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FROM AN ADHESIVE TO A BRITTLE DELAMINATION MODEL
IN THERMO-VISCO-ELASTICITY∗, ∗∗
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Abstract. We address the analysis of a model for brittle delamination of two visco-elastic bodies,
bonded along a prescribed surface. The model also encompasses thermal effects in the bulk. The related
PDE system for the displacements, the absolute temperature, and the delamination variable has a
highly nonlinear character. On the contact surface, it features frictionless Signorini conditions and a
nonconvex, brittle constraint acting as a transmission condition for the displacements. We prove the
existence of (weak/energetic) solutions to the associated Cauchy problem, by approximating it in two
steps with suitably regularized problems. We perform the two consecutive passages to the limit via
refined variational convergence techniques.
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1. Introduction

This paper deals with the analysis of a model describing the evolution of brittle delamination between two
visco-elastic bodies Ω+ and Ω−, bonded along a prescribed contact surface Γ, see e.g. Figure 1, over a fixed
time interval (0, T ). The modeling of delamination follows the approach by Frémond [26, 27], which treats
this phenomenon within the class of generalized standard materials [36]. More precisely, the adhesiveness of the
bonding is modeled with the aid of an internal variable, the so-called delamination variable z : (0, T )×Γ → [0, 1],
which describes the fraction of fully effective molecular links in the bonding. Hence, z(t, x) = 1 means that the
bonding at time t ∈ (0, T ) is fully intact in the material point x ∈ Γ, whereas for z(t, x) = 0 the bonding is
completely broken. The weakening of the bonding is a dissipative and unidirectional process, which is assumed
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Figure 1. A possible domain Ω with convex interface Γ .

to be rate-independent. These facts are modeled by the positively 1-homogeneous dissipation potential

R1(ż) :=
∫

Γ

R1(ż) dHd−1 with R1(ż) :=
{
a1|ż| if ż ≤ 0,
+∞ otherwise, (1.1a)

where ż is the time derivative of z and Hd−1 denotes the (d − 1)-dimensional Hausdorff measure. A further
dissipative process is due to viscosity in the bulk, and the amount of dissipated energy is described by the
positively 2-homogeneous dissipation potential

R2(ė) :=
∫

Ω\Γ

R2(ė) dx with R2(ė) :=
1
2
ė:D:ė, (1.1b)

acting on the rate of the linearized strain tensor e. Here, Ω = Ω− ∪ Γ ∪Ω+ ⊂ Rd and D is a positively definite,
symmetric fourth-order tensor. In particular, the specific dissipation rate R(

.
e,

.
z) = R2(

.
e)dx+R1(

.
z)dHd−1 is in

general a measure which reflects the mixed (i.e., rate-dependent and rate-independent) character of the model.
Its absolutely continuous part is given by the (pseudo-)potential of viscous-type dissipative forces in the bulk.
The possibly concentrating part, supported on Γ , features the rate-independent dissipation metric R1.

The visco-elastic response in the bulk material is modeled with the aid of Kelvin−Voigt rheology, neglecting
inertia. This rheological model can be described by a parallel arrangement of a linear spring, which instanta-
neously produces a deformation in proportion to a load, and of a dashpot, which instantaneously produces a
velocity in proportion to a load. In other words, in a Kelvin−Voigt visco-elastic solid, a sudden application of a
load will not cause an immediate deflection, since it is damped (cf. dashpot arranged in parallel with the spring).
Instead, a deformation is built up rather gradually. Hence, the stress tensor of a Kelvin−Voigt visco-elastic solid
is of the form σ = C : e+ DR2(ė), where C is a symmetric, positive definite fourth order tensor and DR2 is the
derivative of the viscous dissipation density R2; hereafter, with D we will denote the Gâteaux derivative. For
more details on the rheological modeling of visco-elastic solids the reader is referred to, e.g., [29].

As a further constitutive property of the bulk material it is assumed, that temperature changes cause ad-
ditional stresses due to thermal expansion. Following [57], for the stress tensor including visco-elastic response
and thermal expansion stresses we use the ansatz

σ(e, ė, θ) := C : e+ DR2(ė) − θC : E (1.2)

with θ > 0 the absolute temperature and E the symmetric matrix of thermal expansion coefficients.
The unknown states in our model are given by the displacement field u : (0, T ) × (Ω− ∪ Ω+) → Rd, the

delamination variable z : (0, T )×Γ → [0, 1], and the absolute temperature θ : (0, T )× (Ω−∪Ω+) → (0,∞). The
PDE system describing their evolution consists of the viscous (damped) force balance for u, the heat equation
for θ and a flow rule for z, which couple the three unknowns in a highly nonlinear manner, see Section 2.1. In the
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analysis, however, we will treat a weak formulation of this PDE system, the so-called energetic formulation. This
terminology stems from the fact that this formulation involves the energy and dissipation functionals related to
the PDE system.

For the delamination system the overall Helmholtz free energy Ψ = Ψ(u, z, θ) consists of a bulk and of a
surface contribution

Ψ(u, z, θ) = Ψbulk(u, θ) + Ψ surf(u, θ), (1.3)

where Ψbulk(u, θ) =
∫

Ω\Γ
W(e(u), θ) dx with W(e, θ) := 1

2e:C:e − θe:C:E − ψ0(θ). Here, ψ0 : (0,∞) → R is a
strictly convex function, which is the (purely) thermal part of the free energy. The surface contribution to Ψ does
not depend on θ and indeed coincides with the surface contribution Φsurf to the (purely) mechanical part of the
energy, the later given by the functional

Φ(u, z) := Φbulk(u) + Φsurf(�u�, z), (1.4)

where
Φbulk(u) =

∫
Ω\Γ

1
2 e:C:e dx and Φsurf(�u�, z) =

∫
Γ

φsurf(�u�, z) dHd−1. (1.5)

Here, �u� is the jump of u across Γ . At fixed temperature, for fully rate-independent systems the energetic
formulation was developed in [24,45,47], and in this setting it is solely defined by the global stability condition
and the global energy balance, i.e. (u, z) : (0, T ) → Q is an energetic solution of the rate-independent system
(Q, Φ,R1), given by a state space Q, an energy functional Φ and a dissipation potential R1, if for all t ∈ (0, T ):

∀ (ũ, z̃) ∈ Q : Φ(t, u(t), z(t)) ≤Φ(t, ũ, z̃) + R1(z̃ − z(t)) (stability), (1.6a)

Φ(t, u(t), z(t)) + VarR1(z; [0, t]) =Φ(0, u(0), z(0)) +
∫ t

0

∂tΦ(s, u(s), z(s)) ds (energy balance) (1.6b)

with VarR1(z; [0, t]) := sup
∑k

i=1 R1(z(tk) − z(tk−1)), where the supremum is taken over all partitions of the
time interval [0, t]. However, conditions (1.6) do not supply a suitable energetic formulation in the temperature-
dependent, viscous setting. For this context, an appropriate notion was introduced in [57], see Definition 3.3
ahead. Instead of the two conditions (1.6), the energetic formulation for rate-independent systems with
temperature-dependent and viscous effects consists of four conditions: a weak formulation of the momentum
balance for u, a weak formulation of the heat equation for θ, a so-called semistability condition for z, and
an energy (in-)equality. The latter two conditions correspond to those in (1.6). In particular, the notion of
semistability highlights a significant difference, as, here, stability is only tested for z, while ũ is kept fixed as a
solution u, i.e.

∀ t ∈ (0, T ) ∀ test functions z̃ : Φ(t, u(t), z(t)) ≤ Φ(t, u(t), z̃) + R1(z̃ − z(t)) (semistability). (1.7)

The adapted energetic formulation of Definition 3.3 will be analyzed for our delamination model in visco-
elastic solids with thermal effects. In particular, we aim at a model for brittle delamination, i.e. it involves the

brittle constraint: z�u� = 0 a.e. on (0, T ) × Γ. (1.8)

This condition allows for displacement jumps only in points x ∈ Γ, where the bonding is completely broken,
i.e. z(t, x) = 0; in points where z(t, x) > 0 it ensures �u� = 0, i.e. the continuity of the displacements. In other
words, the brittle constraint (1.8) distinguishes between the crack set, where the displacements may jump, and
the complementary set with active bonding, where it imposes a transmission condition on the displacements.
Moreover, our model contains a non-penetration constraint ensuring that the two parts of the body, Ω− and
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Ω+, cannot interpenetrate along Γ :

non-penetration condition: �u� · n ≥ 0 a.e. on (0, T )× Γ. (1.9)

Here, n denotes the unit normal to Γ oriented from Ω+ to Ω−.
The extremely strict and nonconvex brittle constraint (1.8) causes severe difficulties in the existence analysis,

even in the fully rate-independent setting (with fixed temperature and no viscosity), which was addressed
in [58]. Therein, the existence of energetic solutions in the sense of (1.6) was not proved directly, but by
passing to the limit in a suitable approximation procedure, where (1.8) was replaced by the so-called adhesive
contact condition. The latter model involves an energy term which penalizes displacement jumps in points with
positive z, but does not strictly exclude them, i.e. the

adhesive contact term: k
2

∫
Γ

z |�u�|2 dHd−1. (1.10)

The existence of energetic solutions for the related rate-independent system was proved in [41]. As k → ∞ it
was shown in [58] that the (fully) rate-independent systems of adhesive contact approximate the system for
brittle delamination in the sense of Γ -convergence of rate-independent processes developed in [48].

Our aim is to apply a similar strategy in the viscous, temperature-dependent setting. For this, we want to
make use of the results in [54], see also [55], where the existence of energetic solutions in the sense of [57] was
proved for adhesive contact in visco-elastic materials with thermal effects. However, as this notion of solution
splits the stability test into two separate conditions, weak momentum balance for u and semistability for z, we
cannot perform the limit passage k → ∞ in the model from [54] without adding suitable regularization terms.
These will allow us to gain additional information on the solutions which, in turn, enables us to construct test
functions for the semistability condition and the momentum balance suitably fitted to the properties of the
solutions.

We postpone a thorough discussion of these regularization terms to Section 2, where we gain further insight
into the PDE system, reveal its analytical difficulties, and explain our results. At this point, let us just mention
that our regularizations will consist of a gradient term for z and of a term of p-growth in the strain e, with p
larger than space dimension, ensuring the continuity of the displacements in each of the subdomains Ω− and
Ω+. It was proved in [49] that the model for brittle delamination (without a gradient of z), also treated in [58],
describes the evolution of a Griffith-crack along Γ. This means that z ∈ {0, 1}, only, and hence z marks the crack
set and the unbroken part of Γ. The fully rate-independent brittle delamination model analyzed in [49, 58, 61]
is thus in accord with the crack models treated in e.g. [11,15], but on a prescribed interface, see also [39,53]. In
the visco-elastic, temperature-dependent setting we also want to ensure that z ∈ {0, 1}, and therefore we choose
the regularization such that z is the indicator function of a set of finite perimeter in Γ. As the perimeter is a
highly nonconvex term, we first approximate it by a Modica−Mortola term (2.13). Thus, our approximation
procedure is the following:

1. from the model for adhesive contact with Modica−Mortola regularization (called Modica−Mortola adhesive
contact model) we will pass to the model for adhesive contact with perimeter regularization (called SBV-
adhesive contact model) in Section 4;

2. from the SBV-adhesive contact model we will then pass in Sections 5 and 6 to the SBV-brittle delamination
model (i.e. the model which incorporates the brittle constraint (1.8), but still contains the perimeter term
for the delamination variable z ∈ {0, 1}), thus proving the main result of this paper, Theorem 5.2.

Crucial for the passage from adhesive contact to brittle delamination in the visco-elastic, temperature-dependent
setting is the construction of suitable test functions for the momentum balance. While referring to the discussion
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at the beginning of Section 5 for all details, let us mention here that such construction requires the continuity
of the displacements in Ω± ensured by the regularizing term in the momentum equation, joint with additional
information on the semistable delamination variables which solve the adhesive problems. In fact, it involves a fine
analysis of their properties, based on tools of geometric measure theory. To such analysis, we have devoted the
whole Section 6. Therein, it will be proved that the finite perimeter sets Zk ⊂ Γ ⊂ Rd−1 underlying the indicator
functions zk which are semistable for the adhesive or the brittle problems, satisfy a lower density estimate with
respect to the (d − 1)-dimensional volume, i.e., with respect to the (d − 1)-dimensional Hausdorff-measure,
see (6.6), ensuring that Hd−1(Zk ∩Bρ�(yk)) ≥ a(Γ )ρd−1

� for all yk ∈ supp zk and all ρ� ∈ (0, R), with constants
a(Γ ) and R depending only on Γ, the space dimension, and the given data. It is well-known that this type of lower
density estimate is satisfied by quasi-minimizers of the perimeter functional, cf. e.g. the monographs [33, 43].
However, these classical works deduce the lower density estimate under the additional assumption that Bρ�(yk) ⊂
Γ, while we explicitly allow for Bρ�(yk)\Γ �= ∅. Due to this enhancement of the lower density estimate, ρ� can
be kept fixed for all k ∈ N. We will see that this lower density bound excludes that subsets of Zk concentrate in
the null-set of the limit function z. Exploiting this property, we will deduce support convergence for the sequence
(zk)k, which means that the supports of the delamination variables solving the SBV-adhesive contact problems
can be enclosed into balls around the support of the delamination variable for the SBV-brittle delamination
model, and the radii of these balls tend to 0.

This support convergence will be the key property for the aforementioned construction of test functions. In
this connection, let us mention that, in contrast to the fully rate-independent case treated in [58], for the limit
passage from adhesive to brittle pure Γ -convergence of the systems in the sense of [48] is no longer sufficient for
the present visco-elastic, temperature-dependent systems. Here, Mosco-convergence will be needed, see also [65].

Let us conclude with a few remarks on our reasons for not encompassing inertia in the momentum balance.
It is well-known that, already in the frame of adhesive contact systems, the coupling of inertia with Signorini
contact conditions poses remarkable analytical problems. In particular, the existence of solutions complying with
the energy balance (which plays a crucial role in our analysis) is, to our knowledge, open in the case of bounded
domains, see also [54], Remark 5.3 for more comments and references. Indeed, in [54], inertia was included in the
momentum equilibrium only upon dealing with special contact conditions for the displacement, which do not
encompass Signorini contact. Even in such a context, the passage to the limit in the weak momentum balance
from adhesive to brittle would be an open problem. In fact, it would rely on the construction of suitable test
functions being in addition sufficiently smooth with respect to time, as required by the weak formulation of the
momentum equation with inertia. However, such time regularity seems to be out of reach, as a close perusal of
the construction in Section 5.1 shows.
Plan of the paper. After further discussing and motivating our approximation of the brittle delamination
model via the SBV-adhesive and the Modica−Mortola adhesive systems in Section 2, in Section 3 we will first
collect all the assumptions on the domain and the given data. Hence, we will introduce the energetic formulation
of the visco-elastic, temperature-dependent systems for adhesive contact and brittle delamination, and finally
discuss the general strategy for proving the existence of energetic solutions. In Section 4 we will carry out the limit
passage from Modica−Mortola to SBV-adhesive contact, see Theorem 4.3, in order to obtain an existence result
for the SBV-adhesive contact systems (Thm. 4.1). This analysis relies on the existence of energetic solutions
to the Modica−Mortola adhesive contact system, stated in Theorem 4.2, which shall be obtained by passing to
the limit in a suitable time-discretization scheme in Appendix A.1. These results will be used in order to prove
our main result, Theorem 5.2, on the existence of energetic solutions for the SBV-brittle delamination systems.
Indeed, in Section 5 we will pass with SBV-adhesive contact to SBV-brittle delamination. As mentioned above,
this limit passage bears difficulties in the momentum balance, which can be solved by exploiting additional
information on semistable delamination variables, i.e. the lower density estimate and the support convergence.
They will be proved in Section 6, by means of tools from geometric measure theory collected for the reader’s
convenience in Appendix A.2. Finally, in Section 7 we address an alternative scaling for the limit passage from
SBV-adhesive to SBV-brittle, which may capture crack initiation in a more concise way. The results therein are
a direct consequence of Sections 3–6.
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For the reader’s convenience we here collect the symbols used throughout this work.
List of symbols

u displacement
z delamination parameter
θ absolute temperature
w enthalpy
e linearized strain tensor
σ stress tensor
�u� jump of u across contact surface Γ
C elasticity tensor
D viscosity tensor
E thermal expansion coefficients
B = C :E
F applied bulk force
f applied traction
cv heat capacity
K heat conduction coefficients
H bulk heat source
h heat source on ∂Ω
a0 (a1) spec. en. stored (dissip.) by delam.
η heat-transfer coefficient
Φ mechanical energy, (1.4)
Φbulk bulk mechanical energy, (3.15)
Wp elastic energy density of p-growth, (3.15)
Φsurf mechanical surface energy, (1.4)
Φsurf

k,m surface energy for Modica−Mortola system, (3.17)
Φsurf

k surface energy for SBV-adhesive syst., (3.19)
Φsurf

b surface energy for SBV-brittle syst., (3.22)
Gm Modica−Mortola regularization in Φsurf

k,m, (2.13)
Gb gradient term for Φsurf

k and Φsurf
b , (2.9)

Jk adhesive contact energy density, (3.17)
J∞ brittle constraint, (2.4)
R1 rate-independent dissipation potential, (1.1a)
VarR1 R1-total variation, (3.32)
ξsurf
ż measure-valued time-derivative of z, (3.34)
R2 viscous dissipation potential, (1.1b)
U state space for u (M.-M. and SBV-adh. syst.), (3.24)
Uz state space for u (SBV-brittle syst.), (3.25)
ZMM state space for z (M.-M. system), (3.18)
ZSBV admiss. set for z (adh. and brittle SBV-syst.), (3.21)
W space of test functions for enthalpy equation (3.26)

2. Presentation of the models and analytical difficulties

In this section, we first detail the classical formulation of the PDE system describing the brittle delamination
model for visco-elastic materials with thermal effects. We then highlight the main difficulties related to its
analysis and motivate its approximation by the SBV- and Modica−Mortola adhesive systems.
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2.1. The classical formulation of the problem

Throughout the paper we assume that Ω ⊂ Rd, d ≥ 2, is a bounded domain with Ω = Ω+ ∪ Γ ∪Ω− and Γ
representing the prescribed (flat, convex) interface with possible delamination, see Figure 1. We denote by n both
the outward unit normal to ∂Ω, and the unit normal to Γ oriented from Ω+ to Ω−. Given v ∈ W 1,2(Ω\Γ ; Rd),
with v+ (v−) we signify the restriction of v to Ω+ (Ω−). We denote by

�v� := v+|Γ − v−|Γ the jump of v across Γ. (2.1)

The PDE system, coupling the momentum equation in the bulk (2.2a) for the displacement u, the heat
equation (2.2b) for the absolute temperature θ, and the evolution (2.2k)–(2.2n) for the delamination parameter z,
formally reads:

− div σ(u, u̇, θ) = F in (0, T )× (Ω\Γ ), (2.2a)

cv(θ)
.
θ − div

(
K(e(u), θ)∇θ) = e(

.
u):D:e(

.
u) − θE:C:e(

.
u) +H in (0, T )× (Ω\Γ ), (2.2b)

u = 0 on (0, T )× ΓD, (2.2c)
σ(u,

.
u, θ)

∣∣
ΓN

n = f on (0, T )× ΓN, (2.2d)

(K(e(u), θ)∇θ)n = h on (0, T )× ∂Ω, (2.2e)
�σ�n = 0 on (0, T )× Γ, (2.2f)
�u� · n ≥ 0 on (0, T )× Γ, (2.2g)
σ(u,

.
u, θ)

∣∣
Γ
n · n ≥ 0 wherever z(·) = 0 on (0, T )× Γ, (2.2h)

σ(u,
.
u, θ)

∣∣
Γ
n·�u� = 0 on (0, T )× Γ, (2.2i)

z�u� = 0 on (0, T )× Γ, (2.2j)
.
z ≤ 0 on (0, T )× Γ, (2.2k)
ξ ≤ a1 + a0 on (0, T )× Γ, (2.2l)
.
z (ξ − a0 − a1) = 0 on (0, T )× Γ, (2.2m)

ξ ∈ ∂zΦ(u, z) on (0, T )× Γ, (2.2n)
1
2

(
K(e(u), θ)∇θ|+Γ + K(e(u), θ)∇θ|−Γ

)·n + η(�u�, z)�θ� = 0 on (0, T )× Γ, (2.2o)

�K(e(u), θ)∇θ�·n = −a1
.
z on (0, T )× Γ, (2.2p)

where ∂Ω = ΓD ∪ ΓN with ΓD the Dirichlet and ΓN the Neumann parts of the boundary ∂Ω.
System (2.2) was derived in [54], Section 2 starting from the Helmholtz free energy (1.3) and the dissipation

potentials (1.1); its thermodynamical consistency was shown, in the sense that the Clausius−Duhem inequality
and the positivity of temperature are satisfied. In the following lines, we will confine ourselves to just explaining
the meaning of the equations; for more details we refer to [54].

In (2.2a), (2.2d), (2.2f), (2.2h), and (2.2i), the term σ = σ(u, v, θ) := D:e(v) + C:
(
e(u)−Eθ

)
is the stress

tensor, which encompasses Kelvin−Voigt rheology and thermal expansion, as explained along with (1.2). Here,
the tensors

C, D : Rd×d
sym → Rd×d

sym are of 4th-order, positive definite, symmetric, div(C :e(u)) has a potential, (2.3)

in particular, Cijkl = Cjikl = Cklij , and the same for D; E ∈ Rd×d is a matrix of thermal-expansion coefficients.
Moreover, F : (0, T )×Ω → Rd in (2.2a) is the applied bulk force, f : (0, T )× ΓN → Rd in (2.2d) is the applied
traction, while H : (0, T ) ×Ω → R in (2.2b) and h : (0, T ) × ∂Ω → R in (2.2e) are external heat sources.

In the heat equation (2.2b), the function cv : (0,+∞) → (0,+∞) is the heat capacity of the system, defined
from the thermal energy ψ0 by cv(θ) = θψ0

′′(θ). Moreover, −K(e, θ)∇θ determines the heat flux according
to Fourier’s law, with K = K(e, θ) as the positive definite matrix of heat conduction coefficients. The terms
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e(u̇):DR2(e(u̇)) = e(u̇):D:e(u̇) and −θE:C:e(u̇) on the right-hand side of (2.2b) are heat sources due to viscous
and thermal expansion stresses, and they generate a coupling between the heat and the momentum equation.

Further, (2.2c) and (2.2d) are the Dirichlet and Neumann conditions for u and (2.2e) is the Neumann condition
for the heat flux across the boundary of Ω; on the contact surface Γ we have the transmission condition (2.2f)
and conditions (2.2g)–(2.2i). The latter yield the complementarity form of the Signorini contact conditions,
preventing penetration of either of the bodies Ω+ and Ω− along the interface. Furthermore, (2.2j) is the brittle
constraint, which can be interpreted as a transmission condition on the contact surface Γ, as explained along
with (1.8).

The complementarity conditions (2.2k)–(2.2n) determine the evolution of the delamination variable. Observe
that they rewrite as ∂I(−∞,0](

.
z) + ξ− a0 − a1 � 0, with ξ ∈ ∂zΦ(u, z). Now, (2.2k) ensures the unidirectionality

of the delamination process, as crack healing is prevented. In (2.2l), (2.2m), the coefficient a0 (resp. a1) is the
phenomenological specific energy per area which is stored (resp. dissipated) by disintegrating the adhesive. The
overall activation energy to trigger the debonding process in the adhesive is then a0 + a1. Moreover, in (2.2n),
∂zΦ(u, z) denotes the (convex analysis) subdifferential of the mechanical energy Φ introduced in (1.4) and (1.5).
Hereby, the surface part of the energy has the density φsurf(�u�, z) := I[�u�·n≥0](u)+ I[0,1](z)+ J∞(�u�, z)− a0z,
where I[�u�·n≥0](u) stands for the indicator function of the non-penetration condition, i.e. I[�u�·n≥0](u) = 0 if�u� · n ≥ 0 and I[�u�·n≥0](u) = ∞ otherwise. Moreover, I[0,1] denotes the indicator function of the interval [0, 1],
i.e I[0,1](r) = 0 if r ∈ [0, 1] and I[0,1](r) = +∞ otherwise. The third operator refers to the indicator function
featuring the brittle constraint

J∞(v, z) = I{vz=0}(v, z), i.e. J∞(v, z) =
{

0 if vz = 0,
+∞ otherwise.

(2.4)

Finally, conditions (2.2o) and (2.2p) balance the heat transfer across Γ with the ongoing crack growth. In
particular, the function η in the boundary condition (2.2o) on Γ for θ is a heat-transfer coefficient, determining
the heat convection through Γ , which depends on the state of the bonding and on the distance between the
crack lips. We refer to [54], Remark 3.3 for further details.

2.2. Regularization and approximation via adhesive contact models

The analysis of system (2.2) encounters several difficulties: first of all, the mixed character of the problem,
coupling rate-independent evolution for z, with rate-dependent equations for u and θ. Let us also mention the
highly nonlinear character of the heat equation, with a quadratic term on the right-hand side. The evolution
of z is ruled by the complementarity conditions (2.2k)–(2.2n), which can be reformulated as the subdifferential
inclusion

∂I(−∞,0](
.
z(t, x)) + ∂zΦ(u(t, x), z(t, x)) − a0 − a1 � 0, (t, x) ∈ (0, T ) × Γ. (2.5)

Let us observe that the subdifferential inclusion (2.5) for z is effectively triply nonlinear, featuring three multi-
valued operators, since ∂zΦ(u, z) involves the subdifferentials of both I[0,1] and J∞. Here, an additional difficulty
stems from the fact that the subdifferential of the brittle constraint J∞ depends on �u�, i.e.

∂zJ∞
(�u�, z) =

⎧⎨⎩
∅ if z �= 0 and �u� �= 0,
0 if �u� = 0,
R if �u� �= 0 and z = 0,

(2.6)

and this dependence is of course transferred to ∂zΦ(u, z).
Nonetheless, it is the analysis of the boundary value problem for the momentum equation which brings

along the most challenging problems. Indeed, in view of (2.2g)–(2.2j), on the contact surface Γ we have for the
displacement u a double constraint, namely the non-penetration �u� ·n ≥ 0, and the nonconvex brittle constraint
z�u� = 0. Such constraints are reflected in the variational formulation of the boundary value problem for (2.2a)
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as a variational inequality, i.e.

�u� · n ≥ 0, z�u� = 0 on (0, T ) × Γ , and∫
Ω\Γ

(
D:e(

.
u) + C:(e(u) − Eθ)

)
: e(v − u) dx ≥

∫
Ω

F · (v−u) dx+
∫

ΓN

f · (v−u) dx (2.7)

for all test functions v with suitable regularity and such that �v� · n ≥ 0 and z�v� = 0 a.e. on (0, T ) × Γ .
A major difficulty is that the brittle constraint involves z, and accordingly the set of test functions in (2.7)
depends on z.

The SBV-brittle delamination system. To handle the coupling of the brittle and of the non-penetration
constraints, we will approximate system (2.2) by penalizing the condition z�u� = 0 on (0, T )×Γ . For the passage
to the limit in the weak formulation of the momentum equation, a suitable construction of approximate test
functions will be needed. This construction relies on a higher spatial regularity for the displacement variable u.
Therefore, we have to regularize the momentum equation (2.2a) by means of a tensorial p-Laplacian term, with
p > d. More precisely, in the momentum balance (2.2a) and in the boundary conditions (2.2d), (2.2f), (2.2h),
and (2.2i), from now on the stress tensor σ will be given by

σ = σ(u, v, θ) := D:e(v) + C:
(
e(u)−Eθ

)
+ |e(u)|p−2H:e(u) with p > d (2.8)

and H a fourth-order symmetric positive-definite tensor. Note that the term |e(u)|p−2H:e(u) ensures that u ∈
W 1,p(Ω±) ⊂ C0(Ω±) (since p > d), which is crucial for tackling the brittle constraint z�u� = 0. Materials
with constitutive laws of p-Laplacian-type, also known as power-law materials, are used in literature in order
to model strain hardening or softening [37, 40]. In particular, the case of power p larger than space dimension
is used to describe strain hardening, also at small strains [6].

Furthermore, we shall also regularize the delamination variable z through an additional gradient term G(z).
Gradient regularizations of the type G(z) =

∫
Ω

1
r |∇z|r dx are widely used and accepted in models for volume

damage (see e.g. [10,28,46,49,61,64]), but also in models for delamination and adhesive contact [1,8,9,25,27].
In particular, the latter works involve the gradients of z ∈ H1(Γ ), while here, we reduce the regularization to
BV-type. Because of this, the delamination variable may jump in space and therefore drop instantaneously from
one value to another. Let us stress that this brings our model closer to describing the physics of cracking.

To be more precise, we take the state space Z for z as a subset of the space BV(Γ ) of functions of bounded
variation on Γ , whose distributional gradient is a finite Radon measure on Γ . Hence, we consider Gb(z) =
b|Dz|(Γ ) for some b > 0, where |Dz|(Γ ) denotes the variation of the measure Dz in Γ . Moreover, we add a
further constraint in our delamination system, namely that the variable z only takes the values {0, 1}. Therefore,
our model accounts for just two states of the bonding between Ω+ and Ω−, that is, fully effective and completely
ineffective. On the one hand, the feature that z ∈ {0, 1} makes our model akin to a Griffith-type model for
crack evolution (along a prescribed interface). Therein, the delamination variable z individuates the crack set,
and thus only takes either the value 0, or 1, see [49,61]. On the other hand, such a restriction brings along some
analytical advantages, as the considerations in Section 6 will show later on. Since z ∈ {0, 1}, z can be viewed
as the characteristic function of a set Z with finite perimeter. Therefore, the gradient term Gb reduces to

Gb(z) = b|Dz|(Γ ) = bP (Z, Γ ), (2.9)

where P (Z, Γ ) is the perimeter of the set Z in Γ , cf. Definition A.6. We will also use that Gb(z) = Hd−2(Jz),
where Hd−2 denotes the (d−2)-dimensional Hausdorff measure and Jz is the jump set of z ∈ SBV(Γ ; {0, 1}), see
Definition A.15. Here, SBV(Γ ; {0, 1}) is the set of characteristic functions of subsets of Γ with finite perimeter.
In particular, the acronym SBV stands for special functions of bounded variation, which is the subspace of BV
of functions whose total variation has no Cantor part, see [4] for more details. With the regularization Gb given
by (2.9), the subdifferential inclusion (2.5) is formally replaced by

∂I(−∞,0](
.
z(t, x)) + ∂zΦ(u(t, x), z(t, x)) + ∂Gb(z(t, x)) − a0 − a1 � 0, (2.10)

for a.a. (t, x) ∈ (0, T )× Γ. In fact, we will analyze a weak formulation of (2.10).
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Throughout the paper, we shall refer to the PDE system (2.2), with (2.5) replaced by (2.10), and the stress σ
given by (2.8), as the SBV-brittle delamination system. We shall propose a suitable notion of weak solution for
this system, cf. Definition 3.9 of energetic solution. This solution concept consists of the weak formulations of the
boundary-value problems for the momentum equation (2.2a), with σ from (2.8), and for the heat equation (2.2b),
as well as of a semistability condition in place of (2.10), and of an energy (in-)equality. Our main Theorem 5.2
states the existence of energetic solutions to the SBV-brittle delamination system. In what follows, we hint at
the strategy for the proof of this existence result, and in doing so we motivate the two aforementioned gradient
regularizations.

The SBV-adhesive contact system. In order to deal with the brittle constraint z�u� = 0 on (0, T )×Γ , we
approximate problem (2.2), with an adhesive contact problem, where (2.2g)–(2.2i) are replaced by

�u(t, x)� · n ≥ 0(
σ(u(t, x),

.
u(t, x), θ(t, x))

∣∣
Γ
n+kz(t, x)�u(t, x)�) · n ≥ 0(

σ(u(t, x),
.
u(t, x), θ(t, x))

∣∣
Γ
n+kz(t, x)�u(t, x)�) ·�u(t, x)� = 0

⎫⎬⎭ (2.11)

for a.a. (t, x) ∈ (0, T )× Γ, whereas instead of (2.10) we have

∂I(−∞,0](
.
z(t, x)) + ∂I[0,1](z(t, x)) +

1
2
k
∣∣�u(t, x)�∣∣2 + ∂Gb(z(t, x)) − a0 − a1 � 0, (t, x) ∈ (0, T )× Γ, (2.12)

with k > 0 a fixed constant. Formally, (2.5), along with the brittle constraint z�u� = 0 on (0, T )×Γ , arises in the
limit as k → ∞ of (2.11) and (2.12). We shall refer to the approximate problem obtained replacing (2.2g)–(2.2j)
and (2.10), with (2.11) and (2.12), respectively (combined with the quasi-static momentum equation (2.2a) with
σ from (2.8)), as the SBV-adhesive contact system. First, we shall prove existence of energetic solutions for the
related Cauchy problem in Theorem 4.1. Hence we shall take the limit as k → ∞: Theorem 5.2 states that,
up to a subsequence, solutions to the SBV-adhesive contact systems converge to solutions of the SBV-brittle
delamination system.

The Modica–Mortola adhesive contact system. Since the SBV-gradient term in (2.12) is highly nonconvex,
to prove existence for the (weak formulation of the) SBV-adhesive system we use a Modica−Mortola type ap-
proximation. This kind of regularization has been well-known in the mathematical literature for more than thirty
years. Indeed, in the papers [50,51] (see also [2]), within phase transition modeling it was proved that the so-called
static Modica−Mortola functional Γ -converges to the static perimeter functional. Modica−Mortola approxima-
tions in the context of models for volume damage have also been exploited in [31, 62]. The Modica−Mortola
functional is

Gm(z) :=
∫

Γ

(
m

2
g(z) +

1
2m

|∇z|2 + I[0,1](z)
)

dHd−1 with g(z) = z2(1−z)2 and m > 0. (2.13)

Accordingly, we will approximate the SBV-adhesive system by replacing the subdifferential inclusion (2.12)
for z, with

∂I(−∞,0](
.
z(t, x)) + ∂I[0,1](z(t, x)) +

1
2
k
∣∣�u(t, x)�∣∣2 +

m

2
g′(z(t, x)) − 1

m
Δz(t, x) − a0 − a1 � 0, (2.14)

for a.a. (t, x) ∈ (0, T )× Γ. The resulting approximate problem will be called Modica−Mortola adhesive contact
system. Since the existence result from [54] does not apply to this system, we will prove the existence of solutions
in Theorem 4.2. Observe that the p-regularizing term in (2.8) is not needed for the related analysis, as it only
plays a role in the passage to the brittle limit. However we will keep it in the Modica−Mortola system as well,
for consistency of exposition.
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3. General setup and weak formulation

In this section we present a suitable notion of weak formulation for the visco-elastic, temperature-dependent
systems of adhesive contact and brittle delamination, i.e. the energetic formulation developed in [57]. Prior to
establishing this formulation in Section 3.3, in Section 3.1 we perform the so-called enthalpy reformulation of
system (2.2) (and its regularizations), following [57]. Then, in Section 3.5 the general strategy of the existence
proof will be outlined. Although Definition 3.3 of energetic solution does not rely on a specific set of assumptions
on the geometrical setting and the problem data, subsequent results such as Theorem 3.10 do. That is why, we
have chosen to preliminarily collect all of the assumptions on the given data in Section 3.2, appropriate for all
the systems and all the limit passages. Let us now fix some general notation.

Notation 3.1 (Function spaces).
Throughout the paper, for p ∈ (1,∞) we shall adopt the notation

W 1,p
ΓD

(Ω\Γ ; Rd) =
{
v ∈W 1,p(Ω\Γ ; Rd) : v = 0 on ΓD

}
. (3.1)

We recall that
u �→ u|Γ : W 1,p(Ω\Γ ) →W 1,1− 1

p (Γ ) continuously (3.2)

with Γ = ∂Ω, or Γ = Γ , or Γ = ΓN. Furthermore, we shall exploit that, for p > d, the following embedding
holds for W 1,p(Ω±) (and obviously for the Sobolev space W 1,p(Ω±; Rd) of vector-valued functions)

W 1,p(Ω±) ⊂ C0(Ω±) compactly. (3.3)

We shall denote by 〈·, ·〉 the duality pairing between the spaces W 1,q(Ω\Γ ; Rd)∗ and W 1,q(Ω\Γ ; Rd), and
between W 1,q(Ω\Γ )∗ and W 1,q(Ω\Γ ), for any 1 ≤ q <∞.

For a (separable) Banach spaceX , we shall use the notation BV([0, T ];X) for the space of functions from [0, T ]
with values in X that have bounded variation on [0, T ]. Notice that all these functions are defined everywhere
on [0, T ].

Finally, throughout the paper we will use the symbols c, c′, C, and C′, for various positive constants depending
only on known quantities.

3.1. Enthalpy reformulation

Following [54, 57], we shall in fact analyze a reformulation of the PDE system (2.2), in which we replace
the heat equation (2.2b) with an enthalpy equation, cf. system (3.6) below. This is motivated by the fact that
the nonlinear term cv(θ)θ̇ makes it difficult to implement a time-discretization scheme for (2.2b). In turn, time-
discretization will provide the basic existence result for the Modica−Mortola adhesive contact system. Therefore,
as in [54, 57] we are going to resort to a change of variables for θ, by means of which cv(θ)θ̇ is replaced by the
linear contribution ẇ.

Hereafter, we switch from the absolute temperature θ, to the enthalpy w, defined via the so-called enthalpy
transformation, i.e.

w = h(θ) :=
∫ θ

0

cv(r) dr. (3.4)

Thus, h is a primitive function of cv, normalized in such a way that h(0) = 0. Since cv is strictly positive (cf.
assumption (3.8a) later on), h is strictly increasing. Thus, we are entitled to define

Θ(w) :=
{
h−1(w) if w ≥ 0,
0 if w < 0,

K(e, w) :=
K(e,Θ(w))
cv(Θ(w))

, (3.5)
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where h−1 here denotes the inverse function to h. With transformations (3.4) and (3.5), the classical for-
mulation (2.2) of the SBV-brittle delamination system (with σ from (2.8) and the additional SBV-gradient
regularization in (2.10)), turns into

− div
(
DR2(e(u̇))+DW2(e(u))−BΘ(w)+DWp(e(u))

)
= F in (0, T )× (Ω\Γ ), (3.6a)

.
w − div

(K(e(u), w)∇w) = e(
.
u):D:e(

.
u) −Θ(w)B:e(

.
u) +H in (0, T )× (Ω\Γ ), (3.6b)

u = 0 on (0, T )× ΓD, (3.6c)
σ(u,

.
u,w)

∣∣
ΓN

n = f on (0, T )× ΓN, (3.6d)

(K(e(u), w)∇w)n = h on (0, T )× ∂Ω, (3.6e)�
σ(u,

.
u,w)

�
n = 0 on (0, T )× Γ, (3.6f)

�u� · n ≥ 0 on (0, T )× Γ, (3.6g)
σ(u,

.
u,w)

∣∣
Γ
n · n ≥ 0 wherever z(·) = 0 on (0, T )× Γ, (3.6h)

σ(u,
.
u,w)

∣∣
Γ
n·�u� = 0 on (0, T )× Γ, (3.6i)

∂I(−∞,0](
.
z) + ∂zΦ(u, z) + ∂Gb(z) − a0 − a1 � 0 on (0, T )× Γ, (3.6j)

1
2
(K(e(u), w)∇w|+Γ + K(e(u), w)∇w|−Γ

)·n + η(�u�, z)�Θ(w)� = 0 on (0, T )× Γ, (3.6k)

�K(e(u), w)∇w� · n = −a1
.
z on (0, T )× Γ, (3.6l)

where W2(e) := 1
2e:C:e and Wp(e) := 1

p |e|p−2e:H:e with p > d in (3.6a), and we have introduced the placeholder

B := C:E.

Furthermore, in the momentum equation and in the enthalpy equation, we have incorporated the notation
from (1.1) for the dissipation potentials. With slight abuse, we also write

σ(u, v, w) := σ(u, v,Θ(w)) =
[
DR2(e(v)) + DW2(e(u))−BΘ(w)+DWp(e(u))

]
.

With obvious changes, one also obtains the classical enthalpy reformulation of the SBV-adhesive (cf. (2.11)
and (2.12)), and of the Modica−Mortola adhesive (cf. (2.14)) contact systems.

3.2. Assumptions on the domain and the given data

Assumptions on the reference domain Ω. We suppose that

• Ω ⊂ Rd, d ≥ 2, is bounded, Ω−, Ω+, Ω are Lipschitz domains, Ω+ ∩Ω− = ∅, (3.7a)
• ∂Ω = ΓD ∪ ΓN, ΓD, ΓN open subsets in ∂Ω, ΓD ∩ ΓN = ∅, Hd−1(ΓD) > 0, (3.7b)

• Γ ⊂ Rd−1 is a convex domain, contained in a hyperplane of Rd,

such that in particular Hd−1(Γ ) = Ld−1(Γ ) > 0,
(3.7c)

where Hd−1 and Ld−1 respectively denote the (d− 1)-dimensional Hausdorff and Lebesgue measures.
Assumptions on the given data. We impose the following conditions on cv, K, and η:

cv : [0,+∞) → R+ continuous, (3.8a)

∃ω1 ≥ ω >
2d
d+2

, c1 ≥ c0 > 0 such that ∀θ ∈ R+ : c0(1+θ)ω−1 ≤ cv(θ) ≤ c1(1+θ)ω1−1, (3.8b)

K : Rd×d × R → Rd×d is bounded, continuous, and (3.8c)
inf

(e,w,ξ)∈R
d×d
sym×R×Rd, |ξ|=1

K(e, w)ξ:ξ > 0, (3.8d)
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and we require that

η : Γ× (
Rd × R

)→ R+ is a Carathéodory function such that

∃Cη > 0 ∃σ1, σ2 > 0 such that ∀ (x, v, z) ∈ Γ×Rd × R : |η(x, v, z)| ≤ Cη(1+|v|σ1+|z|σ2).
(3.8e)

In particular, notice that any polynomial growth of η w.r.t. the variables (v, z) is admissible.

Remark 3.2. It is immediate to deduce from (3.8b) that

∃C1
θ , C

2
θ > 0 ∀w ∈ R+ :

(
C1

θw+1
)1/ω1 − 1 ≤ Θ(w) ≤ (

C2
θw+1

)1/ω − 1. (3.9)

In particular, since ω > 1, the right-hand side estimate yields

Θ(w) ≤ C2
θw. (3.10)

Moreover, it follows from (3.8b) and (3.8c) and the definition (3.5) of K that

∃CK > 0 ∀ ξ, ζ ∈ Rd : |K(e, w)ξ:ζ| ≤ CK|ξ||ζ|. (3.11)

Data qualification. We shall suppose for the right-hand sides F , H , f , and h that

F ∈ L2(0, T ;W 1,2(Ω\Γ ; Rd)∗) ∩W 1,1(0, T ;W 1,p(Ω\Γ ; Rd)∗), (3.12a)

f ∈ L2(0, T ;L2(d−1)/d(ΓN; Rd)) ∩W 1,1(0, T ;L1(ΓN; Rd)), (3.12b)
H ∈ L1(0, T ;L1(Ω)), H ≥ 0 a.e. in Q, (3.12c)
h ∈ L1(0, T ;L1(∂Ω)), h ≥ 0 a.e. in (0, T ) × ∂Ω. (3.12d)

We also introduce the functions (with an abuse of notation, below we write integrals instead of duality pairings)

F : (0, T ) →W 1,p(Ω\Γ ; Rd)∗, 〈F(t), v〉 :=
∫

Ω
F (t) · v dx+

∫
ΓN
f(t) · v dHd−1 for v∈W 1,p(Ω\Γ ; Rd),

H : (0, T ) →W 1,r(Ω\Γ ; Rd)∗, 〈H(t), v〉 :=
∫

Ω
H(t)v dx+

∫
∂Ω

h(t)v dHd−1 for v∈W 1,r(Ω\Γ ; Rd),
(3.13)

with 1 ≤ r < d+2
d+1 , cf. (3.27c) later on. Finally, we impose the following on the initial data

u0 ∈ W 1,p
ΓD

(Ω\Γ ; Rd), �u0� · n ≥ 0 on (0, T )× Γ , (3.14a)
z0 ∈ L∞(Γ ), 0 ≤ z0 ≤ 1 a.e. onΓ, (3.14b)
θ0 ∈ Lω1(Ω), θ0 ≥ 0 a.e. inΩ, (3.14c)

where ω1 is the same as in (3.8b). It follows from (3.14c) and (3.8b) that w0 := h(θ0) ∈ L1(Ω).

3.3. General energetic formulation

In the weak formulation for the SBV-brittle delamination system and for its approximations, a crucial role is
played by the mechanical part of the overall Helmholtz free energy, i.e. by the functional Φ : W 1,p(Ω\Γ ; Rd) ×
Z → (−∞,+∞] (with the space Z specified below), given by Φ(u, z) := Φbulk(u)+Φsurf(�u�, z), cf. (1.4). In fact,
the functional Φsurf : L2(Γ ) × Z → (−∞,+∞] is the only contribution in the mechanical energy Φ to change
when passing from the Modica−Mortola, to the SBV-adhesive contact, and to the SBV-brittle delamination
systems, whereas the bulk contribution Φbulk : W 1,p(Ω\Γ ; Rd) → [0,+∞) for all of the three models is given by

Φbulk(u) :=
∫

Ω\Γ

(
W2(e(u)) + Wp(e(u))

)
dx with W2(e) := 1

2e :C :e, Wp(e) := 1
p |e|p−2e :H :e. (3.15)
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In order to specify the surface mechanical energies, we observe that the impenetrability constraint �u� · n ≥ 0
on (0, T )× Γ can be reformulated as

�u(t, x)� ∈ C(x) for a.a. (t, x) ∈ (0, T )× Γ,

upon introducing the multivalued mapping

C : Γ ⇒ Rd s.t. C(x) = {v ∈ Rd; v·n(x) ≥ 0} for a.a. x ∈ Γ. (3.16)

We will denote by IC(x) the indicator functional of the closed cone C(x), and by ∂IC(x) its (convex analysis)
subdifferential. For the definition and basic properties of subdifferentials, the reader may refer, e.g., to [38].

Then, the surface contributions to the mechanical energy are

– for the Modica−Mortola adhesive system:

Φsurf = Φsurf
k,m(�u�, z) :=

∫
Γ

(
IC(x)

(�u�)+ Jk(�u�, z) + I[0,1](z) − a0z
)
dHd−1 + Gm(z)

with Jk(�u�, z) :=
k

2
z
∣∣�u�∣∣2 and Gm from (2.13).

(3.17)

We denote by Φk,m the corresponding mechanical energy, defined on W 1,p(Ω\Γ ; Rd)×ZMM, with

ZMM := H1(Γ ); (3.18)

– for the SBV-adhesive system:

Φsurf = Φsurf
k (�u�, z) =

∫
Γ

(
IC(x)

(�u�)+ Jk(�u�, z) + I[0,1](z) − a0z
)

dHd−1 + Gb(z) (3.19)

with

Gb(z) =
{

bHd−2(Jz) if z ∈ SBV(Γ ; {0, 1}),
+∞ otherwise,

(3.20)

(cf. also (2.9)), where Jz denotes the set of approximate jump points of z (cf. Def. A.15) and, from the
calculations for the Γ -limit passage as m → ∞ in the Modica−Mortola functionals (Gm)m (see [2, 50]), it
follows that b = 2

∫ 1

0 ξ(1−ξ) dξ. We denote by Φk the corresponding mechanical energy, defined on the space
W 1,p(Ω\Γ ; Rd) ×ZSBV, with

ZSBV := SBV(Γ ; {0, 1}); (3.21)

– for the SBV-brittle system:

Φsurf = Φsurf
b (�u�, z) =

∫
Γ

(
IC(x)

(�u�)+ J∞(�u�, z) + I[0,1](z) − a0z
)

dHd−1 + Gb(z), (3.22)

cf. (2.4) for the definition of J∞. We denote by Φb the corresponding mechanical energy, defined on the
space W 1,p(Ω\Γ ; Rd) ×ZSBV.

Exploiting the positive 1-homogeneity of the dissipation potential from (1.1), we now introduce its related
dissipation distance, also denoted by R1 from now on, i.e. R1 : L1(Γ ) × L1(Γ ) → [0,+∞] defined (with slight
abuse of notation) by

R1

(
z̃−z) :=

∫
Γ

R1(z̃−z) dHd−1 =

⎧⎨⎩
∫

Γ

a1|z̃−z| dHd−1 if z̃ ≤ z a.e. in Γ ,

+∞ otherwise.
(3.23)
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In view of the bulk term with p-growth in (3.15) and the surface energies (3.17) and (3.22), we shall use the
following notation for sets of test functions for the weak formulation of the momentum equation

U :=
{
v ∈W 1,p

ΓD
(Ω\Γ ; Rd) : �v(x)� ∈ C(x) for a.a.x ∈ Γ

}
; (3.24)

Uz :=
{
v ∈W 1,p

ΓD
(Ω\Γ ; Rd) : �v(x)� ∈ C(x), z(x)�v(x)� = 0 for a.a.x ∈ Γ

}
(3.25)

with a given z ∈ L1(Γ ). The former set is used in the adhesive and the latter in the brittle setting.
The enthalpy equation will be formulated as a variational inequality, restricted to positive test functions

in order to deal with the quadratic dissipation term on the right-hand side by lower semicontinuity (see also
Rem. 3.12). In particular, we shall use test functions in the space

W := C0([0, T ];W 1,r′
(Ω\Γ )) ∩W 1,r′

(0, T ;Lr′
(Ω)) ⊂ C0([0, T ];L∞(Γ )) (3.26)

where r′ = r
r−1 is the conjugate exponent of r in (3.27c) below. Since 1 ≤ r < d+2

d+1 , by trace embedding (3.2)
the inclusion in (3.26) holds. In turn, we may mention that the Lr(0, T ;W 1,r(Ω\Γ ))-regularity for w derives
from Boccardo−Gallouët-type estimates [7] on the enthalpy equation, combined with the Gagliardo−Nirenberg
inequality. We refer to the proof of the forthcoming Proposition 3.14, and to [57] for all details.

We are now in the position to introduce a general weak solvability notion for a thermal delamination system,
i.e. the Modica−Mortola/SBV-adhesive, and SBV-brittle systems, consisting of the weak formulation of the
momentum equation, of a mechanical energy inequality, a semistability condition, and of the variational for-
mulation of the enthalpy equation. While the last three items have the same form for each of the delamination
systems we consider, we will not give a unified variational formulation of the momentum equation, for it sub-
stantially changes when switching from adhesive to brittle delamination (see Lem. 3.11 later on). In particular,
let us highlight that in the brittle case the set of test functions Uz for the weak formulation of the momentum
equation does depend on the z-component of the solution.

Definition 3.3 (Energetic solution).
Given a triple of initial data (u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution of a
thermal delamination system, if

u ∈ L∞(0, T ;W 1,p
ΓD

(Ω\Γ ; Rd)) ∩W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ ; Rd)), (3.27a)

z ∈ L∞((0, T )× Γ ) ∩ BV([0, T ];L1(Γ )), z(t, x) ∈ [0, 1] for a.a. (t, x) ∈ (0, T ) × Γ, (3.27b)

w ∈ Lr(0, T ;W 1,r(Ω\Γ )) ∩ L∞(0, T ;L1(Ω)) ∩ BV([0, T ];W 1,r′
(Ω\Γ )∗) (3.27c)

for every 1 ≤ r < d+2
d+1 , the triple (u, z, w) complies with the initial conditions

u(0) = u0 a.e. in Ω, z(0) = z0 a.e. in Γ, w(0) = w0 a.e. in Ω, (3.28)

and with

1. the weak formulation of the momentum equation
−in the adhesive case:

u(t) ∈ U for a.a. t ∈ (0, T ), and for all v ∈ U∫
Ω\Γ

(
DR2(e(

.
u(t))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v−u(t)) dx

+
∫

Γ

kz(t)�u(t)�·�v−u(t)�dHd−1 ≥ 〈F(t), v−u(t)〉 for a.a. t ∈ (0, T );

(3.29a)
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−in the brittle case:

u(t) ∈ Uz(t) for a.a. t ∈ (0, T ), and for all v ∈ Uz(t)∫
Ω\Γ

(
DR2(e(

.
u(t))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v−u(t)) dx

≥ 〈F(t), v−u(t)〉 for a.a. t ∈ (0, T );

(3.29b)

2. semistability for all t ∈ (0, T ]

∀z̃ ∈ Z : Φ
(
u(t), z(t)

) ≤ Φ
(
u(t), z̃

)
+ R1

(
z̃ − z(t)

)
; (3.30)

3. mechanical energy inequality

Φ
(
u(t), z(t)

)
+
∫ t

0

2R2(e(
.
u)) ds+ VarR1(z; [0, t])

≤ Φ
(
u0, z0

)
+
∫ t

0

∫
Ω\Γ

Θ(w)B:e(
.
u) dxds+

∫ t

0

〈F, .u〉ds for all t ∈ [0, T ],
(3.31)

where we use the notation

VarR1(z̃; [t1, t2]) := sup
k∑

i=1

R1

(
z̃(si)−z̃(si−1)

)
for z̃ ∈ L1(Γ ), [t1, t2] ⊂ [0, T ], (3.32)

with the sup taken over all partitions t1 = s0 < . . . < sk = t2 of the interval [t1, t2];
4. weak enthalpy inequality

〈w(T ), ζ(T )〉 +
∫ T

0

∫
Ω\Γ

K(e(u), w)∇w·∇ζ − w
.
ζ dxdt+

∫ T

0

∫
Γ

η(x, �u�, z)�Θ(w)��ζ� dHd−1dt

≥
∫ T

0

∫
Ω\Γ

(
2R2(e(

.
u)) −Θ(w)B :e(

.
u)
)
ζ dxdt+

∫∫
(0,T )×Γ

ζ|+Γ +ζ|−Γ
2

dξsurf.
z

(S, t)

+
∫ T

0

〈H, ζ〉dt+
∫

Ω\Γ

w0ζ(0) dx for all ζ ∈ W with ζ ≥ 0 a.e., (3.33)

where w0 = h(θ0) and ξsurf.
z

is a measure (=heat produced by rate-independent dissipation) defined by
prescribing its values for every closed set of the type A := [t1, t2]×C ⊂ [0, T ]× Γ by

ξsurf.
z

(A) :=
∫

C

R1(z(t1, x)−z(t2, x)) dHd−1. (3.34)

Notice that, since w ∈ BV([0, T ];W 1,r′
(Ω\Γ )∗), for all t ∈ [0, T ] one has w(t) ∈ W 1,r′

(Ω\Γ )∗, so that the first
duality pairing on the left-hand side of (3.33) makes sense pointwise.

Remark 3.4 (Consistency with the energetic solutions in the rate-independent case).
Note that, without viscosity in the momentum equation and in the isothermal case (i.e., in the case of a purely
rate-independent evolution of delamination, cf. [58]), the notion of weak solution of Definition 3.3 coincides with
the concept of (global) energetic solution introduced in [47], see also [45].
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Remark 3.5 (Total energy inequality).
Suppose that (3.33) holds as an equality (cf. Thm. 3.10 below). Then, adding the mechanical energy inequal-
ity (3.31) (for t = T ), and the weak formulation (3.33) of the enthalpy equation tested by 1 yields a further
energy inequality

Φ
(
u(T ), z(T )

)
+
∫ T

0

2R2(e(
.
u)) ds+〈w(T ), 1〉 ≤ Φ

(
u0, z0

)
+
∫

Ω\Γ

w0 dx+
∫ T

0

〈F, .u〉dt+
∫ T

0

〈H, 1〉dt, (3.35)

which involves the enthalpy contribution 〈w(T ), 1〉 as well.

Remark 3.6 (The weak enthalpy inequality).
Variational inequalities akin to (3.33) (and in particular, featuring positive test functions) arise quite naturally
in the weak formulation of heat-type equations with quadratic nonlinearities on the right-hand side: we quote
for example [21, 22] on systems for phase change and nematic liquid crystals, respectively, as well as [20] on a
model for compressible, viscous, heat conducting fluids.

Indeed, it is not difficult to verify that, if z ∈ BV(0, T ;L1(Γ )) is such that ż(t, x) exists for almost all
(t, x) ∈ (0, T )×Γ , any sufficiently regular function w which fulfills (3.33), is also a supersolution of the boundary-
value problem (3.6b), (3.6e), (3.6k), (3.6l).

Now, we specialize Definition 3.3 to the delamination systems considered in what follows.

Definition 3.7 (Energetic solution of the Modica−Mortola adhesive contact system).
Given a quadruple of initial data (u0,

.
u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution

to the Modica−Mortola adhesive contact system, if, in addition to (3.27b), we have

z ∈ L∞(0, T ;ZMM) (3.36)

with ZMM from (3.18), the triple (u, z, w) fulfills Definition 3.3, with the weak formulation of the momentum
inclusion (3.29a), and Φ replaced by Φk,m from (3.17).

Definition 3.8 (Energetic solution of the SBV-adhesive contact system).
Given a quadruple of initial data (u0,

.
u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution

to the SBV-adhesive contact system, if, in addition to (3.27b), we have

z ∈ L∞(0, T ;ZSBV) (3.37)

with ZSBV from (3.21), the triple (u, z, w) fulfills Definition 3.3, with the weak formulation of the momentum
inclusion (3.29a), and Φ replaced by Φk from (3.19).

Definition 3.9 (Energetic solution of the SBV-brittle delamination system).
Given a quadruple of initial data (u0,

.
u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution to

the (Cauchy problem for the) SBV-brittle contact system, if (3.37) holds, the triple (u, z, w) fulfills Definition 3.3,
with the weak formulation of the momentum inclusion (3.29b), and Φ replaced by Φb from (3.22).

3.4. The energy and enthalpy equalities

For the adhesive systems it is possible to prove even equalities in the energy inequalities (3.31), (3.35) and
in the enthalpy inequality (3.33), also dropping the positivity restriction on the test functions.

Theorem 3.10 (Energy and enthalpy equalities for the adhesive systems).
Assume (3.7), (3.8), (3.12), and (3.14). Then, the Modica−Mortola adhesive and the SBV-adhesive contact
systems admit energetic solutions (in the sense of Defs. 3.7 and 3.8) for which the mechanical energy inequal-
ity (3.31) and the total energy inequality (3.35) hold as equalities, and so does the enthalpy inequality (3.33) for
any test function in W.



18 R. ROSSI AND M. THOMAS

The proof will be given in Section 4.3 for SBV-adhesive contact, i.e. for the energy Φk from (3.19) for any
k > 0 fixed. For Modica−Mortola adhesive contact, i.e. with Φk,m from (3.17) for any m, k > 0 fixed, one uses
exactly the same arguments. While the mechanical energy estimate (3.31) is obtained by passing to the limit in
an approximate mechanical energy inequality exploiting lower semicontinuity, these arguments amount to first
showing the opposite relation in (3.31) by means of a Riemann-sum technique (developed in Sect. 4.3), applied
to the momentum balance and the semistability inequality. This yields the mechanical energy equality. Using
the latter, we are then able to deduce convergence of the quadratic viscous dissipation term on the right-hand
side of (3.33), along a sequence of approximate solutions. This convergence is crucial to obtain the enthalpy
equality. Finally, summing the mechanical and enthalpy equalities leads to the total energy equality.

In fact, in order to obtain the opposite relation in the mechanical energy inequality for the adhesive models,
we will not employ the momentum balance as a variational inequality but consider its reformulation as a
subdifferential inclusion, as stated in the following.

Lemma 3.11 (Subdifferential formulation of the momentum equation).
Assume (3.7).

1. For IC from (3.16) and Jk from (3.17) consider the functionals

IC : W 1,p(Ω\Γ ; Rd) → [0,+∞], IC(u) =
∫

Γ

IC(x)(�u(x)�) dHd−1, (3.38)

Jk : W 1,p(Ω\Γ ; Rd) × L∞(Γ ) → [0,+∞], Jk(u, z)=
∫

Γ

Jk(�u�, z) dHd−1= k
2

∫
Γ

z|�u�|2 dHd−1, (3.39)

Fk(u, z) := IC(u) + Jk(u, z), (3.40)

with subdifferentials ∂ IC, ∂uJk, ∂uFk : W 1,p(Ω\Γ ; Rd) ⇒ W 1,p(Ω\Γ ; Rd)∗ (∂u denoting the subdifferential
w.r.t. u). Then, the sum rule

∂uFk(u, z) = ∂ IC(u) + ∂uJk(u, z) holds for all (u, z) ∈W 1,p(Ω\Γ ; Rd) × L∞(Γ ), i.e.

λ ∈ ∂uFk(u, z) ⇔ ∃ � ∈ ∂ IC(u) s.t. ∀ v ∈W 1,p(Ω\Γ ; Rd) 〈λ, v〉 = 〈�, v〉 +
∫

Γ

kz�u�·�v� dHd−1, (3.41)

and (3.29a) is equivalent to

for all v ∈ W 1,p(Ω\Γ ; Rd), for a.a. t ∈ (0, T ):∫
Ω\Γ

(
DR2(e(

.
u(t)))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v) dx

+
∫

Γ

kz(t)�u(t)�·�v� dHd−1 +〈�(t), v〉︸ ︷︷ ︸
〈λ(t),v〉

=〈F(t), v〉

with � ∈ Lp′
(0, T ;W 1,p(Ω\Γ ; Rd)∗) such that �(t) ∈ ∂IC(u(t)) for a.a. t ∈ (0, T )

and λ ∈ Lp′
(0, T ;W 1,p(Ω\Γ ; Rd)∗) such that λ(t) ∈ ∂uFk(u(t), z(t)) for a.a. t ∈ (0, T ),

(3.42)

where p′ = p
p−1 is the conjugate exponent of p.

2. For IC from (3.16) and J∞ from (2.4) consider the functionals

J∞ : W 1,p(Ω\Γ ; Rd) × L∞(Γ ) → [0,+∞], J∞(u, z) :=
∫

Γ

J∞
(�u(x)�, z(x)) dHd−1, (3.43)

F∞(u, z) := IC(u) + J∞(u, z). (3.44)
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Then, (3.29b) can be reformulated as
for all v ∈W 1,p(Ω\Γ ; Rd) and a.a. t ∈ (0, T ) :∫

Ω\Γ

(
DR2(e(

.
u(t))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v) dx + 〈λ(t), v〉 = 〈F(t), v〉

with λ ∈ Lp′
(0, T ;W 1,p(Ω\Γ ; Rd)∗) such that λ(t) ∈ ∂uF∞(u(t), z(t)) for a.a. t ∈ (0, T ).

(3.45)

Observe that the sum rule (3.41) holds thanks to the Rockafellar−Moreau theorem, see e.g. ([38], p. 200,
Thm. 1), since Jk(·, z) is smooth. For F∞ we only have ∂IC + ∂uJ∞ ⊂ ∂uF∞, whereas the converse inclusion
in fact may not hold.

The analog of Theorem 3.10 cannot be obtained for the SBV-brittle delamination system, where already the
strategy to gain the mechanical energy balance fails, and hence the enthalpy equality seems to be out of reach.
The reasons for this are expounded in Remark 4.9 below, where we also discuss a possible integration of the
weak formulation (3.33) of the enthalpy equation, by means of the concept of defect measures.

Remark 3.12 (Defect measure formulation of the enthalpy equation in the brittle case).
In our approach, the failure of equality in the weak formulation (3.33) of the enthalpy equation is due to a
lack of strong compactness in L2(0, T ;L2(Ω; Rd×d)) for (e(u̇k))k, where (uk, zk, wk)k is a sequence of solutions
to the SBV-adhesive contact problems with which we approximate as k → ∞ the SBV-brittle delamination
system. Therefore, the passage to the limit as k → ∞ in the quadratic viscous dissipation term on the right-
hand side of the enthalpy equalities (by Thm. 3.10) for the SBV-adhesive contact systems, solely relies on lower
semicontinuity arguments, cf. the proof of Theorem 5.2.

Nonetheless, one can consider the limit in the sense of measures of the sequence (2R2(e(
.
uk)))k: it is a Radon

measure μ0 on [0, T ]×Ω. Taking the limit of (3.33) as k → ∞ then leads to

〈w(T ), ζ(T )〉 +
∫ T

0

∫
Ω

K(e(u), w)∇w·∇ζ − w
.
ζ dxdt+

∫ T

0

∫
Γ

η(x, �u�, z)�Θ(w)��ζ� dHd−1dt

=
∫ T

0

∫
Ω

(
2R2(e(

.
u)) −Θ(w)B :e(

.
u)
)
ζ dxdt+

∫∫
(0,T )×Γ

ζ|+Γ +ζ|−Γ
2

dξsurf.
z

(S, t)

+
∫∫

(0,T )×Ω

ζ dμ+
∫ T

0

〈H, ζ〉dt+
∫

Ω\Γ

w0ζ(0) dx for all ζ ∈ W ,

(3.46)

where the measure μ is given by
μ = μ0 − 2R2(e(

.
u))dL, (3.47)

with dL is the Lebesgue measure on (0, T ) × Ω. Following [19, 30, 52] we refer to μ as a defect measure, for
it represents the defect between the limiting measure μ0 and the dissipation 2R2(e(

.
u)). The defect-measure

formulation (3.46) complements (3.33), in that it reflects a possible additional energy dissipation of solutions
lacking regularity and exhibiting concentration effects. Hence, in the brittle case we could complete the weak
enthalpy inequality by coupling it with (3.46) and (3.47).

3.5. Strategy of the existence proof and uniform a priori estimates

Here, we provide the general scheme for proving the existence of solutions to (the Cauchy problems for)
the Modica−Mortola, SBV-adhesive, and SBV-brittle delamination systems, upon taking the limit in a suitable
approximate problem: i.e., passing to the limit either with a time-discretization scheme to the Modica−Mortola
system, or with the Modica−Mortola system to the SBV-adhesive system, or with the SBV-adhesive system
to the SBV-brittle system. We will refer to the latter limit passage as the brittle limit, and to the former two
passages as the adhesive limit(s).
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Notation 3.13. Hereafter, we shall suppose that the parameters m and k vary in N. This will allow us to
directly consider sequences (um, zm, wm)m of solutions to the Modica−Mortola delamination system (where we
omit the dependence on k for notational simplicity), when taking the limit as m→ ∞, or sequences (uk, zk, wk)k

of solutions to the SBV-adhesive contact system, when taking the limit as k → ∞.

In performing the aforementioned passages to the limit, we shall always follow these steps:

Step 0. a priori estimates and compactness for the approximate solutions;
Step 1. proof of the weak formulation of the momentum equation. To this aim, we shall rely on the subdiffer-
ential reformulations of Lemma 3.11, and in all of the adhesive limits, use techniques from maximal monotone
operator theory to identify the weak limits of the nonlinear terms. For the brittle limit, we will need to prove
Mosco-convergence as k → ∞ of the functionals (Jk)k to the functional J∞. Combining this information with
maximal monotone operator techniques, we will handle the passage to the limit in the term k

2z|�u�|2 as k → ∞;
Step 2. proof of the semistability condition (3.30), verifying the mutual recovery sequence condition from [48],
in Propositions 4.6 and 5.9;
Step 3. proof of the mechanical energy inequality (3.31) by lower semicontinuity arguments;
Step 4. proof of the weak formulation of the enthalpy inequality.

A priori estimates. We conclude this section by collecting the a priori estimates on approximate solu-
tions, which are valid for all of the successive approximations of the SBV-brittle system we shall tackle: the
Modica−Mortola approximation of the SBV-adhesive system, and the SBV-adhesive approximation of the SBV-
brittle system. In order to state such estimates in a unified way, we consider a generic sequence (un, zn, wn)n

of energetic solutions to the thermal delamination system driven by a sequence (Φn)n of energy functionals
Φn : W 1,p(Ω\Γ ; Rd) ×Z → (−∞,+∞]. More specifically, when considering

(a1) the Modica−Mortola approximation of the SBV-adhesive system, we have the energies (Φk,m)m, and
Z = ZMM: we shall consider the energetic solutions (um, zm, wm)m (for notational simplicity, we omit their
dependence on k ∈ N), obtained by passing to the limit in the time-discretization scheme of Problem 1 in
Appendix A.1;

(a2) the SBV-adhesive approximation of the SBV-brittle system, we have the energies (Φk)k, and Z = ZSBV: we
shall consider the energetic solutions (uk, zk, wk)k obtained by passing to the limit in the Modica−Mortola
approximation, cf. Section 4.

We shall call an energetic solution to the Modica−Mortola adhesive (to the adhesive SBV, resp.) delamination
system approximable, if it is obtained by passing to the limit in the time-discretization scheme of problem 1
(in the Modica−Mortola approximation, resp.). We can now state the following general result yielding a priori
estimates on the family (un, zn, wn)n.

Proposition 3.14 (A priori estimates).
Assume (3.7), (3.8), (3.12), and let (u0, θ0, z0) be a triple of initial data complying with (3.14). Suppose in
addition that (u0, z0) comply with the semistability (3.30) with the energy Φn, i.e.

Φn(u0, z0) ≤ Φn(u0, z̃) + R1(z̃−z0) for all z̃ ∈ Z.

Let (un, zn, wn)n be a family of (approximable) energetic solutions to the thermal delamination system in the
adhesive case (i.e. with (3.29a)), in either of the two cases (a1) and (a2).
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Then, there exist a constant S > 0 and, for every 1 ≤ r < d+2
d+1 , Sr > 0, such that for all n ∈ N the following

estimates hold:

‖un‖L∞(0,T ;W 1,p
ΓD

(Ω\Γ ;Rd))∩W 1,2(0,T ;W 1,2
ΓD

(Ω\Γ ;Rd)) ≤ S; (3.48)

sup
t∈[0,T ]

Φn (un(t), zn(t)) ≤ S; (3.49)

‖zn

∥∥
L∞((0,T )×Γ )

≤ S; (3.50)

‖zn

∥∥
BV([0,T ];L1(Γ ))

≤ S; (3.51)

‖wn‖L∞(0,T ;L1(Ω)) ≤ S; (3.52)

‖wn‖Lr(0,T ;W 1,r(Ω\Γ )) + ‖wn‖BV([0,T ];W 1,r′ (Ω\Γ )∗) ≤ Sr for any 1 ≤ r < d+2
d+1 . (3.53)

We postpone the proof to Appendix A.1.

Remark 3.15 (Extension: more general bulk energies).
The bulk energy densities W2(e) = 1

2e: C: e and Wp(e) = 1
p |e|p−2e: H: e can be replaced by general strictly

convex, Gâteaux-differentiable functions Wn : Rd → R fulfilling suitable growth assumptions from above and
below.

4. Adhesive contact: from Modica−Mortola to SBV-regularization

The main goal of this section is to prove the existence of energetic solutions in the sense of Definition 3.8 for
the SBV-adhesive contact model, and precisely the following

Theorem 4.1 (Existence result for SBV-adhesive contact, k > 0 fixed).
Keep k > 0 fixed. Assume (3.7), (3.8), (3.12), (3.14). Suppose that the initial data (u0, z0) fulfill

Φk(u0, z0) ≤ Φk(u0, z̃) + R1(z̃−z0) for all z̃ ∈ ZSBV. (4.1)

Then, there exists an energetic solution (u,w, z) to the SBV-adhesive contact system, such that (u, z) comply
with the semistability (3.30) for all t ∈ [0, T ]. Moreover, for this solution the mechanical energy, the enthalpy
and the total energy estimates (3.31), (3.33) and (3.35) with Φk hold as equalities. Furthermore,

∃ θ∗ > 0 : inf
x∈Ω

θ0(x) ≥ θ∗ ⇒ ∃ θ̄ > 0 : inf
(t,x)∈(0,T )×Ω

θ(t, x) = inf
(t,x)∈(0,T )×Ω

Θ(w(t, x)) ≥ θ̄. (4.2)

To prove this, we apply the following strategy:

1. we start from an existence result for Modica−Mortola adhesive contact, m, k>0 fixed (Thm. 4.2),
2. as m→∞, k>0 fixed, we show that the energetic solutions of the Modica−Mortola adhesive contact models

suitably converge to an energetic solution of the SBV-adhesive contact model (Thm. 4.3),
3. from Proposition 4.7 and Corollary 4.8 ahead, we directly conclude the validity of the mechanical, the enthalpy

and the total energy balance as equalities.

Indeed, we have

Theorem 4.2 (Existence for the Modica−Mortola adhesive contact model, m, k > 0 fixed).
Keep m, k > 0 fixed. Assume (3.7), (3.8), (3.12), (3.14). Suppose that the initial data (u0, z0) fulfill

Φk,m(u0, z0) ≤ Φk,m(u0, z̃) + R1(z̃−z0) for all z̃ ∈ ZMM. (4.3)

Then, there exists an energetic solution (u,w, z) to the Modica−Mortola adhesive contact system, such that
(u, z) complies with the semistability (3.30) for all t ∈ [0, T ]. Moreover, for such solution the energy esti-
mates (3.31), (3.33) and (3.35) with Φk,m hold as equalities. Furthermore, (4.2) holds.
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The proof of Theorem 4.2 follows from passing to the limit in a suitably devised semi-implicit time-
discretization scheme, which we present in Appendix A.1. Therein, we will also sketch the main steps of the
passage to the limit in the time-discretization, and specifically dwell on the differences between our argument
and the arguments in [54, 55], where a semi-implicit discretization procedure was also developed for proving
existence to adhesive contact models in thermo-visco-elasticity. In particular, we will detail the proof of the
semistability condition (3.30), which needs to be carefully handled due to the gradient regularization in the
subdifferential inclusion (2.14) for z.

Concerning the convergence of the Modica−Mortola approximation to SBV-adhesive contact, we have

Theorem 4.3 (Modica−Mortola approximation of SBV-adhesive contact, k > 0 fixed).
Keep k > 0 fixed. Assume (3.7), (3.8), (3.12). Let (um, wm, zm)m be a sequence of approximable solutions to
the Modica−Mortola adhesive model, supplemented with initial data (u0

m, θ
0
m, z

0
m)m fulfilling (3.14) and (4.3).

Suppose that, as m→ ∞

u0
m⇀u0 in W 1,p(Ω\Γ ; Rd), θ0m → θ0 in Lω1(Ω), z0

m
∗
⇀ z0 in L∞(Γ ), and (4.4)

Φk,m(u0
m, z

0
m) → Φk(u0, z0). (4.5)

Then, there exist a (not relabeled) subsequence, and a triple (u,w, z), such that the following convergences
hold as m→ ∞

um⇀u in L∞(0, T ;W 1,p
ΓD

(Ω\Γ ; Rd)) ∩W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ ; Rd)), (4.6a)

um → u in C0([0, T ];W 1−ε,p
ΓD

(Ω\Γ ; Rd)) for all ε ∈ (0, 1], (4.6b)

zm
∗
⇀ z in L∞(0, T ; SBV(Γ ; {0, 1})) ∩ L∞((0, T ) × Γ ), (4.6c)

zm(t) ∗
⇀ z(t) in SBV(Γ ; {0, 1}) ∩ L∞(Γ ), (4.6d)

zm(t) → z(t) in Lq(Γ ) for all 1 ≤ q <∞ for all t ∈ [0, T ], (4.6e)
zm → z in Lq(0, T ;Lq(Γ )) for all 1 ≤ q < ∞, (4.6f)
wm ⇀ w in Lr(0, T ;W 1,r(Ω\Γ )), (4.6g)
wm → w in Lr(0, T ;W 1−ε,r(Ω\Γ )) ∩ Lq(0, T ;L1(Ω)) for all ε ∈ (0, 1], 1≤ q <∞, (4.6h)

wm(t)⇀w(t) in W 1,r′
(Ω\Γ )∗ for all t ∈ [0, T ], (4.6i)

Θ(wm) → Θ(w) in L2(0, T ;L2(Ω)), (4.6j)

�Θ(wm)� → �Θ(w)� in Lrω(0, T ;L(s−ε)ω(Γ )) for all 0 < ε ≤ s− 1, (4.6k)

and (u,w, z) is an energetic solution to the SBV-adhesive contact system. Furthermore, (4.2) holds for θ = Θ(w).

Before giving the proof, let us recall the well-known Γ -convergence theorem for the static functionals (Gm)m

proved in [50, 51]. It will be exploited for the convergence results (4.6e), (4.6f).

Theorem 4.4 ([50, 51]).
Let (ζm)m ⊂ H1(Γ ) fulfill

sup
m∈N

Gm(ζm) <∞. (4.7)

Then, the sequence (ζm)m is precompact in L1(Γ ) and every limit point belongs to SBV(Γ ; {0, 1}). Moreover,
the functionals (Gm)m Γ -converge in L1(Γ ) as m→ ∞ to the functional Gb (3.20), i.e.

Γ -lim inf inequality: for all ζ∈SBV(Γ ; {0, 1}) and (ζm)m⊂H1(Γ ) with ζm → ζ in L1(Γ ) there holds

lim inf
m→∞ Gm(ζm) ≥ Gb(ζ); (4.8)
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Γ -lim sup inequality: for every ζ ∈ SBV(Γ ; {0, 1}) there exists (ζm)m ⊂ H1(Γ ) with ζm → ζ in L1(Γ )
and lim supm→∞ Gm(ζm) ≤ Gb(ζ).

Theorem 4.4 will also serve as a building block for the limit passage in the semistability condition. Anyhow,
let us observe that it will not be sufficient to pass to the limit in the semistability condition. This is ultimately
due to the fact that the rate-independent delamination process is non-static. Hence, taking the limit of (3.30)
as m→ ∞ requires the construction of a sequence which mutually recovers

R1︸︷︷︸
“dissipation”

+ Gm︸︷︷︸
“static energy”

.

Such a construction of the mutual recovery sequence will be carried out in Section 4.2.
We now develop the proof of Theorem 4.3, following the steps outlined in Section 3.5.

Step 0. Selection of converging subsequences. Estimates (3.48)–(3.53) hold for the sequence (um, wm,
zm)m. Convergences (4.6a) and (4.6b) follow from standard weak and strong compactness results (cf. the
Aubin−Lions type theorems in [59], Cors. 4 and 5). Taking into account that p > d ≥ 2, Sobolev trace theorems
(cf. (3.2)) and embedding results, from (4.6b) we deduce that

�um� → �u� in C0([0, T ]; C0(Γ ; Rd)). (4.9)

As for (zm)m, the L∞-convergence in (4.6c) ensues from (3.50) via the Banach−Alaoglu theorem. To obtain
the weak∗-SBV convergences in (4.6c) and (4.6d), we exploit estimate (3.49), which implies that Gm(zm(t)) ≤ C
for a constant independent of m and t. Therefore, in view of the well-known compactness and Γ -convergence
result for the static Modica−Mortola functional recalled in Theorem 4.4, the sequence (zm(t))m is precompact
in L1(Γ ). The strong Lq-convergence for any q ∈ [1,∞), see (4.6e) and (4.6f), is then implied by the uniform
L∞-bound (3.50). From this we directly conclude

R1(z(s)−z(t)) = VarR1(z; [s, t]) = lim
m→∞ VarR1(zm; [s, t]) = lim

m→∞R1(zm(s)−zm(t)) (4.10)

for all 0 ≤ s ≤ t ≤ T . For the first and the third equality in (4.10) we have used that both z and zm are non-
increasing w.r.t. time. From (4.8) below, we also deduce that lim infm→∞ Gm(zm(t)) ≥ Gb(z(t)) for all t ∈ [0, T ].
Then, taking into account (4.6a), (4.6d), (4.6e), and (4.9), we have

lim inf
m→∞ Φk,m(um(t), zm(t)) ≥ Φk(u(t), z(t)) for all t ∈ [0, T ]. (4.11)

As for (wm)m, convergences (4.6g) and (4.6h) are a consequence of estimates (3.52) and (3.53), and of a
generalization of the Aubin−Lions theorem to the case of time derivatives as measures (see e.g. [56], Cor. 7.9).
Taking into account the a priori bound of (wm(t))m in L1(Ω), we then conclude (4.6i). Furthermore, arguing
by interpolation (e.g. via the Gagliardo−Nirenberg inequality), it is possible to derive from (4.6h) that

wm → w in L(d+2)/d−ε(0, T ;L(d+2)/d−ε(Ω)) for all 0 < ε ≤ d+ 2
d

− 1, (4.12)

see [57], Section 4 for further details. Hence, relying on the growth condition (3.9) for Θ and on the fact that
ω > 2d

d+2 , one can tune ε > 0 in (4.12) in such a way as to obtain (4.6j). Moreover, again taking into account
the trace result (3.2), we deduce from (4.6h) that, wi

m|Γ → wi|Γ in Lr(0, T ;Ls−ε(Γ )) for all 0 < ε ≤ s− 1 with
s = (d−1)r

d−r , for i = +,−. Therefore, (3.9) ensures (4.6k).

Steps 1 and 2. i.e. the limit passages in the momentum balance and in the semistability condition will be
carried out separately in Sections 4.1 and 4.2, respectively. Let us mention in advance that, upon passing to
the limit in the momentum balance we shall also prove that um → u strongly in Lp(0, T ;W 1,p(Ω\Γ ; Rd)), cf.
Proposition 4.5 later on.
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Step 3. Mechanical energy inequality. We use (4.6a), (4.10), and (4.11) to pass to the limit as m→ ∞ on
the left-hand side of the mechanical energy inequality (3.31) for the Modica−Mortola solutions (um, wm, zm)m.
Combining (4.6a) and (4.6j), we have

Θ(wm)B:e(
.
um)⇀Θ(w)B:e(

.
u) in L1(0, T ;L1(Ω)). (4.13)

This, (4.5), and again (4.6a) enable us to pass to the limit on the right-hand side of (3.31), and thus to conclude
that (u,w, z) complies with the mechanical energy inequality for the SBV-adhesive system.

Step 4. Enthalpy inequality. Thanks to convergence (4.6i) we pass to the limit as m → ∞ in the first
term on the left-hand side of (3.33). We deal with the second integral by means of (4.6g), which we combine
with the convergence K(e(um), wm) → K(e(u), w) in Lq(0, T ;Lq(Ω)) for all 1 ≤ q < ∞ due to (4.6b), the
above mentioned strong convergence um → u in Lp(0, T ;W 1,p(Ω\Γ ; Rd)), (4.6h), and the boundedness of K.
To pass to the limit in the surface integral term on the left-hand side, we rely on (4.6k) and on (4.6f) and (4.9),
which yield η(�um�, zm) → η(�u�, z) in Lq(0, T ;Lq(Γ )) for all 1 ≤ q < ∞, in view of the at most polynomial
growth (3.8e) of η. The passage to the limit in the first term on the right-hand side of (3.33) is guaranteed
by (4.6a) via lower semicontinuity, and by (4.13). For the second term, we observe that

ξsurf.
zm

→ ξsurf.
z

in the sense of measures on (0, T )× Γ . (4.14)

This follows from the fact that VarR1(zm, [0, T ]) → VarR1(z, [0, T ]) (cf. (4.10), as well as (4.40) ahead), arguing
in the very same way as in [57] proof of Proposition 4.3. Finally, observe that the strong convergence θ0m → θ0
in Lω1(Ω) and the growth condition (3.8b) yield that w0

m := h(θ0m) → w0 := h(θ0) in L1(Ω), which allows
us to take the limit of the last term on the right-hand side. Thus, the triple (u,w, z) fulfills the enthalpy
inequality (3.33).

Positivity of the temperature. Suppose that infx∈Ω θ0(x) ≥ θ∗ > 0: it follows from convergence (4.4)
that there exist m̄ ∈ N and θ̃ > 0 such that infx∈Ω θ

0
m(x) ≥ θ̃ for all m ≥ m̄. Then, by Theorem 4.2 (cf.

also (A.30) later on) there exists θ̄ > 0 with inf(t,x)∈(0,T )×Ω θm(t, x) ≥ θ̄ for all m ≥ m̄, and (4.2) ensues from
convergence (4.6j). This concludes the proof of Theorem 4.3. �

4.1. Step 1: Limit passage in the momentum balance

In the following we verify that the weak momentum equation (3.29a) holds for the SBV-adhesive limit
system. For this, we aim to take the limit m → ∞ in (3.29a) for the Modica−Mortola adhesive systems.
But as (4.6a) only guarantees weak W 1,p-convergence of the Modica−Mortola adhesive displacements (um)m,
we cannot directly pass to the limit with the nonlinear term

∫
Ω\Γ

DWp(e(um(t)):e(v − um(t)) dx. In order
to circumvent this difficulty we are going to make use of the equivalent subdifferential inclusions (3.42). For
every m ∈ N and a.a. t ∈ (0, T ), these involve the elements �m(t) ∈ ∂uIC(um(t)), IC from (3.38), with
(um(t), wm(t), zm(t), �m(t)) fulfilling (3.42) for a.a. t ∈ (0, T ). Here, a comparison of the terms in (3.42) together
with estimates (3.48), (3.50), (3.53) yields a uniform bound for the sequence (�m)m⊂Lp′

(0, T ;W 1,p(Ω\Γ ; Rd)∗),
i.e. supm∈N ‖�m‖Lp′(0,T ;W 1,p(Ω\Γ ;Rd)∗) ≤C, and hence there exists � ∈ Lp′

(0, T ;W 1,p(Ω\Γ ; Rd)∗) such that up
to a subsequence

�m⇀� in Lp′
(0, T ;W 1,p(Ω\Γ ; Rd)∗) as m→ ∞. (4.15)

Moreover, due to the bound (3.48), there exists μ ∈ Lp′
(0, T ;Lp′

(Ω)) such that, up to the extraction of a further
(not relabeled) subsequence there holds

DWp(e(um))⇀μ in Lp′
(0, T ;Lp′

(Ω)) as m→ ∞. (4.16)

Exploiting convergences (4.6a), (4.6j), (4.15) and (4.16), we obtain that the limit (u,w, z, μ, �) fulfills∫
Ω\Γ

(
DR2(e(

.
u(t)))+DW2(e(u(t)))−BΘ(w(t))+μ(t)

)
:e(v) dx+

∫
Γ

kz(t)�u(t)�·�v�dHd−1+〈�(t), v〉 = 〈F(t), v〉 (4.17)
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for all v ∈W 1,p(Ω\Γ ; Rd) and a.a. t ∈ (0, T ). Hence, in order to conclude that (4.17) is the momentum inclusion
for the SBV-adhesive limit, we have to identify

μ(t) = DWp(e(u(t))) and �(t) ∈ ∂uIC(u(t)) for a.a. t ∈ (0, T ). (4.18)

This will follow from a well-known result from maximal monotone operator theory, for the subdifferential

A := ∂F with F : Lp(0, T ;W 1,p(Ω\Γ ; Rd)) → [0,+∞], F(v) :=
∫ t

0

∫
Ω\Γ

Wp(e(v))) dx + IC(v) ds. (4.19)

Note, that the identification of the limits in (4.18) will ultimately imply the strong convergence of (um)m in
Lp(0, T ;W 1,p(Ω\Γ ; Rd)). Hence, we may state the following result:

Proposition 4.5 (Momentum balance for the SBV-adhesive model).
Let (3.7), (3.8), (3.12), and (3.14) hold true. Keep k ∈ N fixed. Consider (um, zm, wm)m such that
(um, zm, wm) → (u, z, w) as m → ∞ in the sense of (4.6) and such that, for all m ∈ N, the triple
(um, zm, wm) satisfies the Modica−Mortola adhesive momentum inclusion (3.42). Then the limit (u, z, w) ful-
fills the SBV-adhesive momentum inclusion for a.a. t ∈ (0, T ) and moreover we have um → u even strongly in
Lp(0, T ;W 1,p(Ω\Γ ; Rd)).

Proof. To prove (4.18), we apply ([5], p. 356, Lem. 3.57; cf. also Lem. 5.5 ahead) to A = ∂F from (4.19); in the
following we use the placeholder X = Lp(0, T ;W 1,p(Ω\Γ ; Rd)). Consider u∗m ∈ X∗ defined by the dual pairing
〈u∗m, v〉X :=

∫ t

0

∫
Ω\Γ

DWp(e(um(s))) : e(v(s)) dx + 〈�m(s), v(s)〉ds for all v ∈ X . It clearly fulfills u∗m ∈ A(um)

and (4.15) and (4.16) yield that u∗m⇀u∗ in X∗, with u∗ defined by 〈u∗, v〉X :=
∫ t

0

∫
Ω\Γ μ(s) : e(v(s)) dx +

〈�(s), v(s)〉ds. We now check that lim supm→∞〈u∗m, um〉X ≤ 〈u∗, u〉X . To do so, we test the reformulation (3.42)
of the momentum equation satisfied by (um, wm, zm) with um, integrate in time, and take the lim supm→∞.
Thus,

lim sup
m→∞

∫ t

0

(∫
Ω\Γ

DWp(e(um)) : e(um) dx+ 〈�m, um〉
)

ds

≤ − lim inf
m→∞

∫ t

0

∫
Ω\Γ

DR2(e(
.
um)) : e(um) dxds︸ ︷︷ ︸

=
∫

Ω\Γ R2(e(um(t))) − R2(e(um(0))) dx

− lim inf
m→∞

∫ t

0

∫
Ω\Γ

DW2(e(um)) : e(um) dxds

− lim inf
m→∞

∫ t

0

∫
Γ

k
2zm

∣∣�um�∣∣2dHd−1ds+ lim sup
m→∞

∫ t

0

∫
Ω\Γ

BΘ(wm) : e(um) dxds+lim sup
m→∞

∫ t

0

〈F, um〉ds

≤ −
∫ t

0

∫
Ω\Γ

DR2(e(
.
u)) : e(u) dxds︸ ︷︷ ︸

=
∫

Ω\Γ R2(e(u(t))) − R2(e(u0)) dx

−
∫ t

0

∫
Ω\Γ

(
DW2(e(u)) − BΘ(w)

)
: e(u) dxds

−
∫ t

0

∫
Γ

k
2z
∣∣�u�∣∣2 dHd−1ds+

∫ t

0

〈F, u〉ds

=
∫ t

0

(∫
Ω\Γ

μ : e(u) dx+ 〈�, u〉
)

ds. (4.20)

Here, we have used the chain rule formula
∫ t

0

∫
Ω\Γ

DR2(e(
.
um)) : e(um) dxds =

∫
Ω\Γ

R2(e(um(t))) −
R2(e(um(0))) dx for every m ∈ N, and its analogue in the limit m → ∞. Then, the second inequality follows
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from convergences (4.6a)−(4.6c) (which in particular yield that
∫

Ω\Γ R2(e(um(t))) dx → ∫
Ω\Γ R2(e(u(t))) dx for

all t ∈ [0, T ]), and (4.6j). The last equality is due to (4.17). Thus, we have u∗ ∈ A(u) by ([5], p. 356, Lem. 3.57)
and the sum rule (3.41) for A = ∂F yields that there exists �̃ ∈ X∗ with �̃(s) ∈ ∂ IC(u(s)) for a.a. s ∈ (0, t),
such that

〈u∗, v〉X =
∫ t

0

∫
Ω\Γ

μ(s) : e(v(s)) dx + 〈�(s), v(s)〉ds =
∫ t

0

∫
Ω\Γ

DWp(e(u(s))) : e(v(s)) dx + 〈�̃(s), v(s)〉ds (4.21)

for all v ∈ X . We conclude that � = �̃ and μ = DWp(e(u)). Then, (4.18) holds by the fundamental lemma of
the calculus of variations, upon choosing v(s, x) := ϕ(s)v(x) for any ϕ ∈ C∞

0 (0, t) and any v ∈W 1,p(Ω\Γ ; Rd).
Thus, inserting this in (4.17), we find that the triple (u,w, z) complies with (3.42), and hence (3.29a) holds
true. �

4.2. Step 2: Passage to the limit in the semistability condition

We now prove that the pair (u, z) complies with the semistability condition (3.30) for any test function
z̃ ∈ ZSBV = SBV(Γ ; {0, 1}). To do so, we follow a well-established procedure in the analysis of rate-independent
systems: We prove that for all t ∈ (0, T ] there exists a mutual recovery sequence (or MRS, for short) (z̃m)m ⊂
ZMM (whose dependence on t is omitted) such that z̃m → z̃ in L1(Γ ) as m→ ∞, and

lim sup
m→∞

(Φk,m(um(t), z̃m) + R1(z̃m−zm(t)) − Φk,m(um(t), zm(t)))

≤ Φk(u(t), z̃) + R1(z̃−z(t)) − Φk(u(t), z(t)).
(4.22)

Since Φk,m(um(t), z̃m) + R1(z̃m−zm(t)) − Φk,m(um(t), zm(t)) ≥ 0 for all m ∈ N and all t ∈ [0, T ] in view of the
semistability (3.30) for the Modica−Mortola solutions (um, zm), from (4.22) we will immediately deduce the
desired semistability for the limit functions (u, z).

Proposition 4.6 (Mutual recovery sequences for the SBV-adhesive systems).
Keep k ∈ N fixed. Let (3.7), (3.8), (3.12), and (3.14) hold true. Let Φm,k and Φk be given by (3.17) and (3.19).
Let (um)m satisfy (4.6a) and let (zm)m ⊂ SBV(Γ ; {0, 1}) with zm semistable for Φm,k(um, ·) fulfill zm

∗
⇀ z

in SBV(Γ ; {0, 1}). Then, for every z̃ ∈ ZSBV there is a sequence (z̃m)m ⊂ ZMM with z̃m → z̃ in L1(Γ ) such
that (4.22) holds.

Proof. We draw the definition of the MRS (z̃m)m from the proof of [62], Lemma 3.5 and, for the reader’s
convenience, we outline here the main steps in the construction, referring to [62] for all details. We suppose
that Φk(u(t), z̃) < ∞ and R1(z̃−z(t)) < ∞, i.e. that z̃ ≤ z(t) a.e., otherwise, the recovery sequence is trivial.
For (4.22) to hold, it is also necessary that Φk,m(um(t), z̃m) <∞ and R1(z̃m−zm(t)) <∞. Therefore, in [62] the
construction from the proof of Theorem 4.4 in [50,51] is suitably adapted to accommodate the latter constraint.
In particular, one sets

z̃m := max {0,min {(ẑm−δm), zm(t)}} with δm := ‖ẑm−z̃+z(t)−zm(t)‖1/2
L1(Γ ). (4.23)

Here, (ẑm)m is the classical recovery sequence used in [50,51] to prove the Γ -lim sup condition of Theorem 4.4.
In particular, this sequence (ẑm)m ⊂ L1(Γ ) fulfills

ẑm → z̃ in L1(Γ ), lim sup
m→∞

Gm(ẑm) ≤ Gb(z̃). (4.24)

By definition, we have 0 ≤ z̃m ≤ zm(t) ≤ 1 a.e. on Γ . It follows from (4.24) and (4.6e) that δm → 0. Exploiting
this, it can be shown that z̃m → z̃ in L1(Γ ), hence R1(z̃m−zm(t)) → R1(z̃−z(t)). Since (z̃m)m is bounded in
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L∞(Γ ), we immediately have z̃m → z̃ in Lq(Γ ) for all 1 ≤ q < ∞. Combining this convergence with (4.6e)
and (4.9), we then infer{

limm→∞
∫

Γ
k
2 (z̃m−zm(t)) |�um(t)�|2 dHd−1 =

∫
Γ

k
2 (z̃−z(t)) |�u(t)�|2 dHd−1,

limm→∞
∫

Γ a0(zm(t)−z̃m) dS =
∫

Γ a0(z(t)−z̃) dS.
(4.25)

Repeating the very same calculations as in the proof of [62], Lemma 3.5, one can also show that

lim sup
m→∞

(Gm(z̃m)−Gm(zm(t))) ≤ Gb(z̃) − Gb(z(t)).

This concludes the proof of (4.22). �

4.3. Bonus: energy and enthalpy equalities in the adhesive case

In the following we establish that the mechanical energy (3.31), the enthalpy (3.33) and the total en-
ergy (3.35) inequalities hold even as equalities in the adhesive setting, cf. Theorem 3.10. For the proof, we
will confine ourselves to the SBV-adhesive system. Let us stress that the respective equalities indeed hold for
the Modica−Mortola adhesive system and they can be proved along the same lines as in what follows, arguing
on the approximating system via time-discretization constructed in Appendix A.1, to which we refer for more
details.

We start with proving in Proposition 4.7 the opposite relation in the mechanical energy inequality (3.31), for
any solution triple (u, z, w) of the SBV-adhesive system. In [54,57] this was obtained by applying a Riemann-sum
argument on the semistability inequality and by testing the momentum balance by the solution

.
u of the adhesive

system. In our setting, however, the momentum balance cannot be tested by
.
u, as test functions are required

to have W 1,p-regularity in Ω\Γ, cf. (3.24). To avoid testing with
.
u, we adopt the Riemann-sum technique also

for the momentum balance: Let t ∈ (0, T ] be arbitrary but fixed. We choose an equidistant partition of the
interval [0, t],

0 = t0 < tN1 < . . . < tNN = t with tNi − tNi−1 = τN , (4.26)

such that the adhesive momentum inclusion (3.42) holds at time tNi−1 for all i = 1, . . . , N . We test (3.42) at tNi−1

by the differences uN
i − uN

i−1∫
Ω\Γ

(
DR2(e(

.
uN

i−1))+DW2(e(uN
i−1)) − BΘN

i−1 + DWp(e(uN
i−1)

)
:e(uN

i − uN
i−1) dx

+ 〈λN
i−1, u

N
i − uN

i−1〉 = 〈FN
i , uN

i − uN
i−1〉 (4.27)

with λN
i−1 ∈W 1,p(Ω\Γ ; Rd)∗ s.t. λN

i−1 ∈ ∂Fk(uN
i−1, z

N
i−1); here and in what follows, we abbreviate

uN
i := u(tNi ), u̇N

i := u̇(tNi ), λN
i := λ(tNi ) for all i ∈ {1, . . .N}

Then we will exploit convexity inequalities for W2,Wp and IC. Let us point out that the semistability condition
is valid for all t ∈ [0, T ], whereas the momentum balance (3.29a) holds only for almost every t ∈ (0, T ). Hence,
the sequence of partitions (τN )N with τN → 0 as N → ∞ has to be carefully chosen such that (4.27) holds for
every tNi involved.

Proposition 4.7 (Upper estimate for the mechanical energy).
Let k ∈ N be fixed. Let (3.7), (3.8), (3.12), and (3.14) hold true. Let (u, z, w) be an energetic solution to the
SBV-adhesive system. Then the mechanical energy inequality (3.31) also holds in the opposite direction, i.e. for
all t ∈ [0, T ]

Φk

(
u(t), z(t)

)
+
∫ t

0

2R2(e(
.
u)) ds+ VarR1(z; [0, t]) ≥ Φk

(
u0, z0

)
+
∫ t

0

∫
Ω\Γ

Θ(w)B:e(
.
u) dxds+

∫ t

0

〈F, .u〉ds.

(4.28)
Hence, we have mechanical energy equality for the adhesive systems.
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Proof. For t ∈ (0, T ] fixed consider a sequence of partitions (4.26) with τN → 0 as N → ∞, so that (4.27) is
well-defined for all N ∈ N. Observe that the momentum balance at time t may not hold, but from (3.27a) it
follows that both ‖e(u(t))‖Lp(Ω\Γ ) and ‖e(u(t))‖L2(Ω\Γ ) are well-defined for all t ∈ [0, T ]. We now treat the
different terms arising from (4.27). Since W2 and Wp are convex, it is

N∑
i=1

∫
Ω\Γ

(
DW2(e(uN

i−1)) + DWp(e(uN
i−1))

)
:e(uN

i −uN
i−1) dx

≤
N∑

i=1

∫
Ω\Γ

(
W2(e(uN

i ))+Wp(e(uN
i )) − W2(e(uN

i−1))−Wp(e(uN
i−1))

)
dx

=
∫

Ω\Γ

(
W2(e(u(t)))+Wp(e(u(t))) − W2(e(u0))−Wp(e(u0))

)
dx. (4.29)

For the right-hand side of (4.27) we obtain

∑N

i=1
〈FN

i−1, u
N
i −uN

i−1〉 =
∑N

i=1

∫ ti

ti−1

〈F (s),
.
u(s)〉 + 〈FN

i−1 − F (s),
.
u(s)〉︸ ︷︷ ︸

→0

, (4.30)

where the second term tends to 0 due to the regularity (3.12a) of F and (4.6a) of u. For all k ∈ N we have
that λN

i−1 ∈ ∂Fk(uN
i−1) is given by 〈λN

i−1, v〉 = 〈�Ni−1, v〉 +
∫

Γ kz
N
i−1

�
uN

i−1

� ·�v� dHd−1 with �Ni−1 ∈ ∂IC(uN
i−1).

Exploiting the convexity of IC and that IC(uN
i−1) = IC(uN

i ) = 0 we find

N∑
i=1

〈�Ni−1, u
N
i −uN

i−1〉 +
N∑

i=1

∫
Γ

kzN
i−1

�
uN

i−1

�·�uN
i −uN

i−1

�
dHd−1

≤ 0 +
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i−1

�
uN

i−1

�·�uN
i −uN

i−1
τN

�
dHd−1 ds

=
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i−1

�
uN

i−1

�·�.uN
i−1

�
dHd−1 ds︸ ︷︷ ︸

↓

+
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i−1

�
uN

i−1

�·�uN
i −uN

i−1
τN

− .
uN

i−1

�
dHd−1 ds︸ ︷︷ ︸

↓∫ t

0

∫
Γ

kz�u�·�.u�dHd−1 ds 0, (4.31)

where the convergence of the Riemann-sums is due to (4.6a) and (4.6c). To obtain that the second term on the
right-hand side tends to 0 one uses that ‖z‖L∞ ≤ 1 and then applies Hölder’s inequality in L2(0, t;L2(Γ ; Rd))
together with

N∑
i=1

∫ ti

ti−1

∥∥∥uN
i −uN

i−1
τN

− .
uN

i−1

∥∥∥2

W 1,2(Ω\Γ ;Rd)
ds =

N∑
i=1

τN

∥∥∥uN
i −uN

i−1
τN

∥∥∥2

W 1,2
+ τN‖.uN

i−1‖2
W 1,2−2τN

〈
uN

i −uN
i−1

τN
,
.
uN

i−1

〉
→ ‖.u‖2

L2(0,t;W 1,2) + ‖.u‖2
L2(0,t;W 1,2) − 2‖.u‖2

L2(0,t;W 1,2) = 0, (4.32)

where the convergence of the Riemann-sums is due to (4.6a).
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For the term involving the viscous dissipation we have

N∑
i=1

∫
Ω\Γ

DR2(e(
.
uN

i−1)) : e(uN
i −uN

i−1) dx

=
N∑

i=1

∫
Ω\Γ

(tNi −tNi−1)DR2(e(
.
uN

i−1)) :e(
.
uN

i−1)) dx︸ ︷︷ ︸
↓

+
N∑

i=1

∫ tN
i

tN
i−1

∫
Ω\Γ

DR2(e(
.
uN

i−1)) :e
(

uN
i −uN

i−1
τN

− .
uN

i−1

)
dxds︸ ︷︷ ︸

↓∫ t

0

∫
Ω\Γ

DR2(e(
.
u)) :e(

.
u) dxds 0, (4.33)

where the convergence of the Riemann-sums is again due to (4.6a) and the convergence to 0 of the second term
is obtained using (4.32). It remains to analyze the term involving the thermal stresses, i.e.

N∑
i=1

∫
Ω\Γ

−BΘN
i−1 :e(uN

i −uN
i−1) dx

=
N∑

i=1

∫ tN
i

tN
i−1

∫
Ω\Γ

−BΘN
i−1 :e(

.
uN

i−1) dxds︸ ︷︷ ︸
↓

+
N∑

i=1

∫ tN
i

tN
i−1

∫
Ω\Γ

−BΘN
i−1 :e

(
uN

i −uN
i−1

τN
− .
uN

i−1

)
dxds︸ ︷︷ ︸

↓∫ t

0

∫
Ω\Γ

−BΘ(w) :e(
.
u) dxds 0, (4.34)

where we exploited (4.6a), (4.6j), and again (4.32). Collecting (4.29)–(4.34) leads to∫ t

0

〈F, .u〉ds ≤
∫

Ω\Γ

(
W2(e(u(t)))+Wp(e(u(t))) − W2(e(u0))−Wp(e(u0))

)
dx

+
∫ t

0

∫
Ω\Γ

2R2(e(
.
u)) − BΘ(w) :e(

.
u) dxds+

∫ t

0

∫
Γ

kz�u�·�.u� dHd−1 ds (4.35)

Now, a similar estimate for the surface energy has to be established. As in [57] we therefore test the semista-
bility inequality at time tNi−1 with zN

i . Summing up over i ∈ {0, . . . , N} yields

N∑
i=1

∫
Γ

k
2 z

N
i−1

∣∣�uN
i−1

�∣∣2 dHd−1 + Gb(zN
i−1) ≤

N∑
i=1

∫
Γ

k
2 z

N
i

∣∣�uN
i−1

�∣∣2 dHd−1 + Gb(zN
i ) + R1(zN

i − zN
i−1)

=
N∑

i=1

∫
Γ

k
2 z

N
i

∣∣�uN
i

�∣∣2 dHd−1 + Gb(zN
i ) + R1(zN

i − zN
i−1) +

N∑
i=1

∫
Γ

k
2z

N
i

(∣∣�uN
i−1

�∣∣2 − |�uN
i

�∣∣2) dHd−1. (4.36)

Scooping the left-hand side to the right, exploiting the cancelation of redundant terms and using that the last
term in (4.36) can be expressed via the chain rule, leads to

0 ≤
∫

Γ

k
2 z(t)

∣∣�u(t)�∣∣2 dHd−1 −
∫

Γ

k
2z0

∣∣�u0�∣∣2 dHd−1 + Gb(z(t)) − Gb(z0) + R1(z(t) − z0)

−
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i �u(s)�·�.u(s)�dHd−1 ds. (4.37)
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For the last term in (4.37) we calculate

−
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i �u(s)�·�.u(s)�dHd−1 ds

≤−
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i

�
uN

i

�·�.uN
i

�
dHd−1ds︸ ︷︷ ︸

↓

+
N∑

i=1

∫ tN
i

tN
i−1

∫
Γ

kzN
i

(∣∣�u�−�
uN

i

�∣∣∣∣�.uN
i

�∣∣+∣∣�.u�−�.
uN

i

�∣∣∣∣�u�∣∣)dHd−1ds︸ ︷︷ ︸
↓

−
∫ t

0

∫
Γ

kz�u�·�.u�dHd−1 ds 0,

where above the convergence of the Riemann-sums is due to u ∈ W 1,2(0, t;W 1,2
ΓD

(Ω\Γ ; Rd)) by (4.6a) and
z ∈ L∞((0, t) × Γ ) by (4.6c). Altogether we have obtained

0 ≤
∫

Γ

k
2 z(t)

∣∣�u(t)�∣∣2dHd−1−
∫

Γ

k
2 z0

∣∣�u0�∣∣2dHd−1+Gb(z(t))−Gb(z0)+R1(z(t)−z0)−
∫ t

0

∫
Γ

kz�u�·�.u�dHd−1ds. (4.38)

The bulk (4.35) and the surface (4.38) estimates yield the upper mechanical energy estimate (4.28) for the
SBV-adhesive system. �

The analog of Proposition 4.7 is obtained for the Modica−Mortola adhesive system, upon repeating the steps
for the surface energy with the regularization Gm instead of Gb in (4.36)–(4.38).

We are now in the position to conclude the following

Corollary 4.8 (Enthalpy and total energy equality).
Let the assumptions of Proposition 4.7 hold. Let (u, z, w) be an (approximable) energetic solution to the
SBV-adhesive contact system (cf. Thm. 4.3). Then the enthalpy (3.33) and the total energy (3.35) estimates
hold as equalities for (u, z, w).

Proof. First of all, we deduce from the mechanical energy equality the convergence of the viscous dissipation, i.e.∫ t

0

2R2(e(
.
um)) ds →

∫ t

0

2R2(e(
.
u)) ds, (4.39)

where (um, zm, wm) are the solutions of the Modica−Mortola adhesive systems and (u, z, w) is the solution of
the SBV-adhesive system. Indeed, arguing as in [54,57] we develop the chain of inequalities (4.40) below. There,
the first inequality is obtained by lower semicontinuity and convergences (4.6a), (4.6c), while the second one
relies on the mechanical energy equality for the Modica−Mortola adhesive systems. The third equality is due to
um → u strongly in Lp(0, T ;W 1,p(Ω\Γ ; Rd)) by Theorem 4.5, assumption (4.5) and convergence (4.6j), while
the mechanical energy equality for the SBV-adhesive systems is exploited for the last equality.∫ t

0

2R2(e(
.
u)) ds+ VarR1(z; [0, t]) ≤ lim inf

m→∞

∫ t

0

2R2(e(
.
um)) ds+ VarR1(zm; [0, t])

≤ lim sup
m→∞

Φm,k(u0
m, z

0
m) − Φm,k(um(t), zm(t)) +

∫ t

0

∫
Ω\Γ

Θ(wm)B :e(
.
um) dxds+

∫ t

0

〈F, .um〉ds

= Φk(u(0), z(0)) − Φk(u(t), z(t)) +
∫ t

0

∫
Ω\Γ

Θ(w)B :e(
.
u) dxds+

∫ t

0

〈F, .u〉ds

=
∫ t

0

2R2(e(
.
u)) ds+ VarR1(z; [0, t]). (4.40)
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Since VarR1(zm; [0, t]) → VarR1(z; [0, t]) by (4.6c), from (4.40) we deduce the convergence (4.39) of the viscous
dissipation, as well as (4.14).

Combining (4.14) and (4.39) with convergences (4.6a), (4.6c) and (4.6j) allows us to pass with m → ∞
in the weak enthalpy equality of the Modica−Mortola adhesive systems and to obtain that the limit, i.e. the
respective relation for the SBV-adhesive system, again is an equality. Finally, the total energy equality for the
SBV-adhesive system is deduced by summing up the mechanical energy and the enthalpy equality. �

While the analog of Corollary 4.8 holds for the Modica−Mortola adhesive contact system, for the brittle
delamination system, however, our methods to gain energy equalities fail in the very first step, as the following
remark highlights.

Remark 4.9 (Failure of the methods in the brittle setting).
As described along with (4.27), we have to avoid the occurrence of

.
u in nonlinear, p-dependent terms due to a lack

of regularity. In the adhesive setting we therefore test the momentum inclusion at time tNi−1 by u(tNi )− u(tNi−1)
and exploit convexity inequalities for Wp and IC, cf. estimates (4.29) and (4.31). For the analogue of (4.31) in
the brittle setting, one would have to estimate the term 〈lNi−1, u(tNi )−u(tNi−1)〉 with lNi−1 ∈ ∂J∞(uN

i−1, z(t
N
i−1)).

This cannot be done by convexity inequalities because z(tNi−1)
�
u(tNi )

� �= 0 is not excluded a.e. on Γ , therefore
J∞(uN

i , z(t
N
i−1)) = ∞ is possible. Clearly this problem does not occur in the adhesive setting.

5. From SBV-adhesive contact to SBV-brittle delamination

In this section we deduce the existence of energetic solutions for the SBV-brittle delamination systems. This
will be done by passing to the brittle limit k → ∞ with the SBV-adhesive contact systems.

During the limit passage as k → ∞ the properties of the surface energy functionals Fk from (3.40) change
dramatically: their smooth contributions Jk(·, zk) for adhesive contact from (3.39) are supposed to approximate
the nonsmooth functionals J∞(·, z) for the brittle constraint from (3.43). In addition, also a suitable convergence
of their functional derivatives is required in order to pass to the limit in the weak formulation of the momentum
balance, see (3.29a) and (3.29b), respectively.

Testing the adhesive momentum balance (3.29a) with functions suited for the brittle equation (3.29b), i.e.
functions in the set Uz(t) from (3.25), would need

for all v ∈ Uz(t) :
∫

Γ

kzk(t)�uk(t)� · �v�dHd−1 !−→ 0 as k → ∞ (5.1)

for a.a. t ∈ (0, T ), where (uk, zk, wk)k are the SBV-adhesive solutions suitably converging to a limit (u, z, w). But
as we only have that

∫
Γ
kzk(t)|�uk(t)�|2dHd−1 ≤ C, while

∫
Γ
zk(t)|�v�|2dHd−1 → 0 only without the prefactor

k, the integral in (5.1) might even blow up to ∞. Hence, we have to avoid dealing with (5.1), i.e. passing to the
limit in (3.29a) with fixed test functions v ∈ Uz(t). Instead, we intend to construct a suitable recovery sequence
(vk)k for the test functions v ∈ Uz(t), which satisfies

Jk(vk, zk(t)) =
∫

Γ

k
2zk(t)

∣∣�vk�∣∣2 dHd−1 = 0 for all k ∈ N and for all t ∈ [0, T ]. (5.2)

Additionally (vk)k has to feature a convergence suited to recover the bulk terms. In other words, for every
k ∈ N, v has to be modified in such a way that the support of �vk� fits to the null set of zk and, as k → ∞, also
vk → v suitably in the bulk. For obvious reasons, this convergence necessitates that the supports of zk converge
to the support of z in the sense that, for a.a. t ∈ (0, T ) it holds

supp zk(t) ⊂ supp z(t) +Bρ(k,t)(0) for all k ∈ N and ρ(k, t) → 0 as k → ∞, (5.3)

where Bρ(k,t)(0) is the open ball around 0 of radius ρ(k, t). The above inclusion has to be understood as
Hd−1(supp zk(t)\(supp z(t) + Bρ(k,t)(0))) = 0. This so-called support convergence cannot be deduced from the
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convergence of functions in a particular metric. It is rather a fine property of sequences being semistable for the
perimeter functional, as we will establish in Section 6.

Nonetheless, apart from this, the convergence of the bulk terms requires vk → v strongly in the respective
Sobolev space over the domain Ω− ∪ M̂ ∪ Ω+ with M̂ = supp z(t). The strong convergence of the recovery
sequence can be gained from a result in [42], which, for general M̂ (of bad regularity), is only valid in W 1,p(Ω−∪
M̂∪Ω+; Rd) with p > d. This is the ultimate reason for the regularization of p-growth in the bulk energy. Like in
Section 4.1, we cannot directly pass to the limit with the term of p-growth in the momentum inequality (3.29a),
i.e. here with

∫
Ω\Γ

DWp(e(uk(t)):e(vk − uk(t)) dx, as we again have to identify the weak limit of the sequence
(DWp(e(uk)))k. In fact, we will rather use the construction of (vk)k to show that the sequence of functionals
(Fk)k from (3.40) Mosco-converges to the functional F∞ from (3.44), cf. Proposition 5.4 in Section 5.1. This will
allow us to conclude convergence in the sense of graphs of the corresponding maximal monotone subdifferential
operators and hence, to carry out the limit passage in the equivalent subdifferential reformulation (3.42). For
the reader’s convenience, we recall the following definition (see e.g. [5], Sect. 3.3, p. 295).

Definition 5.1 (Mosco-convergence).
Let X be a Banach space and consider the (proper) functionals Fk : X → R∞, and F : X → R∞. We say that
the sequence (Fk)k Mosco-converges as k → ∞ to the functional F, if the following two conditions hold:

– lim inf inequality: for every u ∈ X and (uk)k ⊂ X there holds

uk⇀u weakly in X ⇒ lim inf
k→∞

Fk(uk) ≥ F (u); (5.4)

– lim sup inequality: for every v ∈ X there exists a sequence (vk)k ⊂ X such that

vk → v strongly in X and lim sup
k→∞

Fk(vk) ≤ F (v). (5.5)

A closely related concept is the one of graph convergence of a sequence of maximal monotone operators: by
([5], p. 373, Thm. 3.66), Mosco-convergence of lower semicontinuous and convex functionals implies the one of
the corresponding subdifferential operators. We recall (see [5], p. 360, Def. 3.58) that, given Ak, A : X ⇒ X∗

(set-valued) maximal monotone operators defined on a Banach space X ,

(Ak)k converges in the sense of graphs in X to A ⇔
⎧⎨⎩

∀ (u, u∗)∈X×X∗ with u∗∈A(u),
∃ (uk, u

∗
k)k ⊂ X×X∗ with u∗k∈Ak(uk) :

(uk, u
∗
k) → (u, u∗) strongly in X ×X∗.

(5.6)

After outlining the features of our approach, let us now state the main result of this paper.

Theorem 5.2 (Adhesive contact approximation of SBV-brittle delamination).
Assume (3.7), (3.8) and (3.12). Let (uk, wk, zk)k be a sequence of approximable solutions of the SBV-adhesive
contact system, supplemented with initial data (u0

k, θ
0
k, z

0
k)k fulfilling (3.14) and (4.1). Suppose that, as k → ∞

u0
k⇀u0 in W 1,p(Ω\Γ ; Rd), θ0k → θ0 in Lω1(Ω), z0

k
∗
⇀ z0 in L∞(Γ ), and (5.7)

Φk(u0
k, z

0
k) → Φb(u0, z0). (5.8)

Then, there exist a (not relabeled) subsequence, and a triple (u,w, z), such that convergences (4.6) hold for
(uk, wk, zk) as k → ∞ and (u,w, z) is an energetic solution to the SBV-brittle delamination system, fulfilling
the semistability condition (3.30) for all t ∈ [0, T ]. In addition we have that

uk → u in Lp(0, T ;W 1,p(Ω\Γ ; Rd)) and Φk(uk, zk) → Φb(u, z). (5.9)

Furthermore, the positivity property (4.2) holds.
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Proof. The proof follows the scheme outlined in Section 3.5.

Step 0. Selection of converging subsequences. For the sequence (uk, wk, zk)k, estimates (3.48)–(3.53)
are valid and thus convergences (4.6) can be obtained in the very same way as in the proof of Theorem 4.3.
Furthermore, notice that

sup
k∈N

sup
t∈[0,T ]

Φk(uk(t), zk(t)) ≤ C ⇒ k

2

∫
Γ

zk(t)|�uk(t)�|2 dHd−1 ≤ C for all t ∈ [0, T ], k ∈ N. (5.10)

Now, it follows from (4.6b) via Sobolev trace theorems that �uk� → �u� in C0([0, T ]; C0(Γ ; Rd)). Hence, we obtain�u�·n ≥ 0, and also taking into account (4.6d) we find that
∫

Γ zk(t)|�uk(t)�|2 dHd−1 → ∫
Γ z(t)|�u(t)�|2 dHd−1

for all t ∈ [0, T ]. Therefore, thanks to (5.10) we easily conclude that the limit pair (u, z) fulfills the brittle
constraint z�u� = 0 a.e. on (0, T )× Γ .

The proof of Steps 1 and 2, momentum balance and semistability, will be carried out in Sections 5.1 and 5.2,
respectively. The mechanical energy inequality (3.31) and the enthalpy inequality (3.33) can be obtained by the
very same lower semicontinuity arguments as in Steps 3 and 4 of the proof of Theorem 4.3, and the same for
the positivity of the temperature, that is why we do not repeat it. �

5.1. Step 1: limit passage in the momentum equation via recovery sequences

In this section we pass from adhesive to brittle in the subdifferential formulations of the momentum balance.
As already mentioned, this will be done with the aid of a recovery sequence (vk)k for the test functions v ∈ Uz(t)

of the brittle momentum balance, which has to satisfy (5.2). The construction of this recovery sequence relies
on the following Proposition 5.3. It was developed in ([49], Cor. 4.10) in order to pass from (Sobolev-) gradient
delamination to Griffith-type delamination in the rate-independent setting. Its proof is based on a Hardy
inequality derived in ([42], p. 190), which requires p>d.

In this section we will often indicate that x = (x1, y) ∈ Ω is composed of the x1-component and y :=
(x2, . . . , xd) ⊂ Rd−1. Moreover, in view of assumption (3.7c), we suppose without loss of generality that Ω is
rotated in such a way that the normal n on Γ points in the x1-direction. Furthermore, within the statement of
Proposition 5.3 we denote by (ρ) a family of functions ρ : [0, T ] → [0, diamΓ/2]. To avoid overburdening notation,
we will not specify their dependence on a specific parameter, and accordingly simply write ρ(t) → 0 for the
convergence to zero of the family (ρ(t)). Later on, we will apply Proposition (5.3) to a sequence (ρk)k, cf. (5.12).
Finally, for simplicity in the notation of ξM̂

ρ and vρ (cf. (5.11) below), we will often omit the t-dependence of ρ.

Proposition 5.3 (Recovery sequence for the test functions, [49], Cor. 2).
Keep t ∈ [0, T ] fixed and let ρ : [0, T ] → [0, diamΓ/2]. Let z(t) ∈ L∞(Γ ) and let M̂(t) := supp z(t). Let
dM̂ (t, x) := minx̂∈M̂(t) |x − x̂| for all x ∈ Ω±. Let v(t) ∈ W 1,p(Ω− ∪ M̂(t) ∪ Ω+; Rd), with p > d, such that

v(t) = 0 on ΓD in the trace sense. With ξM̂
ρ (t, x) := min{ 1

ρ(t) (dM̂ (t, x) − ρ(t))+, 1} set

vρ(t, x1, y) := vsym(t, x1, y) + ξM̂
ρ (t, x1, y) vanti(t, x1, y), (5.11)

where vsym(t, x1, y) := 1
2 (v(t, x1, y) + v(t,−x1, y)) and vanti(t, x1, y) := 1

2 (v(t, x1, y) − v(t,−x1, y)). Then, for
a.a. t ∈ (0, T ) the following statements hold:

(i) vρ(t) → v(t) strongly in W 1,p(Ω− ∪Ω+; Rd) for a family (ρ(t)) with ρ(t) → 0,
(ii) v(t) ∈ W 1,p(Ω− ∪ M̂(t) ∪Ω+; Rd) ⇒ vρ(t) ∈W 1,p(Ω− ∪ (M̂(t) +Bρ(t)(0)) ∪Ω+; Rd),
(iii) �v(t)� · n ≥ 0 on Γ ⇒ �vρ(t)� · n ≥ 0 on Γ .

We apply the construction of Proposition 5.3 to tailor a recovery sequence (vk)k for any test function v ∈ Uz(t).
For our purpose, the radii ρ = ρ(k, t) in Proposition 5.3 are given by

ρ(k, t) := inf{ρ > 0 : supp zk(t) ⊂ supp z(t) +Bρ(0)}. (5.12)
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As proved in the forthcoming Propositions 6.7 and 6.8, we have ρ(k, t) → 0 as k → ∞ for all t ∈ [0, T ]. Then,
statement (ii) ensures that the sequence (vk)k, vk := vρ(k,t), does not jump on supp zk(t) for a.a. t ∈ (0, T ).
Moreover,

�
vρ(k,t)

� · n ≥ 0 on Γ as given by statement (iii), while (i) guarantees the desired convergence
vρ(k,t) → v(t), only if ρ(k, t) → 0 as k → ∞. For supp z(t) = ∅ this is shown in Proposition 6.7 and for
supp z(t) �= ∅ in Proposition 6.8.

The above recovery sequence will now be used to state the Mosco-convergence of several functionals involved
in the adhesive momentum balance.

Proposition 5.4. Assume (3.7c).

(1) Let (zk)k ⊂ SBV(Γ ; {0, 1}), semistable for Φk(uk(t), ·), with zk
∗
⇀ z in SBV(Γ ; {0, 1}) as k → ∞ and X :=

W 1,p(Ω\Γ ; Rd). Then, the functionals Jk(·, zk) (3.39) Mosco-converge in X as k → ∞ to J∞(·, z) (3.43).
(2) Let the assumptions of (1) hold. Then, the sequence (Fk(·, zk))k (3.40) Mosco-converges in X as k → ∞ to

F∞(·, z) (3.44).
(3) Let X := Lp(0, T ;W 1,p(Ω\Γ ; Rd)). For zk, z satisfying (4.6c) and any t ∈ (0, T ] consider the functionals

F̃k(·, zk) : X → [0,∞], F̃k(v, zk) :=
∫ t

0

∫
Ω\Γ

Wp(e(v(s))) dx + Fk(v(s), zk(s)) ds, (5.13a)

F̃∞(·, z) : X → [0,∞], F̃∞(v, z) :=
∫ t

0

∫
Ω\Γ

Wp(e(v(s))) dx + F∞(v(s), z(s)) ds. (5.13b)

Then the sequence (F̃k(·, zk))k Mosco-converges to the functional F̃∞(·, z) in X.

Proof. Ad (1). The lim inf inequality (5.4) immediately follows from the fact that Jk(uk, zk) ≥ 0 for all k ∈ N.
This has to be combined with the observation that the limit pair (u, z) fulfills z�u� = 0 on Γ , which can be
checked arguing in the same way as throughout Step 0 of the proof of Theorem 5.2.

The lim sup condition (5.5) is proved by associating with each v ∈W 1,p(Ω\Γ ; Rd) s.t. J∞(v, z) <∞, i.e.
z�v� = 0 on Γ , the recovery sequence

vk(x1, y) :=

⎧⎪⎨⎪⎩
vsym(x1, y) + ξsupp z

ρ(k) (x1, y) vanti(x1, y) if supp z �= ∅ and supp zk �⊂ supp z,
v(x1, y) if supp zk ⊂ supp z,
v(x1, y) if supp z = ∅.

(5.14)

For the non-trivial construction in the first line of (5.14) the radius ρ(k) > 0 is defined by (5.12). If supp zk ⊂
supp z, it is ρ(k) = 0 according to (5.12) and there is no need to modify v. The construction for the case
supp z = ∅ is due to Proposition 6.7 stating that, if supp z = ∅, then also supp zk = ∅ from a particular index
k0 on. For supp z �= ∅ the construction is the one from Proposition 5.3. The sequence (vk)k strongly converges
to v in X by (i) of Proposition 5.3. From (ii) and (5.12) it follows that zk�vk� = 0 for every k ∈ N, hence
Jk(vk, zk) = J∞(v, z) = 0 and (5.5) is verified.

Clearly, (2) is an obvious consequence of (1), also taking into account that, the construction of the recovery
sequence (vk)k preserves the non-penetration constraint, cf. (iii) in Proposition 5.3.

Ad (3). Consider v ∈ X = Lp(0, T ;W 1,p(Ω\Γ ; Rd)). Again, the lim inf inequality (5.4) is easy to check.
As for the lim sup inequality, for a.a. s ∈ (0, t) fixed a recovery sequence for v(s) = v(s, x1, y) is given by
vk(s) = vk(s, x1, y) from (5.14). We prove that vk → v strongly in X . Statement (i) of Proposition 5.3 yields
that vk(s) → v(s) strongly in W 1,p(Ω\Γ ; Rd), whence ‖vk(s)‖W 1,p(Ω\Γ ;Rd) → ‖v(s)‖W 1,p(Ω\Γ ;Rd) pointwise a.e.
in (0, t). Moreover, due to ξM̂

ρ(k)(s, ·) ∈ [0, 1] for a.a. s ∈ (0, t), construction (5.14) gives ‖vk(s)‖W 1,p(Ω\Γ ;Rd) ≤
‖v(s)‖W 1,p(Ω\Γ ;Rd) with ‖v(·)‖W 1,p(Ω\Γ ;Rd) ∈ Lp(0, t). Due to the dominated convergence theorem we thus have
vk → v in Lp(0, t;W 1,p(Ω\Γ ; Rd)). �
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Now, we want to carry out the limit passage in the momentum balance from adhesive to brittle exploiting
convergences (4.6). As in Section 4.1, we observe that, there exists μ ∈ Lp′

(0, T ;Lp′
(Ω)) such that, up to the

extraction of a further (not relabeled) subsequence there holds

DWp(e(uk))⇀μ in Lp′
(0, T ;Lp′

(Ω)). (5.15)

Furthermore, a comparison in the reformulation (3.42) of the adhesive momentum equation for (uk, wk, zk)k

yields a bound for the sequence (λk)k ⊂ Lp′
(0, T ;W 1,p(Ω\Γ ; Rd)∗) such that λk(t) ∈ ∂uFk(uk(t), zk(t)) for

almost all t ∈ (0, T ) and (uk, wk, zk, λk) fulfill (3.42). Therefore, up to a subsequence,

λk⇀λ in Lp′
(0, T ;W 1,p(Ω\Γ ; Rd)∗). (5.16)

Convergences (5.15) and (5.16), combined with (4.6a)–(4.6h) allow us to show, as for (4.17), that the quintuple
(u,w, z, μ, λ) for almost all t ∈ (0, T ) and all v ∈W 1,p(Ω\Γ ; Rd) fulfills∫

Ω\Γ

(
DR2(e(

.
u(t)))+DW2(e(u(t)))−BΘ(w(t))+μ(t)

)
:e(v) dx+〈λ(t), v〉 = 〈F(t), v〉. (5.17)

Thus, to be able to conclude that (5.17) is the momentum inclusion for the SBV-brittle limit, as in Section 4.1
we have to identify the limits

μ(t) = DWp(e(u(t))) and λ(t) ∈ ∂uF∞(u(t), z(t)) for a.a. t ∈ (0, T ). (5.18)

For this, we exploit the Mosco-convergence of the functionals F̃k(·, zk) defined in (5.13): indeed, we will apply
the following Lemma 5.5 to the graph-convergent sequence (∂uF̃k(·, zk))k.

Lemma 5.5. Let X be a reflexive Banach space and (Ak)k a sequence of maximal monotone operators Ak :
X ⇒ X∗ which converge in the sense of graphs to a maximal monotone operator A. Then the following holds

(uk, u
∗
k) ∈ X ×X∗ with u∗k ∈ Ak(uk),

uk ⇀ u in X, u∗k ⇀ u∗ in X∗,
lim supk→∞ 〈u∗k, uk〉X ≤ 〈u∗, u〉X

⎫⎬⎭ ⇒ (u, u∗) ∈ X ×X∗ with u∗ ∈ A(u). (5.19)

The proof can be retrieved from the lines of the proof of ([5], p. 361, Prop. 3.59).
We then obtain the following result on the limit passage in the momentum balance, where, as in Propo-

sition 4.5, the identification (5.18) again implies the strong convergence of (uk)k in Lp(0, T ;W 1,p(Ω\Γ ; Rd)).

Proposition 5.6 (Passage to the limit in the momentum equation as k → ∞).
Assume (3.7), (3.8), (3.12), (3.14), and let (uk, wk, zk)k be a sequence of energetic solutions to the SBV-adhesive
contact systems, for which convergences (4.6) to a limit triple (u,w, z) hold as k → ∞. Then, (u,w, z) satisfy
the weak formulation (3.29b) of the momentum equation in the brittle case. In addition, there holds

uk → u strongly in Lp(0, T ;W 1,p(Ω\Γ ; Rd)) and
(
Φbulk(uk)+F̃k(uk, zk)

)→ (
Φbulk(u)+F̃∞(u, z)

)
. (5.20)

Proof. To prove (5.18) we are going to show that u∗ ∈ X∗ (with X := Lp(0, T ;W 1,p(Ω\Γ ; Rd))) given by
〈u∗, v〉X :=

∫ t

0

∫
Ω
μ(s) : e(v(s)) dx + 〈λ(s), v(s)〉ds is such that u∗ ∈ ∂uF̃∞(u, z). To this aim, we observe

that the sequence (u∗k)k ⊂ X∗ defined by 〈u∗k, v〉X :=
∫ t

0

∫
Ω

DWp(e(uk(s))) : e(v(s)) dx + 〈λk(s), v(s)〉ds fulfills
u∗k ∈ ∂uF̃k(uk, zk) and u∗k⇀u∗ in X∗. Then, we apply Lemma 5.5 to the sequence of maximal monotone
subdifferential operators (Ak)k given by Ak := ∂uF̃k(·, zk) : X ⇒ X∗ and verify the lim sup-estimate in (5.19).
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For this, we again test (3.42) by uk, integrate in time, and take the lim supk→∞. Thus, the very same calculations
as throughout (4.20) give

lim sup
k→∞

∫ t

0

(∫
Ω\Γ

DWp(e(uk)) : e(uk) dx+ 〈λk, uk〉
)

ds ≤
∫ t

0

(∫
Ω\Γ

μ : e(u) dx+ 〈λ, u〉
)

ds. (5.21)

Hence, u∗ ∈ ∂uF̃∞(u, z) and we conclude (5.18) as in the proof of Proposition 4.5.
For the convergence of the energies in (5.20) it has to be shown that Jk(uk, zk) → 0. This is obtained by

testing the adhesive momentum inequality (3.29a) by the recovery sequence (vk)k constructed via (5.11) for
the brittle limit solution u. Rearranging the terms in (3.29a), and exploiting that zk�vk� = 0 a.e. on Γ by
construction, yields for a.a. t ∈ (0, T ) that

0 ≤
∫

Γ

kzk

∣∣�uk�∣∣2 dx ≤
∫

Ω\Γ

(
DR2(e(

.
uk))+DW2(e(uk))−BΘ(wk)+DWp(e(uk))

)
:e(vk − uk) dx− 〈F, vk − uk〉

−→ 0 as k → ∞,

since both vk → u and uk → u strongly in W 1,p(Ω\Γ ; Rd) for a.a. t ∈ (0, T ). Hence
∫

Γ
kzk

∣∣�uk�∣∣2 dx → 0 as
k → ∞ for a.a. t ∈ (0, T ). �

5.2. Step 2: closedness of semistable sets

We now prove that the limit pair (u, z) complies with the semistability condition (3.30) by constructing
a mutual recovery sequence, cf. Section 4.2, for the semistable sequence (zk)k ⊂ L∞(0, T ; SBV(Γ ; {0, 1}))
fulfilling (4.6c). This construction is carried out in Proposition 5.9 below. It uses notation from the theory
of BV-spaces, which can be found in Appendix A.2, cf. in particular Definitions A.10 and A.11. In order to
guarantee that R1(z̃k − zk) <∞ for the mutual recovery sequence (z̃k)k, we would like to apply a construction
similar to the one developed in [64] for Sobolev-gradients, which mainly consists of considering the minimum of
the stable sequence and the test function z̃. To deal with the gradient terms one exploits a chain rule formula for
Sobolev-functions and the Lipschitz continuous minimum function, cf. [44]. A corresponding chain rule formula
for distributional derivatives, see [3], is more complicated to apply, as it also involves a kind of tangential
differential. For our purposes however, the following Theorem 5.7 on the decomposability of BV-functions will
provide an alternative construction that allows us to circumvent this general chain rule formula.

Theorem 5.7 ([4], Thm. 3.84, Decomposability of BV -functions).
Let D ⊂ Rm. Let v1, v2 ∈ BV(D) and let E be a set of finite perimeter in D, with its reduced boundary FE
oriented by the generalized inner normal νE . Let vi

±
FE denote the traces on FE ∩D, which exist for Hm−1-a.a.

x ∈ FE ∩D and XE the characteristic function of the set E. Then

w := v1XE + v2XD\E ∈ BV(D) if and only if
∫

FE∩D

|v+
1FE

− v−2FE
| dHm−1 <∞. (5.22)

If w ∈ BV(D) then the measure Dw is represented by

Dw := Dv1�E1 + Dv2�E0 + (v+
1FE

− v−2FE
)νE ⊗Hm−1�(FE ∩D), (5.23)

where E1 and E0 denote the measure-theoretic interior and exterior of E.

Since the three Radon-measures Dv1�E1, Dv2�E0, and (v+
1FE

−v−2FE
)νE ⊗Hm−1�(FE∩D) in (5.23) have disjoint

supports in D, we conclude that

|Dw|(D) = |Dv1|(E1) + |Dv2|(E0) +
∫

FE∩D

|(v+
1FE

− v−2FE
)| dHm−1. (5.24)

We then have the following result (see [62] for the proof).
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Lemma 5.8. Let D ⊂ Rm and v ∈ BV(D) with a ≤ v ≤ b Hm-a.e. in D for constants a, b ∈ R. Assume
that Γ is a Hm−1-rectifiable set oriented by ν and denote by v±Γ the traces of v on Γ . Then a ≤ v±Γ (x) ≤ b for
Hm−1-a.a. x ∈ D.

In the proof of the following result we will apply Theorem 5.7 and Lemma 5.8 with D = Γ and m = d− 1.

Proposition 5.9 (Passage to the limit in the semistability condition as k → ∞).
Assume (3.8), (3.12), (3.14), and let (uk, zk)k be a sequence of energetic solutions to the SBV-adhesive contact
system, for which convergences (4.6a)–(4.6f) hold as k → ∞. Then, the limit pair (u, z) fulfills the semistability
condition (3.30) with the energy Φb.

Proof. To prove (3.30) with Φb, it is sufficient to show for a.a. t ∈ (0, T )

∀z̃ ∈ ZSBV : Φsurf
b

(�u(t)�, z(t)) ≤ Φsurf
b

(�u(t)�, z̃)+ R1(z̃ − z(t)). (5.25)

We will check (5.25) for t∈ (0, T ) fixed, thus we will omit the variable t from now on. We verify the following
MRS-condition: Let (zk)k ⊂ SBV(Γ ; {0, 1}) be a semistable sequence for the energies (Φk)k, with zk

∗
⇀ z in

SBV(Γ ; {0, 1}). Then, for all z̃∈Z there is a sequence (z̃k)k ⊂SBV(Γ ; {0, 1}) so that

lim sup
k→∞

(
Φk

(�uk�, z̃k

)− Φk

(�uk�, zk

)
+ R1(z̃k − zk)

) ≤ Φb

(�u�, z̃)− Φb

(�u�, z)+ R1(z̃ − z). (5.26)

In the proof of (5.26), we may suppose that z̃ ≤ z a.e. in Γ , hence R1(z̃−z) <∞. Indeed, if there exists a
Hd−1-measurable set B ⊂ Γ with Hd−1(B) > 0 and z̃ > z on B, then R1(z̃− z) = ∞ and (5.26) trivially holds.
To avoid trivial cases, we also suppose that Φb

(�u�, z̃)<∞, hence 0≤ z̃≤1 and z̃�u� = 0 a.e. on Γ . To construct
a mutual recovery sequence we set

z̃k := z̃XAk
+ zk(1 − XAk

), where Ak := {x ∈ Γ : 0 ≤ z̃(x) ≤ zk(x)} =: [0 ≤ z̃ ≤ zk]. (5.27)

With this choice we ensure that 0 ≤ z̃k ≤ zk a.e. in Γ. Note that Γ\Ak = [zk < z̃] = [zk = 0] ∩ [z̃ = 1]. Since
zk, z̃ ∈ SBV(Γ ; {0, 1}) are the characteristic functions of sets Zk, Z of uniformly bounded, finite perimeter, and
relying on Proposition A.8, we find that

∃C > 0 ∀ k ∈ N : P (Ak, Γ ) = P (Γ\Ak, Γ ) ≤ P (Zk, Γ ) + P (Z, Γ ) ≤ C.

Additionally, Lemma 5.8 implies that |z̃−zk| ≤ 1, |z̃| ≤ 1 as well as |zk| ≤ 1 Hd−2-a.e. on the respective reduced
boundaries. Hence, Theorem 5.7 can be applied, yielding that z̃k ∈ BV(Γ ) for all k ∈ N.

We now observe that, as zk → z in L1(Γ ) and z̃≤ z a.e. in Γ , the definition (5.27) of z̃k yields that z̃k → z̃
a.e. in Γ . Now, since (z̃k)k is bounded in L∞(Γ ) by construction, this pointwise convergence improves to z̃k → z̃
in Lq(Γ ) for all 1 ≤ q <∞. Using that 0 ≤ z̃k ≤ zk a.e. on Γ , we have that

lim sup
k→∞

k
2

∫
Γ

(z̃k−zk)|�uk�|2 dHd−1 ≤ 0 =
∫

Γ

(J∞(�u�, z̃)−J∞(�u�, z)) dHd−1. (5.28)

Hence, in order to conclude the lim sup estimate (5.26), it remains to prove that

lim sup
k→∞

(Gb(z̃k) − Gb(zk) + R1(z̃k − zk)
) ≤ lim sup

k→∞

(Gb(z̃k) − Gb(zk)
)

+ lim sup
k→∞

R1(z̃k−zk) (5.29)

and we estimate the different terms in (5.29) separately.
Due to z̃k → z̃ in L1(Γ ) and the fact that z̃k ≤ zk for all k ∈ N by construction we conclude that R1(z̃k−zk) →

R1(z̃ − z) as k → ∞.
Thus, to deduce the estimate for Gb, it remains to show that

lim sup
k→∞

(|Dz̃k|(Γ )−|Dzk|(Γ )
) ≤ |Dz̃|(Γ )−|Dz|(Γ ). (5.30)
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For this we recall that z̃k = z̃XAk
+ zk(1 − XAk

) as well as zk = zk(XAk
+ (1 − XAk

)) and we express their
derivatives, i.e. the Radon measures Dz̃k and Dzk, with the aid of formulae (5.23) and (5.27). Thus, by (5.24)
we obtain

|Dz̃k|(Γ ) =|Dz̃|(A1
k) + |Dzk|(A0

k) +
∫

FAk∩Γ

|z̃+−z−k | dHd−2, (5.31)

where we applied Theorem A.18, guaranteeing the existence of the traces z̃±k on the different parts of the reduced
boundaries, and (5.24) to justify the equality in (5.31). Similarly we find

−|Dzk|(Γ ) = − |Dzk|(A1
k) − |Dzk|(A0

k) −
∫

FAk∩Γ

|z+
k −z−k | dHd−2. (5.32)

We note that both |Dz̃k|(A0
k) = 0 and −|Dzk|(A0

k) = 0 in (5.31) and (5.32). We now prove that the boundary
terms in (5.31) + (5.32) can be estimated as follows for all k ∈ N:∫

FAk∩Γ

|z̃+−z−k | dHd−2 −
∫

FAk∩Γ

|z+
k −z−k | dHd−2 ≤

∫
FAk∩Γ

|z̃+ − z̃−| dHd−2. (5.33)

To verify estimate (5.33) we use the information on the traces stated in Lemma 5.8 and distinguish between
all possible relations. On FAk ∩ Γ it holds 0 ≤ z̃+ ≤ z+

k and 0 ≤ z−k < z̃− Hd−2-a.e.. Hence, for Hd−2-a.a.
x ∈ FAk ∩ F(Γ\Ak) ∩ Γ with

z+
k ≤ z−k it is z̃+ ≤ z+

k ≤ z−k < z̃−, i.e. |z̃+−z−k | < |z̃+ − z̃−|,
z+

k > z−k it is either z̃+ ≤ z−k < z+
k ≤ z̃−, i.e. |z̃+−z−k | ≤ |z̃+ − z̃−|,

or z̃+ ≤ z−k < z̃− ≤ z+
k , i.e. |z̃+−z−k | ≤ |z̃+ − z̃−|,

or z−k < z̃− ≤ z̃+ ≤ z+
k , i.e. |z̃+−z−k | ≤ |z+

k − z−k |,
or z−k < z̃+ ≤ z+

k ≤ z̃−, i.e. |z̃+−z−k | ≤ |z+
k − z−k |,

or z−k < z̃+ < z̃− ≤ z+
k , i.e. |z̃+−z−k | ≤ |z+

k − z−k |.
Using these estimates and denoting by E the set of points, where one of the latter three relations holds, we find
that ∫

FAk∩Γ

|z̃+−z−k | dHd−2 −
∫

FAk∩Γ

|z+
k −z−k | dHd−2 ≤

∫
FAk∩Γ\E

|z̃+−z̃−| dHd−2 − 0 ≤
∫

FAk∩Γ

|z̃+−z̃−| dHd−2.

Thus, (5.33) holds. In total we have obtained that the left-hand side of (5.30) can be estimated by

lim sup
k→∞

(|Dz̃k|(Γ ) − |Dzk|(Γ )
) ≤ lim sup

k→∞

(
|Dz̃|(A1

k) +
∫

FAk∩Γ

|z̃+ − z̃−| dHd−2 − |Dzk|(A1
k)
)

≤ |Dz̃|(Γ ) − lim inf
k→∞

|Dzk|(A1
k).

(5.34)

Therefore, to establish (5.30) it remains to show that

− lim inf
k→∞

|Dzk|(A1
k) ≤ −|Dz|(Γ ). (5.35)

To this aim, we first choose a (not relabeled) subsequence (zk)k such that the lim inf is attained. Then, we
introduce the sets Un :=

⋃∞
k=n(Γ\Ak). Since Hd−1(Γ\Ak) → 0 as k → ∞ we may choose a further subsequence

s.t.
∑∞

k=1 Hd−1(Γ\Ak) < ∞. Hence for this subsequence, Hd−1(Un) < ∞ and Hd−1(Un) → 0 as n → ∞.
We set limn→∞ Un = N and put Γn := Γ\Un, which satisfies Γn ⊂ Ak for all k ≥ n. Then, also Γ 1

n ⊂ A1
k

as well as Γ 1
n ⊆ Γ 1

n+1 ⊂ Γ 1 for all n ∈ N by Corollary A.12, 2. Since Hd−1(N) = 0 we conclude that
(Γ\N)1 = Γ 1 by Corollary A.12, 1. Note that Γ ⊂ Rd−1 is an open set, i.e. for all x ∈ Γ there exists a
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constant rx > 0 such that Br(x) ⊂ Γ for all r ≤ rx. Hence Γ 1 = Γ and therefore (Γ 1
n)n satisfies Γ 1

n ↑ Γ, i.e.
Γ 1

1 ⊆ . . . ⊆ Γ 1
n ⊆ Γ 1

n+1 ⊆ . . . ⊆ Γ = ∪n∈NΓ
1
n . Keep n ∈ N fixed. Then the sets Γ 1

n ⊂ A1
k can be used to find a

set independent of k ≥ n, so that the lower semicontinuity of the total variation functional can be exploited on
Γ 1

n for the sequence zk
∗
⇀ z in SBV(Γ ; {0, 1}). Indeed, for all k ≥ n we have

− lim inf
k→∞

|Dzk|(A1
k) ≤ − lim inf

k→∞
|Dzk|(Γ 1

n) ≤ −|Dz|(Γ 1
n) → −|Dz|(Γ ) as n→ ∞,

where the last convergence as n → ∞ follows from Γ 1
n ↑ Γ and the σ-additivity of |Dz|. This finishes the

proof of (5.35). Thus we conclude that the mutual recovery sequence (z̃k)k given by (5.27) satisfies the lim sup-
estimate (5.26). �

6. Support property of semistable sequences

We now investigate fine properties of the sequence (zk)k, which are exploited for proving the convergence
of the momentum equation as k → ∞ in Section 5.1. We will deduce such properties from the sole feature of
semistability of the sequence (zk)k with respect to the functionals Φk(uk, ·).

The statement of the main result of this section, Theorem 6.1 below, is given for a generic sequence
(zk)k ⊂ L∞(0, T ; SBV(Γ ; {0, 1})) fulfilling the semistability condition (3.30). We refer to Remark 6.11 for
further comments in this connection.

Theorem 6.1 (Support convergence).
Assume (3.7c). Let (zk)k ⊂ L∞(0, T ; SBV(Γ ; {0, 1})) fulfill semistability (3.30) for all k ∈ N. Suppose that

zk(t) ∗
⇀ z(t) in SBV(Γ ; {0, 1}) for all t ∈ [0, T ] (6.1)

for some z ∈ L∞(0, T ; SBV(Γ ; {0, 1})). Set

ρ(k, t) := inf{ρ > 0 : supp zk(t) ⊂ supp z(t) +Bρ(0)} for all t ∈ [0, T ] and all k ∈ N. (6.2)

Then, for all t ∈ [0, T ] we have support convergence, i.e.

supp zk(t) ⊂ supp z(t) +Bρ(k,t)(0) and ρ(k, t) → 0 as k → ∞. (6.3)

Note that convergence (6.3) is one part of Hausdorff convergence. Indeed, recall that, for any fixed t ∈ [0, T ]
the sequence (supp zk(t))k Hausdorff converges to supp z(t) if, in addition to (6.3), we also have

∃ (ρ̃(k, t))k : supp z(t) ⊂ supp zk(t) +Bρ̃(k,t)(0) and ρ̃(k, t) → 0 as k → ∞. (6.4)

As we will see, (6.4) can be concluded directly from (6.1), so that we will obtain the Hausdorff convergence for
the sequence of supports in Corollary 6.9.

Since the solutions (zk)k of the thermal delamination problems satisfy the semistability (3.30) for all t ∈ [0, T ],
hereafter in most of the arguments for proving Theorem 6.1 we will suppose t ∈ (0, T ) fixed and omit indicating
the dependence of the functions and of the radii on t. Moreover, all the ensuing calculations only involve functions
defined on the interface Γ ⊂ Rd−1, hence we will use the abbreviation

m := d− 1.

The main idea we will develop is the following: Thanks to the SBV-gradient term in the energies Φk(uk, ·)
and Φb(u, ·) (cf. (3.19), (3.22)), the delamination parameters zk, z in the adhesive and brittle SBV-models are
characteristic functions zk, z ∈ SBV(Γ ; {0, 1}) of sets Zk, Z ⊂ Γ with finite perimeter. Furthermore, since
the bulk energy is independent of zk and since Jk(uk, z̃) ≤ Jk(uk, zk) for all z̃ ≤ zk, the semistability of
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zk for Φk(uk, ·), k ∈ N ∪ {∞}, implies the semistability of the underlying set Zk for the energy term S(·) :=
bP (·, Γ ) − a0Hm(·), i.e.

S(Zk) ≤ S(Z̃) + R1(z̃ − zk) with S(Z) := bP (Z, Γ ) − a0Hm(Z). (6.5)

Therefore, in the following arguments we will confine ourselves to working with (6.5). In particular, from (6.5),
we will deduce that stable sets satisfy the lower density estimate (6.6), which, in turn, will allow us to conclude
the support convergence (6.3). Property (6.6) is a very weak type of regularity of sets, but which at least prevents
a set from having outward cones. For open sets this notion of regularity was termed as property a in the works
by Campanato, see e.g. ([12], p. 177) or ([13], p. 138), and in this context also used in e.g. [16, 32, 34, 35]. The
lower density estimate, which we here prove for semistable sets of finite perimeter, is of the following form

∀y ∈ supp zk ∀ρ� ∈ (0, R) : Hm(Zk ∩Bρ�(y)) ≥ a(Γ )ρm
� , (6.6a)

∀y ∈ supp zk ∀ρ� ≥ R : Hm(Zk ∩Bρ�(y)) ≥ a(Γ )Rm, (6.6b)

where R, a(Γ )>0, given in (6.23), are constants depending only on Γ, m and the parameters b, a0, a1.
Let us remark that it well established, cf. e.g. [4, 14, 33, 43], that quasi-minimizers E ⊂ Γ of the perimeter

functional in Γ satisfy lower density estimates of the form

∃R, β > 0 ∀y ∈ FE ∩ Γ, ∀r < R s.th. Br(y) ⊂ Γ : Hm(E ∩Br(y)) ≥ βrm. (6.7)

Observe that, conversely, the lower density estimate (6.6) does not impose the restriction that the balls have to
be strictly contained in Γ . This feature of (6.6) is important since we will have to treat sequences (zk)k with
uniform ρ� for all k ∈ N in order to conclude support convergence (6.3). This enhanced estimate relies on a
family of isoperimetric inequalities relative to Γ ∩ Bρ�(y) with a uniform isoperimetric constant, independent
of y and ρ�, cf. Theorem 6.3. Moreover, we do not prove it in the direct way as for the lower density results
in [33, 43], but rather proceed by contradiction. Our method first reveals a general lower bound on the volume
of (semistable) sets in dependence of Γ and the parameters a0, a1, b. It prevents that a subset of Z ∩Bρ�(y) can
be eliminated in such a way that the new surface created is smaller than the surface of the part cut off. From
this, (6.6) is deduced for semistable sets in a second step.

Finally, let us mention that estimates of the type (6.6) were also proved in the context of image processing for
the Mumford-Shah functional, see e.g. ([23], Lem. 3.14) or ([4], p. 351). However, there, it is established for the
(m−1)-dimensional Hausdorff-measure of the jump sets of SBV-quasi-minimizers and the respective estimate
is called a lower density estimate.

To prove support convergence (6.3) and the lower density estimate (6.6), we will resort to refined tools from
geometric measure theory. Once again, we refer the reader for Appendix A.2 for the background.

Before starting with the proofs of Theorem 6.1 and (6.6), we first motivate heuristically the reasons why
support convergence may fail in general and how the SBV(Γ ; {0, 1})-setting allows us to deduce the lower
density estimate (6.6), as well as (6.3).

Preliminary considerations. First of all, one should be aware that elements z ∈ SBV(Γ ; {0, 1}) (or in general
z ∈ L1(Γ )) are given by equivalence classes of functions differing on Hm- null sets, only. Hence, in this setting,
the support supp z and the null set Nz are rather defined similarly to the context of measures ([18], p. 60) by

supp z := ∩{A |A closed, Hm(Z\A) = 0} and Nz := Γ\ supp z, (6.8)
where Z := {x ∈ Γ | z(x) �= 0}. (6.9)

This definition yields supp z closed and Nz open, and for continuous functions it coincides with the conventional
definition. Further, observe that, for any B ⊂ Rm with Hm(B) > 0, denoting by XB the characteristic function
of B, there holds

Hm(B ∩Br(y)) > 0 for all r > 0 and all y ∈ suppXB. (6.10)

Another consequence of (6.8) is the following result.
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Corollary 6.2. Let z ∈ L1(Γ ). Then supp z +Bρ(k)(0) → supp z as ρ(k) → 0, in the sense that Hm((supp z +
Bρ(k)(0))\ supp z) → 0 as ρ(k) → 0.

Proof. First assume that supp z = ∅. Then ∅+Bρ(k)(0) = ∅ so that the statement holds true. Now, assume that
x ∈ supp z + Bρ(k)(0) for all ρ(k) > 0. Then x �∈ Nz, because Nz is an open set. The thesis follows, observing
that by monotonicity (Hm(Nz ∩ (supp z + Bρ(k)(0))))k converges to Hm(Nz ∩ ∩k∈N(supp z + Bρ(k)(0))) as
ρ(k) → 0. �

While for every fixed z ∈ L1(Γ ) we have supp z +Bρ(k)(0) → supp z as ρ(k) → 0, support convergence (6.3)
is in general not true for arbitrary sequences zk → z in L1(Γ ) with supp z �= ∅. Clearly, for any sequence zk → z
in L1(Γ ), which can attain values in the whole interval [0, 1], there is a sequence (ρ(k))k with ρ(k) ≥ 0 such
that supp zk ⊂ supp z+Bρ(k)(0). This is due to the boundedness of Γ. But not necessarily ρ(k) → 0 as k → ∞,
as can be seen from the following counterexample:

Example 1. Let z = 1 on a closed set Z ⊂ intΓ and z = 0 otherwise, and for all k ∈ N let zk = z on Z and
zk = 1/k on Γ\Z. Then zk → z uniformly on Γ. But for all k ∈ N we have supp zk = Γ �→ supp z = Z and
hence, inf(ρ) = ρ(k) = dist(supp z, ∂Γ ) for all k ∈ N, cf. (6.2). Thus, supp zk ⊂ supp z+Bρ(k)(0), but ρ(k) �→ 0.

To exclude situations as above it is essential that zk(x) ∈ {0, 1} a.e. on Γ, which is indeed given by the set
SBV(Γ ; {0, 1}). Hence, zk is the characteristic function of the finite-perimeter set Zk as in (6.9).

However, working in SBV(Γ ; {0, 1}) in general neither ensures

Zk = supp zk Hm-a.e. on Γ, (6.11)

nor support convergence (6.3). This can be seen from Example 2 below, which is constructed in the spirit of
([33], p. 24, Rem. 1.27) or ([4], p. 154, example 3.53). In fact, (6.11) and (6.3) will be deduced only by exploiting
an additional qualification, namely the semistability (6.5).

Example 2. Let Q := (0, 1)2. The set of points with rational coordinates Q ∩ Q2 is countable and can be
arranged in a sequence (qj)j . For every j ∈ N and every k ∈ N we define the open ball B(qj , rjk) with radius
rjk := 1/(4k · 2j) and center in qj . Then, L2(B(qj , rjk)) = π/(16k2 ·22j) and P (B(qj , rjk), Q) = π/(2k ·2j). For
all k ∈ N we set Zk := ∪j∈NB(qj , rjk) and as k → ∞ we obtain that

L2(Zk) ≤
∑∞

j=1
L2(B(qj , rjk)) = π/(8k2) → 0, P (Zk, Q) ≤

∑∞
j=1

P (B(qj , rjk), Γ ) = π/k → 0.

Hence zk → z in L1(Q), where Z = ∅ (which can be identified with Q ∩ Q2, in the sense that the respective
indicator functions differ on a set of null Lebesgue measure). The perimeters as well converge, since P (Zk, Q) →
0 = P (Q ∩ Q2, Q). Notice that, since Q ∩ Q2 ⊂ Zk ⊂ Q the sets Zk are dense in Q for all k ∈ N. Hence, by
formula (6.8) we have supp zk = Q for all k ∈ N, whereas supp z = ∅. This discrepancy is due to the fact that
(Zk)k converge to a dense set of zero L2-measure, while L2(Zk) < L2(supp zk) because the topological boundary
∂Zk of the sets Zk is of positive L2-measure. Thus, supp zk �→ supp z. In particular, support convergence (6.3)
does not hold, because ∅+Bρ(k)(0) = ∅ and hence supp zk �⊂ ∅ for any ρ(k) > 0.

Examples 1 and 2 suggest that there are two reasons for the failure of support convergence (6.3) under
convergence (6.1):

1. supp z = ∅ and supp zk �= ∅ for all k ∈ N. (6.12a)
2. supp z �= ∅ and ρ(k) �→ 0 as k → ∞. (6.12b)

Now, in the ensuing Propositions 6.7 and 6.8 we will exclude (6.12a) and (6.12b), respectively, for semistable
sequences (zk)k. Let us now roughly outline our argument. Because of zk → z in L1(Γ ) by (6.1), we observe
that zk → 0 in L1(Nz). For the associated finite-perimeter sets Zk as in (6.9) we have

Hm(Zk ∩Nz) → 0 as k → ∞. (6.13)
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Γ

y

α(y)

Figure 2. The intersection angle α(y) → 0 as y moves from the reentrant corner to the right.

In other words, Zk ∩Nz turns into a set with arbitrarily small Hm-measure. On the other hand, from (6.12a)
and (6.12b) we will deduce that there exist points yk ∈ supp zk ∩ Nz and a fixed radius ρ� < R such that
Bρ�(yk) ∩ Γ ⊂ Nz. Hence, Zk ∩Bρ�(yk) ⊂ Zk ∩Nz. Now, taking into account the lower density estimate (6.6),
we will then arrive at a contradiction to (6.13). Hence, we will rule out (6.12a) and (6.12b).

Outline of the proof of Theorem 6.1. As the key ingredient we will prove the lower density estimate (6.6), for
semistable sets in Theorem 6.6. The proof of Theorem 6.1 will be completed by deducing support convergence for
the case supp z = ∅ in Proposition 6.7 and for the case supp z �= ∅ in Proposition 6.8, by exploiting Theorem 6.6.

The main tool to prove (6.6) is a relative isoperimetric inequality in Γ ∩ Bρ(y), i.e. in Γ intersected with a
ball Bρ(y) with center in y ∈ Γ and radius ρ > 0. The isoperimetric constant CΓ solely depends on the cone
defining the cone property of the convex domain Γ ⊂ Rm and on the space dimension m. In particular, CΓ is
independent of the choice of y ∈ Γ and ρ > 0. Thus, setting ρ > 0 sufficiently large such that Γ ∩ Bρ(y) = Γ
yields a relative isoperimetric inequality in Γ .

Theorem 6.3 (Uniform relative isoperimetric inequality [63], Thm. 3.2).
Let m > 1 be an integer and Γ ⊂ Rm a convex domain. Let A ⊂ Γ be a set of finite perimeter in Γ . There
exists a constant CΓ , such that for all y ∈ Γ and for all ρ > 0 it is

min
{Hm(A ∩ (Γ ∩Bρ(y))),Hm((Γ ∩Bρ(y))\A)

}m−1
m ≤ CΓP (A, (Γ ∩Bρ(y))), (6.14)

where the constant CΓ solely depends on the cone defining the cone property of the convex domain Γ ⊂ Rm, on
its diameter and on the space dimension m.

Remark 6.4 (On the uniform relative isoperimetric inequality).
The assumption of convexity on the Lipschitz-domain Γ is essential for the proof of the uniform relative isoperi-
metric inequality in Theorem 6.3 for the following reasons: The proof exploits that every domain Γ ∩Bρ(y) for
y ∈ Γ satisfies the cone property with a cone of the same opening angle as the one of Γ . This is due to the fact
that the intersection angle α(y) of the boundary ∂Γ and a ball Bρ(y) with center y ∈ Γ is at least 90◦ for a
convex domain Γ . Hence, the cone defining the cone property for Γ ∩Bρ(y) may have a smaller height than the
one for Γ, but the opening angles of the cones are the same. In this case the cones can be scaled to the same
size by a suitable scaling of Γ ∩Bρ(y). In contrast, for a non-convex domain Γ , the intersection angle α(y) can
degenerate to zero as the center y moves along the boundary ∂Γ away from a reentrant corner, see Figure 2.
Therefore, the opening angle of the cone differs for every domain Γ ∩ Bρ(y) in dependence of the location of
y ∈ Γ . Thus, in the non-convex case, the cones of Γ and Γ ∩ Bρ(y) cannot be transformed into each other
simply by scaling.
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Proof of the lower density estimate (6.6) for semistable sets. In the following we deduce (6.6) for zk

being semistable w.r.t. Φk(uk, ·), hence w.r.t. S(·) (cf. (6.5)), for every k ∈ N ∪ {∞} fixed. The proof of (6.6) is
developed by contradiction, i.e. instead of (6.6) we have

∃ y ∈ supp zk ∃ ρ� ∈ (0, R) : Hm(Zk ∩Bρ�(y)) < a(Γ )ρm
� , (6.15a)

∃ y ∈ supp zk ∃ ρ� > R : Hm(Zk ∩Bρ�(y)) < a(Γ )Rm, (6.15b)

where the constants R and a(Γ ) will be determined in what follows (cf. (6.23)). In the following lines, we will
drop the index k. In particular, our aim is to show that, assuming the validity of (6.15), the semistability (6.5)
of a set Z for S (resp. its characteristic function z), is violated for a particular test function z̃ being the
characteristic function of a suitable set Z̃. Since we are working in SBV(Γ ; {0, 1}) this test function z̃ can be
constructed by “cutting off” a suitable subset of Z ∩Bρ�(y). More detailed, this cut-off will yield that Z̃1 ⊂ Z1.
Additionally, it may generate a new surface and we have to ensure that this new surface is smaller than the
surface of the part which is cut off. To show the existence of a suitable cut-off for Z ∩ Bρ�(y) of sufficiently
small Hm-measure we are going to check that for a general set A ⊂ Γ with P (A,Γ ) <∞:

0<Hm(A ∩Bρ�(y))<Mρ� ⇒ ∃ ρ ∈ [ρ�/2, ρ�] : 0 < Hm−1(A ∩ ∂Bρ(y)) < 1
2P (A,Γ ∩Bρ(y)), (6.16a)

where Mρ� := min{I(Γ, ρ�, y)/2, I(Γ, ρ�, y)/(ωm(2CΓm)m), bm/(2CΓ (a0+a1))m} (6.16b)
with I(Γ, ρ�, y) := Hm(Γ ∩Bρ�/2(y)) and ωm := Hm(B1(0)), (6.16c)

where ρ� is from (6.15). In the proof of the lower density estimate (cf. Thm. 6.6 below), we will then test
the semistability of Z, in particular (6.5), with the characteristic function z̃ of the set Z̃ := Z\Bρ(y), with
ρ ∈ [ρ�/2, ρ�] such that estimate (6.16a) holds, and arrive to a contradiction with the semistability. Hence we
will deduce that (6.15) cannot hold true, whence the desired (6.6).

In order to verify implication (6.16a) we assume the contrary, i.e.

Hm(A ∩Bρ�(y)) < Mρ� and ∀ρ∈ [ρ�/2, ρ�] : Hm−1(A ∩ ∂Bρ(y)) ≥ 1
2P (A,Γ ∩Bρ(y)). (6.17)

For the contradiction argument we will use the volume formula (cf. [17], Chap. 3.4.4, Prop. 1, p. 118)

∀R > 0 : y ∈ A ⊂ Rm, A ⊂ BR(y) ⇒ Hm(A) =
∫ R

0

Hm−1(A ∩ ∂Bρ(y)) dρ (6.18)

and we will exploit the uniform relative isoperimetric inequality in Γ intersected with balls, cf. (6.14).

Lemma 6.5. Assume (3.7c). Let A be a set with finite perimeter in Γ . Then implication (6.16a) is true.

Proof. We assume that (6.16a) is false, i.e. we have (6.17), instead. By (6.16b) it is Hm(A ∩Bρ�(y)) < Mρ� ≤
Hm(Γ ∩Bρ�/2(y))/2 and hence, as A ⊂ Γ, we have

∀ρ ∈ [ρ�/2, ρ�] : min{Hm(A∩(Γ ∩Bρ(y))),Hm((Γ ∩Bρ(y))\A)}=Hm(A ∩Bρ(y)). (6.19)

Moreover, applying the relative isoperimetric inequality (6.14) on the estimate in (6.17) yields that for all
ρ ∈ [ρ�/2, ρ�] it is

Hm−1(A ∩ ∂Bρ(y)) ≥ 1
2CΓ

Hm(A ∩Bρ(y))
m−1

m , (6.20)

where Hm−1(A∩∂Bρ(y)) = d
dρHm(A∩Bρ(y)) by (6.18). Since Hm(A∩Bρ(y)) > 0 for all ρ ∈ [ρ�/2, ρ�], we can

divide by Hm(A∩Bρ(y))
m−1

m in (6.20). Integration over ρ ∈ (ρ�/2, ρ�) with the substitution u = Hm(A∩Bρ(y)),
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du = Hm−1(A ∩ ∂Bρ(y)) dρ then yields

I : =
∫ ρ�

ρ�/2

Hm(A ∩Bρ(y))
1−m

m Hm−1(A ∩ ∂Bρ(y)) dρ =
∫ b

a

u
1−m

m du =
[
mu

1
m

]b
a

= m
(Hm(A ∩Bρ�(y))

1
m −Hm(A ∩Bρ�/2(y))

1
m

)
,

where we have used a = Hm(A ∩ Bρ�/2(y)) and b = Hm(A ∩ Bρ�(y)) for shorter notation. Altogether, (6.20)
then implies I ≥ (2CΓ )−1

∫ ρ�

ρ�/2 dρ = ρ�/(4CΓ ). This leads to the contradiction

0 <
ρ�

4CΓm
≤ (Hm(A ∩Bρ�(y))

1
m −Hm(A ∩Bρ�/2(y))

1
m

)
<

(
I(Γ, ρ�, y)

ωm(2CΓm)m

)1/m

≤ ρ�

4CΓm
,

where we neglected −Hm(A ∩ Bρ�/2(y))
1
m < 0 and exploited that Hm(A ∩ Bρ�(y)) < I(Γ,ρ�,y)

ωm(2CΓ m)m by (6.16b)
and the prerequisite in (6.16a). The last inequality in the above chain is due to the very Definition (6.16c) of
I(Γ, ρ�, y). We conclude that (6.17) is false, thus (6.16a) holds true. �

In Theorem 6.6 below we derive (6.6) by leading its converse, i.e. (6.15), to a contradiction to the semistability
of Z, with the aid of implication (6.16a). For this, we choose a(Γ ) and R such that Hm(Z ∩Bρ�(y)) < a(Γ )Rm

implies Hm(Z ∩ Bρ�(y)) < Mρ� : in fact, we estimate the constant Mρ� , cf. formulae (6.16b) and (6.16c), from
below in terms of a(Γ )ρm

� . To do so, we exploit that the Lipschitz domain Γ satisfies the uniform cone property
with a cone C(θ, h, ξ) of opening angle θ, height h and axis ξ. In particular, there is a radius r > 0 such that

∀x ∈ ∂Γ ∀y ∈ Br(x) : y + C(θ, h, ξx) ⊂ Γ. (6.21)

Since, for all ρ� > 0, a cone C(θ, ρ�, ξ) of height ρ� is proportional to the ball of radius ρ� by a constant k(θ) > 0,
we find

∀x ∈ ∂Γ ∀ρ� ∈ (0, 2h) : Hm(Γ ∩Bρ�/2(x)) ≥ Hm(C(θ, ρ�/2, ξx)) = 2−mk(θ)ωmρ
m
� . (6.22)

In view of (6.16b) and (6.22) we choose

a(Γ ) := 2−mk(θ)ωm/max {2, ωm(2CΓm)m, (2CΓ (a0 + a1))m} and R ≤ min {2h, 2mω−1/m
m b}. (6.23)

Hence, (6.23) now allows us to verify (6.6).

Theorem 6.6 (Lower density estimate for semistable elements).
Assume (3.7c). Let k ∈ N ∪ {∞} and zk the characteristic function of the finite perimeter set Zk, semistable
for Φ(uk, ·), hence for S(·). Then the lower density estimate (6.6) holds with the constants a(Γ ) and R given
by (6.23).

Proof. For simpler notation we again drop the index k within this proof. Let Z be a set of finite perimeter
and z its characteristic function, semistable for S(·), i.e. (6.5) holds true. Let y ∈ supp z be given by (6.15)
with the respective constants R > 0 and a(Γ ) determined by (6.23). Hence in both cases of (6.15) we have
Hm(Z ∩Bρ�(y)) < Mρ� with Mρ� from (6.16b) and thus, implication (6.16a) is valid.

We test the semistability of Z, in particular (6.5), with the characteristic function z̃ of the set Z̃ := Z\Bρ(y),
with ρ ∈ [ρ�/2, ρ�] such that estimate (6.16a) holds. In particular, the above construction of z̃ ensures that
z̃ ≤ z, so that R1(z̃− z) =

∫
Γ
a1(z− z̃) dHd−1. Moreover, in view of Definitions A.10, A.15 and (A.45), it yields

Jz̃ = FZ\(FZ ∩Bρ(y)) ∪ (Z ∩ ∂Bρ(y)). Hence, (6.5) leads to the following relation

bP (Z, Γ ∩Bρ(y)) ≤ (a0 + a1)Hm(Z ∩Bρ(y)) + bHm−1(Z ∩ ∂Bρ(y)). (6.24)
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Property (6.16a) implies that P (Z, Γ ∩Bρ(y)) > 0. Hence, (6.24) is equivalent to

b ≤ (a0 + a1)
Hm(Z ∩Bρ(y))
P (Z, Γ ∩Bρ(y))

+ b
Hm−1(Z ∩ ∂Bρ(y))
P (Z, Γ ∩Bρ(y))

, (6.25)

where Hm−1(Z ∩ ∂Bρ(y))/P (Z, Γ ∩ Bρ(y)) < 1
2 by (6.16a). Also note that the relative isoperimetric inequal-

ity (6.14) ensures

0 < Hm(Z ∩Bρ(y)) = min {Hm(Z ∩ (Γ ∩Bρ(y))),Hm((Bρ(y) ∩ Γ )\Z)}. (6.26)

Hence, one more application of (6.14) in (6.25), together with (6.26) and (6.16b) yields

(a0 + a1)
Hm(Z ∩Bρ(y))
P (Z, Γ ∩Bρ(y))

≤ (a0 + a1)CΓHm(Z ∩Bρ(y))
1
m < b/2. (6.27)

Inserting these estimates into (6.25) then generates the contradiction 1<1, which concludes the proof. �

Proof of Theorem 6.1. With the aid of Theorem 6.6 we are now in a position to verify the support convergence.
In the case of supp z = ∅ we will apply estimate (6.6b) with ρ� := diamΓ (the diameter of Γ ), while the case
supp z �= ∅ will follow from estimate (6.6a). We start with the case supp z = ∅ and show that (6.12a) is excluded.

Proposition 6.7 (Support convergence of semistable sequences if supp z = ∅).
Assume (3.7c). Let (zk)k, z ⊂ L∞(0, T ; SBV(Γ ; {0, 1})) be as in Theorem 6.1. Assume that supp z(t) = ∅ at
some t ∈ (0, T ). Then, there is an index k0(t) ∈ N such that also supp zk(t) = ∅ for all k ≥ k0(t).

Proof. Since supp z(t) = ∅ and zk(t) ∗
⇀ z(t) in SBV(Γ ; {0, 1}), we have zk(t) → 0 in L1(Γ ). For every k ∈ N

we choose a point yk ∈ supp zk. Moreover, we fix ρ� := diamΓ . This choice ensures that Γ ⊂ Bρ�(yk) for all
k ∈ N. Hence, zk(t) → 0 in L1(Γ ) is equivalent to Hm(Zk ∩Bρ�(yk)) → 0. Thus, there is an index k0 ∈ N such
that the lower density estimate (6.6b) is violated for all k ≥ k0, which is in contradiction to the semistability of
zk for Φk. Therefore, we conclude that zk ≡ 0 for all k ≥ k0. �

Proposition 6.8 (Support convergence for semistable sequences if supp z �= ∅).
Assume (3.7c) and supp z �= ∅. Let (zk), z ⊂ L∞(0, T ; SBV(Γ ; {0, 1})) be as in Theorem 6.1. Then the support
convergence (6.3) holds true.

Proof. Fix t∈(0, T ) outside a set of null Lebesgue measure, such that convergence (6.1) and semistability (6.5)
hold for (zk(t))k. For shorter notation we omit to indicate the time-dependence of zk and ρ(k). Let us pro-
ceed by contradiction and assume that (6.3) does not hold. The sequence (ρ(k))k is uniformly bounded by
the boundedness of Γ . Hence, we can find a subsequence converging to the lim sup of the whole sequence
lim supk→∞ ρ(k) =: ρ0. Moreover, due to zk → z in L1(Γ ), there is a further subsequence which converges
pointwise a.e. on Γ. For this subsequence the contradiction to (6.3) reads

supp zk ⊂ supp z +Bρ(k)(0) for all k ∈ N and ρ(k) → ρ0 > 0 as k → ∞. (6.28)

Because of ρ0 > 0 we can find a further subsequence and an index k0 such that

ρ(k) > ρ0/2 for all k ≥ k0. (6.29)

Assume that Hm(supp zk ∩Nz) > 0 (otherwise ρ(k) = 0). Then, also Hm(Zk ∩Nz) > 0. Thus, in view of (6.10)
for every k ≥ k0 there is a point yk ∈ supp zk ∩Nz with the property

dist(yk, supp z) ≥ ρ0/2 and thus Bρ0/4(yk) ∩ Γ ⊂ Nz. (6.30)

Hereby, ρ0/4 > 0 satisfies either ρ0/4 ∈ (0, R) or ρ0/4 > R forR as in (6.23). Correspondingly, since the functions
zk are semistable, the sets Zk ∩Bρ0/4(yk) satisfy the lower density estimate with either (6.6a) or (6.6b).
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However, the convergence zk → z pointwise Hm-a.e. implies that for every ε ∈ (0, 1) and Hm-a.a. y ∈ Nz

there is an index k(y, ε) such that for all k ≥ k(y, ε) it holds |zk(y)| = |zk(y) − z(y)| < ε, hence

zk
∗
⇀ z in SBV(Γ ; {0, 1}) ⇒ Hm(Zk ∩Bρ0/4(yk)) ≤ Hm(Zk ∩Nz) → 0 as k0 ≤ k → ∞

for the finite perimeter sets Zk underlying the characteristic functions zk. Therefore, necessarily, there is an
index k� > k0 such that for all k ≥ k� the lower density estimate (6.6) is violated, which is in contradiction
to the semistability of zk. Therefore, ρ0 > 0 does not hold. This implies that ρ(k) → 0 for the whole sequence
(ρ(k))k and hence support convergence holds for the whole sequence (zk)k. �

Combining the results on support convergence with the strong L1-convergence of semistable sequences finally
allows us to conclude the Hausdorff convergence of the respective supports.

Corollary 6.9 (Hausdorff convergence of the supports).
Let the assumptions of Theorem 6.1 hold true. Then, for all t ∈ [0, T ] the sequence of closed sets (supp zk(t))k

Hausdorff converges to supp z(t).

Proof. Again, within this proof we omit to indicate the variable t. Since support convergence (6.3) holds true
by Propositions 6.7 and 6.8, it remains to verify convergence (6.4). For this, note that supp zk = (supp zk ∩
supp z) ∪ (supp zk\ supp z) and for the latter term we have convergence according to (6.3). Thus, only the first
term is relevant for (6.4) and thereto we may w.l.o.g. consider the case supp zk ⊂ supp z for all k ∈ N.

Let x ∈ ∂ supp z be arbitrary but fixed. Hence, for all ε > 0 we have Hm(Z ∩ Bε(x)) > 0. Moreover, due
to zk → z in L1(Γ ) there holds Hm(((Z\Zk) ∪ (Zk\Z)) ∩ Bε(x)) → 0. Thus, there is an index k(x, ε) such
that, for all k ≥ k(x, ε) it is Hm(Zk ∩Bε(x)) > 0. But this implies dist(∂ supp zk, ∂ supp z) → 0 as k → ∞ and
hence (6.4). �
Remark 6.10. We note that Propositions 6.7 and 6.8 only require the semistability of the delamination vari-
ables (zk)k of the SBV-adhesive contact systems: The semistability of the limit function z is not needed.
Nonetheless, the proof of the semistability for the limit function is completely independent from the support
convergence property (6.3).

Remark 6.11 (Generality).
The results of Theorem 6.6 and Propositions 6.7 and 6.8 are solely based on semistability and strong
L1-convergence. In other words, further properties of the delamination models such as temperature dependence
or visco-elasticity have no influence. In particular, Propositions 6.7 and 6.8 also hold for energetic solutions in
the fully rate-independent setting, where solutions are characterized as satisfying an energy balance and a global
stability condition, see (1.6).

Remark 6.12 (Open problem: from brittle SBV-delamination to Griffith-type delamination).
It remains an open problem if it is possible to get rid of the SBV-gradient regularization, like in [49] in the limit
passage from Sobolev gradient to Griffith-type delamination. In the present context, this would mean passing
to zero with the coefficient b in the gradient term Gb(z) := bP (Z, Γ ) contributing to the energy Φb.

Seemingly, the main difficulty attached to the limit passage as b → 0 is the proof of the support conver-
gence (5.3), which in turn would be crucial for passing to the limit in the momentum equation in this case
as well. More specifically, we highlight that Theorem 6.6 excludes the presence of subsets Zk ∩ Bρ�(yk) with
Hm(Zk ∩ Bρ�(yk)) < Mρ� . The bound Mρ� on the measure of Zk ∩ Bρ�(yk) explicitly involves the constant
b > 0, see (6.16b). In fact, the passage from SBV-brittle delamination to Griffith-type delamination as b → 0
would bring along a loss of uniform boundedness in SBV(Γ ) for the sequence (zb)b of delamination variables
for the SBV-brittle delamination systems. Indeed, only the uniform bound in L∞(Γ ) would remain. Hence, the
limit of a semistable sequence (zb)b ⊂ SBV(Γ ; {0, 1}) with zb

∗
⇀ z in L∞(Γ ) would be an L∞-function, only,

which can of course contain concentrating subsets. Indeed, for b → 0, the uniform lower bound on the measure
of subsets Zk∩Bρ�(yk) is lost and the larger the perimeters of the approximating functions may get, the smaller
the subsets preventing support convergence may become.
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7. A different scaling for the passage from adhesive to brittle

In what follows we briefly discuss an alternative scaling, in the mechanical energy and in the dissipation
potential, for taking the brittle limit as k → ∞ in the SBV-adhesive contact system. Namely, we scale the
dissipation density R1 by the factor 1

k , and accordingly introduce the dissipation distance R̃k
1 : L1(Γ )×L1(Γ ) →

[0,+∞],

For k ∈ N : R̃k
1

(
z̃−z) :=

∫
Γ

Rk
1(z̃−z) dHd−1 =

⎧⎨⎩
∫

Γ

a1

k
|z̃−z| dHd−1 if z̃ ≤ z a.e. in Γ ,

+∞ otherwise,
(7.1a)

for k = ∞ : R̃∞
1

(
z̃−z) :=

{
0 if z̃ ≤ z a.e. in Γ ,
+∞ otherwise. (7.1b)

We also consider the scaled mechanical energies

For k ∈ N : Φ̃k(u, z) := Φbulk(u) + Φ̃surf
k (�u�, z) with Φbulk from (3.15) and

Φ̃surf
k (�u�, z) :=

∫
Γ

(
IC(x)

(�u�)+ Jk(�u�, z) + I[0,1](z) − 1
k
a0z

)
dHd−1 +

1
k
Gb(z),

(7.2a)

for k = ∞ : Φ̃∞(u, z) := Φbulk(u) + Φ̃surf
∞ (�u�, z) with

Φ̃surf
∞ (�u�, z) :=

∫
Γ

(
IC(x)

(�u�)+ J∞(�u�, z) + I[0,1](z)
)

dHd−1,
(7.2b)

Comparing (7.2a) with (3.19), note that the terms −a0z and Gb(z) now are also scaled by 1/k, so that, in the
new limit energy (7.2b) they are premultiplied by the factor 0. Observe that Φ̃∞ is now defined on the space
W 1,p(Ω\Γ ; Rd) × L∞(Γ ).

We shall refer to the systems associated with (R̃k
1 , Φ̃k), and with (R̃∞

1 , Φ̃∞) as the rescaled SBV-adhesive
contact system, and rescaled SBV-brittle delamination system, respectively.

The ultimate reason for this new scaling resides in the semistability condition arising in the limit as k → ∞. In
fact, in the latter context the semistability may encompass additional information on the mechanism triggering
crack initiation, as we expound below.

Remark 7.1 (The different scalings and interpretation of the semistability).
The semistability condition for the SBV-brittle system defined in Section 3.3, i.e. with the dissipation potential
R1 from (3.23) and the mechanical energy Φb from (3.15) and (3.22), with J∞(�u(t)�, z(t)) = 0 ultimately reads

∀z̃ ∈ ZSBV with z̃ ≤ z : Gb(z(t)) −
∫

Γ

a0z(t) dHd−1 ≤ Gb(z̃) −
∫

Γ

a0z̃ dHd−1 + R1(z̃ − z(t)). (7.3)

In other words, a decrease of the semistable function z in time, i.e. crack growth, seems to be rather induced
by the perimeter regularization than by the attempt of reducing the mechanical stresses in the specimen.

With the alternative scaling from (7.1a) and (7.2a) leading to R̃∞
1 and Φ̃k, the semistability condition (3.30)

of the rescaled SBV-adhesive contact system, with k ∈ N fixed, is equivalent to

∀z̃ ∈ ZSBV :
∫

Γ

k2zk(t)|�uk(t)�|2 dHd−1 + Gb(zk(t)) −
∫

Γ

a0zk(t) dHd−1

≤
∫

Γ

k2z̃|�uk(t)�|2 dHd−1 + Gb(z̃) −
∫

Γ

a0z̃ dHd−1 + R1(z̃ − zk(t)).
(7.4)

Testing (7.4) with z̃ = 0 and exploiting that R1(0− zk(t)) + a0

∫
Γ
zk(t) ds ≤ (a0 + a1)Hd−1(Γ ) = C we find the

following estimates

P (Zk(t), Ω) ≤ C/b and
∫

Γ

k2zk(t)|�uk(t)�|2 ds ≤ C (7.5)
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with a constant C uniform for all k ∈ N; again, Zk is the set associated to the indicator function zk. By
compactness we can thus conclude the existence of a subsequence (zk)k ⊂ L∞((0, T ) × Γ ) ∩ BV([0, T ];L1(Γ ))
with (zk(t))k ⊂ SBV(Γ ; {0, 1}) for all t ∈ [0, T ], such that zk(t) ∗

⇀ z(t) in SBV(Γ ; {0, 1}) for all t ∈ [0, T ]. This
provides the additional regularity information z(t) ∈ SBV(Γ ; {0, 1}) for all t ∈ [0, T ], for the function z which
is approximated by the sequence (zk)k, semistable for the rescaled SBV-adhesive systems. Passing to the limit
k → ∞ in these semistability inequalities results in

Φ̃surf
∞ (�u(t)�, z(t)) ≤ Φ̃surf

∞ (�u(t)�, z̃) + R̃∞
1 (z̃ − z) for all z̃ ∈ L∞(Γ ), (7.6)

Clearly, (7.6) for semistable z(t) and competitors z̃ ∈ L∞(Γ ) trivially reads 0 ≤ 0 for all z̃ ≤ z(t) and 0 ≤ ∞
otherwise. Nevertheless, at least formally, (7.6) inherits a non-trivial meaning by the very fact that it arises in
the limit of (7.4). Indeed, in view of the complementarity conditions (2.11) for Signorini contact, and taking
into account that zk ∈ {0, 1}, we find for every k ∈ N∫

Γ

k2zk|�uk�|2 dHd−1 =
∫

Zk∩[|�uk�|>0]

|σ(uk(t), u̇k(t), θk(t))n|2 dHd−1 ≤ C, (7.7)

provided that we dispose of sufficiently smooth solutions such that the term on the right-hand side makes
sense. From (7.7) we read that the adhesive model accounts for the magnitude of the normal stresses. Now,
under the assumption of convergence and sufficient regularity of the solutions, and taking into account that
Hd−1([zk(t)|�uk(t)�| > 0]) → 0, the rescaled brittle model in the limit as k → ∞ therefore may contain an
information of the form ∫

Z∩∂[|�u�|>0]

|σ(u(t), u̇(t), θ(t))n|2 dHd−1. (7.8)

Roughly speaking, this conveys the information that, a decrease of the semistable function z is not only triggered
by the perimeter regularization but possibly also by the mechanical stresses.

Clearly, for every k ∈ N there exists an energetic solution (uk, zk, wk) to the the rescaled SBV-adhesive contact
system. Concerning the limiting behavior of the sequence (uk, zk, wk)k as k → ∞, the analogue of Theorem 5.2
holds.

Theorem 7.2. Assume (3.7), (3.8) and (3.12). Let (uk, wk, zk)k be a sequence of approximable solutions of the
rescaled SBV-adhesive contact system, supplemented with initial data (u0

k, θ
0
k, z

0
k)k fulfilling (3.14) (4.1), (5.7),

and

Φ̃k(u0
k, z

0
k) → Φ̃∞(u0, z0) as k → ∞. (7.9)

Then, there exist a (not relabeled) subsequence, and a triple (u,w, z), such that convergences (4.6) hold for
(uk, wk, zk)k as k → ∞, and (u,w, z) is an energetic solution to the rescaled SBV-brittle delamination system.
In addition, the analogue of (5.9) and the positivity property (4.2) hold.

Proof. We just outline how the proof for Theorem 5.2 can be adapted to the present setting, following the
scheme presented in Section 3.5.

First of all, observe that the compactness argument for the sequence (uk, wk, zk)k is the same as in the proof
of Theorems 4.3 and 5.2: indeed, as already observed in (7.5), the sequence (zk)k has a uniformly bounded
perimeter, i.e. (zk)k ⊂ L∞(0, T ; SBV(Γ ; {0, 1})) is bounded.

The limit passage as k → ∞ in the momentum balance is obtained by adapting the arguments from
Sections 5.1, which in turn hinge on the support convergence for semistable sequences. The latter can be
proved arguing in the very same way as in Section 6, starting from the following basic observation: Also in the
rescaled setting, the delamination parameters zk fulfill

S(Zk) ≤ S(Z̃) + R1(z̃ − zk) with S(Z) := bP (Z, Γ ) − a0Hm(Z), (7.10)

(where Zk is the set of finite perimeter associated to the characteristic function zk).
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The limit passage in the semistability condition follows the lines of Section 5.2, and the analogue of
Proposition 5.9 holds. We just discuss how to adapt the mutual recovery sequence: in the rescaled setting,
the state space for z is Z = L∞(Γ ). Again R̃∞

1 (z̃ − z) < ∞ only if z̃ ≤ z a.e. in Γ . For such z̃ ∈ Z we define
the recovery sequence as follows:

z̃k :=
{
rk(z̃k) if z̃ ∈ ZSBV,

rk(z) if z̃ ∈ Z\ZSBV,
with rk(ζ) := ζXAk

+ zk(1 −XAk
) as in (5.27). (7.11)

The construction of z̃k from (5.27) ensures that both
∫

Γ
a0(zk−z̃k) dHd−1 +R1(z̃k−zk) ≤ (a0+a1)Hd−1(Γ ) and

P (Z̃k, Γ )=P (Ak, Γ ) ≤ C. Thus we conclude that limk→∞ 1
k

( ∫
Γ a0(zk− z̃k) dHd−1 + R1(z̃k−zk) + P (Z̃k, Γ ) −

P (Zk, Γ )
)

= 0. Combining these observations with (5.28) yields (5.26) for the rescaled SBV-adhesive and
SBV-brittle systems.

Finally, the passages to the limit in the mechanical energy and in the weak enthalpy equality are the same
as in the proofs of Theorems 4.3 and 5.2. �

Appendix A

A.1. Time-discretization for the Modica−Mortola adhesive system

In this section we outline the proof of Theorem 4.2. We perform a semi-implicit time-discretization: for a
given time-step τ > 0, we consider the equidistant partition {t0τ = 0 < . . . < tjτ = jτ < . . . < tJτ

τ = T } of [0, T ].
Hereafter, given any family {φj}Jτ

j=1, we will denote the backward difference operator by

Dtφ
j :=

φj−φj−1

τ
. (A.1)

We approximate the data F , f by local means, i.e. setting F j
τ := 1

τ

∫ tj
τ

tj−1
τ

F (s)ds and f j
τ := 1

τ

∫ tj
τ

tj−1
τ

f(s)ds for

all j = 1, . . . , Jτ . Then, from F j
τ and f j

τ we define Fj
τ ∈W 1,p(Ω\Γ ; Rd)∗ as in (3.13). Furthermore, for technical

reasons related to the existence proof of Problem 1 below, we need to approximate H and h by means of discrete
data {Hj

τ}Jτ

j=1, {hj
τ}Jτ

j=1 with

Hj
τ ∈W 1,2(Ω)∗, hj

τ ∈ H1/2(∂Ω)∗ for all j = 1, . . . , Jτ , (A.2)

and analogously define Hj
τ ∈ W 1,2(Ω)∗ as in (3.13). Finally, we approximate the initial datum u0 with a sequence

{u0,τ} ⊂W 1,γ
ΓD

(Ω\Γ ; Rd) (with γ > max {p, 2ω
ω−1}, see Problem 1) such that

lim
τ↓0

γ
√
τ‖e(u0,τ )‖Lγ(Ω;Rd) = 0, u0,τ → u0 in W 1,p(Ω; Rd) as τ → 0. (A.3)

We consider the following time-discrete approximation of the Modica−Mortola adhesive system. Therein, we
add to the momentum equation the regularizing term τ |e(u)|γ−2e(u), with γ > max {p, 2ω

ω−1} and ω > 2d
d+2

as in (3.8b): this enables us to apply to system (A.5) and (A.6) below some existence results from the theory
of pseudo-monotone operators, see the proof of Lemma A.2. Equations (A.5) and (A.6) are coupled with the
time-incremental minimization Problem (A.7), whose solutions in particular fulfill the discrete flow rule (A.8).
However, (A.7) contains more information than (A.8). It will enable us to prove the discrete mechanical energy
inequality (A.11) and semistability (A.12) in Lemma A.4, which in turn play a crucial role in the proof of the
a priori estimates of Proposition A.5. For further comments on Problem 1, we refer to Remark A.1 below.

Problem 1. Let γ > max{p, 2ω
ω−1}. Given

u0
τ = u0,τ , u−1

τ = u0,τ − τ
.
u0, z0

τ = z0, w0
τ = w0, (A.4)
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find {(uj
τ , w

j
τ , z

j
τ )}Jτ

j=1, with uj
τ ∈ W 1,γ(Ω\Γ ; Rd), wj

τ ∈ W 1,2(Ω\Γ ), and zj
τ ∈ H1(Γ ), fulfilling for all j =

1, . . . , Jτ the recursive scheme consisting of

− the (boundary-value problem for the) discrete momentum equation:∫
Ω\Γ

(
DR2(e

(
Dtu

j
τ

)
)+DW2(e(uj

τ ))−BΘ(wj
τ )+DWp(e(uj

τ ))+τDWγ(e(uj
τ ))

)
:e(v−uj

τ ) dx

+
∫

Γ

kzj
τ

�
uj

τ

�·�v−uj
τ

�
dS ≥ 〈Fj

τ , v−uj
τ 〉

for all v ∈ W 1,p(Ω\Γ ; Rd) with �v(x)� ∈ C(x) for a.a.x ∈ Γ,

(A.5)

where we use the notation Wγ(e) := 1
γ |e|γ−2e : I : e, with I ∈ Rd×d the identity tensor;

− the (boundary-value problem for the) discrete enthalpy equation: for all ζ ∈ W 1,2(Ω\Γ )∫
Ω\Γ

Dtw
j
τζ dx+

∫
Ω\Γ

K(e(uj
τ ), wj

τ )∇wj
τ ·∇ζ dx+

∫
Γ

η(
�
uj−1

τ

�
, zj

τ )
�
Θ(wj

τ )
��ζ� dHd−1

=
∫

Ω\Γ

(
2R2(e

(
Dtu

j
τ

)
)−Θ(wj

τ )B:e
(
Dtu

j
τ

))
ζ dx−

∫
Γ

ζ|+Γ +ζ|−Γ
2

a1Dtz
j
τ dHd−1 + 〈Hj

τ , ζ〉;
(A.6)

− the time-incremental minimization problem for the delamination parameter

zj
τ ∈ Argminz∈H1(Γ )

{
τR1

(
z−zj−1

τ

τ

)
+ Φk,m(uj−1

τ , z)
}
. (A.7)

Remark A.1. We highlight that the time-incremental minimization (A.7) is decoupled from equa-
tions (A.5) and (A.6): indeed, starting from (uj−1

τ , zj−1
τ ) one first solves (A.7) and then plugs zj

τ in system (A.5)
and (A.6), which can be handled via the theory of pseudo-monotone operators. The carefully designed cou-
pling between (A.5)–(A.7) will be heavily exploited in the proof of Lemma A.15 below. Observe that the
Euler−Lagrange equation for (A.7) yields the discrete version of the flow rule (2.14), i.e.

∂F (zj−1
τ ; zj

τ ) +
1
2
k
∣∣�uj

τ

�∣∣2 +
m

2
g′(zj

τ ) − 1
m
Δzj

τ − a0 − a1 � 0 a.e. inΓ, (A.8)

with F (zj−1
τ ; z) =

∫
Γ

(
I(−∞,0]

( z−zj−1
τ

τ

)
+ I[0,1](z)

)
dHd−1 and ∂F (zj−1

τ ; ·) : L2(Γ ) ⇒ L2(Γ ) its subdifferential.
However, (A.7) and (A.8) are not equivalent because of the nonconvexity of g, which brings about additional
analytical difficulties with respect to the adhesive contact systems considered in [54, 55].

Lemma A.2. Assume (3.7), (3.8), (3.12), (3.14). Then, Problem 1 admits at least one solution.

Sketch of the proof. The existence of a solution zj
τ to (A.7) follows from the lower semicontinuity and coercivity

properties of the functional Φk,m, via the direct method in the Calculus of Variations. We then plug zj
τ in (A.5)

and (A.6) and prove the existence of solutions by suitably adapting the argument for [54], Lemma 7.4, where
the time-discretization scheme for a thermal adhesive contact model similar to the Modica−Mortola system was
analyzed.

The key idea is to apply to the elliptic system (A.5) and (A.6) a Leray-Lions type existence theorem (see
e.g., [56], Chap. 2). To do so, one needs to verify that the main part of the (pseudo-monotone) operator involved
in (A.5) and (A.6), is strictly monotone, and that said operator is coercive in the space W 1,γ(Ω\Γ ; Rd) ×
W 1,2(Ω\Γ ) for the unknown (u,w). For this coercivity property, the term τWγ(e(u)) = τ |e(u)|γ−2e(u) in the
discrete momentum equation plays a crucial role, as it compensates the growth of the quadratic terms on the
left-hand side of (A.6), with the right-hand side of (A.5). Indeed, in order to prove the coercivity of the operator
underlying (A.5) and (A.6), it is necessary to test (A.6) by wj

τ , and from this derive a bound for ‖wj
τ‖W 1,2(Ω\Γ ).
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The related calculations involve an estimate for the term
∣∣∫

Ω 2R2(e
(
Dtu

j
τ

)
)wj

τ dx
∣∣, as well as the following

estimate∣∣∣∣∣
∫

Ω\Γ

Θ(wj
τ )B:e

(
Dtu

j
τ

)
wj

τ dx

∣∣∣∣∣ ≤ 1
16τ

‖wj
τ‖2

L2(Ω) +
C

τ

∫
Ω\Γ

∣∣e(uj
τ )−e(uj−1

τ )
∣∣2 ∣∣(wj

τ )2/ω+1
∣∣dx

≤ 1
8τ

‖wj
τ‖2

L2(Ω) +
C

τ

(
‖e(uj

τ)‖pω

Lpω (Ω;Rd×d)
+ ‖e(uj−1

τ )‖pω

Lpω (Ω;Rd×d)
+ 1

)
(A.9)

≤ 1
8τ

‖wj
τ‖2

L2(Ω) +
τ

8C
‖uj

τ‖γ
W 1,γ(Ω\Γ ;Rd)

+ τC‖uj−1
τ ‖γ

W 1,γ(Ω\Γ ;Rd)
+ Cτ ,

where we have used the placeholder pω := 2ω
ω−1 . In (A.9), the first estimate is due to Hölder’s inequality and to

the growth condition (3.9) for Θ, the second one again derives from Hölder’s and Young’s inequalities. For the
third estimate (where Cτ is a positive constant depending on τ), we have also exploited the fact that γ > pω

which yields, via the Young inequality, that

1
τ

(
‖e(uj

τ )‖pω

Lpω (Ω;Rd×d)
+ ‖e(uj−1

τ )‖pω

Lpω (Ω;Rd×d)

)
≤ ν‖uj

τ‖γ
W 1,γ(Ω\Γ ;Rd)

+ Cν ν̃C‖uj−1
τ ‖γ

W 1,γ(Ω\Γ ;Rd)
+ Cν̃

for every ν, ν̃ > 0, and suitable constants Cν and Cν̃ . Then, choosing ν = τ
8C we can absorb the second

term on the right-hand side of (A.9) into the left-hand side of the discrete momentum equation tested by
uj

τ , whereas the first summand is estimated by the left-hand side of (A.6) tested by wj
τ . The term involving

‖uj−1
τ ‖γ

W 1,γ (Ω\Γ ;Rd)
is estimated from the previous step. With analogous calculations one deals with the term∣∣∣∫Ω\Γ

2R2(e
(
Dtu

j
τ

)
)wj

τ dx
∣∣∣. The reader is referred to the proof of ([54], Lem. 7.4) for all details. We now introduce

the interpolants of the discrete solutions {(uj
τ , w

j
τ , z

j
τ )}Jτ

j=1.

Notation A.3 (Interpolants).
For τ > 0 fixed, the left-continuous and right-continuous piecewise constant, and the piecewise linear interpolants
of the family {uj

τ}Jτ

j=1 are respectively the functions uτ , uτ , uτ : (0, T ) → W 1,γ
ΓD

(Ω\Γ ; Rd) defined by

uτ (t) = uj
τ , uτ (t) = uj−1

τ , uτ (t) =
t− tj−1

τ

τ
uj

τ +
tjτ − t

τ
uj−1

τ for t ∈ (tj−1
τ , tjτ ]. (A.10)

In the same way, we denote by wτ , wτ , zτ and zτ , the piecewise constant interpolants of the elements {wj
τ}Jτ

j=1

and {zj
τ}Jτ

j=1, and by wτ and zτ the related piecewise linear interpolants. We shall also consider the interpolants
Fτ and Hτ of the Jτ -tuples {Fj

τ}Jτ

j=1 and {Hj
τ}Jτ

j=1. Finally, we use the notation tτ for the left-continuous piecewise
constant interpolant associated with the partition, i.e. t̄τ (t) = tjτ if tj−1

τ < t ≤ tjτ .

Lemma A.4. Assume (3.7), (3.8), (3.12) and (3.14). Define Φτ (u, z) := Φk,m(u, z) + τ
∫

Ω\Γ
Wγ(e(u)) dx.

Then, for all τ > 0 the approximate solutions (uτ , uτ , wτ , zτ , uτ , wτ , zτ) fulfill the “discrete mechanical energy”
inequality

Φτ

(
uτ (t), zτ (t)

)
+
∫ t̄τ (t)

0

(∫
Ω\Γ

2R2

(
e
(.
uτ

))
+
∫

Γ

a1|.zτ | dHd−1

)
ds

≤ Φτ

(
u0,τ , z0) +

∫ t̄τ (t)

0

(∫
Ω\Γ

Θ(wτ )B:e
(.
uτ

)
dx+ 〈Fτ ,

.
uτ 〉

)
ds,

(A.11)

and the “discrete semistability” for a.a. t ∈ (0, T )

Φτ

(
uτ (t), zτ (t)

) ≤ Φτ

(
uτ (t), z̃

)
+ R1(z̃ − zτ (t)) for all z̃ ∈ ZMM with z̃ ≤ zτ (t) on Γ . (A.12)
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Proof. For notational simplicity we will develop the calculations in terms of the discrete solutions
{(uj

τ , w
j
τ , z

j
τ )}Jτ

j=1. It follows from the time-incremental minimization (A.7) and the definition (3.17) of Φk,m

that zj
τ ≤ zj−1

τ a.e. on Γ , and

R1(zj
τ −zj−1

τ ) +
∫

Γ

(
k
2z

j
τ |

�
uj−1

τ

�|2−a0z
j
τ

)
dHd−1 + Gm(zj

τ ) ≤
∫

Γ

(
k
2 z

j−1
τ |�uj−1

τ

�|2−a0z
j−1
τ

)
dHd−1 + Gm(zj−1

τ ).

(A.13)
Now, let us choose in (A.5) the (admissible) test function v = uj−1

τ and change sign in the inequality. Then, we
use the elementary estimates DR2(e

(
Dtu

j
τ

)
):e(uj

τ−uj−1
τ ) = τ2R2(e

(
Dtu

j
τ

)
) as well as DWn(e(uj

τ )):e(uj
τ−uj−1

τ ) ≥
Wn(e(uj

τ )) − Wn(e(uj−1
τ )) for n = 2, p, γ, and kzj

τ

�
uj

τ

� · �uj
τ−uj−1

τ

� ≥ k
2z

j
τ |

�
uj

τ

�|2 − k
2 z

j
τ |

�
uj−1

τ

�|2. Thus, we
obtain ∫

Ω\Γ

(
W2(e(uj

τ ))+Wp(e(uj
τ ))+τWγ(e(uj

τ ))
)
dx+ τ

∫
Ω\Γ

2R2(e
(
Dtu

j
τ

)
)dx+

∫
Γ

k
2 z

j
τ |

�
uj

τ

�|2

≤
∫

Ω\Γ

(
W2(e(uj−1

τ ))+Wp(e(uj−1
τ ))+τWγ(e(uj−1

τ ))
)
dx+ τ

∫
Ω\Γ

Θ(wj
τ )B:e

(
Dtu

j
τ

)
)dx

+
∫

Γ

k
2 z

j
τ |

�
uj−1

τ

�|2 + τ 〈Fj
τ ,Dtu

j
τ 〉 .

(A.14)

Hence, we add (A.13) and (A.14), observing that the term
∫

Γ
k
2 z

j
τ |

�
uj−1

τ

�|2dHd−1 cancels out. Upon summing
over the index j, we thus arrive at the discrete mechanical energy inequality (A.11).

From (A.7) it also follows that

R1(zj
τ −zj−1

τ ) + Φk,m(uj−1
τ , zj

τ ) ≤ R1(z̃−zj−1
τ ) + Φk,m(uj−1

τ , z̃)

for all z̃ ∈ H1(Γ ) with z̃ ≤ zj−1
τ on Γ , whence we immediately conclude (A.12). �

As a consequence of Lemma A.4, we have the following result.

Proposition A.5 (A priori estimates).
Assume (3.7), (3.8), (3.12), and let (u0, z0, θ0) be a triple of initial data complying with (3.14) and the semista-
bility condition (4.3). Then, there exist constants S0 > 0 and, for every 1 ≤ r < d+2

d+1 , S
0
r > 0, such that for all

τ, m, k > 0 and for all approximate solutions (uτ , wτ , zτ , uτ , wτ , zτ) the following estimates hold∥∥uτ

∥∥
L∞(0,T ;W 1,p

ΓD
(Ω\Γ ;Rd))

+
∥∥uτ

∥∥
L∞(0,T ;W 1,p

ΓD
(Ω\Γ ;Rd))

+
∥∥uτ

∥∥
W 1,2(0,T ;W 1,2

ΓD
(Ω\Γ ;Rd))

≤ S0, (A.15a)∥∥uτ

∥∥
L∞(0,T ;W 1,γ

ΓD
(Ω\Γ ;Rd))

≤ S0

γ
√
τ
, (A.15b)

sup
t∈[0,T ]

Φτ (uτ (t), zτ (t)) ≤ S0, (A.15c)∥∥zτ∥∥L∞((0,T )×Γ )
+
∥∥zτ∥∥BV([0,T ];L1(Γ ))

≤ S0, (A.15d)∥∥wτ

∥∥
L∞(0,T ;L1(Ω))

+
∥∥∥wτ

∥∥∥
BV([0,T ];W 1,r′ (Ω\Γ )∗)

≤ S0, (A.15e)∥∥wτ

∥∥
Lr(0,T ;W 1,r(Ω\Γ ))

≤ Sr for any 1 ≤ r < d+2
d+1 (A.15f)

where r′ = r
r−1 is the conjugate exponent of r. Estimates (A.15d), (A.15e) and (A.15f), respectively hold for zτ ,

zτ , wτ and wτ , as well.

The proof relies on the energy inequality (A.11) and on a suitable test of the discrete enthalpy equation (A.6).
The calculations are identical to those performed for ([54], Lem. 7.7), to which the reader is referred. We can
now develop the



FROM AN ADHESIVE TO A BRITTLE DELAMINATION MODEL IN THERMO-VISCO-ELASTICITY 53

Proof of Theorem 4.2. We follow the steps outlined in Section 3.5. However, we only detail the passage to the
limit in the discrete semistability condition (A.12), since the remaining steps can be performed as in the proof
of [54], Theorem 6.1, see also the arguments developed here in Section 4.

Step 0. Selection of converging subsequences. Let (τj)j be a vanishing sequence of time-steps. Arguing
in the very same way as in the proof of Theorem 4.3, it can be checked that there exists a triple (u,w, z) such
that, up to a (not relabeled) subsequence, for the approximate solutions of Problem 1 (cf. Notation A.10), the
following convergences hold as j → ∞:

uτj⇀u in L∞(0, T ;W 1,p
ΓD

(Ω\Γ ; Rd)) ∩W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ ; Rd)),

uτj → u in C0([0, T ];W 1−ε,p
ΓD

(Ω\Γ ; Rd))
(A.16)

uτj

∗
⇀ u in L∞(0, T ;W 1,p

ΓD
(Ω\Γ ; Rd)), uτj → u in L∞(0, T ;W 1−ε,p

ΓD
(Ω\Γ ; Rd)),

uτj (t) → u(t) in W 1−ε,p
ΓD

(Ω\Γ ; Rd)) for all t ∈ [0, T ]
(A.17)

and for all ε ∈ (0, 1]. Besides, (A.15b) yields that

τj
∥∥|e(uτj )|γ−2e(uτj )

∥∥
Lγ/(γ−1)((0,T )×(Ω\Γ );Rd×d)

≤ S0τ
1/γ
j → 0 as τj → 0. (A.18)

Furthermore, taking into account estimate (A.15c) and the fact that z �→ Φτ (u, z) has bounded sublevels in
H1(Γ ), and using an infinite-dimensional version of Helly’s principle (see, e.g. [47], Thm. 6.1), we find that there
exists z ∈ L∞(0, T ;H1(Γ ))∩BV([0, T ];L1(Γ )), with 0 ≤ z(t, x) ≤ 1 for almost all (t, x) ∈ (0, T )× Γ , such that

zτj , zτj

∗
⇀ z in L∞(0, T ;H1(Γ )), zτj (t)

∗
⇀ z(t) in H1(Γ ) for all t ∈ [0, T ]. (A.19)

On account of the compact embedding H1(Γ ) � Lq(Γ ) for all 1 ≤ q <∞, we also have

zτj (t) → z(t) in Lq(Γ ) for all t ∈ [0, T ] and 1 ≤ q <∞, whence (A.20)

VarR1(z; [s, t]) = lim
τj→0

∫ t

s

∫
Γ

a1|.zτj (r)| dHd−1dr for all 0 ≤ s ≤ t ≤ T (A.21)

(recall Def. (3.32) of VarR1). Thirdly, by the same tokens we conclude that there exists w ∈
Lr(0, T ;W 1,r(Ω\Γ )) ∩ BV([0, T ];W 1,r′

(Ω\Γ )∗) such that

wτj , wτj ⇀ w in Lr(0, T ;W 1,r(Ω\Γ )),
wτj , wτj → w in Lr(0, T ;W 1−ε,r(Ω\Γ )) ∩ Lq(0, T ;L1(Ω)) ∀ ε ∈ (0, 1], 1 ≤ q <∞,

(A.22)

wτj (t)
∗
⇀ w(t) in W 1,r′

(Ω\Γ )∗ for all t ∈ [0, T ]. (A.23)

Finally, let us observe that, thanks to (A.19) and (A.20), we have Gm(z(t)) ≤ lim infτj→0 Gm(zτj (t)) for all
t ∈ [0, T ]. Therefore, also in view of the previous convergences (A.16)–(A.18), we conclude

Φk,m(u(t), z(t)) ≤ lim inf
τj→0

Φτj (uτj (t), zτj (t)). (A.24)

Step 1. Momentum equation. Relying on convergences (A.16)–(A.22), as well as on the convergence Fτ → F
in L2(0, T ;W 1,2(Ω\Γ ; Rd)∗) ∩W 1,1(0, T ;W 1,p(Ω\Γ ; Rd)∗), and arguing in the very same way as in the proof
of Step 1 for Theorem 4.3, it is possible to pass to the limit in the discrete momentum inclusion (A.5) for the
approximating solutions. For this, we also need to construct suitable recovery sequences (see [54], (8.7b), and
also [65]) for the test functions of the weak formulation (3.29a) of the momentum inclusion in the adhesive case.
Hence we conclude that (u,w, z) comply with (3.29a).
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Step 2. Semistability condition. Like in the proof of Theorems 4.3 and 5.2, in order to show that the pair
(u, z) fulfills the semistability condition (3.30), we need to verify for the sequence (uτj

, zτj )j the mutual recovery
sequence condition. Viz., that for all t∈ [0, T ] and for all z̃ ∈ ZMM = H1(Γ ) with R1(z̃ − z) < ∞, there is a
sequence (z̃j)j (t-dependence omitted) so that z̃j⇀z̃ in H1(Γ ) as j → ∞ and

lim sup
τj→0

(
Φτj (uτj

(t), z̃j)+R1 (̃zj−zτj (t))−Φτj (uτj
(t), zτj (t))

)≤Φk,m(u(t), z̃)+R1(z̃−z(t))−Φk,m(u(t), z(t)). (A.25)

Notice that, for (A.25) to hold, it is necessary that z̃j ∈ H1(Γ ) ∩ L∞(Γ ) and

0 ≤ z̃j ≤ zτj
(t) ≤ 1 a.e. in Γ. (A.26)

For (z̃j)j , we use the construction from the proof of [64], Theorem 3.14, and set

z̃j := min{(z̃−δj)+, zτj
(t)} =

{
z̃−δj if (z̃−δj)+ ≤ zτj

(t),
zτj

(t) if (z̃−δj)+ > zτj
(t)

with δj := ‖zτj
(t) − z(t)‖1/2

L2(Γ ). (A.27)

Clearly, (z̃j)j fulfill (A.26). In view of (A.20), δj → 0 as j → ∞. Let us now verify that (z̃j)j complies
with (A.25). First of all, the very same argument as in [64] yields that (z̃j)j ⊂ H1(Γ ), and that z̃j⇀z̃ in
H1(Γ ), hence z̃j → z̃ in Lq(Γ ) for all 1 ≤ q < ∞. Therefore, on account of (A.19) we immediately have that
limτj→0 R1(z̃j−zτj(t)) = R1(z̃−z(t)). Furthermore, also in view of (A.17) we have⎧⎪⎪⎨⎪⎪⎩

limτj→0

∫
Γ

k
2

(
z̃j−zτj (t)

) ∣∣∣�uτj
(t)

�∣∣∣2 dHd−1 =
∫

Γ
k
2 (z̃−z(t)) |�u(t)�|2 dHd−1,

limτj→0

∫
Γ
a0(zτj (t)−z̃j) dS =

∫
Γ
a0(z(t)−z̃) dS,

limτj→0

∫
Γ

m
2

(
g(z̃j)−g(zτj (t))

)
dHd−1 =

∫
Γ

m
2 (g(z̃)−g(z(t))) dHd−1

(A.28)

with g(z) = z2(1 − z)2. Repeating the very same calculations as for ([64], Thm. 3.14), it can also be checked
that

lim sup
τj→0

∫
Γ

1
2m

(|∇z̃j |2 − |∇zτj (t)|2
)

dHd−1 ≤
∫

Γ

1
2m

(|∇z̃|2 − |∇z(t)|2) dHd−1. (A.29)

Then, (A.25) ensues from (A.28) and (A.29).

Step 3. Mechanical energy inequality. The mechanical energy inequality (3.31) can be obtained via the
very same lower semicontinuity argument as in Step 3 of the proof of Theorem 4.3.

Steps 4. Enthalpy inequality. The previously proved convergences, as well as the fact that Hτj → H in
L1(0, T ;W 1,r(Ω\Γ Rd)∗), allow us to take the limit of the discrete enthalpy equation (A.6) with positive test
functions ζ. Arguing in the very same way as in Step 4 of the proof of Theorem 4.3, we prove the weak enthalpy
inequality (3.33).

Positivity of the temperature. Repeating the comparison argument from the proof of Lemma 7.4 from [54],
(the related calculations rely in particular on (3.10) in the present paper), it is possible to show that, if there
exists θ∗ > 0 such that θ0(x) ≥ θ∗ for almost all x ∈ Ω, then

w(x, t) ≥ 1
C′T + h(θ∗) + 1

for a.a. (x, t) ∈ Ω × (0, T ), (A.30)

where the constant C′ only depends on the problem data. Then, (4.2) ensues.
We are now in the position to briefly sketch the proof of Proposition 3.14: estimates (3.48)–(3.53) follow by

lower semicontinuity arguments. Indeed, we start from the time-discretization of the Modica−Mortola system.
For the related approximate solutions, the estimates of Proposition A.5 hold, with a constant independent of
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the time-step τ , and of the parameters m and k. In view of the convergences (A.16)–(A.24) of the approxi-
mate solutions, such estimates are inherited by the approximable energetic solutions of the Modica−Mortola
delamination system. This yields the bounds (3.48)–(3.53), with a constant independent of m and k. Then, the
convergences stated in Theorem 4.3 and again lower semicontinuity arguments ensure that (3.48)–(3.53) are also
valid for the approximable energetic solutions of the SBV-adhesive system, uniformly w.r.t. the parameter k.
This concludes the proof. �

A.2. Tools from the theory of BV-functions

In order to make this paper as self-contained as possible, below we collect all the measure-theoretic definitions
and tools from the theory of BV-functions which have been used. In what follows,D ⊂ Rm will denote a bounded
set and XD, with XD(x) = 1 if x ∈ D, XD(x) = 0 otherwise, its characteristic function. In Sections 1–6, all the
statements below apply to D = Γ and m = d− 1.

Definition A.6 (BV-functions and sets of finite perimeter [4], Defs. 3.4, 3.35, Prop. 3.6). Let D be an open
subset in Rm and v ∈ L1

loc(D). The variation V (v,D) of v in D is defined by

V (v,D) := sup
{∫

D

v divϕdx
∣∣ϕ ∈ C1

c(D)m, ‖ϕ‖L∞(D) ≤ 1
}
. (A.31)

Here, C1
c(D)m is the space of continuously differentiable functions φ : D → Rm with compact support in D. For

v ∈ L1(D) it holds v ∈ BV(D) if and only if V (v,D) <∞ and then, V (v,D) = |Dv|(D).
Let E be an Lm-measurable subset of Rm. The perimeter of E in D, denoted by P (E,D), is the variation of

the characteristic function XE in D, i.e.

P (E,D) = V (XE , D). (A.32)

We say that E is a set of finite perimeter in D if P (E,D) <∞.

Theorem A.7 ([4], Thm. 3.36).
For any set E of finite perimeter in D the distributional derivative DXE is an Rm-valued finite Radon measure
in D. Moreover, P (E,D) = |DXE |(D) and a generalized Gauss−Green formula holds:∫

E

divϕdx = −
∫

D

νE · ϕd|DXE | for all C1
c(D)m, (A.33)

where DXE = νE |DXE | is the polar decomposition of DXE , i.e. νE ∈ L1(D, |DXE |)m is the Radon−Nikodým
density for the measure DXE with respect to the measure |DXE |.

Proposition A.8 ([4], Prop. 3.38, Properties of the perimeter).

1. The mapping E �→ P (E,D) is lower semicontinuous w.r.t. local convergence in measure in D.
2. The mapping E �→ P (E,D) is local, i.e. P (E,D) = P (F,D) whenever |D ∩ (

(E\F ) ∪ (F\E)| = 0.
3. It holds P (E,D) = P (Rm\E,D) and

P (E ∪ F,D) + P (E ∩ F,D) ≤ P (E,D) + P (F,D). (A.34)

Theorem A.9 ([4], Thm. 3.40, Coarea formula in BV).
Let v∈L1

loc(D) and D⊂Rm an open set. For the variation of v in D it holds

V (v,D) =
∫ ∞

−∞
P ({x ∈ D | v(x) > t}, D) dt. (A.35)
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In particular, if v ∈ BV(D) the set {v > t} has finite perimeter for L1-a.a. t ∈ R and

|Dv|(B) =
∫ ∞

−∞
|DX{v>t}|(B) dt, Dv(B) =

∫ ∞

−∞
DX{v>t}(B) dt (A.36)

for any Borel set B ⊂ D.

Definition A.10 ([4], Def. 3.54, Reduced boundary).
Let E be an Lm-measurable subset of Rm and D the largest open set such that E is locally of finite perimeter
in D. We define the reduced boundary FE as the collection of all points x ∈ supp |DXE | ∩D such that the limit

νE(x) := lim
�→0

DXE(B�(x))
|DXE |(B�(x))

(A.37)

exists in Rm and satisfies |νE(x)| = 1. The function νE : FE → Sm−1 is called the generalized inner normal to
E; here, Sm−1 denotes the unit sphere in Rm.

Definition A.11 ([4], Def. 3.60, Points of density t, essential boundary).
For all t ∈ [0, 1] and every Lm-measurable set E ⊂ Rm we denote by Et the set{

x ∈ Rm
∣∣ lim

�→0

Lm(E ∩B�(x))
Lm(B�(x))

= t

}
(A.38)

of all points where E has density t. We denote by ∂∗E the essential boundary of E, i.e. the set Rm\(E0 ∪ E1)
of points where the density is either 0 or 1. Moreover, E1 can be considered as the measure-theoretic interior
and E0 as the measure-theoretic exterior of the set E.

Corollary A.12. The measure-theoretic interior has the following properties:

1. Let N ⊂ D with Lm(N) = 0. Then N1 = ∅ and (D\N)1 = D1.
2. Let A ⊂ B ⊂ D. Then A1 ⊂ B1 ⊂ D1.

The next theorem, which is due to Federer, states that FE is the relevant part of the boundary, since D\(E0 ∪
FE ∪ E1) is a Hm−1-negligible set.

Theorem A.13 ([4], Thm. 3.61, Federer).
Let E be a set of finite perimeter in D. Then

FE ∩D ⊂ E1/2 ⊂ ∂∗E and Hm−1(D\(E0 ∪ FE ∪ E1)) = 0. (A.39)

In particular, E has density either 0 or 1/2 or 1 at Hm−1-a.a. x ∈ D and Hm−1-a.a. x ∈ ∂∗E ∩ D belongs
to FE.

Definition A.14 ([4], Def. 3.63, Approximate limit).
Let v ∈ L1

loc(D)m. We say that v has an approximate limit at x ∈ D if there exists v̄ ∈ Rm such that

lim
�→0

∫
B�(x)

|v(y) − v̄| dy = 0. (A.40)

The set Sv of points where this property does not hold is called the approximate discontinuity set. For any
x ∈ D\Sv the vector v̄, uniquely determined by (A.40), is called approximate limit of v at x and denoted
by ṽ(x).
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We will use the notation

B+
� (x, ν) := {y ∈ B�(x) | 〈y − x, ν〉 > 0}, B−

� (x, ν) := {y ∈ B�(x) | 〈y − x, ν〉 < 0}.

Definition A.15 ([4], Def. 3.67, Approximate jump points).
Let v ∈ L1

loc(D)m and x ∈D. We say that x is an approximate jump point of v if there exist a, b ∈ Rm and
ν∈Sm−1 so that a �=b and

lim
�→0

∫
B+

� (x,ν)

|v(y) − a| dy = 0, lim
�→0

∫
B−

� (x,ν)

|v(y) − b| dy = 0. (A.41)

The triple (a, b, ν), uniquely determined by (A.41) up to a permutation of (a, b) and a change of sign of ν, is
denoted by (v+, v−, νv(x)). The set of approximate jump points of v is denoted by Jv.

Definition A.16 ([4], Def. 2.57, Rectifiable sets).
Let E ⊂ Rm be an Hk-measurable set. The set E is countably k-rectifiable if there exist countably many
Lipschitz functions fi : Rk → Rm such that

E ⊂ ∪∞
i=0fi(Rk) ; (A.42)

E is countably Hk-rectifiable if there are countably many Lipschitz functions fi : Rk→Rm so that

Hk
(
E\ ∪∞

i=0 fi(Rk)
)

= 0. (A.43)

Clearly, k-rectifiability implies Hk-rectifiability.

Theorem A.17 ([4], Thm. 3.59, De Giorgi).
Let E be an Lm-measurable subset of Rm. Then FE is countably (m−1)-rectifiable and |DXE | = Hm−1�FE.
By the Besicovitch derivation theorem ([4], Thm. 2.22) one obtains that for any set of finite perimeter E that
|DXE | is concentrated on FE. Hence, in this case, by Theorem A.17 the Gauss−Green formula (A.33) can be
rewritten as ∫

E

divϕdx = −
∫

FE

νE · ϕdHm−1 for all ϕ ∈ C1
c (D)m. (A.44)

Due to Theorem A.17 the perimeter of E can be computed by

P (E,D) = Hm−1(D ∩ ∂∗E) = Hm−1(D ∩ E1/2). (A.45)

This can be used to rewrite the coarea formula (A.35) using the essential boundary of level sets

|Du|(B) =
∫ ∞

−∞
Hm−1

(
B ∩ ∂∗{u > t})dt for all Borel sets B ⊂ D. (A.46)

Theorem A.18 ([4], Thm. 3.77, Traces on interior rectifiable sets).
Let v ∈ BV(D)m and let Γ ⊂ D be a countably Hm−1-rectifiable set oriented by ν. Then, for Hm−1-a.a. x ∈ Γ
there exist v+

Γ (x), v−Γ (x) ∈ Rm such that

lim
�→0

∫
B+

� (x,ν(x))

|v(y) − v+
Γ (x)| dy = 0, lim

�→0

∫
B−

� (x,ν(x))

|v(y) − v−Γ (x)| dy = 0. (A.47)

Moreover, Dv�Γ = (v+
Γ − v−Γ ) ⊗ νHm−1�Γ.
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