

∫
Ω

ρ ũ2 dx = μ − λ1.

As stated in Lemma 8.1, when (B2)−(B5) hold, a(·, ·) defines an equivalent inner product on H1(Ω). A function
u ∈ H1(Ω) is a weak solution of the equation Lu = 0 on Ω provided

a(u, v) = 0 for all v ∈ H1
0 (Ω).

The subspace of all such functions will be denoted N(L) and this definition yields the a-orthogonal decomposition

H1(Ω) = H1
0 (Ω) ⊕a N(L),
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with N(L) being a closed subspace of H1(Ω). Moreover when (B8) holds then m(·, ·) defines an inner product
on N(L); this is called the ρ-inner product on N(L). The Steklov eigenfunctions of (9.4) may be chosen to be
a ρ-orthogonal basis of N(L) from Theorem 8.2 in [6].

To provide a Morse index theory for the Steklov eigenproblem, we therefore restrict the domain of the pair
of bilinear forms (a, m) to the closed subspace N(L) of H1(Ω).

As in the last section, the σ(a, m) denotes the collection of distinct (strictly positive) eigenvalues λ̃j of (9.4),
and the multiplicity of the jth distinct eigenvalue λ̃j is mj .

Theorem 9.3. Assume (B2)–(B5), (B8) hold, and a, m, S (·, μ) are defined by (8.6), (9.5), (9.6), respectively,
on the subspace N(L) of H1(Ω). Then,

(i) 0 is a non-degenerate critical point of S (·, μ) if and only if μ is not an eigenvalue of (9.4). When μ < λ̃1,
the Morse index of 0 is i(0; μ) = 0, and when μ > λ1 then i(0; μ) =

∑
λ̃k<μ mk if μ /∈ σ(a, m). When 0 is

a degenerate critical point of S (·, λ̃j), then its null index is i0(0; λ̃j) = mj.
(ii) When μ > λ̃j, then ũj = (μ − λ̃j)1/2e, with e an m-normalized eigenfunction corresponding to λ̃j, is a

non-degenerate critical point of S (·, μ) if and only if λ̃j is a simple eigenvalue of (9.4). In this case, the
Morse index of ũj is i(ũj; μ) =

∑j−1
k=1 mk. If λ̃j has multiplicity mj ≥ 2, then ũj is a degenerate critical

point of S (·, μ) that has null index i0(ũj ; μ) = mj − 1.

Proof. When H1(Ω) is replaced by N(L), the results of Lemma 9.1 and Theorem 9.2 hold for the functional
S (·, μ) : N(L) → R defined by (9.6) as N(L) is a closed subspace of H1(Ω) and the Steklov eigenfunctions
of (9.4) are in N(L). Moreover, the bilinear form m in (9.5) is strictly positive on N(L), so that Theorem 3.1
gives the desired results as in the proof of Theorems 5.1 and 5.2. �

As in the Robin eigenproblem, Figure 1 and the bifurcation results at the end of Section 4 and Section 5
apply to the Steklov eigenproblem, where the schematic diagram is, in this case, on the space (0,∞) × N(L)
instead of (0,∞) × H1(Ω).

10. Variational principles for indefinite steklov eigenproblems

Suppose now that one wants to investigate the eigenvalues of (9.4) with the boundary weight function ρ
allowed to change sign on ∂Ω. We shall require

(B9) ρ := ρ+ − ρ− is a Borel function on ∂Ω that is σ-essentially bounded on ∂Ω with

0 <

∫
∂Ω

ρ+ dσ <

∫
∂Ω

|ρ| dσ = 1

Let a, m, S be the forms and functionals defined in the preceding section and define S− : H1(Ω)×(0, μ) → R

by

S−(u, μ) := a(u, u) + μ m(u, u) +
1
2

m(u, u)2 (10.1)

Consider the problems (Sμ+) and (Sμ−) of minimizing S (·, μ) and S−(·, μ) on H1(Ω). Let

α+(μ) := inf
u∈H1(Ω)

S (u, μ) and α−(μ) := inf
u∈H1(Ω)

S−(u, μ). (10.2)

As in Section 7, results in [6] may be used to yield the existence of eigenvalues

. . . ≤ λ−
2 ≤ λ−

1 < 0 < λ+
1 ≤ λ+

2 ≤ . . .

in the case (B2)−(B5), (B9) hold. One sees that Lemma 9.1 holds when (B9) replaces (B8), so the following
result holds.
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Theorem 10.1. Assume (B2)–(B5), (B9) hold with a, m, S , S− defined by (8.6), (9.5), (9.6), (10.1) respec-
tively. Then S (·, μ) and S−(·, μ) attain their infima on H1(Ω),

(i) the value of the problem (Sμ+) is α+(μ) =

{
0 if μ ≤ λ+

1

− 1
2 (μ − λ+

1 )2 if μ > λ+
1

, and

(ii) the value of the problem (Sμ−) is α−(μ) =

{
0 if μ ≤ −λ−

1

− 1
2 (μ + λ−

1 )2 if μ > −λ−
1

.

(iii) When μ ≤ λ+
1 (respectively, μ ≤ −λ−

1 ), the minimizer of S (·, μ) (respectively, the minimizer of S−(·, μ))
is 0.

When μ > λ+
1 (respectively, μ > −λ−

1 ), the minimizers of S (·, μ) (respectively, S−(·, μ)) are eigenfunctions ũ
of (a, m) corresponding to λ+

1 (respetively, λ−
1 ) satisfying

∫
∂Ω

ρ ũ2 dσ = μ− λ+
1 (respectively,

∫
∂Ω

ρ ũ2dσ =
−μ − λ−

1 ).

Proof. The proof of this follows in much the same way as that of Theorem 7.1. �

More generally for large μ there may be multiple critical points of S−(·, μ) on H1(Ω) and these will be
(Steklov) eigenfunctions of (9.3) associated with negative eigenvalues λ.

A computation analogous to Theorem 9.3 of the Morse indices of the non-degenerate critical points of these
functionals may be performed.

11. Unconstrained variational principles for general eigenvalue problems

Recently there has been interest in elliptic eigenproblems where the eigenvalue appears in both the differential
equation and in the boundary conditions. See Auchmuty [6], Section 11 and the references cited there and
Belinskiy [9].

In [6] various constrained variational problems for these eigenproblems were studied − based on the use of
bilinear and quadratic forms on Sobolev spaces rather than linear operators. Here analogous unconstrained
variational problems will be described and analyzed

A model problem for this is to find non-trivial solutions (λ, u) of

−div(A(x)∇u(x)) + c(x)u(x) = λm0(x)u(x) on Ω (11.1)

subject to
(A(x)∇u(x)) · ν(x) + b(x)u(x) = λρ(x)u(x) on ∂Ω. (11.2)

Here the eigenparameter λ appears in both the equation and boundary condition.
The weak form of (11.1), (11.2) is to find non-trivial solutions (λ, u) ∈ R × H1(Ω) that satisfy, for all

v ∈ H1(Ω), ∫
Ω

[(A∇u) · ∇v + c u v ] dx +
∫

∂Ω

b u v dσ = λ

[∫
Ω

m0 u v dx +
∫

∂Ω

ρ u vdσ

]
. (11.3)

This is an (a, m) eigenproblem with V = H1(Ω), a as in (8.6) and m defined by

m(u, v) :=
∫

Ω

m0 u v dx +
∫

∂Ω

ρ u v dσ. (11.4)

When (B7) and (B8) hold, the bilinear form m satisfies (A2), (A4); this follows from Lemma 9.1 of [6]. In
particular, there is a least positive eigenvalue λ1 of (11.3). Consider the functional L : H1(Ω) × (0,∞) → R

defined by

L (u, μ) :=
∫

Ω

[(A∇u) · ∇u + (c − μm0)u2 ] dx +
∫

∂Ω

(b − μρ)u2dσ +
1
2
m(u, v)2. (11.5)
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The unconstrained variational principle (Lμ) is to minimize L (·, μ) on H1(Ω) and find

α(μ) = inf
u∈H1(Ω)

L (u, μ). (11.6)

The essential properties of this functional L (·, μ) include the following which is proved in the same way as
Lemma 9.1.

Lemma 11.1. Assume (B2)–(B6), (B8) hold, and a, m, L are defined by (8.6), (11.4), (11.5), respectively.
Then:

(i) L (·, μ) is continuous, coercive and weakly l.s.c. on H1(Ω),
(ii) L (·, μ) is Gâteaux differentiable on H1(Ω) with first variation at u given by

δS (u; v; μ) = 2a(u, v) + 2 [m(u, u) − μ] m(u, v) (11.7)

in the direction of the function v in H1(Ω), and

(iii) L (·, μ) is twice Gâteaux differentiable with second variation at u in the directions v, w given by

δ2L (u; v, w; μ) = 2a(v, w) + 2[m(u, u) − μ] m(v, w) + 4 m(u, v)m(u, w). (11.8)

Theorems 4.2 and and 4.3 now yield the following result.

Theorem 11.2. Assume (B2)–(B5), (B8) hold, and a, m, L are defined by (8.6), (11.4), (11.5), respectively.
Then L (·, μ) attains its infimum on H1(Ω) and,

(i) the value of the problem (Lμ) is α(μ) =

{
0 if μ ≤ λ1

− 1
2 (μ − λ1)2 if μ > λ1

.

(ii) When μ ≤ λ1, the minimizer of L (·, μ) is 0. When μ > λ1, the minimizers of L (·, μ) are eigenfunctions
ũ of (a, m) corresponding to λ1 with

∫
Ω m0 ũ2 dx +

∫
∂Ω ρ ũ2dσ = μ − λ1.

Proof. As the bilinear forms a and m satisfy (A1)−(A4), the proof is similar to that of Theorems 4.2 and 4.3. �

When μ > λ1, the functional L (·, μ) has multiple critical points. The following result describes the Morse
indices of the critical points of this functional. As before, let σ(a, m) denote the collection of distinct strictly
positive eigenvalues of (11.3) and let the multiplicity of the jth distinct eigenvalue λ̃j be denoted mj .

Theorem 11.3. Assume (B2)–(B6), (B8), (8.14) hold, and a, m, L are defined by (8.6), (11.4), (11.5),
respectively. Then,

(i) 0 is a nondegenerate critical point of L (·, μ) if and only if μ is not an eigenvalue of (11.3). When μ < λ̃1,
the Morse index of 0 is i(0; μ) = 0, and when μ > λ̃1 then i(0; μ) =

∑
λ̃k<μ mk if μ /∈ σ(a, m). When 0 is

a degenerate critical point of L (·, λ̃j), then its null index is i0(0; λ̃j) = mj.
(ii) When μ > λ̃j, then ũj = (μ − λ̃j)1/2e, with e an m-normalized eigenfunction corresponding to λ̃j, is a

non-degenerate critical point of L (·, μ) if and only if λ̃j is a simple eigenvalue of (11.3). In this case, the
Morse index of ũj is i(ũj; μ) =

∑j−1
k=1 mk. If λ̃j has multiplicity mj ≥ 2, then ũj is a degenerate critical

point of L (·, μ) that has null index i0(ũj ; μ) = mj − 1.

Proof. Since the bilinear form m in (11.4) satisfies (A2) and (A4), and since the Hessian form (v, w) �→
δ2L (u; v, w; μ) given by 11.8 satisfies (M1) at critical points of L (·, μ), the results follow as in the proof
of Theorems 5.1 and 5.2. �
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