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ACOUSTIC WAVE GUIDES
AS INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS
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Abstract. We prove the unique solvability, passivity/conservativity and some regularity results of two
mathematical models for acoustic wave propagation in curved, variable diameter tubular structures of
finite length. The first of the models is the generalised Webster’s model that includes dissipation and
curvature of the 1D waveguide. The second model is the scattering passive, boundary controlled wave
equation on 3D waveguides. The two models are treated in an unified fashion so that the results on
the wave equation reduce to the corresponding results of approximating Webster’s model at the limit
of vanishing waveguide intersection.

Mathematics Subject Classification. 35L05, 35L20, 93C20, 47N70.

Received December 20, 2012. Revised February 28, 2014.
Published online October 17, 2014.

1. Introduction

This is the second part of the three part mathematical study on acoustic wave propagation in a narrow,
tubular 3D domain Ω ⊂ R

3. The other parts of the work are [25, 26]. Our current interest in wave guide
dynamics stems from modelling of acoustics of speech production; see, e.g., [1,3,13] and the references therein.

The main purpose of the present paper is to give a rigorous treatment of solvability and energy passiv-
ity/conservativity questions of the two models for wave propagations that are discussed in detail in [26]: these
are (i) the boundary controlled wave equation on a tubular domain, and (ii) the generalised Webster’s horn
model that approximates the wave equation in low frequencies. The a posteriori error estimate for the Webster’s
model is ultimately given in [25], and it is in an essential part based on Theorems 4.1 and 5.1 below.

The secondary purpose of this paper is to introduce the new notion of conservative majoration for passive
boundary control systems. The underlying systems theory idea is simple and easy to explain: it is to be expected
on engineering and physical grounds that adding energy dissipation to a forward time solvable (i.e., internally
well-posed, typically even conservative) system cannot make the system ill-posed, e.g., unsolvable in forward
time direction. Thus, it should be enough to treat mathematically only the lossless conservative case that
“majorates” all models where dissipation is included as far as we are not reversing the arrow of time. That this
intuition holds true for many types of energy dissipation is proved in Theorem 3.1 for boundary dissipation and
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Figure 1. The Frenet frame of the planar centreline for a tubular domain Ω, represented by
some of its intersection surfaces Γ (s) for s ∈ [0, 1]. The wall Γ ⊂ ∂Ω is not shown, and the
global coordinate system is detailed in [26], Section 2.

in Theorem 3.2 for a class of dissipation terms for PDE’s. These theorems are given in the general context of
boundary nodes that have been discussed in, e.g., [29, 30, 42].

Early work concerning Webster’s equation can be found in [5, 40, 41, 47]. Webster’s original work [47] was
published in 1919, but the model itself has a longer history spanning over 200 years and starting from the works
of Bernoulli, Euler, and Lagrange. More modern approaches are provided by [20, 21, 31–34]. Webster’s horn
model is a special case of the wave equation in a non-homogenous medium in Ω ⊂ Rn, n ≥ 1, which has been
treated with various boundary and interior point control actions in, e.g. ([9], Appendix 2) ([18], Sect. 2) [22]
([37], Sect. 6) and, in particular ([19], Sect. 7) which contains also historical remarks. There exists a rich literature
on the damped wave equation in a 1D spatial domain, and instead of trying to give here a comprehensive account
we refer to the numerous references given in [10].

The boundary of Ω ⊂ Rn, n ≥ 2, is smooth or C2 in the works cited above, which excludes polygons (for
n = 2) or their higher dimensional counterparts such as the tubular structures discussed here. From systems
theory point of view, this is a serious restriction since it is obviously impossible to connect finitely many, disjoint,
smooth domains seamlessly to each other without leaving holes whose interior is non-empty. The generality of
this article makes it possible to interconnect 3D wave equation systems on geometrically compatible elements
Ωj ⊂ R3 to form aggregated systems on ∪jΩj in the same way as described in ([2], Sect. 5) for Webster’s horn
model.

Theorems 4.1 and 5.1 treat the questions of unique solvability, passivity, and regularity of the two wave
propagation models in the exactly the same form as these results are required in the companion papers [25,26].
The strict passivity (i.e., the case α > 0) in Theorems 4.1 and 5.1 could be proved without resorting to
Theorems 3.1 and 3.2 as they both concern single PDE’s with simple dissipation models. However, the direct
approach becomes technically quite cumbersome if we have more complicated aggregated systems to treat (not
all of which need be defined by PDE’s), and combinations of various dissipation models are involved. An example
of such systems is provided by transmission graphs as introduced in [2] where the general passive case is treated
by reducing it to the conservative case and arguing as in Theorem 3.2. In the context of transmission graphs,
see also the literature on port-Hamiltonian systems [4, 16, 46] and the abstract boundary spaces [11]. That the
conservative majoration method cannot be used for all possible dissipation terms is shown in Section 6 by an
example involving Kelvin–Voigt structural damping.

Let us return to wave propagation models on a tubular domain Ω referring to Figure 1. The cross sections
Γ (s) of Ω are normal to the planar curve γ = γ(s) that serves as the centreline of Ω as shown in Figure 1.
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We denote by R(s) and A(s) := πR(s)2 the radius and the area of Γ (s), respectively. We call Γ the wall, and
the circular plates Γ (0), Γ (1) the ends of the tube Ω. The boundary of Ω satisfies ∂Ω = Γ ∪ Γ (0) ∪ Γ (1).
Without loss of generality, the parameter s ≥ 0 can be regarded as the arc length of γ, measured from the
control/observation surface Γ (0) of the tube.

As is well-known, acoustic wave propagation in Ω can be modelled by the wave equation for the velocity
potential φ : Ω × R

+ → R as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φtt(r, t) = c2Δφ(r, t) for r ∈ Ω and t ∈ R+,

c
∂φ

∂ν
(r, t) + φt(r, t) = 2

√
c

ρA(0) u(r, t) for r ∈ Γ (0) and t ∈ R+,

φ(r, t) = 0 for r ∈ Γ (1) and t ∈ R+,

α
∂φ

∂t
(r, t) +

∂φ

∂ν
(r, t) = 0 for r ∈ Γ, and t ∈ R+, and

φ(r, 0) = φ0(r), ρφt(r, 0) = p0(r) for r ∈ Ω

(1.1)

with the observation defined by

c
∂φ

∂ν
(r, t) − φt(r, t) = 2

√
c

ρA(0) y(r, t) for r ∈ Γ (0) and t ∈ R
+, (1.2)

where R+ = (0,∞), R
+

= [0,∞), ν denotes the unit normal vector on ∂Ω, c is the sound speed, ρ is the
density of the medium, and α ≥ 0 is a parameter associated to boundary dissipation. The functions u and y are
control and observation signals in scattering form, and the normalisation constant 2

√
c

ρA(0) takes care of their

physical dimension which is power per area. Solvability, stability, and energy questions for the wave equation
in various geometrical domains Ω ⊂ Rn have a huge literature, and it is not possible to give a historically
accurate review here. The wave equation is a prototypal example of a linear hyperbolic PDE whose classical
mathematical treatment can be found, e.g., in ([23], Chap. 5) and the underlying physics is explained well in
([8], Chap. 9). In the operator and mathematical system theory context, it has been given as an example (in
various variations) in [27, 30, 43, 44, 48] and elsewhere. For applications in speech research, see, e.g., [3, 13, 26]
and the references therein.

One computationally and analytically simpler wave propagation model is the generalised Webster’s horn
model for the same tubular domain Ω that is now represented by the area function A(·) introduced above.
To review this model in its generalised form, let us recall some notions from [26]. To take into account the
curvature κ(s) of the centreline γ(·) of Ω, we adjust the sound speed c in (1.1) by defining c(s) := cΣ(s) where
Σ(s) :=

(
1 + 1

4η(s)
2
)−1/2 is the sound speed correction factor, and η(s) := R(s)κ(s) is the curvature ratio at

s ∈ [0, 1]. We also need take into consideration the deformation of the outer wall Γ by defining the stretching
factor W (s) := R(s)

√
R′(s)2 + (η(s) − 1)2 (see [26], Eq. (2.8)). It is a standing assumption that η(s) < 1 to

prevent the tube Ω from folding on itself locally.
Following [26], the generalised Webster’s horn model for the velocity potential ψ : [0, 1] × R

+ → R is now
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψtt =
c(s)2

A(s)
∂

∂s

(
A(s)

∂ψ

∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ

∂t

for s ∈ (0, 1) and t ∈ R+,

−cψs(0, t) + ψt(0, t) = 2
√

c

ρA(0)
ũ(t) for t ∈ R+,

ψ(1, t) = 0 for t ∈ R+, and

ψ(s, 0) = ψ0(s), ρψt(s, 0) = π0(s) for s ∈ (0, 1),

(1.3)
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and the observation ỹ is defined by

−cψs(0, t) − ψt(0, t) = 2
√

c

ρA(0)
ỹ(t) for t ∈ R

+. (1.4)

The constants c, ρ, α are same as in (1.1). The input and output signals ũ and ỹ of (1.3), (1.4) correspond to u
and y in (1.1), (1.2) by spatial averaging over the control surface Γ (0). Hence, their physical dimension is power
per area as well. Based on [25,26], the solution ψ of (1.3) approximates the averages

φ̄(s, t) :=
1

A(s)

∫
Γ (s)

φdA for s ∈ (0, 1) and t ≥ 0 (1.5)

of φ in (1.1) when φ is regular enough. Note that the dissipative boundary condition α∂φ∂ν (r, t) + ∂φ
∂ν (r, t) = 0

in (1.1) has been replaced by the dissipation term 2παW (s)A(s)−1c(s)2 ∂ψ∂t (with the same parameter α) in (1.3).
For classical work on Webster’s horn model, see [20,31,40] and in particular [33] where numerous references can
be found.

We show in Theorem 5.1 that the wave equation model (1.1), (1.2) is uniquely solvable in forward directions
of time, and the solution satisfies an energy inequality if α > 0. By Corollary 5.2, the model has the same
properties for α = 0 but then the energy inequality is replaced by an equality, and the model is even time-flow
invertible. In all cases, the solution φ is observed to have the regularity required for the treatment given in [26]
if the input u is twice continuously differentiable. The generalised Webster’s horn model (1.3), (1.4) is treated
in a similar manner in Theorem 4.1.

This paper is organised as follows: Background on boundary control systems is given in Section 2. Conservative
majoration of passive boundary control systems is treated in Section 3. The Webster’s horn model and the
wave equation are treated in Sections 4 and 5 respectively. Some immediate extensions of these results are
given in Section 6. Because of the lack of accessible, complete, and sufficiently general references, the paper
is completed by a self-contained appendix on Sobolev spaces, boundary trace operators, Green’s identity, and
Poincaré inequality for special Lipschitz domains that are required in the rigorous analysis of typical wave guide
geometries.

2. On infinite dimensional systems

Linear boundary control systems such as (1.1) and (1.3) are treated as dynamical systems that can be
described by operator differential equations of the form

u(t) = Gz(t), ż(t) = Lz(t), with the initial condition z(0) = z0 (2.1)

and the observation equation
y(t) = Kz(t), (2.2)

where t ∈ R
+

= [0,∞) denotes time. The signals in (2.1), (2.2) are as follows: u is the input, y is the output,
and the state trajectory is z.

Cauchy problems

To make (2.1) properly solvable for all twice differentiable u and compatible initial states z0, the axioms of an
internally well-posed boundary node should be satisfied:

Definition 2.1. A triple of operators Ξ = (G,L,K) is an internally well-posed boundary node on the Hilbert
spaces (U ,X ,Y) if the following conditions are satisfied:

(i) G, L, and K are linear operators with the same domain Z ⊂ X ;
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(ii)
[
G
L
K

]
is a closed operator from X into U × X × Y with domain Z;

(iii) G is surjective, and ker (G) is dense in X ; and
(iv) L

∣∣
ker(G)

(understood as an unbounded operator in X with domain ker (G)) generates a strongly continuous
semigroup on X .

If, in addition, L is a closed operator on X with domain Z, we say that the boundary node Ξ is strong.

The history of abstract boundary control systems dates back to [7, 38, 39]. The phrase “internally well-posed”
refers to condition (iv) of Definition 2.1, and it is a much weaker property than well-posedness of systems in the
sense of [42]. It plainly means that the boundary node defines an evolution equation that is uniquely solvable
in forward time direction. Boundary nodes that are not necessarily internally well-posed are characterised by
the weaker requirement in place of (iv): α− L

∣∣
ker(G)

is a bijection from ker (G) onto X for some α ∈ C.
We call U the input space, X the state space, Y the output space, Z the solution space, G the input boundary

operator, L the interior operator, and K the output boundary operator. The operator A := L
∣∣
ker(G)

is called the
semigroup generator if Ξ is internally well-posed, and otherwise it is known as the main operator of Ξ. Because[
G L K

]T is a closed operator, we can give its domain the Hilbert space structure by the graph norm

‖z‖2
Z = ‖z‖2

X + ‖Lz‖2
X + ‖Gz‖2

U + ‖Kz‖2
Y . (2.3)

If the node is strong, we have an equivalent norm for Z given by omitting the last two terms in (2.3). If
Ξ = (G,L,K) is an internally well-posed boundary node, then (2.1) has a unique “smooth” solution:

Proposition 2.2. Assume that Ξ = (G,L,K) is an internally well-posed boundary node. For all z0 ∈ X and
u ∈ C2(R

+
;U) with Gz0 = u(0) the equations (2.1) have a unique solution z ∈ C1(R

+
;X ) ∩ C(R

+
;Z). Hence,

the output y ∈ C(R
+
;Y) is well defined by the equation (2.2).

Indeed, this is [29], Lemma 2.6.

Energy balances

Now that we have treated the solvability of the dynamical equations, it remains to consider energy notions. We
say that the internally well-posed boundary node Ξ = (G,L,K) is (scattering) passive if all smooth solutions
of (2.1) satisfy

d
dt

‖z(t)‖2
X + ‖y(t)‖2

Y ≤ ‖u(t)‖2
U for all t ∈ R

+ (2.4)

with y given by (2.2). All such systems are well-posed in the sense of [42]; see also [45]. We say that Ξ is
(scattering) energy preserving if (2.4) holds as an equality.

Many boundary nodes arising from hyperbolic PDE’s (such as (1.1), (1.2) and (1.3), (1.4) for α = 0) have
the property that they remain boundary nodes if we (i) change the sign of L (i.e., reverse the direction of time);
and (ii) interchange the roles of K and G (i.e., reverse the flow direction). Such boundary nodes are called
time-flow invertible, and we write Ξ← = (K,−L,G) for the time-flow inverse of Ξ. There are many equivalent
definitions of conservativity in the literature, and we choose here the following:

Definition 2.3. An internally well-posed boundary node Ξ is (scattering) conservative if it is time-flow invert-
ible, and both Ξ itself and the time-flow inverse Ξ← are (scattering) energy preserving3.

For system nodes that have been introduced in [28, 42], an equivalent definition for conservativity is to require
that both S and its dual node Sd are energy preserving. This is the straightforward generalisation from the
finite-dimensional theory but it is not very practical when dealing with boundary control. For conservative
systems, the time-flow inverse and the dual system coincide, and we have then, in particular, A∗ = −L∣∣

ker(K)
if

A = L
∣∣
ker(G)

. For details, see [29], Theorems 1.7 and 1.9] It is possible to check economically, without directly

3The words “energy preserving” can be replaced by “passive” without changing the class of systems one obtains.
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using Definition 2.1, that the triple Ξ = (G,L,K) is a dissipative/conservative boundary node:

Proposition 2.4. Let Ξ = (G,L,K) be a triple of linear operators with a common domain Z ⊂ X , and ranges
in the Hilbert spaces U , X , and Y, respectively. Then Ξ is a passive boundary node on (U ,X ,Y) if and only if
the following conditions hold:

(i) We have the Green–Lagrange inequality

2Re 〈z, Lz〉X + ‖Kz‖2
Y ≤ ‖Gz‖2

U for all z ∈ Z; (2.5)

(ii) GZ = U and (β − L)ker (G) = X for some β ∈ C+ (hence, for all β ∈ C+).

Similarly, Ξ is a conservative boundary node on (U ,X ,Y) if and only if (ii) above holds together with the
additional conditions:

(iii) We have the Green–Lagrange identity

2Re 〈z, Lz〉X + ‖Kz‖2
Y = ‖Gz‖2

U for all z ∈ Z. (2.6)

(iv) KZ = Y and (γ + L)ker (K) = X for some γ ∈ C+ (hence, for all γ ∈ C+).

This is a slight modification of ([30], Thm. 2.5); see also ([29], Prop. 2.5).

3. Conservative majorants

In some applications, energy dissipation in a linear dynamical system is often caused by a distinct part of the
model such as a term or a boundary condition imposed on the defining PDE. If this part is completely removed
from the model, the resulting more simple system is conservative and, in particular, internally well-posed. We
call it a conservative majorant of the original system.

Intuition from engineering and physics hints that increasing dissipation should make the system “better
behaved” and not spoil the internal well-posedness4. The following Theorems 3.1 and 3.2 apply to many boundary
control systems. However, they are written for passive majorants since the proofs remain the same, and this
way the results can be applied successively to systems having both boundary dissipation and dissipative terms.

Theorem 3.1. Let Ξ̃ = (
[
G
G̃

]
, L,

[
K
K̃

]
) be a scattering passive boundary node on Hilbert spaces (U⊕Ũ ,X ,Y⊕Ỹ)

with solution space Z̃. Then Ξ := (G
∣∣
Z , L

∣∣
Z ,K

∣∣
Z) is a scattering passive boundary node on (U ,X ,Y) with the

solution space Z := ker
(
G̃
)
. Both Ξ̃ and Ξ have the same semigroup generator, namely L

∣∣
ker(G)∩ker(G̃). If Ξ̃

is a strong node, so is Ξ.

Proof. The Green–Lagrange inequality holds for Ξ since for z ∈ ker
(
G̃
)

we have ‖Gz‖U = ‖[G
G̃

]
z‖U⊕Ũ , and

hence we get by the passivity of Ξ̃

2Re 〈z, Lz〉X − ‖Gz‖2
U ≤ −‖[Kz

K̃z

]‖2
Y⊕Ỹ ≤ −‖Kz‖2

Y .

The surjectivity GZ = U follows from U ⊕ { 0} ⊂ U ⊕ Ũ =
[
G
G̃

]Z and Z = ker
(
G̃
)
. Since (β − L)ker

(
G
∣∣
Z
)

=

(β − L)
∣∣
ker(G̃)ker (G) = (β − L)

(
ker (G) ∩ ker

(
G̃
))

= (β − L)ker
([
G
G̃

])
= X , the passivity of Ξ follows by

Proposition 2.4.
Suppose that L is closed (i.e., Ξ̃ is strong) and that Z̃ ⊃ Z � zj → z in X is such that Lzj → x in X as

j → ∞. Because L is closed, z ∈ dom (L) = Z̃ and Lz = x. Thus, ‖zj − z‖2
Z := ‖zj − z‖2

X + ‖L(zj − z)‖2
X → 0.

Because G̃ ∈ L(Z; Ũ) by applying (2.3) on Ξ̃, the space Z = ker
(
G̃
)

is closed in Z̃ and thus z ∈ Z. We have

now shown that L
∣∣
Z is closed with dom

(
L
∣∣
Z
)

= Z. �
4The dissipativity or even the internal well-posedness of the time-flow inverted system is, if course, destroyed since adding

dissipation creates the “arrow of time”.



330 A. AALTO ET AL.

The restriction of the original solution space to ker
(
G̃
)

in Theorem 3.1 is a functional analytic description of

boundary dissipation of a particular kind. If the original scattering passive Ξ̃ is translated to an impedance
passive boundary node by the external Cayley-transform (see [30], Def. 3.1), then the abstract boundary con-
dition by restriction to ker

(
G̃
)

can be understood as a termination to an ideally resistive element as depicted
in Figure 1 of [30].

Theorem 3.2. Let Ξ = (G,L,K) be a scattering passive boundary node on the Hilbert spaces (U ,X ,Y) with
solution space Z and X1 = ker (G) with the norm ‖z‖X1 = ‖(1 − L)z‖X . Let H be a dissipative operator on X
with Z ⊂ dom (H)5. Introduce two assumptions as follows:

(i) There is a > 0 and 0 ≤ b < 1 such that ‖Hz‖X ≤ a‖z‖X + b‖Lz‖X for all z ∈ ker (G).
(ii) There is a Hilbert space X̃ such that X1 ⊂ X̃ ⊂ dom(H), the inclusion X1 ⊂ X̃ is compact and H

∣∣
X̃ ∈

L(X̃ ;X ).

If either (i) or (ii) holds, then ΞH := (G,L+H,K) is a scattering passive boundary node. We have dom (A) =
dom (AH) where A = L

∣∣
ker(G)

and AH = (L+H)
∣∣
ker(G)

are the semigroup generators of Ξ and ΞH, respectively.
If the node Ξ is strong and H ∈ L(X ) (i.e., b = 0 in assumption (i)), then ΞH is a strong boundary node as
well.

Both the assumptions (i) and (ii) hold if H ∈ L(X ) and X1 ⊂ X with a compact inclusion. This is the
case in ([2], Sect. 5) in the context of an impedance passive system. The compactness property is typically a
consequence of the Rellich–Kondrachov Theorem ([6], Thm. 1, p. 144) for boundary nodes defined by PDE’s
on bounded domains. In many applications such as Theorem 4.1 below, the operator H is even self-adjoint. We
give an example of the 1D wave equation with Kelvin–Voigt damping in Section 6 where Theorem 3.2 cannot
be applied.

Proof. By using assumption (i): This argument is motivated by ([14], Thm. 2.7, p. 501). Let us first show that
AH := A+H

∣∣
ker(G)

with dom (AH) = ker (G) generates a contraction semigroup on X where A = L
∣∣
ker(G)

gener-
ates the contraction semigroup of Ξ as usual. As a first step, we establish the inequality ‖H(s−A)−1‖L(X ) < 1
for all real s large enough.

Let β > 0 be arbitrary. For all s > β and z ∈ X we have

‖H(s−A)−1z‖X ≤ a‖(s−A)−1z‖X + b‖A(s−A)−1z‖X
≤ (a+ βb)‖(s−A)−1z‖X

+
b

s− β

∥∥∥∥∥
(

1
s− β

− (A− β)−1

)−1

z

∥∥∥∥∥
X

(3.1)

since

−A(s−A)−1 =
1

s− β

(
1

s− β
− (A− β)−1

)−1

− β(s−A)−1.

Since A is a maximally dissipative operator on X , we have for all z = (A− β)x ∈ X with x ∈ dom (A)

Re
〈
(A− β)−1z, z

〉
X =Re

〈
(A− β)−1(A− β)x, (A − β)x

〉
X

=Re 〈x, (A − β)x〉X
=Re 〈x,Ax〉X − β‖x‖2

X ≤ 0.

Thus, the operator (A− β)−1 is dissipative, and it is maximally so because (A− β)−1 ∈ L(X ).

5This means that H : dom (H) ⊂ X → X is an operator satisfying Z ⊂ dom (H) and Re 〈z, Hz〉X ≤ 0 for all z ∈ Z.
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Because (A − β)−1 generates a C0 contraction semigroup on X , the Hille–Yoshida generator theorem gives
the resolvent estimate

1
s− β

∥∥∥∥∥
(

1
s− β

− (A− β)−1

)−1
∥∥∥∥∥
L(X )

≤ 1

for s > β > 0. Similarly, ‖(s−A)−1‖L(X ) ≤ 1/s for s > 0. These together with (3.1) give

‖H(s−A)−1z‖X
‖z‖X ≤ a+ βb

s
+ b < 1 for all s >

a+ βb

1 − b
·

Because β > 0 was arbitrary, we get ‖H(s−A)−1‖L(X ) < 1 for all s > a
1−b . We conclude that (a/(1− b),∞) ⊂

ρ(AH) and
(s−AH)−1 = (s−A)−1(I −H(s−A)−1)−1 (3.2)

where dom (AH) = dom (A) = ker (G). In particular, we have shown that (2a/(1 − b) − L − H)ker (G) = X
(that GZ = U holds, follows because Ξ itself is a boundary node with the same input boundary operator G).
Since the Green–Lagrange inequality (2.5) holds by the passivity of Ξ and Re 〈z,Hz〉X ≤ 0 by assumption, we
conclude that (2.5) holds with L + H in place of L, too. Thus ΞH is a scattering passive boundary node by
Proposition 2.4.

By using assumption (ii): As in the first part of this proof, it is enough to prove that ρ(AH) ∩ C+ �= ∅ by
verifying (3.2). Because (s − A)−1 ∈ L(X ;X1), X1 ⊂ X̃ is compact, and H

∣∣
X̃ ∈ L(X̃ ;X ), we conclude that

H(s − A)−1 ∈ L(X ) is a compact operator for all s ∈ C+. If there is a s > 0 such that 1 /∈ σ(H(s − A)−1) ⊂
σp(H(s−A)−1)∪{0}, then (3.2) holds, s ∈ ρ(AH), and ΞH is a passive boundary node as argued in the first part
of the proof. For contradiction, assume that 1 ∈ σp(H(s0 − A)−1) for some s0 > 0. This implies AHx0 = s0x0

for some x0 ∈ dom(AH), and hence

Re 〈AHx0, x0〉X = s0‖x0‖2
X > 0

which contradicts the dissipativity of AH = A + H
∣∣
ker(G)

. Thus (3.2) holds and dom (A) = dom (AH). The
final claim about strongness of ΞH holds because perturbations of closed operators by bounded operators are
closed. �

The perturbationH in Theorem 3.2 is a densely defined dissipative operator on X . As such, it has a maximally
dissipative (closed) extension H̃ : dom

(
H̃
)
⊂ X → X satisfying H̃∗ ⊂ H∗, and the adjoint H̃∗ is maximally

dissipative as well. Without loss of generality we may assume that H = H̃ in Theorem 3.2. Furthermore, it is
possible to use X̃ = dom

(
H̃
)

equipped with the graph norm ‖z‖2
dom(H̃) = ‖z‖2

X + ‖H̃z‖2
X in assumption (ii),

and it only remains to check whether X1 ⊂ dom
(
H̃
)

compactly.
Let us consider the adjoint semigroup of the passive boundary node ΞH = (G,L +H,K), majorated by the

conservative node Ξ = (G,L,K). The adjoint semigroup is generated by the maximally dissipative operator
A∗H where AH = (L +H)

∣∣
ker(G)

is maximally dissipative under the assumptions of Theorem 3.2.

Proposition 3.3. Let Ξ = (G,L,K) be a scattering conservative boundary node on Hilbert spaces (U ,X ,Y)
with solution space Z. Let H be a dissipative operator on X with Z ⊂ dom (H). Assume that either of the
assumptions (i) or (ii) of Theorem 3.2 holds, and let the extension H̃ be defined as above.

(i) If ker (K) ⊂ dom
(
H̃∗

)
, then (−L+ H̃∗)

∣∣
ker(K)

⊂ A∗H .

(ii) If Z ⊂ dom
(
H̃∗

)
, then Ξ←

H̃∗ := (K,−L+ H̃∗, G) is an internally well-posed boundary node if and only if

(−L+ H̃∗)
∣∣
ker(K)

= A∗H .

(iii) If Z ⊂ dom
(
H̃∗

)
, then Ξ←

H̃∗ is a passive boundary node if and only if (−L+ H̃∗)
∣∣
ker(K)

= A∗H .
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If Ξ = (G,L,K) is conservative, so is its time-flow inverse Ξ← = (K,−L,G) by Definition 2.3. In this case, it
may be possible to use Theorem 3.2 to conclude that Ξ←

H̃∗ is a passive boundary node as well. If both ΞH and
Ξ←
H̃∗ are passive, then they cannot be time-flow inverses of each other unless both nodes are, in fact, conservative;

i.e., H = H̃∗ = 0 on Z.

Proof. It is easy to see that A∗+T ∗ ⊂ (A+T )∗ holds for operatorsA, T on X with dom (A)∩dom(T ) dense in X .

Applying this on A = L
∣∣
ker(G)

and T := H̃
∣∣
ker(G)

we get on ker (K) the inclusion −L∣∣
ker(K)

+
(
H̃
∣∣
ker(G)

)∗
⊂ A∗H .

Here we used A∗ = −L∣∣
ker(K)

which holds because Ξ = (G,L,K) is a conservative boundary node whose
dual system (with semigroup generator A∗) coincides with the time-flow inverse Ξ← = (K,−L,G). Since

ker (K) ⊂ dom
(
H̃∗

)
has been assumed, it follows that

(
H̃
∣∣
ker(G)

)∗
z = H̃∗z for all z ∈ ker (K), and Claim (i)

now follows.
The “only if” part of Claims (ii) and (iii): By the internal well-posedness of Ξ←

H̃∗ , its main operator (−L +

H̃∗)
∣∣
ker(K)

generates a C0 semigroup, and its resolvent set contains some right half plane by the Hille–Yoshida

theorem. By Claim (i) and the fact that A∗H is (even maximally) dissipative, it follows that (−L + H̃∗)
∣∣
ker(K)

is dissipative. But then (−L + H̃∗)
∣∣
ker(K)

is maximally dissipative, and the converse inclusion A∗H ⊂ (−L +

H̃∗)
∣∣
ker(K)

follows.

The “if” part of Claim (ii): The operator (−L+ H̃∗)
∣∣
ker(K)

generates a contraction semigroup on X because
it equals by assumption A∗H where AH itself is a generator of a contraction semigroup by Theorem 3.2.

Equip the Hilbert space dom
(
H̃∗

)
with the graph norm of the closed operator H̃∗. Since Z ⊂ dom

(
H̃∗

)
has been assumed, and both Z and dom

(
H̃∗

)
are continuously embedded in X , the inclusion Z ⊂ dom

(
H̃∗

)
is continuous, too. Now H̃∗

∣∣
Z ∈ L(Z;X ) follows from H̃∗ ∈ L(dom

(
H̃∗

)
;X ). Since now −L+ H̃∗ ∈ L(Z;X ),

it follows that Ξ←
H̃∗ is an internally well-posed boundary node by [29], Proposition 2.5. (You could also argue

by verifying Definition 2.1(ii) directly.)
The “if” part of Claim (iii): The “if” part of Claim (ii) gives the internal well-posedness of Ξ←

H̃∗ . To show

passivity, only the Green–Lagrange inequality 2Re 〈z, (−L+ H̃∗)z〉X ≤ ‖Kz‖2
Y −‖Gz‖2

U is needed. This follows

from (2.6) (by the conservativity of Ξ←) and the dissipativity of H̃∗ with Z ⊂ dom
(
H̃∗

)
(since H̃ is maximally

dissipative). �

4. Generalised Webster’s model for wave guides

As proved in [26], we arrive (under some mild technical assumptions on Ω as explained in [26], Sect. 3) to
the following equations for the approximate spatial averages of solutions of (5.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψtt =
c(s)2

A(s)
∂

∂s

(
A(s)

∂ψ

∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ

∂t

for s ∈ (0, 1) and t ∈ R+,

−c(0)ψs(0, t) + ψt(0, t) = 2

√
c(0)
ρA(0)

ũ(t) for t ∈ R+,

ψ(1, t) = 0 for t ∈ R+, and

ψ(s, 0) = ψ0(s), ρψt(s, 0) = π0(s) for s ∈ (0, 1),

(4.1)
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and the observation equation averages to

−c(0)ψs(0, t) − ψt(0, t) = 2

√
c(0)
ρA(0)

ỹ(t) for t ∈ R
+. (4.2)

The notation has been introduced in Section 1. Analogously with the wave equation, the solution ψ is
called Webster’s velocity potential. In ([25], Sect. 3) we add a load function f(s, t) to obtain the PDE
ψtt = c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t + f(s, t) because the argument there is based on the feed-forward

connection detailed in ([26], Fig. 1). Only the boundary control input is considered here, and it can be treated
using boundary nodes.

We assume that the sound speed correction factor Σ(s) and the area function A(s) are infinitely differentiable
for s ∈ [0, 1], and that the estimates

0 < min
s∈[0,1]

A(s) ≤ max
s∈[0,1]

A(s) <∞ and 0 < min
s∈[0,1]

c(s) ≤ max
s∈[0,1]

c(s) <∞ (4.3)

hold. These are natural assumptions recalling the geometry of the tubular domain Ω. Define the operators

W :=
1

A(s)
∂

∂s

(
A(s)

∂

∂s

)
and D := −2πW (s)

A(s)
· (4.4)

The operator D should be understood as a multiplication operator on L2(0, 1) by the strictly negative function
−2πW (·)A(·)−1. Then the first of the equations in (4.1) can be cast into first order form by using the rule

ψtt = c(s)2 (Wψ + αDψt) =̂
d
dt

[
ψ
π

]
=
[

0 ρ−1

ρc(s)2W αc(s)2D

] [
ψ
π

]
.

Henceforth, let

LW :=
[

0 ρ−1

ρc(s)2W 0

]
: ZW → XW and HW :=

[
0 0
0 c(s)2D

]
: XW → XW

where the Hilbert spaces are given by

ZW :=
(
H1
{1}(0, 1) ∩H2(0, 1)

)
×H1

{1}(0, 1), XW := H1
{1}(0, 1) × L2(0, 1)

where H1
{1}(0, 1) :=

{
f ∈ H1(0, 1) : f(1) = 0

}
.

Clearly we have HW ∈ L(XW ), H∗W = HW , and this operator is negative in the sense that 〈HW [ z1z2 ] , [ z1z2 ]〉XW =
−2π

∫ 1

0 |z2(s)|2W (s)c(s)2A(s)−1 ds ≤ 0. So, the operator αHW for α > 0 satisfies assumption (i) of Theorem (i)
with b = 0 and also assumption (ii) of the same theorem with X̃ = X .

The Hilbert spaces ZW and XW are equipped with the norms

‖[ z1z2 ]‖2
ZW

:= ‖z1‖2
H2(0,1) + ‖z2‖2

H1(0,1) and ‖[ z1z2 ]‖2
H1(0,1)×L2(0,1) := ‖z1‖2

H1(0,1) + ‖z2‖2
L2(0,1),

respectively. We will use the energy norm on XW , which for any ρ > 0 is defined by

‖ [ z1z2 ] ‖2
XW

:=
1
2

(
ρ

∫ 1

0

|z′1(s)|2A(s) ds+
1
ρc2

∫ 1

0

|z2(s)|2A(s)Σ(s)−2 ds
)
. (4.5)

This is an equivalent norm for XW because the conditions (4.3) hold and
√

2‖z1‖L2(0,1) ≤ ‖z′1‖L2(0,1) for all
z1 ∈ H1

{1}(0, 1). To see that the Poincaré inequality holds in H1
{1}(0, 1), note that for smooth functions z with

z(1) = 0, one has from the fundamental theorem of calculus that

|z(s)| =
∣∣∣∣∫ 1

s

z′(t) dt
∣∣∣∣ ≤ (1 − s)1/2‖z′‖L2(0,1).
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From this, we proceed by squaring and integrating with respect to s, and then passing to general Sobolev
functions by approximation.

We define UW := C with the absolute value norm ‖u0‖UW := |u0|. The endpoint control and observation
functionals GW : ZW → UW and KW : ZW → UW are defined by

GW [ z1z2 ] :=
1
2

√
A(0)
ρc(0)

(−ρc(0)z′1(0) + z2(0)) and

KW [ z1z2 ] :=
1
2

√
A(0)
ρc(0)

(−ρc(0)z′1(0) − z2(0)) .

Now the generalised Webster’s horn model (4.1), (4.2) for the state z(t) =
[
ψ(t)
π(t)

]
takes the form

⎧⎪⎨⎪⎩
d
dt

[
ψ(t)
π(t)

]
= (LW + αHW )

[
ψ(t)
π(t)

]
,

ũ(t) = GW

[
ψ(t)
π(t)

]
,

(4.6)

and
ỹ(t) = KW

[
ψ(t)
π(t)

]
(4.7)

for all t ∈ R
+

. The initial conditions are
[
ψ(0)
π(0)

]
=
[
ψ0
π0

]
. The state variable π = ρψt has the dimension of

pressure, as in the case of the wave equation.
The impedance passive version of the following Theorem 4.1 is given in ([2], Thm. 5.1), and it would be

possible to deduce parts of Theorem 4.1 from that result using the external Cayley transform ([30], Def. 3.1).
Here we give a direct proof instead.

Theorem 4.1. Let the operators LW , HW , GW , KW , and spaces ZW , XW , UW be defined as above. Let[
ψ0
π0

] ∈ ZW and ũ ∈ C2(R
+
; C) such that the compatibility condition GW

[
ψ0
π0

]
= ũ(0) holds. Then for all α ≥ 0

the following holds:

(i) The triple Ξ(W )
α := (GW , LW +αHW ,KW ) is a scattering passive, strong boundary node on Hilbert spaces

(UW ,XW ,UW ).
The semigroup generator AW,α = (LW + αHW )

∣∣
ker(GW )

of Ξ(W )
α satisfies A∗W,α = (−LW + αHW )

∣∣
ker(KW )

and 0 ∈ ρ(AW,α) ∩ ρ(A∗W,α).

(ii) The equations in (4.6) have a unique solution [ ψπ ] ∈ C1(R
+
;XW ) ∩ C(R

+
;ZW ). Hence we can define

ỹ ∈ C(R
+
; C) by equation (4.7).

(iii) The solution of (4.6), (4.7) satisfies the energy dissipation inequality

d
dt

‖
[
ψ(t)
π(t)

]
‖2
XW

≤ |ũ(t)|2 − |ỹ(t)|2 , t ∈ R
+. (4.8)

Moreover, Ξ(W )
0 is a conservative boundary node, and (4.8) holds then as an equality.

Under the assumptions of this proposition, we have ψ ∈ C(R
+
;H2(0, 1))∩C1(R

+
;H1(0, 1))∩C2(R

+
;L2(0, 1)).

Proof. Claim (i): By Theorem 3.2, it is enough to show the conservative case α = 0. Let us first verify the that
the Green–Lagrange identity

2Re 〈[ z1z2 ] , LW [ z1z2 ]〉XW + |KW [ z1z2 ]|2 = |GW [ z1z2 ]|2 (4.9)
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holds for all [ z1z2 ] ∈ ZW . By partial integration, we get

2Re 〈[ z1z2 ] , LW [ z1z2 ]〉XW = −A(0)Re
(
z′1(0)z2(0)

)
.

Now (4.9) follows since |GW [ z1z2 ]|2 − |KW [ z1z2 ]|2 = −A(0)Re
(
z′1(0)z2(0)

)
just as in equations (5.14), (5.15).

It is trivial that GWZW = KWZW = UW since dimUW = 1 and neither of the operators GW and KW

vanishes. We prove next that LW maps ker (GW ) bijectively onto XW . Now, [ z1z2 ] ∈ ker (GW ) and [w1
w2 ] ∈ XW

satisfy LW [ z1z2 ] = [w1
w2 ] if and only if z2 = ρw1 and

∂

∂s

(
A(·)∂z1

∂s

)
=
A(·)w2

ρc(·)2 , z1(1) = 0, z′1(0) =
w1(0)
c(0)

.

Since this equation has always a unique solution z1 ∈ H2(0, 1) for any w1 ∈ H1
{1}(0, 1) and w2 ∈ L2(0, 1), it

follows that LWker (GW ) = XW and 0 ∈ ρ(AW,0) where AW,0 = LW
∣∣
ker(GW )

is the semigroup generator of Ξ(W )
0 .

We conclude by Proposition 2.4 that Ξ(W )
0 is a conservative boundary node as claimed. That Ξ(W )

α is passive
for α > 0 with semigroup generator AW,α = (LW + αHW )

∣∣
ker(GW )

follows by Theorem 3.2.

Because H∗W = HW ∈ L(X ) is dissipative, we may apply Theorem 3.2 again to the time-flow inverted,

conservative node
(
Ξ

(W )
0

)←
= (KW ,−LW , GW ) to conclude that the boundary node (KW ,−LW +αH∗W , GW )

is passive as well. Claim (iii) of Proposition 3.3 implies that A∗W,α = (−LW + αHW )
∣∣
ker(KW )

.

Let us argue next that 0 ∈ ρ(AW,α) ∩ ρ(A∗W,α) for α > 0. Because AW,α is a compact resolvent operator,
it is enough to exclude 0 ∈ σp(AW,α). Suppose AW,αz0 = 0, giving Re 〈AW,0z0, z0〉X + Re 〈αHW z0, z0〉X =
Re 〈AW,αz0, z0〉X = 0. Thus

Re 〈AW,0z0, z0〉X = αRe 〈−HW z0, z0〉X = α‖(−HW )1/2z0‖2
X = 0

by the dissipativity of both AW,0 and HW , and the fact that −HW is a self-adjoint nonnegative operator. Thus
z0 ∈ ker (HW ) and hence AW,0z0 = (AW,0 + αHW )z0 = AW,αz0 = 0. Because 0 ∈ ρ(AW,0) has already been
shown, we conclude that z0 = 0.

The node Ξ
(W )
0 is strong (i.e., LW is closed with dom (LW ) = ZW ) since LW = L∗∗W . Indeed, we have

L∗W = −LW
∣∣
dom(L∗

W ) where

dom (L∗W ) =
{

[ w1
w2 ] ∈ H1

{1}(0, 1) ∩H2(0, 1) ×H1
0 (0, 1) : ∂w1

∂s (0) = 0
}

which is dense in XW and satisfies dom(L∗W ) ⊂ dom (LW ). That Ξ(W )
α is strong for α > 0 follows from

HW ∈ L(X ) as explained in Theorem 3.2.
Claims (ii) and (iii) follow from Proposition 2.2 and equation (2.4). �

5. Passive wave equation on wave guides

Define the tubular domain Ω ⊂ R3 and its boundary components Γ , Γ (0), and Γ (1) as in Section 1. Each of
the sets Γ , Γ (0), and Γ (1) are smooth manifolds but ∂Ω = Γ ∪ Γ (0) ∪ Γ (1) is only Lipschitz. Other relevant
properties of Ω and ∂Ω are listed in (i)–(iii) of Appendix A where we also make rigorous sense of the Sobolev
spaces, boundary trace mappings, Poincaré inequality, and the Green’s identity for such domains.
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Following ([26], Sect. 3) we consider the linear dynamical system described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φtt(r, t) = c2Δφ(r, t) for r ∈ Ω and t ∈ R+,

c
∂φ

∂ν
(r, t) + φt(r, t) = 2

√
c

ρA(0) u(r, t) for r ∈ Γ (0) and t ∈ R+,

φ(r, t) = 0 for r ∈ Γ (1) and t ∈ R+,

∂φ

∂ν
(r, t) + αφt(r, t) = 0 for r ∈ Γ, and t ∈ R+, and

φ(r, 0) = φ0(r), ρφt(r, 0) = p0(r) for r ∈ Ω,

(5.1)

together with the observation y defined by

c
∂φ

∂ν
(r, t) − φt(r, t) = 2

√
c

ρA(0) y(r, t) for r ∈ Γ (0) and t ∈ R
+. (5.2)

This model describes acoustics of a cavity Ω that has an open end at Γ (1) and an energy dissipating wall Γ . The
solution φ is the velocity potential as its gradient is the perturbation velocity field of the acoustic waves. The
boundary control and observation on surface Γ (0) (whose area is A(0)) are both of scattering type. The speed of
sound is denoted by c > 0. The constants α ≥ 0 and ρ > 0 have physical meaning but we refer to [26] for details.
Note that if α = 0, we have the Neumann boundary condition modelling a hard, sound reflecting boundary on
Γ . Our purpose is to show that (5.1), (5.2) defines a passive boundary node (conservative, if α = 0 by a slightly
different argument in Cor. 5.2) by using Theorem 3.1 with the aid of the additional signals ũ := 1√

α
∂φ
∂ν +

√
αφt

(that will be grounded) and ỹ := 1√
α
∂φ
∂ν −√

αφt (that will be disregarded) on the wall Γ .
The boundedness of the Dirichlet trace implies that the space

H1
Γ (1)(Ω) :=

{
f ∈ H1(Ω) : f

∣∣
Γ (1)

= 0
}
. (5.3)

is a closed subspace of H1(Ω). Define

Z̃ ′ := {f ∈ H1
Γ (1)(Ω) : Δf ∈ L2(Ω),

∂f

∂ν

∣∣
Γ (0)∪Γ ∈ L2(Γ (0) ∪ Γ )} (5.4)

with the norm ‖f‖2
Z̃′ = ‖f‖2

H1(Ω) + ‖Δf‖2
L2(Ω) + ‖∂f∂ν

∣∣
Γ (0)∪Γ ‖2

L2(Γ (0)∪Γ ). Then the operator

∂

∂ν

∣∣
Γ ′ : f �→ ∂f

∂ν

∣∣
Γ ′ lies in L(Z̃ ′;L2(Γ ′)) for Γ ′ ∈ {Γ (0), Γ, Γ (0) ∪ Γ}. (5.5)

The spaces Z̃, X , and the interior operator L are defined by

L :=
[

0 ρ−1

ρc2Δ 0

]
: Z̃ → X with

Z̃ := Z̃ ′ ×H1
Γ (1)(Ω) and X := H1

Γ (1)(Ω) × L2(Ω)
(5.6)

where H1
Γ (1)(Ω) and Z̃ ′ are given by (5.3), (5.4). For the space X , we use the energy norm, which is defined by

‖ [ z1z2 ] ‖2
X :=

1
2

(
ρ‖|∇z1|‖2

L2(Ω) +
1
ρc2

‖z2‖2
L2(Ω)

)
. (5.7)

The Poincaré inequality ‖z1‖L2(Ω) ≤ MΩ‖∇z1‖L2(Ω) holds for z1 ∈ H1
Γ (1)(Ω) as given in Theorem A.4 in

Appendix A. Therefore (5.7) defines a norm on X , equivalent to the Cartesian product norm

‖ [ z1z2 ] ‖2
H1(Ω)×L2(Ω) := ‖z1‖2

L2(Ω) + ‖∇z1‖2
L2(Ω) + ‖z2‖2

L2(Ω)
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so that Z̃ ⊂ X with a continuous embedding, and L ∈ L(Z̃;X ) with respect to the Z̃-norm

‖ [ z1z2 ] ‖2
Z̃ := ‖z1‖2

Z̃′ + ‖z2‖2
L2(Ω) + ‖∇z2‖2

L2(Ω).

Defining U := L2(Γ (0)) and Ũ := L2(Γ ) with the norms

‖u0‖2
U = A(0)−1‖u0‖2

L2(Γ (0)) and ‖ũ0‖Ũ = ‖ũ0‖L2(Γ ), (5.8)

we get U ⊕ Ũ = L2(Γ (0) ∪ Γ ) where we use the Cartesian product norm of U and Ũ .
The boundedness of the Dirichlet trace and the property (5.5) of the Neumann trace imply that

[
G
Gα

] ∈
L(Z̃ ;U ⊕ Ũ) and

[
K
Kα

] ∈ L(Z̃;U ⊕ Ũ) where

[
G
Gα

] [
z1
z2

]
:=

1
2

⎡⎢⎢⎣
√
A(0)
ρc

(
ρc
∂z1
∂ν

∣∣
Γ (0)

+ z2
∣∣
Γ (0)

)
√
ρ√
α

∂z1
∂ν

∣∣
Γ

+
√
α√
ρ
z2
∣∣
Γ

⎤⎥⎥⎦ and

[
K
Kα

] [
z1
z2

]
:=

1
2

⎡⎢⎢⎣
√
A(0)
ρc

(
ρc
∂z1
∂ν

∣∣
Γ (0)

− z2
∣∣
Γ (0)

)
√
ρ√
α

∂z1
∂ν

∣∣
Γ
−

√
α√
ρ
z2
∣∣
Γ

⎤⎥⎥⎦ .
(5.9)

The reason for defining the triple Ξ̃α := (
[
G
Gα

]
, L,

[
K
Kα

]
) is to obtain first order equations from (5.1), using

the equivalence of φtt = c2Δφ and d
dt

[
φ
p

]
=
[

0 ρ−1

ρc2Δ 0

] [
φ
p

]
where p = ρφt is the sound pressure. More precisely,

equations (5.1), (5.2) are (at least formally) equivalent with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt

[
φ(t)
p(t)

]
= L

[
φ(t)
p(t)

]
,[

u(t)
0

]
=

[
G

Gα

][
φ(t)
p(t)

]
,

(5.10)

and [
y(t)
ỹ(t)

]
=
[
K
Kα

] [
φ(t)
p(t)

]
(5.11)

for t ∈ R
+
, with the initial conditions

[
φ(0)
p(0)

]
=
[
φ0
p0

]
. The Green–Lagrange identity

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X + ‖[ KKα

]
[ z1z2 ]‖2

U⊕Ũ = ‖[ G
Gα

]
[ z1z2 ]‖2

U⊕Ũ for all [ z1z2 ] ∈ Z̃ (5.12)

is a key fact for proving the conservativity of Ξ̃α, and we verify it next. Green’s identity (Thm. A.3 in Ap-
pendix A) gives

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X = 2Re
〈
[ z1z2 ] ,

[
ρ−1z2
ρc2Δz1

]〉
X

= 2Re
1
2

(
ρ

∫
Ω

∇z1 · ∇(z2/ρ) dV +
1
ρc2

〈
ρc2Δz1, z2

〉
L2(Ω)

)
= Re

(∫
Γ (0)∪Γ∪Γ (1)

∂z1
∂ν

z2 dA

)

= Re
〈
∂z1
∂ν

∣∣
Γ (0)

, z2
∣∣
Γ (0)

〉
L2(Γ (0))

+ Re
〈
∂z1
∂ν

∣∣
Γ
, z2

∣∣
Γ

〉
L2(Γ )

(5.13)
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because z2
∣∣
Γ (1)

= 0 by (5.6). On the other hand, we obtain

‖G [ z1z2 ]‖2
U = A(0)−1 〈G [ z1z2 ] , G [ z1z2 ]〉L2(Γ (0)) (5.14)

=
1

4ρc

(
ρ2c2

∥∥∥∥∂z1∂ν ∣∣Γ (0)

∥∥∥∥2

L2(Γ (0))

+ 2ρcRe
〈
∂z1
∂ν

∣∣
Γ (0)

, z2
∣∣
Γ (0)

〉
L2(Γ (0))

+
∥∥∥z2∣∣Γ (0)

∥∥∥2

L2(Γ (0))

)
and also

‖K [ z1z2 ]‖2
U = A(0)−1 〈K [ z1z2 ] ,K [ z1z2 ]〉L2(Γ (0)) (5.15)

=
1

4ρc

(
ρ2c2

∥∥∥∥∂z1∂ν ∣∣Γ (0)

∥∥∥∥2

L2(Γ (0))

− 2ρcRe
〈
∂z1
∂ν

∣∣
Γ (0)

, z2
∣∣
Γ (0)

〉
L2(Γ (0))

+
∥∥∥z2∣∣Γ (0)

∥∥∥2

L2(Γ (0))

)
,

where G [ z1z2 ] and K [ z1z2 ] are the first components in (5.9) respectively.
Similarly, we compute the two terms needed in

‖Gα [ z1z2 ]‖2
Ũ − ‖Kα [ z1z2 ]‖2

Ũ = 〈Gα [ z1z2 ] , Gα [ z1z2 ]〉L2(Γ ) − 〈Kα [ z1z2 ] ,Kα [ z1z2 ]〉L2(Γ ) = Re
〈
∂z1
∂ν

∣∣
Γ
, z2

∣∣
Γ

〉
L2(Γ )

,

(5.16)

where Gα [ z1z2 ] and Kα [ z1z2 ] are the second components in (5.9) respectively. Now (5.13), (5.16) implies (5.12) as
required.

We proceed to show that the the triple Ξα := (G
∣∣
Zα
, L
∣∣
Zα
,K

∣∣
Zα

) for all α > 0 is a scattering passive
boundary node on Hilbert spaces (U ,X ,U) with the solution space

Zα :=
{[
z1
z2

]
∈ Z̃ ′ ×H1

Γ (1)(Ω) :
∂z1
∂ν

∣∣
Γ

+
α

ρ
z2
∣∣
Γ

= 0
}
. (5.17)

Note that Zα is a closed subspace of Z̃ because Gα ∈ L(Z̃; Ũ) and Zα = ker (Gα). Therefore, we can use the
norm of Z̃ on Zα. The conservative case α = 0 is slightly different, and it is treated separately in Corollary 5.2.

Theorem 5.1. Take α > 0 and let the operators L, G, K, and Hilbert spaces X , U , and Zα be defined as
above. Let

[
φ0
p0

] ∈ Zα and u ∈ C2(R
+
;U) be such that the compatibility condition G

[
φ0
p0

]
= u(0) holds. Then

the following hold:

(i) The triple Ξα := (G
∣∣
Zα
, L
∣∣
Zα
,K

∣∣
Zα

) is a scattering passive boundary node on Hilbert spaces (U ,X ,U) with
solution space Zα. The semigroup generator Aα = L

∣∣
ker(G)∩ker(Gα)

of Ξα satisfies A∗α = −L∣∣
ker(K)∩ker(Kα)

and 0 ∈ ρ(Aα) ∩ ρ(A∗α).
(ii) The equations6 in (5.10) have a unique solution

[
φ
p

] ∈ C1(R
+

;X ) ∩ C(R
+

;Zα) satisfying φ(0) = φ0 and

p(0) = p0. Hence we can define y ∈ C(R
+

;U) by equation (5.11).
(iii) The solutions of (5.10), (5.11) satisfy the energy dissipation inequality

d
dt

‖
[
φ(t)
p(t)

]
‖2
X ≤ ‖u(t)‖2

U − ‖y(t)‖2
U , t ∈ R

+. (5.18)

It follows from Claim (ii) and the definition of the norms of Zα and X that φ ∈ C1(R
+
;H1(Ω))∩C2(R

+
;L2(Ω)),

∇φ ∈ C1(R
+
;L2(Ω; R3)), and Δφ ∈ C(R

+
;L2(Ω)). These are the same smoothness properties that have been

used in ([26], see, in particular, Eq. (1.4)) for deriving the generalised Webster’s equation in (1.3) from the wave
equation.

6Note that (2.1) is equivalent with (5.1) and (5.10) in the context of this theorem.
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Proof.
Claim (i): By Theorem 3.1 and the discussion preceding this theorem, it is enough to show that Ξ̃α =
(
[
G
Gα

]
, L,

[
K
Kα

]
) introduced above is a conservative boundary node which is easiest done by using Proposi-

tion 2.4. Since the Green–Lagrange identity (2.6) has already been established, it remains to prove conditions (ii)
(with

[
G
Gα

]
in place of G) and (iv) (with

[
K
Kα

]
in place of K) of Proposition 2.4 with β = γ = 0. It is enough

to consider only β = γ = 0 because the resolvent sets of L
∣∣
ker(G)

and −L∣∣
ker(K)

in Proposition 2.4 are open,
and then the same conditions hold for some β, γ > 0 as well.

For an arbitrary g ∈ L2(Γ (0) ∪ Γ ) there exists a unique variational7 solution z1 ∈ H1
Γ (1)(Ω) of the problem

Δz1 = 0, z1
∣∣
Γ (1)

= 0,
∂z1
∂ν

∣∣
Γ (0)∪Γ = g. (5.19)

Since z1 ∈ Z̃ ′, we have ∂
∂ν

∣∣
Γ (0)∪Γ Z̃ ′ = L2(Γ (0) ∪ Γ ) which obviously gives both ∂

∂ν

∣∣
Γ (0)

Z̃ ′ = L2(Γ (0)) and
∂
∂ν

∣∣
Γ
Z̃ ′ = L2(Γ ). Clearly Z̃ ′ ⊕ {0} ⊂ Z̃ and the surjectivity of

[
G
Gα

]
follows from[

G
Gα

] [
z1
0

]
:=

1
2

[√
A(0)ρc ∂∂ν

∣∣
Γ (0)√

ρ√
α
∂
∂ν

∣∣
Γ

]
z1.

To see this, for a given h ∈ L2(Γ (0) ∪ Γ ), we choose

g =

⎧⎨⎩2 1√
A(0)ρc

h, on Γ (0),

2
√
α√
ρ h, on Γ

in (5.19) to find a function z1 so that
[
G
Gα

]
[ z10 ] = h. The surjectivity of

[
K
Kα

]
is proved similarly.

To show that Lker
([

G
Gα

])
= L (ker (G) ∩ ker (Gα)) = X , let [w1

w2 ] ∈ X be arbitrary. Then [w1
w2 ] = L [ z1z2 ] =[

ρ−1z2
ρc2Δz1

]
for [ z1z2 ] ∈ ker (G) ∩ ker (Gα) if and only if z2 = ρw1 and the variational solution z1 ∈ H1

Γ (1)(Ω) of the
problem

ρc2Δz1 = w2, z1
∣∣
Γ (1)

= 0,
∂z1
∂ν

∣∣
Γ

= −αρw1

∣∣
Γ
, c

∂z1
∂ν

∣∣
Γ (0)

= −w1

∣∣
Γ (0)

exists and belongs to the space Z ′. This condition can be verified by standard variational techniques because
w2 ∈ L2(Ω) and w1 ∈ H1

Γ (1)(Ω) which implies w1

∣∣
Γ (0)∪Γ ∈ H1/2(Γ (0)∪Γ ) ⊂ L2(Γ (0)∪Γ ). That Lker

([
K
Kα

])
=

X is proved similarly. All the conditions of Proposition 2.4 are now satisfied with β = γ = 0, and thus Ξ̃α is
a conservative boundary node. It follows from Theorem 3.1 that Ξα is a passive boundary node which has the
common semigroup generator Aα = L

∣∣
ker(G)∩ker(Gα)

with the original conservative boundary node Ξ̃α. By [29],

Theorem 1.9 and Proposition 4.3, the dual system of Ξ̃α is of boundary control type, and it coincides with
the time-flow inverted boundary node Ξ̃←α . The unbounded adjoint A∗α is the semigroup generator of the dual
system Ξ̃←α , and hence A∗α = −L∣∣

ker(K)∩ker(Kα)
as claimed.

It remains to show that 0 /∈ σ(Aα). We have already shown above that Aαdom(Aα) = X with dom (Aα) =
ker (G)∩ ker (Gα), and the remaining injectivity part follows if we show that ker (L)∩ ker (G)∩ ker (Gα) = {0}.
This follows because the variational solution in H1(Ω) of the homogenous problem

Δz1 = 0, z1
∣∣
Γ (1)

= 0,
∂z1
∂ν

∣∣
Γ (0)∪Γ = 0

is unique. That 0 /∈ σ(A∗α) follows similarly by considering the time-flow inverted system Ξ̃←α instead.

Claims (ii), (iii): Since scattering passive boundary nodes are internally well-posed, it follows from (e.g., [29],
Lem. 2.6) that equations (2.1) are solvable, as has been explained in Section 2. �

7We leave it to the interested reader to derive the variational form using Green’s identity (A.9) and then carry out the usual
argument by the Lax–Milgram theorem; see (e.g., [12], Lem. 2.2.1.1).
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Corollary 5.2. Use the same notation and make the same assumptions as in Theorem 5.1. If α = 0, then
Claims (i), (iii) of Theorem 5.1 hold in the stronger form: (i’) the triple Ξ0 := (G

∣∣
Z0
, L
∣∣
Z0
,K

∣∣
Z0

) is a scattering
conservative boundary node on Hilbert spaces (U ,X ,U) with the solution space Z0 := Z̃ ′0 ×H1

Γ (1)(Ω) where

Z̃ ′0 :=
{
f ∈ H1

Γ (1)(Ω) : Δf ∈ L2(Ω),
∂f

∂ν

∣∣
Γ (0)

∈ L2(Γ (0)),
∂f

∂ν

∣∣
Γ

= 0
}

; (5.20)

and (iii’) the energy inequality (5.18) holds as an equality.

Claim (ii) of Theorem 5.1 remains true without change. Thus, the solution φ has the same regularity properties
as listed right after Theorem 5.1.

Proof. Because the operators Gα and Kα refer to 1/
√
α, we cannot simply set α = 0 in the proof. This problem

could be resolved by making the norm of Ũ dependent on α which we want to avoid. A direct argument can be
given without ever defining Ξ̃α. To prove the Green–Lagrange identity

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X + ‖K [ z1z2 ]‖2
U = ‖G [ z1z2 ]‖2

U for all [ z1z2 ] ∈ Z̃0 (5.21)

for Ξ0, one simply omits the last term on the right hand side of (5.13) by using the Neumann condition ∂z1
∂ν

∣∣
Γ

= 0
from (5.20). Then (5.21) follows from (5.13), (5.15), leading ultimately to (5.18) with an equality. The remaining
parts of Claim (i’) follow by the argument given in the proof of Theorem 5.1. �

This result generalises the reflecting mirror example in ([29], Sect. 5) and further generalisations are given in
Section 6.

6. Conclusions and generalisations

We have given a unified treatment of a 3D wave equation model on tubular structures and the corresponding
Webster’s horn model in the form it is derived and used in [25, 26]. Both the forward time solvability and the
energy inequalities have been treated rigorously, and the necessary but hard-to-find Sobolev space apparatus
was presented in Appendix A. The strictly dissipative case was reduced to the conservative case using auxiliary
Theorems 3.1 and 3.2 that have independent interest.

Theorem 5.1 can be extended and generalised significantly using only the techniques presented in this work.
Firstly, a dissipation term, analogous with the one appearing in Webster’s equation (4.1), can be added to the
wave equation part of (5.1) while keeping rest of the model the same:

Corollary 6.1. Theorem 5.1 remains true if the wave equation φtt = c2Δφ in (5.1) is replaced by φtt =
c2Δφ+ g(·)φt where g is a smooth function satisfying g(r) ≤ 0 for all r ∈ Ω.

Indeed, this follows by using Theorem 3.2 on the result of Theorem 5.1 in the same way as has been done in
Section 4. Even now the resulting negative perturbation H on the original interior operator L in (5.6) satisfies
H ∈ L(X ). The same dissipation term can, of course, be added to Corollary 5.2 (where α = 0) as well but then
the resulting boundary node is only passive unless g ≡ 0.

Theorem 5.1 can be generalised to cover much more complicated geometries Ω ⊂ R3 than tube segments
with circular cross-sections. Inspecting the construction of the boundary node Ξα and the accompanying Hilbert
spaces in Section 5, it becomes clear that much more can be proved at the cost of more complicated notation
but nothing more:

Corollary 6.2. Let Ω ⊂ R3 be a bounded Lipschitz domain satisfying standing assumptions (i)–(iv) in
Appendix (i). Denote the smooth boundary components of Ω by Γj where j ∈ J ⊂ N satisfying ∂Ω = ∪j∈JΓj.
Let J = J1 ∪ J2 ∪ J3 where the sets are pairwise disjoint, and at least J1 and J3 are nonempty. Define
the open Lipschitz surfaces Γ (0), Γ, Γ (1) ⊂ ∂Ω through their closures Γ (0) = ∪j∈J1Γj, Γ = ∪j∈J2Γj, and
Γ (1) = ∪j∈J3Γj, respectively. Let α = {αj}j∈J2 ⊂ (−∞, 0] be a vector of dissipation parameters.
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Then the wave equation model (5.1) with equations

αj
∂φ

∂t
(r, t) +

∂φ

∂ν
(r, t) = 0 for all r ∈ Γj , t ≥ 0, and j ∈ J2

in place of the fourth equation in (5.1) defines the boundary node Ξα and the Hilbert spaces X , U , and Zα in
a same way as presented in Section 5. Moreover, Theorem 5.1 and Corollary 5.2 (where αj = 0 for all j ∈ J2)
hold without change.

In particular, the set Ω may be an union of a finite number of tubular domains described in Section 1. Even
loops are possible and the interior domain dissipation can be added just like in Corollary 6.1. This configuration
can be found in the study of the spectral limit behaviour of Neumann–Laplacian on graph-like structures
in [15, 35].

Comments on the proof. The argument in Section 5 defines Ξα, the Hilbert spaces X , U , and Zα, and the Green–
Lagrange identity by splitting ∂Ω into three smooth components and patching things up using the results of
Appendix A. The same can be done on any finite number of components since the results of Appendix A are
sufficiently general to allow it. The solvability of the variational problems in the proof of Theorem 5.1 do not
depend on the number of such boundary components either. �

There is nothing in Section 5 that would exclude the further generalisation to Ω ⊂ Rn for any n ≥ 2 if
standing assumptions (i)–(iv) in Appendix A remain true. If n = 2 and Ω is a curvilinear polygon (i.e., it is
simply connected), the necessary PDE toolkit can be found in Section 1 of [12].

Also Theorem 4.1 has extensions but not as many as Theorem 5.1. Firstly, the nonnegative constant α can be
replaced by a nonnegative function α(·) ∈ C[0, 1] since the s-dependency is already present in the operator D
in (4.4). Secondly, strong boundary nodes described by Theorem 4.1 can be scaled to different interval lengths
and coupled to finite transmission graphs as explained in [2] for impedance passive component systems. The
full treatment of a simple transmission graph, consisting of three Webster’s horn models in Y-configuration, has
been given in Theorem 5.2 of [2]. More general finite configurations can be treated similarly, and the resulting
impedance passive system can be translated to a scattering passive system by the external Cayley transform [30],
Section 3, thus producing a generalisation of Theorem 4.1. We note that there is not much point in trying to
derive the transmission graph directly from scattering passive systems since the continuity equation (for the
pressure) and Kirchhoff’s law (for the conservation of flow) at each node is easiest described by impedance
notions.

That Theorem 3.2 cannot be used for all possible dissipation terms is seen by considering the wave equation
with Kelvin–Voigt structural damping term

ψtt = c2ψss +
∂

∂s

(
β(s)

∂

∂s
ψt

)
where β(s) ≥ 0. (6.1)

For details of this dissipation model, see, e.g., [24]. To obtain the full dynamical system analogous to the
one associated with Webster’s equation, the same boundary and initial conditions can be used as in (1.3) for
β ∈ C∞[0, 1] compactly supported (0, 1). Thus the operators GW and KW do not change. Following Section 4
we use the velocity potential and the pressure as state variables [ ψπ ]. We define the Hilbert spaces ZW and XW
similarly as well as the operators

LW :=
[

0 ρ−1

ρc2 ∂2

∂s2 0

]
: ZW → XW and

H̃ :=
[
0 0
0 ∂
∂s

(
β(s) ∂∂s

)] : dom
(
H̃
)
⊂ XW → XW
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where dom
(
H̃
)

:= H1
{1}(0, 1) × {f ∈ L2(0, 1) : β(s)∂f∂s ∈ H1(0, 1)}. The physical energy norm for XW is given

by (4.5) with A(s) = Σ(s) ≡ 1 representing a constant diameter straight tube. If the parameter β ≡ 0, the
colligation (GW , LW ,KW ) is a special case of the conservative system Ξ

(W )
0 described in Theorem 4.1. Clearly,

the domain of H̃ cannot be further extended without violating the range inclusion in XW . On the other hand,
the inclusion Z ⊂ dom

(
H̃
)

required by Theorem 3.2 is not satisfied.

Appendix A. Sobolev spaces and Green’s identity

We prove a sufficiently general form of Green’s identity that holds in a tubular domain Ω (that has a Lipschitz
boundary) with minimal assumptions on any functions involved. We make the following standing assumptions
on Ω:

(i) Ω is a bounded Lipschitz domain so that Ω locally on one side of is boundary ∂Ω;
(ii) there is a finite number of smooth, open, connected, and disjoint (n− 1)-dimensional surfaces Γj with the

following property: the boundary ∂Ω is a union of all Γj ’s and parts of their common boundaries Γ j ∩ Γ k
for j �= k;

(iii) Hn−2(Γ j ∩ Γ k) < ∞ for all j �= k where Hm(M) is the m-dimensional Hausdorff measure for 1 ≤ m ≤ n
of M ⊂ Rn; and

(iv) for each j, there is a C∞ vector field νj defined in a neighbourhood of Ω such that νj(r) is the exterior
unit normal to Γj at r ∈ Γj .

That Γj ⊂ Rn is an open, bounded, and smooth (n− 1)-dimensional surface means plainly the following: there
is an open and bounded Γ̃j ⊂ Rn−1 and a C∞-diffeomorphism φj from Γ̃j onto Γj . The pair (φj , Γ̃j) is a global
coordinate representation of Γj .

The boundary conditions in Section 5 involve the Dirichlet conditions the end Γ (1) of the tube, Neumann or
Robin conditions on the wall Γ of the tube, and a Robin condition on the end Γ (0). In other words, we must
impose different types of boundary conditions on the same connected component of ∂Ω which is in contrast
with the restrictive technical assumptions on ∂Ω in, e.g., [17, 29, 43]. Such assumptions must be avoided in
the verification of, e.g., the Green–Lagrange identity in Section 5 where we need a version of Green’s identity
suitable for wave propagation in a tubular domain with mixed boundary conditions. This is in Theorem A.3
below. The key fact ensuring the validity of this identity is that the interfaces where we switch between different
boundary conditions are so small that Sobolev functions do not see them. That this is the case is a consequence
of the Assumption (iii) above, and it is expressed rigorously in the following auxiliary result.

Lemma A.1. Let Ω be a bounded domain with a Lipschitz boundary, and let E ⊂ Rn be a compact set of zero
capacity; i.e.,

C(E) := inf
u∈S(E)

∫
Rn

(
|u|2 + |∇u|2

)
dV = 0 (A.1)

where
S(E) := {u ∈ C∞(Rn) : 0 ≤ u ≤ 1 in R

n and u = 1 in N, where N is open and E ⊂ N}.
Then

(i) the set DE(Rn) is dense in H1(Rn) where

DE(Rn) := {u ∈ D(Rn) : u vanishes in an open neighbourhood of E}; and (A.2)

(ii) the set
DE(Ω) := {u∣∣

Ω
: u ∈ DE(Rn)}

is dense in H1(Ω).
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Proof.
Claim (i): Let u ∈ H1(Rn) and ε > 0. Then by ([12], Thm. 1.4.2.1) there is v ∈ D(Rn) such that ‖u− v‖H1(Rn) <
ε/2.

By the vanishing capacity assumption (A.1), there is a sequence {ϕj}j=1,2,... ⊂ C∞(Rn) such that ϕj
∣∣
Nj

= 1
for some neighbourhoods Nj of E, and also

lim
j→∞

∫
Rn

(
|ϕj |2 + |∇ϕj |2

)
dV = 0. (A.3)

Defining vj(r) := v(r)(1 − ϕj(r)) we see that each of these functions satisfies vj ∈ DE(Rn). It remains to prove
that ‖vj − v‖H1(Rn) < ε/2 for all j large enough, since then

‖vj − u‖H1(Rn) ≤ ‖vj − v‖H1(Rn) + ‖u− v‖H1(Rn) < ε.

By possibly replacing {ϕj}j=1,2,... by its subsequence, we may assume that ϕj → 0 pointwise almost everywhere
(see [36], Thm. 3.12). Because |vj(r)| ≤ |v(r)| for all r ∈ Rn and j = 1, 2, . . ., we have vj → v in L2(Rn) by the
Lebesgue dominated convergence theorem. For the gradients, we note that ∇(vj − v) = −ϕj∇v − v∇ϕj . Thus
|∇(vj − v)| → 0 in L2(Rn), since both ϕj and |∇ϕj | tend to zero in L2(Rn) by (A.3).

Claim (ii): Let u ∈ H1(Ω) and take ε > 0. Since Ω has a Lipschitz boundary, there is an extension operator
T ∈ L(H1(Ω);H1(Rn)) such that (Tu)

∣∣
Ω

= u (see [12], Thm. 1.4.3.1). By Claim (i), there is a function
v ∈ DE(Rn) such that

‖u− v
∣∣
Ω
‖H1(Ω) ≤ ‖Tu− v‖H1(Rn) < ε

which completes the proof. �

Let us review the Sobolev spaces and the boundary trace mappings on Ω and ∂Ω when the standing assump-
tions (i)–(iv) above hold. The boundary Sobolev spaces Hs(∂Ω) and Hs(Γj) for s ∈ [−1, 1] are defined as in
([12], Defs. 1.2.1.1 and 1.3.3.2). The zero extension Sobolev spaces on Γj are defined by

H̃s(Γj) := {u ∈ Hs(Γj) : ũ ∈ Hs(∂Ω)}

for s ∈ (0, 1] where

ũ(r) :=

{
u(r) if r ∈ Γj
0 if r ∈ ∂Ω \ Γj . (A.4)

We use the Hilbert space norms ‖u‖H̃s(Γj)
:= ‖ũ‖Hs(∂Ω). The space H̃s(Γj) is closed in this norm since restriction

to Γj from ∂Ω is a bounded operator from Hs(∂Ω) to Hs(Γj) for 0 ≤ s ≤ 1. This boundedness follows
trivially by restriction using the Gagliardo norm (see [12], Eq. (1,3,3,3), p. 20). Then Hs(∂Ω) ⊂ L2(∂Ω) and
H̃s(Γj) ⊂ Hs(Γj) ⊂ L2(Γj) with bounded inclusions.

The Dirichlet trace operator γ is first defined for functions f ∈ D(Ω) simply by restriction γf := f
∣∣
∂Ω

. This
operator has a unique extension to a bounded operator γ ∈ L(H1(Ω);H1/2(∂Ω)); see ([12], Thm. 1.5.1.3) and
Lemma A.1. All this holds for any Lipschitz domain Ω.

We define the Neumann trace operator separately on each surface Γj using the vector fields νj . Such an

operator γj ∂
∂νj

is first defined on D(Ω) (with values in L2(∂Ω)) by setting
(
γj

∂
∂νj

f
)

(r) := νj(r) · ∇f(r) for all

r ∈ Γj ; here γjf := f
∣∣
Γj

and ∂
∂νj

:= νj · ∇. It is easy to see that ∂f
∂νj

∈ H1(Ω) and hence γj ∂
∂νj

has an extension

to an operator in L(H2(Ω);H1/2(Γj)) by ([12], Thm. 1.5.1.3). We then define the full Neumann trace operator
γ ∂
∂ν on ∪jΓj by

γ
∂f

∂ν
(r) := γj

∂f

∂νj
(r) for all f ∈ H2(Ω) and (almost) all r ∈ Γj .
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Note that the function γ ∂f∂ν is not defined at all on the exceptional set of capacity zero

E := ∪j �=k(Γ j ∩ Γ k) (A.5)

of the non-smooth part of ∂Ω. That C(E) = 0 follows from the standing assumption (iii) by ([6], Thm. 3,
p. 154).

We need to extend each γj ∂
∂νj

to the Hilbert space

E(Δ;L2(Ω)) := {f ∈ H1(Ω) : Δf ∈ L2(Ω)}
that is equipped with the norm defined by ‖f‖2

E(Δ;L2(Ω)) = ‖f‖2
H1(Ω) + ‖Δf‖2

L2(Ω).

Proposition A.2. Let the domain Ω ⊂ Rn satisfy the standing assumptions (i)–(iv).

(i) Then each Neumann trace operator γj ∂
∂νj

(originally defined on D(Ω)) has a unique extension (also denoted

by γj ∂
∂νj

) that is bounded from E(Δ;L2(Ω)) into the dual space of H̃1/2(Γj) with pivot space L2(Γj).
(ii) We have ∫

Ω

(Δu) v dV +
∫
Ω

∇u · ∇v dV =
∑
j

〈
γj
∂u

∂ν
, γjv

〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

for all u ∈ E(Δ;L2(Ω)) and v ∈ H1(Ω) such that γjv ∈ H̃1/2(Γj) for all j.

Proof. The classical Green’s identity for u ∈ D(Ω) and v ∈ DE(Ω) is∫
Ω

(Δu) v dV +
∫
Ω

∇u · ∇v dV =
∑
j

∫
Γj

γj
∂u

∂νj
γjv dA, (A.6)

where E is the exceptional set in (A.5). Indeed, since v vanishes near the interfaces Γ j ∩ Γ k for j �= k, we may
initially apply Green’s identity just like (A.6) but over a subdomain of Ω that has been obtained from Ω by
rounding slightly at all ∂Γj’s but preserving essentially all of ∂Ω. Here the functions u and v and the rounded
subdomain are all smooth, so the Green’s formula we use here is the one familiar from vector calculus. Then
we get (A.6) by rewriting the result as integrals over the original Ω and the original boundary pieces Γj , noting
that on additional points the integrands vanish because v ∈ DE(Ω). Notice that all the functions appearing
above are smooth, so we can use Green’s formula

It follows from (A.6) that we have for u ∈ D(Ω) and v ∈ DE(Ω) the estimate∣∣∣∣∣∣
∑
j

〈
γj
∂u

∂νj
, γjv

〉
L2(Γj)

∣∣∣∣∣∣ ≤ ‖u‖E(Δ;L2(Ω)) · 4‖v‖H1(Ω). (A.7)

Because DE(Ω) is dense in H1(Ω) by Lemma A.1 and γ ∈ L(H1(Ω);H1/2(∂Ω)) by the trace Theorem ([12],
Thm. 1.5.1.3), we conclude that (A.7) holds for all u ∈ D(Ω) and v ∈ H1(Ω).

Fix now j and g ∈ H̃1/2(Γj), and define g̃ ∈ H1/2(∂Ω) by (A.4). Because the Dirichlet trace γ : H1(Ω) →
H1/2(∂Ω) is bounded and surjective, it has a continuous right inverse P ∈ L(H1/2(∂Ω);H1(Ω)) (see [12],
Thm. 1.5.1.3). Thus we have the estimate 4‖Pg‖H1(Ω) ≤ K‖g̃‖H1/2(∂Ω) = K‖g‖H̃1/2(Γj)

for all g ∈ H̃1/2(Γj).
It follows from all this and (A.7) that we have

|Φg(u)| ≤ K‖u‖E(Δ;L2(Ω)) · ‖g‖H̃1/2(Γj) (A.8)

for all g ∈ H̃1/2(Γj) where Φg(u) :=
〈
γ ∂u∂ν , g̃

〉
L2(∂Ω)

=
〈
γj

∂u
∂νj

, g
〉
L2(Γj)

for u ∈ D(Ω). Since D(Ω) is dense in

E(Δ;L2(Ω)) by ([12], Lem. 1.5.3.9), we may extend Φg, g ∈ H̃1/2(Γj), by continuity to a continuous linear
functional on E(Δ;L2(Ω)) satisfying estimate (A.8), too.
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For each fixed u ∈ E(Δ;L2(Ω)), the mapping g �→ Φg(u) is a continuous linear functional on H̃1/2(Γj)
by (A.8). Hence, there is a representing vector – denoted by γj

∂u
∂νj

– in the dual space [H̃1/2(Γj)]d such that

Φg(u) =
〈
γj

∂u
∂νj

, g
〉

[H̃1/2(Γj)]d,H̃1/2(Γj)
. This proves Claim (i). Claim (ii) follows by a density argument using

Claim (i) and (A.8). �

Theorem A.3 (Green’s identity). Let the domain Ω ⊂ R
n satisfy the standing assumptions (i)–(iv) above.

Assume that u ∈ H1(Ω) is such that Δu ∈ L2(Ω) and satisfies γ ∂u∂ν ∈ L2(∪kj=1Γj) for some 1 ≤ k ≤ n. Then
the Green’s identity∫

Ω

(Δu) v dV +
∫
Ω

∇u · ∇v dV =
k∑
j=1

∫
Γj

∂u

∂ν
v dA+

n∑
j=k+1

〈
γj
∂u

∂νj
, γjv

〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

(A.9)

holds for functions v ∈ H1(Ω) such that γjv ∈ H̃1/2(Γj) for k + 1 ≤ j ≤ n.

For n = 2, this is a generalisation of ([12], Thm. 1.5.3.11). See also [12], discussion on page 62 for domains with
C1,1-boundaries. The assumption γ ∂u∂ν ∈ L2(∪kj=1Γj) simply means that γj ∂u∂νj

∈ L2(Γj) for all j = 1, 2, . . . , k

where γj ∂u∂νj
is understood as an element of [H̃1/2(Γj)]d which includes L2(Γj); see Proposition A.2.

Proof. As explained above, we have γjv, γj ∂u∂νj
∈ L2(Γj) for all j = 1, . . . , k. Then (A.9) follows from Claim (ii)

of Proposition A.2 under the additional assumption that γjv ∈ H̃1/2(Γj) for all j. The functions in DE(Ω)
clearly satisfy this additional assumption, and they are dense in H1(Ω). This proves the claim. �

An alternative to the above piecewise construction is to start with the global Neumann trace γ ∂
∂ν u defined for

u ∈ E(Δ;L2(Ω)) with values in H−1/2(∂Ω) (see, e.g. [45], Thm. 13.7.6). The global Neumann trace γ ∂
∂νu can

be restricted to the spaces H̃1/2(Γj), and Claim (ii) of Proposition A.2 follows from a global Green’s identity
in a general Lipschitz domain. However, one still needs Lemma A.1 to prove Theorem A.3.

It remains to prove the Poincaré inequality that is used to show that the expression (5.7) is a valid Hilbert
space norm for the state space. Let Γj be one of the boundary components of ∂Ω as described above. By the
standing assumptions (i), (ii) given in the beginning of this appendix, the set Γj has a finite, positive area
Aj =

∫
Γj

dA. Thus, we can define the mean value operator Mj : H1(Ω) → C on Γj by

Mju =
1
Aj

∫
Γj

γju dA,

It is clear that Mj is a bounded linear functional on H1(Ω), and we may regard it as an element of L(H1(Ω))
satisfying M2

j = Mj by considering Mju as a constant function on Ω.

Theorem A.4 (Poincaré inequality). Let the domain Ω ⊂ Rn satisfy the standing assumptions (i)–(iv) above,
and let Γj be one of the boundary components of ∂Ω. There is a constant C <∞ such that

‖u−Mju‖L2(Ω) ≤ C‖∇u‖L2(Ω) (A.10)

for all u ∈ H1(Ω). Thus, we have ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) for u ∈ H1(Ω) ∩ ker (γj).

Proof. The argument is a standard argument by contradiction using the Rellich–Kondrachov compactness the-
orem (see e.g. [6], Thm. 1, p. 144). For a contradiction against (A.10), assume that there exist functions
uk ∈ H1(Ω) such that there is the strict inequality

‖uk −Mjuk‖L2(Ω) > k‖∇uk‖L2(Ω) for k = 1, 2, . . . .
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None of the functions uk are constant functions since for such functions (A.10) holds for any C ≥ 0. So, we can
define the functions

vk :=
uk −Mjuk

‖uk −Mjuk‖L2(Ω)

satisfying for all k the normalisation ‖vk‖L2(Ω) = 1 and also Mjvk = 0 by using M2
j = Mj. Since

‖∇vk‖2 =
‖∇uk‖2

L2(Ω)

‖uk −Mjuk‖2
L2(Ω)

<
1
k2

by the counter assumption, we get

‖vk‖2
H1(Ω) = ‖vk‖2

L2(Ω) + ‖∇vk‖2
L2(Ω) ≤ 1 +

1
k2

≤ 2.

Since the embedding H1(Ω) ⊂ L2(Ω) is compact (by the boundedness of Ω and the Rellich–Kondrachov
compactness theorem, see e.g. [6], Thm. 1, p. 144), we have a function v such that vk → v in L2(Ω) by possibly
replacing {vk} by its subsequence. Moreover, ‖v‖L2(Ω) = 1 since ‖vk‖L2(Ω) = 1 for all k.

Since ‖∇vk‖L2(Ω) ≤ 1/k, we see that vk → v in H1(Ω) and hence ∇v = 0. Thus v is a constant function.
Because Mjv = limk→∞Mjvk = 0, we conclude that v = 0 which contradicts the fact that ‖v‖L2(Ω) = 1. This
proves (A.10), and the Poincaré equality follows trivially from this. �
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