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RELAXATION IN BV OF INTEGRALS WITH SUPERLINEAR GROWTH

Parth Soneji1

Abstract. We study properties of the functional

Floc(u, Ω) := inf
(uj)

{
lim inf
j→∞

�
Ω

f(∇uj) dx

∣∣∣∣ (uj) ⊂ W 1,r
loc

(
Ω, RN

)
uj

∗
⇀ u in BV

(
Ω, RN

) },

where u ∈ BV(Ω; RN), and f : R
N×n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + |ξ|r). For

r ∈ [1, 2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides
and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving
mollification to prove an upper bound for Floc. Then, for r ∈ [1, n

n−1
), we prove that Floc satisfies the

lower bound

Floc(u, Ω) ≥
�

Ω

f(∇u(x)) dx +

�
Ω

f∞
(

Dsu

|Dsu|
)
|Dsu|,

provided f is quasiconvex, and the recession function f∞ (defined as f∞(ξ) := limt→∞f(tξ)/t) is
assumed to be finite in certain rank-one directions. The proof of this result involves adapting work
by [Kristensen, Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261], and [Ambrosio and Dal Maso, J.
Funct. Anal. 109 (1992) 76–97], and applying a non-standard blow-up technique that exploits fine
properties of BV maps. It also makes use of the fact that Floc has a measure representation, which is
proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non
Linéaire 14 (1997) 309–338].
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1. Introduction

Consider the variational integral

F (u,Ω) :=
�
Ω

f(∇u(x)) dx, (1.1)

where Ω is a bounded, open subset of Rn, n ≥ 2, u : Ω → RN is a vector-valued function, ∇u denotes the
Jacobian matrix of u and f is a non-negative continuous function defined in the space R

N×n of all real N × n
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matrices. Throughout this paper, we shall also assume that f satisfies the growth condition

0 ≤ f(ξ) ≤ L(1 + |ξ|r) (1.2)

for all ξ ∈ RN×n, for some constant L > 0, and some exponent 1 ≤ r <∞.
Note that it is not obvious how to define F (u,Ω) when u is a generic function of Bounded Variation. Following

a method that was first used by Lebesgue for the area integral [32], and then adopted by Serrin [46,47] and, in
the modern context, by Marcellini [35], we may extend the definition of F (u,Ω) by introducing the functionals

F (u,Ω) := inf
(uj)

{
lim inf
j→∞

�
Ω

f(∇uj) dx
∣∣∣∣ (uj) ⊂W 1,r(Ω,RN )
uj

∗
⇀ u in BV(Ω,RN )

}
, (1.3)

and

Floc(u,Ω) := inf
(uj)

{
lim inf
j→∞

�
Ω

f(∇uj) dx
∣∣∣∣(uj) ⊂W 1,r

loc (Ω,RN )
uj

∗
⇀ u in BV(Ω,RN )

}
. (1.4)

These are known as Lebesgue−Serrin Extensions of F , and are important quantities not only when we want to
define F (u,Ω) for a wider class of functions u but also, for example, when there is a lack of convexity.

Firstly suppose r ∈ [1, 2), and f has linear growth for matrices ξ = η ⊗ ν, where η ∈ span{u(y) : y ∈ Ω},
ν ∈ RN . We shall show that Floc satisfies the upper bound

Floc(u,Ω) ≤ C(L n(Ω) + |Du|(Ω)).

We do this by first obtaining the upper bound for specific types of functions of Special Bounded Variation via
mollification and a covering argument, and then using a technique Braides and Coscia to extend this result to
general functions of Bounded Variation.

Now suppose in addition that f is quasiconvex. That is, it satisfies
�

Rn

[f(ξ + ∇φ(x)) − f(ξ)] dx ≥ 0

for all ξ ∈ RN×n and all test functions φ ∈ W 1,∞
0 (Rn; RN ). Then, for r ∈ [1, n

n−1 ), we prove that Floc satisfies
the lower bound

Floc(u,Ω) ≥
�
Ω

f(∇u(x)) dx +
�
Ω

f∞
(

dDsu

d|Dsu|
)

d|Dsu|,

where ∇u is the density of the absolutely continuous part of the measure Du with respect to Lebesgue measure,
Dsu is the singular part of Du, dDsu

d|Dsu| is the Radon−Nikodým derivative of the measure Dsu with respect to
its variation |Dsu|, and f∞ denotes the recession function of f , defined as

f∞(ξ) := lim sup
t→∞

f(tξ)
t

·

In order to obtain this result, we need to assume additionally that f∞ is finite in certain rank-one directions.
That is, for a given u ∈ BV(Ω; RN ),

f∞(u(y) ⊗ ν) <∞ for L n-a.a. y ∈ Ω and all ν ∈ R
n.

This is a natural assumption, since otherwise f∞(dDsu/d|Dsu|) may just be infinity for general BV functions.
In fact, the results in this paper also enable us to show that there can be no non-negative quasiconvex

function of genuinely r growth for 1 < r < n
n−1 for which f∞ is finite in all rank-one directions. That is, if f

is quasiconvex and satisfies (1.2) for 1 ≤ r < n
n−1 but has linear growth for all matrices ξ where rank(ξ) ≤ 1,

then f must in fact have linear growth in all directions.
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The proof of this latter lower semicontinuity result also requires us to have shown that when r ∈ [1, n
n−1 ),

the functional Floc(u, ·), if finite, is representable by a Radon measure on Ω. This involves adapting a result of
Fonseca and Malý in [24], and is proved in the appendix.

Throughout the course of this paper, we shall use C to denote a generic positive constant which may not be
the same from line to line. We shall specify what C is dependent on in cases where it may not be entirely clear.
Moreover for conciseness we will often just refer to the Radon−Nikodým derivative dDsu

d|Dsu| of a BV map u as

simply Dsu
|Dsu| (and similarly Du

|Du| ), and likewise we will often just write |Dsu| instead of d|Dsu| when integrating
with respect to this measure.

We shall now provide a short background for the results contained in this paper.

1.1. Lower semicontinuity and relaxation in Sobolev spaces

The classical lower semicontinuity result for quasiconvex integrands states that if the integrand f is quasi-
convex and satisfies (1.2) for some exponent r, then F is lower semincontinuous in the sequential weak topology
of W 1,r(Ω; RN ). This was first proved by Morrey without growth conditions, in the setting of W 1,∞(Ω; RN )
and weak* convergence [38,39], with refinements made most notably by Meyers [37], Acerbi and Fusco [1], and
Marcellini [34].

More recently, progress has been made to refine this result by considering convergence in Sobolev Spaces
below the growth exponent of f : keeping the same assumption of quasiconvexity and the growth condition (1.2),
sequential weak lower semicontinuity in W 1,q(Ω; RN ) for q > rn−1

n (q > 1) was proved by Fonseca and Malý
in [24, 33]. Previously, work by Marcellini in [35], and by Carbone and De Arcangelis in [18] established lower
semicontinuity for q > r n

n+1 by imposing additional structural conditions on f . Fonseca and Marcellini obtained
a proof in the case q > r − 1 [25], and Malý for q ≥ r − 1: both these results require further assumptions on f
in addition to quasiconvexity.

Let us consider the minimisation problem

m := inf
{�

Ω

f(∇v(x)) dx : v ∈W 1,r(Ω; RN ) , v = g on ∂Ω
}
. (1.5)

As is well known, lower semicontinuity results relate straightforwardly to the problem of existence of minimisers
when we assume that the integrand f satisfies a “q-coercivity” property such as

f(ξ) ≥ c0|ξ|q − c1 (1.6)

for all ξ ∈ RN×n, when q ≥ r. We remark that such coercivity conditions may in fact be weakened for such
purposes. However, when q < r it is possible that the limit map u ∈ W 1,q(Ω; RN ) of a minimising sequence
(uj) ⊂W 1,r(Ω; RN ), although it satisfies�

Ω

f(∇u) dx ≤
�
Ω

f(∇v) dx for all v ∈W 1,r
(
Ω; RN

)
,

is not in W 1,r(Ω; RN ) and hence not a solution of (1.5). Indeed, due to the Lavrentiev Phenomenon, it need
not even satisfy the related minimisation problem to (1.5) for the case where admissible maps can be in the
larger space W 1,q(Ω; RN ). That is, it is possible that

�
Ω

f(∇u) dx > inf
{�

Ω

f(∇v(x)) dx : v ∈ W 1,q
(
Ω; RN

)
, v = g on ∂Ω

}
.

In this case, we may relax the problem (1.5): following a similar method to the definition of Floc above, for
u ∈W 1,q(Ω; RN ) we may take the Lebesgue−Serrin Extension

F r,q(u,Ω) := inf
(uj)

{
lim inf
j→∞

�
Ω

f(∇uj) dx
∣∣∣∣ (uj) ⊂W 1,r

(
Ω,RN

)
uj ⇀ u in W 1,q

(
Ω,RN

) }.
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Key results concerning properties of such functionals may be found in work by Bouchitté, Fonseca and Malý
(see [15, 24] − in fact they consider more general integrands of the form f = f(x, u,∇u)). Equipped with this
definition, we may consider the relaxed problem

m̄ := inf
{

F r,q(v,Ω) : v ∈W 1,q
(
Ω; RN

)
, v = g on ∂Ω

}
. (1.7)

Now suppose that f is a quasiconvex integrand satisfying the “non-standard” growth condition

c0|ξ|q − c1 ≤ f(ξ) ≤ c2(1 + |ξ|)r

for 1 < q < r <∞. If, as discussed above, we have established that the variational integral F (·, Ω) is sequentially
weakly lower semicontinuous when the sequence (uj) ⊂ W 1,r(Ω; RN ) converges to u ∈ W 1,r(Ω; RN ) weakly in
W 1,q(Ω; RN ), it follows that F r,q(·, Ω) agrees with F (·, Ω) on W 1,r(Ω; RN ), and we may say that it is indeed
an extension of the original variational integral.

In addition, since f is q-coercive, it can straightforwardly be shown that F r,q(·, Ω) is lower semicontinuous in
the sequential weak topology of W 1,q(Ω; RN ). Hence a minimising sequence (uj) ⊂W 1,q(Ω; RN ) approximating
m̄ in (1.7) (that is, satisfying F r,q(uj , Ω) → m̄) converges weakly (taking a subsequence if necessary) to a limit
map u ∈W 1,q(Ω; RN ), which thus satisfies

F r,q(u,Ω) = m̄,

meaning that u is a solution to the relaxed problem (1.7). Regularity results for quasiconvex integrands satisfying
such non-standard growth conditions may be found in recent work by Schmidt [44, 45].

1.2. Lower semicontinuity and relaxation in BV

Let us consider again the coercivity property (1.6): when q = 1, it is very hard to prove that a minimising
sequence of F is relatively compact in the weak topology of W 1,1(Ω; RN ). Therefore in this case it is useful to
prove lower semicontinuity without assuming that maps ∇uj converge weakly in L1(Ω; RN ) to ∇u. This was
done by Dal Maso in the scalar (N = 1) case [19]; in the vector-valued case for f convex, results have been
obtained, for example, by Reshetnyak [41], Ball and Murat [14], and Aviles and Giga [13]. For the quasiconvex
case, a first result in this direction was obtained by Fonseca in [23], who proved that if f is quasiconvex
and satisfies linear growth conditions − i.e. (1.2) for r = 1, then lower semicontinuity obtains for a sequence
(uj) ⊂W 1,1(Ω; RN ) converging strongly in L1(Ω; RN ) to u ∈ W 1,1(Ω; RN ), provided the (uj) are also bounded
in W 1,1(Ω; RN ). Subsequently, the hypothesis of boundedness in W 1,1(Ω; RN ) was removed by Fonseca and
Muller in [26].

Nevertheless, such results these are not satisfactory for most applications, since most existence theorems for
functionals with linear coercivity conditions involve the space BV(Ω; RN ), of functions u ∈ L1(Ω; RN ) whose
distributional derivative can be represented by a matrix-valued Radon measure in Ω. The main reason for this
is because it has better compactness properties. Hence, as mentioned above, we introduce the Lebesgue−Serrin
Extension Floc as defined in (1.4): the properties of such a functional in the case where f is quasiconvex,
has linear growth, and r = 1 have been studied extensively by Ambrosio and Dal Maso [8], and Fonseca and
Müller [27] (in the latter, the case of general integrands f = f(x, u,∇u) of linear growth is treated). Most
notably they prove that for every open set Ω ⊂ Rn and every u ∈ BV(Ω; RN ) we have

Floc(u,Ω) =
�
Ω

f(∇u(x)) dx +
�
Ω

f∞
(
Dsu

|Dsu|
)

|Dsu|.

This result provided one of the main motivations for the lower semicontinuity result in this paper. In this
connection see also Rindler [42] for a proof that avoids the use of Alberti’s rank-one theorem. This integral
representation in the convex case was proved earlier by Goffman and Serrin in [29]. Other related material
appears in work by Aviles and Giga [13], Ambrosio et al. [11], Ambrosio and Pallara [12], and Fonseca and
Rybka [28].
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1.3. Superlinear growth conditions in the BV setting

The majority of previous results concerning lower semicontinuity in BV of quasiconvex integrals concern
integrals f that satisfy linear growth conditions. Let us now turn our attention to superlinear growth conditions:
in [30], Kristensen shows that when f is quasiconvex and satisfies the growth condition (1.2) for r ∈ [1, n

n−1 ),
Floc satisfies the lower bound

Floc(u,Ω) ≥
�
Ω

f(∇u) dx, (1.8)

whenever u ∈ BV(Ω; RN ), where again ∇u is the density of the absolutely continuous part of the measure Du
with respect to Lebesgue measure. The final result presented here may be seen as an extension of this work:
indeed some elements of the proof come directly from Kristensen’s paper. In [48], a lower semicontinuity result
in the sequential weak* topology of BV is obtained for 1 < r < 2. Hence, for n > 2, we can take r > n

n−1 . This
result requires us to assume additionally that the maps (uj) are bounded uniformly in Lqloc for q suitably large,
as well as, for technical reasons, an additional regularity requirement on the limit map u.

2. Functions of bounded variation

Here we shall provide a brief overview of some properties of the space of functions of Bounded Variation
that are key in the context of this paper. For a thorough treatment of this space, we refer to the monograph of
Ambrosio, Fusco and Pallara [10].

2.1. Basic properties and weak* compactness

Let Ω be a generic open set in Rn. Recall that a function u is said to be in BV(Ω; RN ) if it is in L1(Ω; RN )
and its distributional derivative can be represented by a matrix-valued Radon measure Du = (Diu

j)1≤j≤N1≤i≤n in
Ω, where Diu

j are signed Radon measures on Ω.
Now recall that if u, (uj) ⊂ BV(Ω; RN ), then we say that (uj) weakly* converges to u in BV(Ω; RN ) if

uj → u strongly in L1(Ω; RN ), and Duj converges weakly* to Du in M (Ω; RN×n), where M (Ω; RN×n) is
the space of N × n matrix-valued Borel measures on Ω. Since the space of signed Radon measures on Ω is
isometrically isomorphic to the dual space of the ‖ · ‖∞-closure of compactly-supported continuous functions on
Ω, [C0(Ω; RN×n)]∗, this means

lim
j→∞

�
Ω

φdDuj =
�
Ω

φdDu ∀φ ∈ C0(Ω).

Now we state the following compactness theorem for functions in BV. Since the Sobolev Space W 1,1 has no
similar compactness property, this gives us good justification for the introduction of BV in the Calculus of
Variations.

Theorem 2.1. Let (uj) be a sequence in BV(Ω; RN ) satisfying

sup
{ �

A

|uj| dx+ |Duj |(A) : j ∈ N

}
<∞ ∀A ⊂⊂ Ω open.

Then there is a subsequence (ujk) converging in L1(Ω; RN ) to u ∈ BV(Ω; RN ). If Ω has a compact Lipschitz
boundary and (uj) is bounded in BV(Ω; RN ), then the subsequence converges weakly* in BV to u.

We remark that we may generalise the last sentence of the theorem, requiring only that Ω is a bounded extension
domain. This means that exists a linear and continuous extension operator that extends BV functions defined
on Ω into Rn in a suitably “good” way (for further details, refer to [10]).
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2.2. Mollification of BV functions

Let B denote the open unit ball in R
n and write Bε to mean the ball of radius ε > 0 centred at the origin.

Let φ be a symmetric convolution kernel in Rn. That is, it satisfies φ ∈ C∞
c (B), φ ≥ 0,

�
φ = 1, φ(x) = φ(−x),

and supp(φ) ⊂⊂ B. Now let (φε)ε>0 denote the family of mollifiers φε(x) = ε−nφ(x/ε). Given μ, a vector-valued
Radon measure on Ω, define the function

μ ∗ φε(x) :=
�
Ω

φε(x− y) dμ(y) = ε−n
�
Ω

φ
(x− y

ε

)
dμ(y)

whenever x ∈ Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.
It is often useful to approximate BV functions with smooth functions using mollification, for example in the

proof of Lemma 3.3. The following proposition states some key properties in this context.

Proposition 2.2. Let u ∈ BV(Ω; RN ) and let (φε)ε>0 be a family of mollifiers.

(a) The following identity holds in Ωε
∇(u ∗ φε) = Du ∗ φε.

(b) If U ⊂⊂ Ω is such that |Du|(∂U) = 0, then

lim
ε↘0

|D(u ∗ φε)|(U) = |Du|(U).

(c) If K ⊂ Ω is a compact set, then for all ε ∈ (0, dist(K, ∂Ω))
�
K

|u ∗ φε − u| dx ≤ ε|Du|(Ω).

2.3. Decomposition of derivative

Using the Radon−Nikodým Theorem, for a given BV function u we may decompose Du as Du = Dau+Dsu,
where Dau is the absolutely continuous part of Du with respect to the Lebesgue measure L n and Dsu is the
singular part of Du with respect to L n. By the Besicovitch Derivation Theorem, we may write Dau = ∇u
L n,
where ∇u is the unique L1 function given by

∇u(x) = lim
�→0

Du(B(x, 
))
L n(B(x, 
))

at all points x ∈ Ω where this limit is finite. In fact, we do not need to take balls of radius 
 in the above
expression: if we have any bounded, convex, open set C containing the origin, and write C(x, 
) := x + 
C,
then we also obtain the same limit when we replace all instances of B(x, 
) with C(x, 
). A proof of this may
be found, for instance, in [8]. By a result of Calderón and Zygmund, for any function u ∈ BV(Ω; RN ) this
expression is finite at L n-almost every point of Ω.

Now recall that u is said to be approximately continuous at a point x ∈ Ω if

lim
�↘0

�
B(x,�)

|u(y) − z| dy = 0

for some z ∈ RN (which will be unique for each x). The set of points in Ω where this property does not
hold is called the approximate discontinuity set and denoted Su. Now we specify, among these approximate
discontinuity points, those that correspond to an approximate jump discontinuity between two values along a
direction ν. To do this we introduce the notation{

B+
� (x, ν) := {y ∈ B(x, 
) : 〈y − x, ν〉 > 0}

B−
� (x, ν) := {y ∈ B(x, 
) : 〈y − x, ν〉 < 0}
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to denote the two half balls contained in B(x, 
) split by the hyperplane that passes through x and is orthogonal
to ν. Let u ∈ L1

loc(Ω; RN ) and x ∈ Ω. Then x is an approximate jump point of u if there exist a, b ∈ RN and
ν ∈ Sn−1 (sphere of radius 1 in Rn) such that a �= b and

lim
�↘0

�
B+

� (x,ν)

|u(y) − a| dy = 0, lim
�↘0

�
B−

� (x,ν)

|u(y) − b| dy = 0. (2.1)

The triplet (a, b, ν), uniquely determined by (2.1) up to a permutation of (a, b) and a change of sign of ν, is
denoted by (u+(x), u−(x), νu(x)). The set of approximate jump points of u is denoted Ju. It can be shown that
Ju is a Borel subset of Su and that there exist Borel functions(

u+(x), u−(x), νu(x)
)

: Ju → R
N × R

N × S
n−1

such that (2.1) is satisfied at any x ∈ Ju. In fact, for u ∈ BV(Ω; RN ), Su is a countably H n−1-rectifiable set
and if we fix an orientation ν of Su, we have ν = νu(x) for all x ∈ Ju. This allows us to give a characterisation
of Du at all points x of Ju, namely that it can be computed by difference of the one-sided limits u+(x) and
u−(x) of u on either side of the jump set Ju along the normal vector νu(x). More precisely, we have the following
result, attributable to Federer and Vol’pert.

Theorem 2.3. Let u ∈ BV(Ω; RN ). Then Su is countably H n−1-rectifiable and H n−1(Su \Ju) = 0. Moreover,
we have

Du
Ju = (u+ − u−) ⊗ νuH
n−1
Ju

In addition, for u ∈ BV(Ω; RN ), there is a countable sequence of C1 hypersurfaces Γi, say, which covers H n−1-
almost all of Su, i.e.

H n−1

(
Su \

∞⋃
i=1

Γi

)
= 0.

2.4. Decomposition of Dsu and rank-one properties

By these above definitions and results, we are now in a position to further split Dsu into two parts: for any
u ∈ BV(Ω; RN ), the measures

Dju := Dsu
Ju, Dcu := Dsu
(Ω \ Su)
are called respectively the jump part of the derivative and the Cantor part of the derivative. Hence we may now
decompose Du as Du = Dau+Dju+Dcu. Notice that the above considerations about Dau and Theorem 2.3
imply

Dju(B) =
�
B∩Ju

(
u+(x) − u−(x)

) ⊗ νu(x) dH n−1(x)

and

Dau(B) =
�
B

∇u(x) dL n(x)

for all Borel subsets B of Ω; for |Dju| and |Dau| we simply take the modulus of the integrands. The Lebesgue
Differentiation Theorem implies that these two components of Du can be obtained by restrictions of Du to the
points x ∈ Ω where 
 �→ |Du|(B(x, 
)) is comparable with 
n (for Dau) and 
n−1 (for Dju). The Cantor part of
Du has intermediate behaviour and is trickier to characterise: unlike the absolutely continuous and jump parts
of BV functions, the Cantor parts can only be seen as a measure and cannot be recovered by classical analysis
of the pointwise behaviour of a functions. Indeed the Cantor-Vitali function whose distributional derivative
has no jump part and no absolutely continuous part, demonstrates that for general BV functions u, not all of
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Dsu may be captured by Dju. However, it is not too complicated to show that Dcu vanishes on sets which
are σ-finite with respect to H n−1. We define the proper subspace of BV(Ω; RN ), called functions of Special
Bounded Variation, SBV(Ω; RN ), to be the space of BV functions where Dsu = Dju only. For an introduction
to this space, we refer to [5, 6, 20].

Let us now turn our attention to the quantity ξ = Du
|Du| i.e. the Radon−Nikodým derivative of the measure Du

with respect to its variation |Du| given by the expression

ξ(x) =
Du

|Du|(x) = lim
�→0

Du(B(x, 
))
|Du|(B(x, 
))

, x ∈ Ω.

We consider ξ(x) at the various parts of Ω that are seen by these various components of Du. It follows straight-
forwardly from the basic properties described above that for |Dau|-almost all x ∈ Ω we have

ξ(x) =
∇u(x)
|∇u(x)| ,

and for H n−1-almost all x ∈ Ju,

ξ(x) =
u+(x) − u−(x)
|u+(x) − u−(x)| ⊗ νu(x).

Note that in this case, ξ(x) is a rank-one matrix. It is much harder to establish properties of ξ(x) for points
x that are seen by the measure Dcu. In [2], Alberti proved the famous result that ξ(x) is also rank-one for
|Dcu|-almost every point. The proof of this property is very long and involved; a simpler proof based on the
area formula and Reshetnyak continuity theorem is given in [3], but this proof only works for monotone BV
functions. These properties of ξ(x) are instrumental in the proof of Theorem 4.1, in particular in the context of
the key blow-up lemma that the last part of this section is devoted to.

2.5. Sets of finite perimeter

Let E be a subset of Ω, and define the characteristic function 1E of E as

1E(x) =
{

1 if x ∈ E,
0 if x ∈ Ω \ E.

We say that a set E is of finite perimeter in Ω if 1E ∈ BV(Ω; RN ). Now define the reduced boundary of E,
(∂∗E ∩Ω), as

(∂∗E ∩Ω) = S1E .

Note that |D1E|(Ω) = H n−1(∂∗E ∩ Ω) for every E of finite perimeter. It is easy to verify that this notion of
perimeter coincides with the elementary one, particularly when E is a polyhedron. In [21], De Giorgi shows that if
E is a set of finite perimeter, then there exists a sequence of polyhedra (Pj) such that |((Pj\E)∪(E\Pj))∩Ω| → 0,
and

H n−1(∂∗{u > t}) = lim
j→∞

H n−1(∂Pj ∩Ω).

This shows that the measure-theoretic notion of perimeter is a sensible extension of the elementary one.

2.6. Properties of blow-up limits on the singular part

In this section we state a result from [8] that is essential to our proof of Theorem 4.1. First let us note that
when blowing up a function u ∈ BV(Ω; RN ) at a point x0 ∈ Ω, we will need to use the following identities. Let
Q denote the open unit cube (− 1

2 ,
1
2 )n in Rn and, consistent with the previous section, define

Q(x0, 
) := {
y + x0 : y ∈ Q}.
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Now for y ∈ Q and 
 sufficiently small, let

u�(y) := 
−1u(x0 + 
y). (2.2)

It follows from basic definitions that

Du�(Q) = 
−nDu(Q(x0, 
)), and |Du�|(Q) = 
−n|Du|(Q(x0, 
)). (2.3)

Moreover, recall that the support of a measure μ in Ω is defined by

supp(μ) = {x ∈ Ω : μ(Ω ∩B(x, 
)) > 0 ∀
 > 0}.

Theorem 2.4. Let u ∈ BV(Ω; RN ), and let ξ : Ω → RN×n denote the density of Du with respect to |Du|.
Then, for |Dsu|-almost all x0 ∈ Ω we have |ξ(x0)| = 1, rank(ξ(x0)) = 1, and

lim
�→0+

Du(Q(x0, 
))
|Du|(Q(x0, 
))

= ξ(x0), lim
�→0+

Du(Q(x0, 
))

n

= +∞. (2.4)

Let x ∈ supp(|Du|) with these properties, and write ξ(x0) = η⊗ ν where η ∈ Rn, ν ∈ RN , |η| = |ν| = 1. Now let

v�(y) =

n

|Du|(Q(x0, 
))
(u�(y) −m�), (2.5)

where u� is defined in (2.2) and m� is the mean value of u� on Q (with respect to Lebesgue measure). Then for

 sufficiently small and for every 0 < σ ≤ 1 we have

�
Q

v� dy = 0, |Dv�|(σQ) =
|Du|(Q(x0, σ
))
|Du|(Q(x0, 
))

≤ 1. (2.6)

Moreover, for every 0 < σ < 1 there exists a decreasing sequence (
k) converging to 0 such that (v�k
) converges

weakly* in BV(Q; RN ) to a function v ∈ BV(Q; RN ) satisfying

|Dv|(σQ̄) ≥ σn,

and which can be represented as
v(y) = ψ(〈y, ν〉)η (2.7)

for a suitable non-decreasing function ψ : (a, b) → R, where

a = inf{〈y, ν〉 : y ∈ R}, b = sup{〈y, ν〉 : y ∈ R}.

In this connection see also Larsen [31], where a similar result is obtained that allows one to even assume that
|Dv|(Q) = 1 and |Dv|(∂Q) for the blow-up limit.

We will now make one remark on the proof of this theorem, which is important in the context of the proof
of Proposition 4.10. In [8], it is shown that we have

lim sup
�→0+

|Du|(Q(x0, σ
))
|Du|(Q(x0, 
))

> σn. (2.8)

If this were false, then there would exist 
0 > 0 such that

|Du|(Q(x0, σ
)) ≤ σn|Du|(Q(x0, 
))
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for all 0 < 
 ≤ 
0. This implies that for any j ∈ N, |Du|(Q(x0, σ
j
0)) ≤ σjn|Du|(Q(x0, 
0)). Hence we obtain

|Du|(Q(x0, 
0)) ≥ |Du|(Q(x0, σ
j
0))

σjn

→ ∞ as j → ∞,

which is a contradiction. Hence the decreasing seqeunce (
k) in this result may be chosen to satisfy

lim
k→∞

|Dv�k
|(σQ) ≥ σn.

Now note that if C ⊂ [0,∞) is a countable set, then we may also obtain the property in (2.8) by imposing the
additional restriction 
 /∈ C. We do this by choosing a suitable 
0 such that σj
0 /∈ C for all j (this must hold
as C is countable).

3. Upper bound in subquadratic growth case

In this section we obtain an upper bound for the Lebesgue−Serrin extension Floc as defined in (1.4), where
f is continuous and satisfies the growth condition (1.2) for r ∈ [1, 2). Hence, for n > 2, f may have larger
growth than in the rest of this paper. We shall assume additionally that f has linear growth in certain rank-one
directions. That is,

0 ≤ f(ξ) ≤ C(|ξ| + 1)

whenever
ξ = η ⊗ ν, η ∈ span{u(y) : y ∈ Ω} , ν ∈ R

n. (3.1)

The results proved here are still interesting if we assume f has linear growth on all rank-one matrices. However
in the context of the lower semicontinuity result proved in the next section, where f is additionally assumed to
be quasiconvex, we shall show that this is too strong an assumption.

First let us collect some elemenary facts for functionals such as Floc. A key reference for general properties
is [17]. For every z ∈ Rn define the translation operator Tz by (Tzu)(x) = u(x − z) and TzΩ = {x ∈ Rn :
x − z ∈ Ω} = z + Ω. For every 
 > 0, define the homothety operator θ� by (θ�u)(x) = (1/
)(u(
x)) and
θ�Ω = {x ∈ R

n : 
x ∈ Ω} = (1/
)Ω. The following proposition states some important facts about F (as
defined in (1.3)) and Floc that come directly from their definitions. Note that no restriction on the exponent r
is required here.

Proposition 3.1. Let u ∈ BV(Ω; RN ). Let f : RN×n → R be a continuous function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < ∞. Then the corresponding Lebesgue−Serrin extension F defined
for this f satisfies the following properties:

(a) F (Tzu, TzΩ) = F (u,Ω) for every z ∈ R
n,

(b) F (u + η,Ω) = F (u,Ω) for every η ∈ RN ,
(c) F (θ�u, θ�Ω) = 
−nF (u,Ω) for every 
 > 0.

Identical statements hold for Floc.

The next proposition shows that, provided we assume that f is coercive, then by a straightforward diago-
nalisation argument and compactness properties in BV we have that F and Floc are attained and are lower
semicontinuous in the weak* topology of BV.

Proposition 3.2. Let f be as in Proposition 3.1. Assume in addition that f satisfies, for some constant c0 > 0,

f(ξ) ≥ c0|ξ|
for all ξ ∈ RN×n. Then
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(a) If F (u,Ω) <∞, then the value is attained. That is, there exists a sequence (uj) in W 1,r(Ω; RN ) such that
uj

∗
⇀ u in BV(Ω; RN ) and

lim
j→∞

�
Ω

f(∇u) dx = F (u,Ω).

(b) If (uj) is a sequence in BV(Ω; RN ) converging weakly* in BV to u ∈ BV(Ω; RN ), and F (uj , Ω) < ∞ for
all j, then

lim inf
j→∞

F (uj , Ω) ≥ F (u,Ω).

Identical statements hold for Floc.

3.1. Upper bound for certain functions in SBV

We first establish an upper bound for Floc(u,Ω) for specific types of functions u in SBV, namely those that
are constant almost everywhere (and hence have absolutely continuous part zero), whose jump set is the union
of finitely many polyhedra.

Lemma 3.3. Let Ω be a bounded, open extension domain in Rn. Suppose u ∈ SBV(Ω; RN ) is such that

|∇u(x)| = 0

for L n-almost all x ∈ Ω, and that the set Ju of approximate jump points of u is the union of finitely many
polyhedra. Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some exponent
1 ≤ r < 2. Assume also that it has linear growth on matrices ξ satisfying (3.1). Then

Floc(u,Ω) ≤ C (L n(Ω) + |Dsu|(Ω)) (3.2)

for some constant C > 0 dependent on f .

Proof of Lemma 3.3. We argue by mollification. Let (φε)ε>0 be family of mollifiers, i.e. φε(x) = ε−nφ(x/ε),
where φ is a symmetric convolution kernel in Rn (so it satisfies φ ∈ C∞

c (B(0, 1)), φ ≥ 0,
�
φ = 1, φ(x) = φ(−x),

and supp(φ) ⊂⊂ B(0, 1)). We wish to mollify on all of Ω: since it has a Lipschitz boundary, we can extend u
onto all of Rn so that

|Du|(Rn) ≤ C|Du|(Ω),

and u still satisfies ∇u = 0, Ju is the union of finitely many polyhedra, and span{u(y) : y ∈ Rn} = span{u(y) :
y ∈ Ω}. Now define, for ε > 0, uε(x) := (u ∗ φε), x ∈ Ω. Recall from Proposition 2.2 that we have

∇uε(x) = (Du ∗ φε)(x) = ε−n
�
B(x,ε)

φ
(y
ε

)
dDu(y).

Let x ∈ Ω and consider B(x, ε): if B(x, ε) ∩ Ju = ∅, then Du = ∇u = 0 on B(x, ε), and so

f(∇uε(x)) = f(0). (3.3)

If B(x, ε)∩Ju �= ∅, and the intersection of this ball and the jump set is just part of the face of a single polyhedron,
then, on this ball, we have

Du = Dsu = a⊗ νH n−1
Ju,
where a is just the difference of (constant) values of u on either side of the face, and ν is a unit normal to this
face in the appropriate direction. Hence we have

|∇uε(x)| =

∣∣∣∣∣ε−n
�
B(x,ε)∩Ju

φ
(y
ε

)
(a⊗ ν) dH n−1(y)

∣∣∣∣∣
≤ ε−nH n−1(Ju ∩B(x, ε))|a⊗ ν|
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Recall that by the given finiteness condition on f∞, it follows that f satisfies the linear growth condition

0 ≤ f(ξ) ≤ C(1 + |ξ|)
for all matrices ξ of the form η ⊗ ν, where ν ∈ Rn and η ∈ span{u(y) : y ∈ Ω}. Since a⊗ ν is of this form, we
get

f(∇uε) ≤ C
(
1 + ε−nH n−1(Ju ∩B(x, ε))|a ⊗ ν|)

= C
(
1 + ε−n|Dsu|(Ju ∩B(x, ε))

)
. (3.4)

Note that this inequality holds even if B(x, ε) ∩ Ju = ∅. Lastly, suppose B(x, ε) ∩ Ju �= ∅, and the intersection
of this ball and the jump set contains more than just a face − i.e. it contains a corner of a polyhedron and/or
multiple (albeit finitely many) polyhedra. Then we have, on this ball,

Du = Dsu =

(
m∑
i=1

ξi

)
H n−1
Ju

for some m ∈ N, where ξi, similarly to above, are rank-one matrices of the form ai ⊗ νi corresponding to
jumps ai along the unit normal vector νi of some face of some polyhedron in this intersection. Note that
H n−1(B(x, ε) ∩ Ju) is of order εn−1, so

|∇uε(x)| =

∣∣∣∣∣ε−n
�
B(x,ε)∩Ju

φ
(y
ε

)
dDsu(y)

∣∣∣∣∣
≤ ε−n

(
m∑
i=1

|ξi|
)

H n−1(B(x, ε) ∩ Ju)

≤ Cε−1
m∑
i=1

|ξi|.

Now use the growth condition (1.2) on f to get

f(∇uε(x)) ≤ C

(
1 + ε−r

m∑
i=1

|ξi|r
)

≤ C(u)(1 + ε−r), (3.5)

where C(u) is a constant depending on u. Similarly to before, this inequality holds even if B(x, ε) ∩ Ju = ∅, or
if this intersection only contains just a face.

Now let B be a maximal collection of disjoint balls of radius ε/5 in Ω. That is, B is a (finite) disjoint collection
of balls, and for any other ball B′ ⊂ Ω of radius ε/5,

B′ ∩
⋃
B∈B

B �= ∅.

For B ∈ B, let RB denote the ball with the same centre, but of radius R
5 ε. Then (see, for example, [36])

Ω ⊂
⋃
B∈B

5B.

For each B ∈ B, we now consider cases as above. If 10B ∩ Ju = ∅, then for each x ∈ 5B, B(x, ε) ∩ Ju = ∅. Thus
we have, from (3.3), �

5B

f(∇uε) dx = |5B|f(0). (3.6)



1090 P. SONEJI

If 10B∩Ju �= ∅, and the intersection of this ball and the jump set is just the part of a face of a single polyhedron,
then for each x ∈ 5B, B(x, ε) is contained in 10B, and so either B(x, ε) ∩ Ju is just part of a face or is empty.
Hence, using (3.4), �

5B

f(∇uε) dx ≤ C|5B|(1 + ε−n|Dsu|(Ju ∩B(x, ε))
)

≤ C
(
(εn + |Dsu|(Ju ∩ 10B)

)
. (3.7)

Finally, if 10B ∩ Ju �= ∅, and the intersection of this ball and the jump set contains more than just a face, then
for each x ∈ 5B, B(x, ε) ∩ Ju may be empty, or just part of a face, or more than just a face. Thus we use (3.5)
to get �

5B

f(∇uε) dx ≤ |5B|C(u)
(
1 + ε−r

)
≤ C(u)εn−r. (3.8)

Now let B1, B2 and B3 be the balls in B where (3.6), (3.7) and (3.8) hold respectively. Then B = B1∪B2 ∪B3

and ∑
B∈B1

�
5B

f(∇uε) dx ≤ CL n(Ω)f(0).

Note that B2, since it only contains balls B such that 10B contains the polyhedral jump set of u (which has
Hausdorff dimension n− 1), contains less than Cε1−n-many balls, where this constant depends on the jump set
Ju. Hence ∑

B∈B2

�
5B

f(∇uε) dx ≤ C
∑
B∈B2

εn + |Dsu|(Ju ∩ 10B)

≤ C(u)ε+ C|Dsu|(Ju ∩Ω).

Lastly, we observe that B3, since it only contains balls B such that 10B contains parts of the jump set that are
not faces (which has Hausdorff dimension at most n− 2), has cardinality of order ε2−n. Therefore∑

B∈B3

�
5B

f(∇uε) dx ≤ C(u)
∑
B∈B3

εn−r

≤ C(u)ε2−r.

Now take a sequence (εj) such that εj ↘ 0. Then uεj
∗
⇀ u in BV(Ω; RN ), and

Floc(u,Ω) ≤ lim inf
j→∞

�
Ω

f(∇uεj) dx

≤ lim inf
j→∞

∑
B∈B

�
5B

f(∇uεj) dx

≤ lim inf
j→∞

C (L n(Ω) + |Dsu|(Ju ∩Ω)) + C(u)
(
εj + ε2−rj

)
= C (L n(Ω) + |Dsu|(Ju ∩Ω)) .

This completes the proof. �

Remark 3.4. Localising the proof of this result, we also obtain the upper bound

Floc(u, U) ≤ C(L n(U) + |Dsu|(U)) (3.9)

for any open subset U ⊂ Ω.
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3.2. Generalisation of result via polyhedral approximation

We now adapt a result of Braides and Coscia [16], to obtain an upper bound for general functions u in
BV(Ω; RN ).

Theorem 3.5. Let Ω be a bounded, open extension domain in Rn, and u ∈ BV(Ω; RN ). Let f : RN×n → R be
a continuous function satisfying the growth condition (1.2) for some exponent 1 ≤ r < 2. Assume also that it
has linear growth on matrices ξ satisfying (3.1). Then

Floc(u,Ω) ≤ C(L n(Ω) + |Du|(Ω)), (3.10)

where C > 0 is a fixed constant depending on f .

Proof of Theorem 3.5. We shall first assume that f also satisfies the coercivity condition

f(ξ) ≥ c0|ξ| (3.11)

for some constant c0 > 0, for all ξ ∈ RN×n. Also assume that u ∈ (C1 ∩ BV)(Ω; RN ). Write u in terms of its
components, i.e. u = (u(1), . . . , u(N)). If the dimension of span{u(y) : y ∈ Ω} is less than N , we may assume for
simplicity that there exists m < N such that u(i) = 0 for i > m and span{u(y) : y ∈ Ω} = span{ε1, . . . , εm},
where {ε1 . . . , εN} is the canonical basis for RN . Otherwise we may use a change of variables. Note that the
proof we give here works even if we were to assume span{u(y) : y ∈ Ω} has dimension N and m = N .

Take any i ∈ {1, . . . ,m} and fix k ∈ N. By the co-area formula, we have

|Du(i)|(Ω) =
∑
j∈Z

� (j+1)/k

j/k

H n−1(∂∗{u(i) > t} ∩Ω) dt.

Hence for every j ∈ Z we can find si,kj ∈ (j/k, (j + 1)/k) such that

1
k
H n−1(∂∗{u > si,kj } ∩Ω) ≤

� (j+1)/k

j/k

H n−1(∂∗{u(i) > t} ∩Ω) dt,

so that ∑
j∈Z

1
k

H n−1(∂∗{u > si,kj } ∩Ω) ≤ |Du(i)|(Ω).

Now take, for every j ∈ Z, a polyhedron P i,kj such that{
u(i) >

j + 1
k

}
⊂ P i,kj ⊂

{
u(i) >

j

k

}
,

and
H n−1(∂P i,kj ∩Ω) ≤ H n−1(∂∗{u > si,kj } ∩Ω) +

1
k

2−|j|.

Do this for all i = 1, . . .m. Now define uk ∈ SBV(Ω; RN ) by setting

w
(i)
k (y) :=

j

k
on P i,kj−1 \ P i,kj ,

and then letting u(i)
k := max{−k,min{w(i)

k , k}}. Clearly we have ∇u(i)
k (x) = 0 for L n-almost all x ∈ Ω, and

there exists j(i, k) ∈ N such that
J
u
(i)
k

∩Ω =
⋃

−j(i,k)≤j≤j(i,k)
∂P i,kj ,
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and

Du
(i)
k = Dsu

(i)
k =

j(i,k)∑
j=−j(i,k)

1
k
νi,kj H n−1 |∂P i,k

j
,

where νi,kj is defined by
D1P i,k

j
= νi,kj H n−1 |∂P i,k

j .

Hence

Duk = Dsuk =
m∑
i=1

j(i,k)∑
j=−j(i,k)

1
k
εi ⊗ νi,kj H n−1 |∂P i,k

j
,

and

|Dsuk|(Ω) =
m∑
i=1

j(i,k)∑
j=−j(i,k)

|εi ⊗ νi,kj |
k

H n−1
(
∂P i,kj ∩Ω

)

=
1
k

m∑
i=1

j(i,k)∑
j=−j(i,k)

H n−1
(
∂P i,kj ∩Ω

)

≤ 1
k

m∑
i=1

j(i,k)∑
j=−j(i,k)

(
H n−1(∂∗{u > si,kj } ∩Ω) +

1
k

2−|j|
)

≤
m∑
i=1

|Du(i)|(Ω) +
1
k

≤ √
m |Du|(Ω) +

1
k
·

Since the jump set Juk
is the union of finitely many polyhedra, and by assumption f has linear growth on

matrices of the form η ⊗ ν where η ∈ span{εi : 1 ≤ i ≤ m} and ν ∈ Rn, we use Lemma 3.3 to get

Floc(uk) ≤ C(L n(Ω) + |Dsuk|(Ω))

≤ C(L n(Ω) + |Du|(Ω)) +
1
k
·

Note that the sequence (wk) converges strongly to u in L∞(Ω; RN ), so the truncated sequence (uk) converges
strongly to u in L1(Ω; RN ). Moreover, the measures |Duk| are bounded. Hence also uk

∗
⇀ u in BV(Ω; RN ), and

using the lower semicontinuity of Floc (see Prop. 3.2) we have

Floc(u,Ω) ≤ lim inf
k→∞

Floc(ukΩ) ≤ C(L n(Ω) + |Du|(Ω)).

The result has been proved for u ∈ (C1 ∩ BV)(Ω; RN ). For general u ∈ BV(Ω; RN ), it suffices to recall
that by convolution and using a partition of unity (see, for example, [49]), there exists a sequence (vk) ⊂
(C∞ ∩ BV)(Ω; RN ) such that vk

∗
⇀ u in BV(Ω; RN ). Moreover, clearly

span{vk(y) : y ∈ Ω} = span{u(y) : y ∈ Ω},
so using the result for (vk) and again the lower semicontinuity of Floc, we get

Floc(u,Ω) ≤ lim inf
k→∞

Floc(vk, Ω)

≤ C(L n(Ω) + lim inf
k→∞

|Dvk|(Ω))

= C(L n(Ω) + |Du|(Ω)).

This completes the proof for f linearly coercive.
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Suppose f does not satisfy (3.11). In this case, simply let g : RN×n → R be defined as

g(ξ) := f(ξ) + |ξ|,
so g does satisfy (3.11). Let G (u, ·) be the Lebesgue−Serrin extension associated with g. By Proposition 3.2,
there exists a sequence (uj) ⊂W 1,r

loc (Ω; RN ) such that uj
∗
⇀ u in BV and

lim
j→∞

�
Ω

g(∇uj) dx = lim
j→∞

�
Ω

f(∇uj) + |∇uj | dx = G (u,Ω).

But, by what we have just proved,

G (u,Ω) ≤ C(L n(Ω) + |Du|(Ω)),

Now conclude by simply noting that

Floc(u,Ω) ≤ lim inf
j→∞

�
Ω

f(∇uj) dx ≤ lim inf
j→∞

�
Ω

g(∇uj) dx = G (u,Ω).

�

Remark 3.6. Localising the proof of this result, we also obtain the upper bound

Floc(u, U) ≤ C(L n(U) + |Du|(U)) (3.12)

for any open subset U ⊂ Ω. Related work concerning SBV and polyhedral approximation may be found
in [4, 7, 9, 12].

3.3. Remark on the quadratic growth case

Let us briefly consider the quadratic growth case, i.e. r = 2 in (1.2). Due to the covering argument in our
proof of Lemma 3.3, this borderline case cannot be incorporated. However, if this were possible, it would be
a very strong result. It would show in particular that no lower semicontinuity result such as the one in the
next section can be obtained in the quadratic growth case. For instance, if we let Ω = B, n = N = 2 and
f(ξ) = | det ξ|, then f is continuous, polyconvex, and has quadratic growth but is 0 on matrices of rank ≤ 1. If
we were to obtain the upper bound (3.10) in this case, then we could consider the map u(x) = ξx to see that

Floc(u,B) ≤ C(|ξ| + 1).

This would mean that we cannot have a lower semicontinuity result in the sequential weak* topology of BV,
even when the limit map is affine, as this would imply

| det ξ| ≤ CFloc(u,B)

and so the determinant would have linear growth on general matrices, which would be a contradiction.

4. Lower semicontinuity in BV

In this section we provide the proof of the final main result of this paper. Now, Ω is a bounded, open subset
of Rn, n ≥ 2 (not necessarily an extension domain), and we are considering the variational integral F as defined
in (1.1) and the Lebesgue−Serrin Extension Floc as defined in (1.4); here the integrand f satisfies (1.2) for
r ∈ [1, n

n−1 ) and is also assumed to be quasiconvex. Recall that the recession function f∞ of f is defined as

f∞(ξ) := lim sup
t→∞

f(tξ)
t

· (4.1)
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We shall obtain a lower bound for Floc, provided we assume additionally that f∞ is finite in certain rank-one
directions. That is, for a given u ∈ BV(Ω; RN ),

f∞(u(y) ⊗ ν) <∞ for L n-a.a. y ∈ Ω and all ν ∈ R
n. (4.2)

This is a natural assumption, since otherwise f∞(Dsu/|Dsu|) may just be infinity for general BV functions.
Henceforth, taking a suitable precise representative if necessary, we shall assume without loss of generality
that (4.2) holds for all y ∈ Ω. Note that since f is quasiconvex, f∞ is rank-one convex (see, for example, [40]),
meaning that it is finite also on rank-one matrices of the form ξ = η ⊗ ν whenever ν ∈ Rn and η ∈ span{u(y) :
y ∈ Ω}. Observe that the definition of the recession function immediately implies that f has linear growth in
any direction where f∞ is finite. This will allow us to apply the results of the previous section. Moreover, since
f∞(0) = 0, we have the linear growth condition

f∞(ξ) ≤ C|ξ| (4.3)

for a fixed finite C > 0, for all ξ ∈ RN×n such that ξ = η ⊗ ν, η ∈ span{u(y) : y ∈ Ω}, ν ∈ Rn.
It is also important to note that we are most interested in the case where

span{u(y) : y ∈ Ω} �= R
N .

This is because, as we shall show in Section 4.3, there can be no non-negative quasiconvex function of genuinely
r growth for 1 < r < n

n−1 for which f∞ is finite in all rank-one directions: that is, if f is quasiconvex and
satisfies (1.2) for 1 ≤ r < n

n−1 but has linear growth for all matrices ξ where rank(ξ) ≤ 1, then f must in fact
have linear growth in all directions. The proof of this is a straightforward application of Theorem 3.5 and a
result of Kristensen [30].

The statement of the main theorem is as follows.

Theorem 4.1. Let Ω be a bounded, open set in Rn and u ∈ BV(Ω; RN ). Let f : RN×n → R be a quasiconvex
function satisfying the growth condition (1.2) for r ∈ [1, n

n−1 ). Let the recession function f∞ be as defined
in (4.1), and suppose it is finite on rank-one matrices of the form u(y) ⊗ ν, y ∈ Ω, ν ∈ Rn.

Suppose (uj) is a sequence in W 1,r
loc (Ω; RN ) such that

uj
∗
⇀ u in BV(Ω; RN ). (4.4)

Then

lim inf
j→∞

F (uj, Ω) ≥
�
Ω

f(∇u(x)) dx+
�
Ω

f∞
(
Dsu

|Dsu|
)
|Dsu|, (4.5)

and hence

Floc(u,Ω) ≥
�
Ω

f(∇u(x)) dx+
�
Ω

f∞
(
Dsu

|Dsu|
)
|Dsu|. (4.6)

A key property of Floc that will be of use to us is that if it is finite, and Ω is an extension domain, then
there exists a non-negative, finite Radon measure λ on Ω such that

Floc(u, U) = λ(U)

for all open sets U ⊂ Ω. That is, λ (strongly) represents Floc(u, ·) on Ω. That is, we have the following theorem.

Theorem 4.2. Suppose Ω is an open, bounded extension domain in Rn, n ≥ 2. Let f : RN×n → R be a
continuous function satisfying the growth condition (1.2) for some exponent 1 ≤ r < n

n−1 . Let u ∈ BV(Ω; RN )
and Floc be as defined in (1.4). Then if Floc(u,Ω) <∞, then there exists a non-negative, finite Radon measure
λ on Ω which represents Floc.



RELAXATION IN BV OF INTEGRALS WITH SUPERLINEAR GROWTH 1095

This may be proved by straight-forwardly adapting a well-known result of Fonseca and Malý [24] to a
borderline case. For completion and the reader’s convenience, we include a proof in the appendix (Thm. A.5).

The structure of the rest of this section is as follows. First we show that the proof of this result involves
establishing two inequalities: one on the absolutely continuous part of the measure Du, and one on the singlular
part. The first inequality is essentially a direct application of a result by Kristensen in [30]. We prove the
inequality on the singular part of Du by obtaining a lower bound on Floc via a technique of Ambrosio and Dal
Maso [8], and combining this with a non-standard blow-up technique. Throughout the latter half of this section,
we shall regularly make use of Theorem 4.2 and the upper bound in Theorem 3.5.

4.1. Preliminaries

Let f be as stated in the assumptions of Theorem 4.1, and likewise let (uj) be a sequence in W 1,r
loc (Ω; RN ),

u ∈ BV(Ω; RN ), and uj
∗
⇀ u in BV(Ω; RN ). We may assume that

lim inf
j→∞

F (uj, Ω)

is finite, as otherwise there is nothing to prove. Moreover, by taking a subsequence (for convenience not rela-
belled), we can also assume

lim
j→∞

F (uj, Ω) = lim inf
j→∞

F (uj, Ω).

Thus the sequence f(∇uj)L n is bounded in M (Ω̄), so we that have for some further subsequence (again not
relabelled) there exists a measure μ in Ω̄ such that

f(∇uj) ∗
⇀ μ in M (Ω̄).

Clearly, since f is non-negative, μ must also be a non-negative measure on Ω̄. Now observe that by applying
the Radon−Nikodým Theorem twice, first with μ and Lebesgue measure, and then again on the singular part
of μ and |Dsu|, we may decompose μ as

μ =
dμ

dL n
L n +

dμ
d|Dsu| |D

su| + μ∗,

where μ∗ is non-negative and singular with respect to both Lebesgue measure and |Dsu|. Hence

lim inf
j→∞

�
Ω

f(∇uj) dx ≥ μ(Ω) =
�
Ω

dμ
dL n

dx+
�
Ω

dμ
d|Dsu| d|Dsu| + μ∗(Ω).

Therefore the required lower bound will follow if we can show that

dμ
dL n

(x) ≥ f(∇(x)) for L n-a.a. x ∈ Ω, (4.7)

and
dμ

d|Dsu|(x) ≥ f∞
(

dDsu

d|Dsu|(x)
)

for |Dsu|-a.a. x ∈ Ω. (4.8)

These two inequalities are the subject of the main propositions of this section. First, however, we state a lemma,
attributable to Kristensen [30], that is particularly important for establishing (4.7), which in turn plays a role
in aspects of the proof of (4.8). In the statement of this lemma and subsequently we denote by B� the open ball
in Rn centred on the origin with radius 
, and B = B1.
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Lemma 4.3 [30]. Let f : RN×n → R be a quasiconvex function satisfying the growth condition (1.2) for some
exponent r ∈ [1, n

n−1 ).
Let (uj) be a sequence in W 1,r(B; RN ) and suppose

uj → 0 in L1
(
B; RN

)
(4.9)

and

sup
j

�
B

|∇uj | dx < +∞. (4.10)

Then we have the following inequality:

lim inf
j→∞

�
B

f(∇uj) dx ≥ L n(B) · f(0) . (4.11)

The proof of Lemma 4.3 involves applying the following result, which gives us higher integrability for a trace-
preserving extension operator.

Lemma 4.4 [30]. Let 1 ≤ r < n
n−1 . Then there exists a linear extension operator

E : (W 1,1)(∂B; RN ) →W 1,r
(
B2 \ B̄; RN

)
with the following properties:

1. If g ∈ C1(∂B; RN ) then E(g) ∈ C∞(B2 \ B̄) with E(g)|∂B = g.
2. If (zj) ⊂ C∞(∂B; RN ) and limj→∞

�
∂B

zj ·φdH n−1 = 0 for all φ ∈ C∞(∂B; RN ), then for any multi-index
α, ∂α[Ezj] → 0 locally uniformly in B2 \ B̄.

3. There exist positive constants c1, c2, dependent on n,N, r, such that:
(a) �

B2\B
|E(g)|r ≤ c1‖g‖rL1(∂B)

(b) �
B2\B

|∇[Eg]|rL n ≤
(
c2

�
∂B

|∇g| dH n−1

)r

for all g ∈ C1(∂B).

Proof of Lemma 4.3. By approximation we may assume (uj) ⊂ C1(B̄; RN ). If the left hand side of (4.11) is
infinite then there is nothing to prove, so suppose it is finite. Moreover, by extracting a subsequence if necessary,
we can assume

l0 := lim inf
j→∞

�
B

f(∇uj) dx = lim
j→∞

�
B

f(∇uj) dx.

From (4.9), by the Fubini−Tonelli theorem and the Rellich−Kondrachov compactness theorem we have

lim
j→∞

� 1

0

�
∂B�

|uj | dH n−1 d
 = lim
j→∞

�
B

|uj| dx = 0.

This implies there exists a subsequence {uj}j∈T such that

lim
j→∞ , j∈T

�
∂B�

|uj | dH n−1 = 0 (4.12)
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for almost all 
 ∈ (0, 1). By Fatou’s Lemma and (4.10) we have

� 1

0

lim inf
j→∞ , j∈T

�
∂B�

|∇uj | dH n−1 d
 ≤ lim inf
j→∞ , j∈T

�
B

|∇uj | dx <∞.

Thus, for almost all 
 ∈ (0, 1)

lim inf
j→∞ , j∈T

�
∂B�

|∇uj | dH n−1 <∞. (4.13)

Now fix 0 < δ < 1. By (4.12) and (4.13) we can choose 
 ∈ (δ, 1) such that

lim
j→∞ , j∈T

�
∂B�

|uj | dH n−1 = 0

and

lim inf
j→∞ , j∈T

�
∂B�

|∇uj | dH n−1 <∞.

Now take a further subsequence {uj}j∈S , where S ⊆ T , so that

lim
j→∞ , j∈S

�
∂B�

|∇uj | dH n−1 = lim inf
j→∞ , j∈T

�
∂B�

|∇uj | dH n−1.

Relabel the sequence (uj) so that S = N. Now define the sequence (gj) ⊂W 1,1(∂B; RN ) as:

gj(x) := uj |∂B�(
x) for x ∈ ∂B.

Take a cut-off function η ∈ C1(B; R) such that 1B� ≤ η ≤ 1B, |∇η| ≤ 2
1−� , and define (vj) ⊂W 1,r

0 (B; RN ) as:

vj(x) :=
{
η(x) · (E(gj))(x� ) if |x| ≥ 
 ,

uj(x) if |x| < 
,

where E is the extension operator from Lemma 4.4.
Since the function t �→ tr is convex, (s+ t)r ≤ 2r−1(sr + tr) for all s, t ≥ 0. Hence from Lemma 4.4 we have

�
B\B�

|∇vj |r ≤
�
B\B�

(∣∣∇η ·Egj(·/
) ∣∣+ ∣∣ η · ∇[Egj(·/
)]
∣∣)r

≤ 2r−1

�
B\B�

|∇η|r · ∣∣Egj(·/
) ∣∣r + 2r−1

�
B\B�

|η|r · ∣∣∇[Egj(·/
)]
∣∣r

≤ C

�
B\B�

∣∣Egj(·/
) ∣∣r + C

�
B\B�

∣∣∇[Egj(·/
)]
∣∣r (4.14)

for some constant C. We estimate the two terms in (4.14) using Lemma 4.4 (3) as follows. Firstly, note that we
have

�
B\B�

∣∣ [Egj(·/
)] ∣∣r ≤ c1‖gj‖rL1(∂B)

= c1‖uj‖rL1(∂B�)

→ 0 as j → ∞.



1098 P. SONEJI

Now we use (3)(b) to estimate the remaining term:
�
B\B�

∣∣∇[Egj(·/
)]
∣∣r ≤ (c2

�
∂B

|∇gj | dH n−1

)r

=

(
c2

�
∂B�

|∇uj| dH n−1

)r
. (4.15)

Now note that we may obtain the same inequality (albeit for a different constant) using Lemma 4.4 for any
other r′ such that r < r′ < n

n−1 . Hence by (4.15) and Lemma 4.4, since

sup
j

�
∂B�

|∇uj| dH n−1 <∞,

we can use the De la Vallée Poussin criterion to deduce that the sequence |∇[Egj]|r is equi-integrable on B \B�.
By Lemma 4.4, since

sup
j

�
∂B�

|uj| dH n−1 → 0 as j → ∞,

∇[Egj ] → 0 locally uniformly on B \B�, and hence so does |∇[Egj]|r. Thus, by Vitali’s Convergence Theorem,
�
B\B�

∣∣∇[Egj(·/
)]
∣∣r → 0 as j → ∞.

Combining these estimates in (4.14), we have

lim sup
j→∞

�
B\B�

|∇vj |r dx = 0. (4.16)

Now we use the quasiconvexity and non-negativity of f to obtain
�
B

f(∇uj) ≥
�
B�

f(∇uj) =
�
B

f(∇vj) −
�
B\B�

f(∇vj)

≥ L n(B)f(0) −
�
B\B�

f(∇vj)

≥ L n(B)f(0) − L

�
B\B�

(
1 + |∇vj |r

)
.

Let j → ∞ to get, using (4.16),
l0 ≥ L n(B)f(0) − LL n(B \B�).

Recall 
 ∈ (δ, 1) for fixed 0 < δ < 1. Hence we conclude by taking δ arbitrarily close to 1, which completes the
proof of the Lemma. �

4.2. Lower bound on the absolutely continuous part

We now state and prove (4.7), which is essentially just the lower semicontinuity result proved by Kristensen
in [30]. Note that it does not require any finiteness properties of f∞ − in fact f∞ does not feature at all in this
context.

Proposition 4.5. Let f : R
N×n → R be a quasiconvex function satisfying the growth condition (1.2) for some

exponent 1 ≤ r < n
n−1 . Let Ω be a bounded, open subset of Rn.
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Let (uj) be a sequence in W 1,r
loc (Ω; RN ) and u ∈ BV(Ω; RN ). Suppose

uj
∗
⇀ u in BV(Ω; RN ). (4.17)

Let μ be a measure in Ω̄ and suppose
f(∇uj) ∗

⇀ μ in M (Ω̄).

Then for L n-almost all x ∈ Ω, we have
dμ

dL n
(x) ≥ f(∇(x)).

The proof of Proposition 4.5 is just a straightforward blow-up argument using Lemma 4.3.

Proof of Proposition 4.5. Since, by (4.17) and the Uniform Boundedness Principle, |∇uj |L n is bounded
in M (Ω̄), we have for some subsequence (for convenience not relabelled) that there exists a measure ν in
Ω̄ such that

|∇uj | ∗
⇀ ν in M (Ω̄).

Let Ω0 denote the set of points x ∈ Ω such that

1.
dμ

dL n
(x) = lim

�→0+

μ(B(x, 
))
L n(B(x, 
))

exists and is finite

2.
dν

dL n
(x) = lim

�→0+

ν(B(x, 
))
L n(B(x, 
))

exists and is finite

3.
lim
�→0+

1



�
B(x,�)

|u(y) − u(x) − [∇u(x)](x − y)| dy = 0

where ∇u is the Radon−Nikodým derivative of Du with respect to Lebesgue measure. By standard results (see
for example [43, 49]), L n(Ω \Ω0) = 0. Fix x0 ∈ Ω0, and note that since the set

{
 ∈ (0, dist(x, ∂Ω)) : (μ+ ν)(∂B(x, 
)) > 0}

is at most countable we may find a sequence rk ↘ 0 such that (μ+ ν)(∂B(x, rk)) = 0 for all k. Now define

vj,k(y) :=
uj(x0 + rky) − u(x0) − [∇u(x0)](rky)

rk
, y ∈ B. (4.18)

Then by the above assumptions we have

lim
k→∞

lim
j→∞

�
B

|vj,k(y)| dy = 0,

lim
k→∞

lim
j→∞

�
B

|∇vj,k(y) + ∇u(x0)| dy = lim
k→∞

lim
j→∞

�
B

|∇uj(x0 + rky)| dy

= lim
k→∞

1
|B(x0, rk)|

�
B(x0,rk)

|∇u(y)| dy

=
dν

dL n
(x0),
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and similarly

lim
k→∞

lim
j→∞

�
B

f(∇vj,k(y) + ∇u(x0)) dy =
dμ

dL n
(x0).

Hence for each k we can find jk ∈ N such that the all the convergence above occurs for vjk,k as k tends
to infinity. Thus, if we define zk := vjk,k, then (zk) ⊂ W 1,r(B; RN ) satisfies conditions (4.9) and (4.10) of
Lemma 4.3. Applying this lemma (to the function f̄(ξ) = f(∇u(x0) + ξ), say), we obtain

lim inf
k→∞

�
B

f(∇zk + ∇u(x0)) dy ≥ f(∇u(x0)),

i.e.
dμ

dL n
(x0) ≥ f(∇(x0)),

as required. �

Now we remark that the following result follows immediately from this proposition by integrating dμ
dx with

respect to Lebesgue measure over Ω. It gives a first lower bound for the Lebesgue−Serrin extension, which
Theorem 4.1 improves upon, provided additional assumptions on f are satisfied.

Corollary 4.6. Let f : RN×n → R be a quasiconvex function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 . Let Ω be a bounded, open subset of Rn.
Let (uj) be a sequence in W 1,r

loc (Ω; RN ) and u ∈ BV(Ω; RN ). Suppose

uj
∗
⇀ u in BV(Ω; RN ).

Then
lim inf
j→∞

�
Ω

f(∇uj) dx ≥
�
Ω

f(∇u) dx,

and hence
Floc(u,Ω) ≥

�
Ω

f(∇u) dx.

4.3. Remarks on linear growth on full rank-one cone

We now observe that upper and lower bounds in Theorem 3.5 and Corollary 4.6 respectively enable us to
show that whenever f is quasiconvex and satisfies (1.2) for 1 ≤ r < n

n−1 , then finiteness of f∞ on the full
rank-one cone in fact implies f has at most linear growth in all directions. In other words, there can be no
non-negative quasiconvex function which has genuinely superlinear growth 1 < r < n

n−1 but only linear growth
in rank-one directions.

Corollary 4.7. Let f : RN×n → R be a quasiconvex function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 . Suppose f has linear growth on matrices of rank at most one, i.e.

0 ≤ f(ξ) ≤M(|ξ| + 1) (4.19)

for a fixed finite M > 0 and all ξ ∈ R
N×n satisfying rank(ξ) ≤ 1. Then f has linear growth in all directions,

i.e. (4.19) holds for all ξ ∈ RN×n (for perhaps a larger constant).

Proof of Corollary 4.7. Let B denote the open unit ball in Rn. Let ξ be a general matrix in RN×n, and consider
the map u(x) = ξx. Then, since f certainly satisfies the conditions of Theorem 3.5, and Du = ∇u = ξL n, we
have

Floc(u,B) ≤ C(|ξ| + 1)
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for some constant C independent of ξ. However, by Corollary 4.6 we also have

Floc(u,B) ≥
�
B

f(∇u) dx = L n(B)f(ξ).

Combining these two bounds, we get
f(ξ) ≤ C(|ξ| + 1),

from where the result follows, since C is independent of ξ, which is arbitrary. �

Moreover, as the following proposition indicates, we believe that this result can be generalised to the case
where f is W 1,r-quasiconvex for 1 ≤ r < 2, has linear growth on the rank-one cone, but otherwise need satisfy
no other growth conditions on general matrices. Although our result is limited to the case n = N = 2, we believe
that it ought to be possible to generalise this result for higher dimensions, and are currently working on this.

Recall that f : RN×n → R is said to be W 1,r-quasiconvex for some exponent 1 ≤ r ≤ ∞ if it satisfies the
inequality �

B

f(ξ + ∇φ(x)) dx ≥ L n(B)f(ξ)

for all ξ ∈ RN×n and all φ ∈ W 1,r
0 (B; RN ). This definition was introduced and first studied by Ball and Murat

in [14], and is generalisation of Morrey’s classical notion of quasiconvexity. We remark that if f is quasiconvex
and satisfies the growth condition (1.2) for some exponent r, then it is W 1,r-quasiconvex.

Proposition 4.8. Let n = N = 2, and B denote the open unit ball in R2. Let 1 < r < 2 and f : R2×2 → R be
a non-negative W 1,r-quasiconvex function.

Suppose f has linear growth on matrices of rank at most one, i.e. it satisfies (4.19) for a fixed finite M > 0
and all ξ ∈ R2×2 satisfying rank(ξ) ≤ 1. Then f has linear growth from above in all directions, i.e. (4.19) holds
for all ξ ∈ R

2×2 (for perhaps a larger constant).

Proof of Proposition 4.8. Let ξ ∈ R2×2. Now define the map uξ : B → R2 as

uξ(x) =
ξx

|x| ·

Note that uξ maps B\{0} to the surface ξ(∂B), so det(∇uξ(x)) = 0 for all x ∈ B\{0}. Hence rank(det(∇uξ)) ≤ 1
on B \ {0}. Indeed,

∇uξ(x1, x2) =
ξ

(x2
1 + x2

2)
3
2
·
(

x2
2 −x1x2

−x1x2 x2
1

)

=
ξ

(x2
1 + x2

2)
3
2
· ((x2,−x1)t ⊗ (x2,−x1)t

)
.

Hence, by assumption,
f(∇uξ(x)) ≤M(|∇uξ(x)| + 1) (4.20)

for all x ∈ B \ {0}. It is well-known that uξ ∈W 1,q(B; R2) for all 1 ≤ q < n = 2 when ξ is the identity (see for
example [14]), and consequently clearly also for any other ξ ∈ R2×2. Moreover, uξ(x) = ξx on ∂B. Therefore,
since f is W 1,r-quasiconvex and 1 < r < 2, we have

�
B

f(∇uξ) dx ≥ L 2(B)f(ξ). (4.21)
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Thus, using (4.20) and (4.21), we get

f(ξ) ≤ (M/|B|)
�
B

1 + |∇uξ| dx

≤ (M/|B|)
(
1 +

�
B

∣∣ξ(∇(x/|x|))∣∣ dx)

≤ (M/|B|)
(
1 + |ξ|

�
B

∣∣∇(x/|x|)∣∣ dx).
Since x �→ x/|x| is in W 1,1(B; R2), the required result follows with M replaced by (M/|B|) �B

∣∣∇(x/|x|)∣∣ dx =
2M . �

4.4. Lower bound on the singular part

Theorem 2.4 plays a key part in our proof of the inequality (4.8). This is because it shows us that the blow-up
of a BV function on the singular part of the derivative is essentially a function of one variable; this allows us to
apply the following lemma, similar to one of Ambrosio and Dal Maso [8], which gives us a useful lower bound
for the Lebesgue−Serrin extension of such functions.

Lemma 4.9. Let Q ⊂ Rn be a unit n-cube whose sides are either orthogonal or parallel to a unit vector ν ∈ Rn,
let η be a unit vector in RN , and let v ∈ BV(Q; RN ) be a function representable as

v(y) = ψ(〈y, ν〉)η

for a some non-decreasing function ψ : (a, b) → R. Suppose u ∈ BV(Q; RN ) satisfies supp(v − u) ⊂⊂ Q.
Let f : RN×n → R be a quasiconvex function satisfying the growth condition (1.2) for some exponent 1 ≤ r <
n
n−1 , and also the coercivity condition

f(ξ) ≥ c0|ξ|
for some constant c0 > 0, for all ξ ∈ RN×n. Let the recession function f∞ be as defined in (4.1), and suppose
it is finite on rank-one matrices of the form u(y) ⊗ ν, y ∈ Ω, ν ∈ Rn. Let Floc be as defined in (1.4). Then

Floc(u,Q) ≥ f(Du(Q)).

Proof of Lemma 4.9. We may assume without loss of generality that ν = e1 and Q = (0, 1)n. Let ψ : (0, 1) → R

be a non-decreasing function such that v(y) = ψ(y1)η, and let α denote the increment of ψ in (0, 1), i.e.

α = lim
t→1−

ψ(t) − lim
t→0+

ψ(t) = |Dψ|(0, 1) = |Dv|(Q) < +∞.

Now define w ∈ BVloc((0,+∞)n; RN ) by

w(y) := u(y − [y]) + α[y1]η,

where, for every t ∈ R, [t] denotes the integer part of t, and for y = (y1, . . . , yn) ∈ Rn, [y] is defined to be
([y1], . . . , [yn]). Now define, for y ∈ Q,

uk(y) :=
w(ky)
k

∈ BV
(
Q; RN

)
.

Note that

uk(y) =
u(ky − [ky])

k
+ α

[ky1]
k

η,
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[ky1]/k converges to y1 as k → ∞, and
�
Q

∣∣∣∣u(ky − [ky])
k

∣∣∣∣dy =
1

kn+1

�
(0,k)n

|u(y − [y])| dy =
1
k

�
Q

|u(y)| dy → 0.

Therefore uk converges to the affine function u0(y) = αy1η in L1(Q; RN ). Now let Q1 . . . Qkn be the standard
decomposition of Q into kn congruent cubes of side length 1/k. Since, by construction, Dw does not have any
jumps on any hyperplane of the form yj = h where h is an integer and 1 ≤ j ≤ n, it follows that

|Duk|(Q ∩ ∂(Qi)) = 0 for all 1 ≤ i ≤ kn. (4.22)

This implies
Duk(Q) = Dw(Q) = Du(Q),

so (uk) is bounded in BV(Q; RN ). Hence in fact the sequence converges weakly* in BV to u0. By Proposition 3.1,
we get

Floc(uk, (0, 1/k)n) = (1/k)nFloc(u,Q), Floc(uk, (0, 1/k)n) = Floc(uk, Qi) (4.23)

for all 1 ≤ i ≤ kn. Now, using the fact that Floc has a measure representation, the upper bound (3.12) from
Theorem 3.5, and (4.22), it follows that

Floc(uk, Q) =
kn∑
i=1

Floc(uk, Qi).

This implies, together with (4.23), that Floc(uk, Q) = Floc(u,Q). By Corollary 4.6 and the lower semicontinuity
of Floc, we get

Floc(u,Q) = lim
k→∞

Floc(uk, Q) ≥ Floc(u0, Q) ≥ f(αη ⊗ e1).

Noting that Du(Q) = Dv(Q) = αη ⊗ e1, the proof is complete. �

We are now in a position to be able to prove the inequality (4.8) which, combined with the proof of (4.7)
established in Proposition 4.5, allows us to conclude our proof of Theorem 4.1. In order to use the results of
the previous section, we first need to assume that the integrand f is coercive, before then showing how this
assumption can be removed.

Proposition 4.10. Let Ω be a bounded, open subset of Rn, and let (uj) be a sequence in W 1,r
loc (Ω; RN ) and

u ∈ BV(Ω; RN ). Let f : RN×n → R be a quasiconvex function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 , that also satisfies the coercivity condition

f(ξ) ≥ c0|ξ|

for some constant c0 > 0, for all ξ ∈ RN×n. Let the recession function f∞ be as defined in (4.1), and suppose
it is finite on rank-one matrices of the form u(y) ⊗ ν, y ∈ Ω, ν ∈ R

n.
Suppose

uj
∗
⇀ u in BV(Ω; RN ). (4.24)

Let μ be a measure in Ω̄ and suppose
f(∇uj) ∗

⇀ μ in M (Ω̄).

Then for |Dsu|-almost all x ∈ Ω, we have

dμ
d|Dsu|(x) ≥ f∞

(
Dsu

|Dsu|(x)
)
.
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Proof of Proposition 4.10. By Theorem 2.4, letting ξ : Ω → RN×n denote the density of Du with respect to
|Du|, we have, for |Dsu|-almost all x0 ∈ Ω, |ξ(x0)| = 1, rank(ξ(x0)) = 1, and

lim
�→0+

Du(Q(x0, 
))
|Du|(Q(x0, 
))

= ξ(x0), lim
�→0+

Du(Q(x0, 
))

n

= +∞,

where Q(x0, 
) is any cube centred at x0 with side-length 
. Fix x0 with these properties, and write ξ(x0) = η⊗ν
where η ∈ Rn, ν ∈ RN , |η| = |ν| = 1. Without loss of generality, suppose ν = e1. Let Q = Q(0, 1) = (− 1

2 ,
1
2 )n be

the unit cube in Rn, so Q has faces either orthogonal or parallel to e1. Also, subsequently, we shall let Q(x0, 
)
specifically denote the cube x0 + 
Q. Let (rk) be a sequence decreasing to 0, Q(x0, r1) ⊂ Ω. Now define the
functions (vj,k) ⊂W 1,r(Q; RN ) by

vj,k(y) :=
rnk

|Du|(Q(x0, rk))

(
uj(x0 + rky)

rk
−mk

)
, (4.25)

and (vk) ⊂ BV(Q; RN ) by

vk(y) :=
rnk

|Du|(Q(x0, rk))

(
u(x0 + rky)

rk
−mk

)
, (4.26)

where

mk :=
�
Q

u(x0 + rky)
rk

dL n.

Then, by (4.24), vj,k
∗
⇀ vk in BV(Q;Ω) as j → ∞ for each k. By Theorem 2.4, we can chose our sequence (rk)

so that vk converges weakly* in BV(Q; RN ) to a function v ∈ BV(Q; RN ) which can be represented as

v(y) = ψ(y1)η

for a suitable non-decreasing function ψ : (a, b) → R. By the same considerations as in Proposition 4.5, the set

{r > 0 : μ(∂Q(x0, r)) > 0, Q(x0, r) ⊂ Ω}

is at most countable. Hence, by the remark to Theorem 2.4, we can also additionally assume that μ(∂Q(x0, rk)) =
0 for all k. Moreover, for a given σ ∈ (0, 1), we have

1 ≥ |Dv|(Q) ≥ |Dv|(σQ̄) ≥ σn, lim
k→∞

|Dvk|(Q) ≥ σn. (4.27)

By Fubini, there exists s ∈ (σ, 1) such that

lim
k→∞

�
∂(sQ)

|v − vk| dH n−1 = 0. (4.28)

Now define (wk) ⊂ BV(Q; RN ) by

wk :=
{
vk on sQ ,
v on Q \ sQ.

Now define the sequence (tk) converging to +∞ by

tk :=
|Du|Q(x0, rk)

rnk
·

By Lemma 4.9 we have
Floc(wk, Q) ≥ f(Dv(Q)),
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so clearly, for fixed k,
t−1
k Floc(tkwk, Q) ≥ t−1

k f(tkDv(Q)). (4.29)

Moreover, by the measure representation of Floc in Theorem 4.2, we have

t−1
k Floc(tkwk, Q) ≤ t−1

k Floc(tkvk, sQ) + t−1
k Floc(tkwk, Q \ σQ̄). (4.30)

We now obtain various estimates for the terms in (4.30). First note that we have

t−1
k Floc(tkvk, sQ) ≤ t−1

k Floc(tkvk, Q) ≤ lim inf
j→∞

t−1
k

�
Q

f(tk∇vj,k) dx.

However

t−1
k

�
Q

f(tk∇vj,k) dx =
rnk

|Du|Q(x0, rk)

�
Q

f(∇uj(x0 + rky) dy

=
1

|Du|Q(x0, rk)

�
Q(x0,rk)

f(∇uj(y)) dy

j→∞−−−→ μ(Q(x0, rk))
|Du|(Q(x0, rk))

,

and so

t−1
k Floc(tkvk, sQ) ≤ μ(Q(x0, rk))

|Du|Q(x0, rk)

→ dμ
d|Du| (x0) as k → ∞. (4.31)

Observe that wk(y) ∈ span{u(z) : z ∈ Q} for all y ∈ Q. Hence we may use the upper bound (3.12) in Theorem 3.5
to obtain

t−1
k Floc(tkwk, Q \ σQ̄) ≤ t−1

k C(L n(Q \ σQ̄)) + |tkDwk|(Q \ σQ̄)
= C

(
t−1
k (1 − σn) + |Dwk|(Q \ σQ̄)

)
.

Note that

|Dwk|(Q \ σQ̄) ≤ |Dv|(Q \ σQ̄) + |Dvk|(Q \ σQ̄) +
�
∂(sQ)

|v − vk| dH n−1,

and hence, using (4.27) and (4.28), we have

lim sup
k→∞

|Dwk|(Q \ σQ̄) ≤ 2(1 − σn).

This means
lim sup
k→∞

t−1
k Floc(tkwk, Q \ σQ̄) ≤ C(1 − σn). (4.32)

Lastly, recall the definition of the recession function in (4.1): since f is quasiconvex and hence rank-one convex,
we have

lim sup
t→∞

f(tξ)
t

= lim
t→∞

f(tξ)
t

whenever rank(ξ) ≤ 1. Therefore, noting that for x0 ∈ supp(|Dsu|) we have Dv(Q) = η⊗ e1 = ξ(x0), we obtain

lim
k→∞

t−1
k f(tkDv(Q)) = f∞(Dv(Q)). (4.33)
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Also, for such x0,
dμ

d|Du| (x0) =
dμ

d|Dsu|(x0)

Now let k tend to infinity in (4.30), and use (4.31)−(4.33) to get

f∞(ξ(x0)) ≤ dμ
d|Dsu| (x0) + C(1 − σn).

We conclude the proof by letting σ ↗ 1. �

We now remove the coercivity condition on f to prove Theorem 4.1.

Proof of Theorem 4.1. By Propositions 4.5 and 4.10, we have established the inequalities (4.7) and (4.8) for
when f is coercive, allowing us establish the Theorem in this case. Otherwise, define f ε : RN×n → R as

f ε(ξ) := f(ξ) + ε|ξ|,

for all ξ ∈ RN×n, for some ε > 0. Let (uj) be a sequence in W 1,r(Ω; RN ) such that

uj
∗
⇀ u in BV(Ω; RN ).

Then we have

lim inf
j→∞

�
Ω

f ε(∇uj(x)) dx ≥
�
Ω

f ε(∇u(x)) dx +
�
Ω

f ε∞

(
Dsu

|Dsu|
)

|Dsu|.

Now note that
�
Ω

f ε(∇u(x)) dx =
�
Ω

f(∇u(x)) dx + ε

�
Ω

|∇u(x)| dx

It is also clear that the recession function f ε∞ satisfies

f ε∞(ξ) = f∞(ξ) + ε|ξ|,

so �
Ω

f ε∞

(
Dsu

|Dsu|
)
|Dsu| =

�
Ω

f∞
(
Dsu

|Dsu|
)
|Dsu| + ε|Dsu|(Ω).

Moreover, since (uj) is a weakly* convergent sequence in BV, we have

sup
j

�
Ω

|∇uj(x)| dx <∞.

Therefore we have

lim inf
j→∞

�
Ω

f(∇uj(x)) ≥
�
Ω

f(∇u(x)) dx +
�
Ω

f∞
(
Dsu

|Dsu|
)
|Dsu|

+ ε
(
|Du|(Ω) − sup

j

�
Ω

|∇uj(x)| dx
)
,

and conclude by letting ε tend to 0. �
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4.5. Integral representation for certain functions in SBV

Let us turn our attention again to Lemma 3.3: it is interesting to note that if u ∈ SBV(Ω; RN ) satisfies the
conditions of this lemma, then the result tells us that Floc(u,Ω) < ∞. Hence if we return to the assumption
that r ∈ [1, n

n−1 ) then, by Theorem 4.2, Floc(u, ·) is representable by some non-negative, finite Radon measure
λ on Ω. Moreover, we have

λ� L n + H n−1
Ju.
This allows us to refine the upper bound (3.2), and hence get integral represention (instead of a lower bound) in
Theorem 4.1 for a certain limited class of funtions in SBV. It makes use of the following corollary of Besicovitch’s
Covering Theorem, which we state first. For a proof refer to, for example, [22].

Theorem 4.11. Let μ be a Borel measure on R
n and B be any collection of nondegenerate closed balls (i.e.

balls with radius strictly larger than 0). Let A denote the centres of the balls in B. Assume μ(A) < ∞ and
inf{
 : B(a, 
) ∈ B} = 0 for each a ∈ A. Let U ⊂ Rn be an open set. Then there exists a countable collection G
of disjoint balls in B such that ⋃

B∈G
B ⊂ U

and

μ

(
(A ∩ U) \

⋃
B∈G

B

)
= 0.

Corollary 4.12. Let Ω be a bounded, open extension domain in Rn. Suppose u ∈ SBV(Ω; RN ) is such that

|∇u(x)| = 0

for L n-almost all x ∈ Ω, and that the set Ju of approximate jump points of u is the union of finitely many
polyhedra. Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some exponent
1 ≤ r < n

n−1 . Let the recession function f∞ be as defined in (4.1), and suppose it is finite on rank-one matrices
of the form u(y) ⊗ ν, y ∈ Ω, ν ∈ Rn. Let Floc be as defined in (1.4). Then

Floc(u,Ω) ≤ L n(Ω)f(0) +
�
Ω

f∞
(
Dsu

|Dsu|
)
|Dsu|. (4.34)

Proof of Corollary 4.12. Using Lemma 3.3 and Theorem 4.2, let λ be a non-negative finite Radon measure on
Ω representing Floc, i.e.

λ(U) = Floc(u, U)

for all open sets U ⊂ Ω. Now let 
 > 0 and let B(�) be a collection of closed balls of radius at most 
 that is a
fine cover of Ω. Consider any individual ball B ∈ B(�). Now take any open ball B′ ⊃ B of radius less than 2
.
If B′ ∩Ju = ∅, then Du = ∇u = 0 on B′, and u = a for some constant a ∈ RN . Hence by the definition of Floc,
noting that if uj = a for all j, then uj

∗
⇀ u in BV(B′; RN ),

λ(B′) = Floc(u,B′) ≤
�
B′
f(0) dx = L n(B′)f(0). (4.35)

Now suppose B′ ∩Ju �= ∅ and Ju has only a single polyhedron intersecting with B′. Then the jump set cuts the
ball into two parts B′

a and B′
b, with (since ∇u = 0){

u(y) = a on B′
a,

u(y) = b on B′
b,
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for some a, b ∈ RN . Moreover, since any point on a polyhedron is characterised by the intersection of finitely
many n− 1-dimensional hyperplanes, there exists a vector ν, say, such that{

B′
a = B′ ∩ (Ju + tν) for t < 0,

B′
b = B′ ∩ (Ju + tν) for t > 0.

Now let 0 < δ < 
 and define χ : (−
, 
) → RN by

χ(t) :=

⎧⎪⎨
⎪⎩

a if t ≤ −δ,(
b− a

2δ

)
(x− δ) + b if t ∈ (−δ, δ),
b if t ≥ δ.

Now define a function uδ ∈ C(B′; RN ) as follows: note that for each y ∈ B′, there exists a unique t ∈ (−
, 
)
with y ∈ Ju + tν, and let

uδ(y) := χ(t).

We therefore have

∇uδ(y) =

{
0 if y ∈ Ju + tν for t /∈ (−δ, δ),

(b − a) ⊗ ν

2δ
if y ∈ Ju + tν for t ∈ (−δ, δ).

Now use the co-area formula to get
�
B′
f(∇uδ) dx ≤ L n(B′)f(0) + C

� δ

−δ

�
(Ju∩B′)+tν

f

(
(b− a) ⊗ ν

2δ

)
dH n−1 dt

= L n(B′)f(0) + C · 2δf
(

(b− a) ⊗ ν

2δ

)
× H n−1(Ju ∩B′)

→ L n(B′)f(0) + Cf∞((b − a) ⊗ ν)H n−1(Ju ∩B′),

as δ → 0. Note that the final term here is finite, since b − a ∈ span{u(y) : y ∈ Ω}. Now take any decreasing
sequence δj converging to zero, and define uj as uδj . It is easily verified that uj converges almost everywhere
to u in B′, and that the gradients ∇uj are bounded in L1(B′; RN). Hence, taking a subsequence if necessary,
we have uj

∗
⇀ u in BV(B′; RN). Thus

λ(B′) = Floc(u,B′) ≤ L n(B′)f(0) + Cf∞((b − a) ⊗ ν)H n−1 (Ju ∩B′) . (4.36)

Now note that by taking B′ ↘ B we obtain the inequalities (4.35) and (4.36) for the closed ball B.
We also have that H n−1-almost all points x ∈ Ju are on a face of the polyhedron. Hence for balls B ∈ B(�)

that only intersect with a face, we have that Ju is characterised by an n − 1-dimensional hyperplane passing
through B. Therefore in this case we may take ν to be the normal vector of this plane, and a, b are just the
one-sided traces u−(y), u+(y) on either side of the jump, for any y ∈ B∩Ju. Moreover, we can take the constant
C in (4.36), obtained from the co-area formula used above, to be one. Therefore for such a ball B, using the
one-homogeneity of f∞, we have

λ(B) ≤ L n(B)f(0) +
�
Ju∩B

f∞((u+(y) − u−(y)) ⊗ νu(y)) dH n−1(y)

= L n(B)f(0) +
�
Ju∩B

f∞
(
u+(y) − u−(y)
|u+(y) − u−(y)| ⊗ νu(y)

)
|u+(y) − u−(y)| dH n−1(y)

= L n(B)f(0) +
�
Ju∩B

f∞
(
Dsu

|Dsu| (y)
)
|Dsu|(y). (4.37)
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Now we apply Theorem 4.11 with μ = L n + H n−1
Ju + λ and U = Ω. Moreover, we can assume centres of
the balls in B, which is a fine partition, is all of Ω. There exists a countable collection of balls G ⊂ B(�) such
that ⋃

B∈G
B ⊂ U

and

(L n + H n−1
Ju + λ)
(
Ω \

⋃
B∈G

B

)
= 0,

Let G1 denote the set of balls where (4.35) holds and G2 denote the set of balls where (4.37) holds. Then
G \ (G1 ∪ G2) is the set of balls B where B ∩ Ju is nonempty and not just an n− 1-dimensional hyperplane. We
have already remarked that that H n−1-almost all points x ∈ Ju are locally characterised by a hyperplane, so
given ε > 0, in light of (4.5) we may chose 
 small enough so that

∑
B∈G\(G1∪G2)

λ(B) ≤ ε.

Thus

λ(Ω) =
∑
B∈G

λ(B)

=
∑
B∈G1

λ(B) +
∑
B∈G2

λ(B) + ε

≤
∑
B∈G1

L n(B)f(0) +
∑
B∈G2

(
L n(B)f(0) +

�
Ju∩B

f∞
(
Dsu

|Dsu|
)
|Dsu|

)
+ ε

= L n(Ω)f(0) +
�
Ju

f∞
(
Dsu

|Dsu|
)
|Dsu| + ε,

from where the required result follows. �

The following result follows immediately, combining the upper bound of Corollary 4.12 with the lower bound
in Theorem 4.1. Note that for the class of functions u we are considering,

�
Ω

f(∇u) dx = L n(Ω)f(0).

Corollary 4.13. Let Ω, u be as in Corollary 4.12. Let f : RN×n → R be a quasiconvex function satisfying the
growth condition (1.2) for r ∈ [1, n

n−1 ). Let the recession function f∞ be as defined in (4.1), and suppose it is
finite on rank-one matrices of the form u(y) ⊗ ν, y ∈ Ω, ν ∈ Rn. Then

Floc(u,Ω) = L n(Ω)f(0) +
�
Ω

f∞
(
Dsu

|Dsu|
)

|Dsu|.

Appendix A. Measure representation

In this appendix, we shall provide a proof of Theorem 4.2. Let Ω be an open, bounded extension domain
in R

n, n ≥ 2, and let f be a continuous integrand satisfying the growth condition (1.2) where r ∈ [1, n
n−1 ).

Consider the Lebesgue−Serrin extensions F and Floc as defined in (1.3) and (1.4) respectively.
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We shall first prove integral estimates for a trace-preserving operator, which will then be used to show that
these functionals are representable by finite Radon measures on Ω. This essentially comes directly from the
work of Fonseca and Malý in [24], where measure representation is obtained for Lebesgue−Serrin extensions in
the context of Sobolev Spaces of exponent larger than one (in fact they consider more general integrands of the
form f = f(x, u,∇u)). The reader may just as easily obtain the results given here by referring to their paper,
letting “p” (in their paper) be equal to 1 here, letting their “q” be r, and carefully substituting instances of
“weak convergence in W 1,p” with weak* convergence in BV. However, since this borderline case is not explicitly
contained in their paper (and for the convenience of the reader), we give a complete proof here.

These results are important in the context of proving Theorem 4.1, where we obtain a lower semicontinuity
result in the case where f is assumed additionally to be quasiconvex and have at most linear growth in certain
directions.

A.1. A trace-preserving linear operator

Adapting a result in [24], we construct a linear operator Tu from W 1,1 into itself that improves integrability
over a “layer”, allowing us to estimate the W 1,r norm of Tu, for r ∈ [1, n

n−1 ), in terms of a special maximal
function. This will be used subsequently to “connect” two functions across a thin transition layer and estimate
the increase of energy. In their paper, they are interested specifically in a linear operator from W 1,p into W 1,p

for p > 1. However, we have observed that the proof also works for p = 1, which is what we require.
Let Ω be a bounded, open subset of Rn. Let η ∈ C∞

c (Ω) be a non-negative function and [t1, t2] ⊂ (0, ‖η‖∞).
Suppose also that 0 < |∇η| ≤ A on {t1 ≤ η ≤ t2}. Given a subinterval (a, b) ⊂ (t1, t2), let Zba denote the set
{a < η < b}, and for t0 ∈ (t1, t2), let Γt0 denote the level set {η = t0}.

Fix t0 ∈ (t1, t2) and note that there exists a diffeomorphism Gt0 of Γt0 × [t1, t2] onto Z̄t2t1 such that

{
Gt0(z, t0) = z

η(Gt0(z, t)) = t
(A.1)

for all z ∈ Gt0 , t ∈ [t1, t2]. To see this, consider the flow hz verifying

⎧⎨
⎩

dhz
dt

= ∇η(h(t))
|∇η(h(t))|2

hz(t0) = z

and set Gt0 := hz(t). Note that the map Gt0 is bi-Lipschitz, and also that the Jacobians of Gt0 and G−1
t0 are

bounded. This allows us to establish the following lemma.

Lemma A.1. [24] Let s ∈ (t1, t2) and 
 > 0 be such that [s − 
, s + 
] ⊂ (t1, t2). Let h be a non-negative
measurable function on Ω. Then

�
{η=s}

( �
B(z, �

A )

h(y) dy
)

dH n−1(z) ≤ C
n−1

�
Zs+�

s−�

h(y) dy,

where C is a constant dependent on n, η, t1 and t2.

Proof of Lemma A.1. First note that if z ∈ Γs, then B(z, �A ) ⊂ Zs+�s−� . Hence, using the change of variables
y = Gs(z, t) and (A.1), we obtain
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�
{η=s}

(�
B(z, �

A )

h(y) dy

)
dH n−1(z)

≤ C

�
Γs

(� s+�

s−�

(�
{σ∈Γs:|Gs(σ,t)−Gs(z,s)|< �

A}
h(Gs(σ, t)) dH n−1(σ)

)
dt

)
dH n−1(z)

= C

�
Γs

(� s+�

s−�

(�
{z∈Γs:|Gs(σ,t)−Gs(z,s)|< �

A}
h(Gs(σ, t)) dH n−1(z)

)
dt

)
dH n−1(σ)

≤ C

�
Γs×(s−�,s+�)

H n−1
({
z ∈ Γs : |Gs(σ, t) −Gs(z, s)| < �

A

})
× h(Gs(σ, t)) dL n(σ, t)

≤ C
n−1

�
Zs+�

s−�

h(y) dy,

since, due to the Lipschitz continuity of G−1
s ,

H n−1
({
z ∈ Γs : |Gs(σ, t) −Gs(z, s)| < �

A

}) ≤ C
n−1. �

We may now prove the following result.

Lemma A.2. Let r ∈ [1, n
n−1 ). Let t1 < a < b < t2. There exists a linear operator T : W 1,1(Ω; RN ) →

W 1,1(Ω; RN ) such that Tu = u on Ω \ Zba and

‖Tu‖W 1,r(Zb
a) ≤ C(b− a)

n
r −n+1

(
sup
t∈(a,b)

(t− a)−1‖u‖W 1,1(Zt
a) + sup

t∈(a,b)

(b− t)−1‖u‖W 1,1(Zb
t )

)
, (A.2)

where C depends on n, r, η, t1 and t2.

Proof of Lemma A.2. This proof is directly from [24], but we specifically consider a borderline case that is left
out in that proof. Set

Tu(x) :=
�
B(0,1)

u(x+ θ(x)y) dy,

where

θ(x) : =
1

2A
max{0,min{η(x) − a, b− η(x)}}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if η(x) ≥ b

b−η(x)
2A if a+b

2 < η(x) < b

η(x)−a
2A if a < η(x) ≤ a+b

2

0 if η(x) ≤ a.

It is clear to see that Tu(x) = x if x /∈ Zba, and

Tu(x) =
�
B(x,θ(x))

u(z) dz
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for x ∈ Zba. Let c := a+b
2 and define

M0 := sup
t∈(a,b)

(t− a)−1

�
Zt

a

|u| dy,

M1 := sup
t∈(a,b)

(t− a)−1

�
Zt

a

|u| + |∇u| dy.

First assume u is smooth and fix α ≥ 1. If 
 ∈ (0, 1
4 (b − a)) and if z ∈ {η = a + 2
}, then θ(z) = �

A and
B(z, θ(z)) ⊂ Za+3�

a+� . Hence

|Tu(z)|α ≤ C
−nα
(�

B(z, �
A )

|u(y)| dy
)α

≤ C
−nα
(�

Za+3�
a+�

|u(y)| dy
)α−1(�

B(z, �
A )

|u(y)| dy
)
.

Now use Lemma A.1 to get

�
{η=a+2�}

|Tu(z)|α dH n−1(z)

≤ C
−nα
(�

Za+3�
a+�

|u(y)| dy
)α−1

×
�
{η=a+2�}

(�
B(z, �

A )

|u(y)| dy
)

dH n−1(z)

≤ C
−nα
(�

Za+3�
a+�

|u(y)| dy
)α−1


n−1

(�
Za+3�

a+�

|u(y)| dy
)

= C
−nα+n−1

(�
Za+3�

a+�

|u(y)| dy
)α

. (A.3)

By the co-area formula and (A.3) for α = r, since |∇η| is bounded away from zero, we get

�
Zc

a

|Tu(x)|r dx ≤ C

� 1
4 (b−a)

0

(�
{η=a+2�}

|Tu(z)|r dH n−1(z)

)
d


≤ C

� 1
4 (b−a)

0


−nr+n−1

(�
Za+3�

a+�

|u(y)| dy
)r

d
. (A.4)

We have shown that this inequality holds for u when u is smooth. Now we show that (A.4) holds for a general
function u ∈ L1(Ω; RN ). By a standard approximation argument (for example, using mollification) there exists
a sequence (uj) of smooth functions such that uj → u strongly in L1(Ω; RN ), and pointwise almost everywhere.
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Now we use this property and Fatou’s Lemma to get:

�
Zc

a

|Tu(x)|r dx =
�
Zc

a

lim
j→∞

|Tuj(x)|r dx

≤ lim inf
j→∞

�
Zc

a

|Tuj(x)|r dx

≤ lim inf
j→∞

C

� 1
4 (b−a)

0


−nr+n−1

(�
Za+3�

a+�

|uj(y)| dy
)r

d


= C

� 1
4 (b−a)

0


−nr+n−1

(�
Za+3�

a+�

|u(y)| dy
)r

d
,

as required. Moreover, since
�
Za+3�

a+�

|u(y)| dy ≤ CM0
,

we have

�
Zc

a

|Tu(x)|r dx ≤ CM r
0

� 1
4 (b−a)

0


−nr+n−1+r d


≤ CM r
0 (b − a)n−(n−1)r. (A.5)

We use an entirely similar argument to conclude that we also have

�
Zb

c

|Tu(x)|r dx ≤ CM r
0 (b − a)n−(n−1)r.

Now note that we can also obtain the same estimates with the gradients ∇Tu and ∇u. This is because

∂Tu

∂xi
(x) =

�
B(0,1)

⎛
⎝ ∂u

∂xi
(x+ θ(x)y) +

n∑
j=1

∂u

∂xj
(x+ θ(x)y)yj

∂θ

∂xi
(x)

⎞
⎠ dy

and so

|∇Tu| ≤ CT (|∇u|). (A.6)

Therefore the Lr estimate (A.5) also holds for derivatives, giving

‖Tu‖W 1,r(Zb
a) ≤ C(b− a)

n
r −n+1

(
sup
t∈(a,b)

(t− a)−1‖u‖W 1,1(Zt
a) + sup

t∈(a,b)

(b− t)−1‖u‖W 1,1(Zb
t )

)
,

as required.
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It remains to show that T is a continuous linear operator. For u smooth, use the co-area formula, (A.3) with
α = 1, and (A.6) to get

�
Zc

a

(|Tu|+ |∇Tu| dy ≤ C

� 1
4 (b−a)

0

(�
{η=a+2�}

|Tu(z)|+ |∇Tu(z)| dH n−1(z)

)
d


≤ C

� 1
4 (b−a)

0

(�
Za+3�

a+�


−1(|u(y)| + |∇u(y)|) dy

)
d


≤ C

� 1
4 (b−a)

0

(� a+3�

a+�

(�
{η=t}


−1(|u(z)| + |∇u(z)|) dH n−1(z)

)
dt

)
d


= C

� b

a

(�
{η=t}

(� min{t−a, b−a
4 }

t−a
3


−1(|u(z)| + |∇u(z)|) d


)
dH n−1(z)

)
dt

≤ C

�
Zb

a

(|u(y)| + |∇u(y)|) dy. (A.7)

A similar bound holds for �
Zb

c

(|Tu|+ |∇Tu|) dy.

For u smooth, it is easy to see that Tu is weakly differentiable and, by the above estimates, that Tu ∈
W 1,1(Ω; RN ). For u ∈W 1,1(Ω; RN ), again let (uj) be a sequence of smooth functions such that uj → u strongly
in W 1,1(Ω; RN ), and pointwise almost everywhere. By (A.7) and Uniform Boundedness, (Tuj) is bounded in
W 1,1(Ω; RN ), and hence there exists a subsequence that converges weakly* in BV(Ω; RN ) to Tu, so by (A.7)
we have �

Ω

(|Tu|+ |∇Tu|) dy ≤ C

�
Ω

(|u| + |∇u|) dy,

which establishes that indeed T is a linear continuous map from W 1,1(Ω; RN ) into W 1,1(Ω; RN ). This completes
the proof. �

A.2. Technical preliminaries for measure representation

In this section we establish some results that are key to proving the main result of this section. First, we have
the following elementary lemma.

Lemma A.3. Let ψ be a continuous non-decreasing function on an interval [a, b], a < b. Then there exist
a′ ∈ [a, a+ 1

3 (b − a)] and b′ ∈ [b− 1
3 (b − a), b] such that a ≤ a′ < b′ ≤ b, and⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(t) − ψ(a′)
t− a′

≤ 3
ψ(b) − ψ(a)

b− a

ψ(b′) − ψ(t)
b′ − t

≤ 3
ψ(b) − ψ(a)

b− a

(A.8)

for all t ∈ (a′, b′).

Proof of Lemma A.3. Without loss of generality we may assume a = 0 and ψ(a) = 0. Define

φ(t) := ψ(t) − 3t
ψ(b)
b
.

Let a′ be the point in [0, b] where φ attains its maximum and let b′ be the point where φ attains its minimum.
It follows clearly that (A.8) holds from this choice of a′ and b′: note that when t > b

3 , since ψ is non-decreasing,
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3tψ(b)
b > ψ(b) ≥ ψ(b). Hence we have φ(0) = 0 and φ(t) < 0, so it follows that a′ ≤ b

3 . We argue in a similar
way to show that b′ ≥ b − 1

3b. �

We now apply this result to establish the following.

Lemma A.4. Let V ⊂⊂ Ω and W ⊂ Ω be open sets satisfying Ω = V ∪W . Let v ∈W 1,r(V ) and w ∈W 1,r(W )
for r ∈ [1, n

n−1 ). Let k ∈ N. Then there exists a function z ∈W 1,r
loc (Ω) and open sets V ′ ⊂ V and W ′ ⊂W , such

that V ′ ∪W ′ = Ω, z = v on Ω \W ′, z = w on Ω \ V ′,

L n(V ′ ∩W ′) ≤ Ck−1 (A.9)

and
‖z‖W 1,r(V ′∩W ′) ≤ Ckn−1−n

r

(‖v‖W 1,1(V ∩W ) + ‖w‖W 1,1(V ∩W ) + k‖w − v‖L1(V ∩W )

)
, (A.10)

where C is a constant dependent on r, V and W .

Proof of Lemma A.4. Let η ∈ C∞
c (Ω) be such that

η = 0 on Ω \ V and η = 1 on Ω \W. (A.11)

By Sard’s Lemma, the image of the set of all critical points of η is a closed set of measure zero. Hence, there
exists a nondegenerate interval [a.b] ⊂ (0, 1) \ η({∇η = 0}). Take k ∈ N and define

f := 1 + |v| + |w| + |∇v| + |∇w| + k|w − v|.
Since {a < η < b} ⊂ V ∩W , we may find j ∈ {1, . . . , k} such that�

{aj<η<bj}
f dx ≤ 1

k

�
V ∩W

f dx, (A.12)

where aj := a+ (j−1)(b−a)
k and bj := a+ j(b−a)

k . Now apply Lemma A.3 with

ψ(t) :=
�
{η<t}

f dx,

to find [a′, b′] ⊂ [aj , bj] such that b′ − a′ ≥ 1
3 (bj − aj), and

�
{a′<η<t}

f dx ≤ 3
t− a′

b′ − a′

�
{a′<η<b′}

f dx,

�
{t<η<b′}

f dx ≤ 3
b′ − t

b′ − a′

�
{a′<η<b′}

f dx (A.13)

for all t ∈ (a′, b′). Now set
V ′ := Ω ∩ {η > a′}, W ′ := Ω ∩ {η < b′},

and

u :=

⎧⎪⎨
⎪⎩

v on {η ≥ b′},
(η − a′)v + (b′ − η)w

b′ − a′
on {a′ ≤ η ≤ b′},

w on {η ≤ a′}.
By (A.11), it is clear that V ′ ⊂ V , W ′ ⊂W , and V ′ ∪W ′ = Ω. Moreover, (A.9) holds as |∇η| is bounded away
from zero on {a < η < b} and b′ − a′ ≤ b−a

k . It is easy to verify that on {a′ < η < b′} we have

|u| + |∇u| ≤ Cf.

Now use (A.12), (A.13) and Lemma A.2 to find a function z ∈W 1,1(Ω) such that z = u = v on {η ≥ b′} = Ω\W ′,
z = u = w on {η ≤ a′} = Ω \ V ′, and (A.10) is satisfied. �



1116 P. SONEJI

A.3. Proof of measure representation

We first recall some key definitions. Let μ be a Radon measure on Ω̄, where Ω is a bounded, open subset
of Rn. Then we say that μ (strongly) represents F (u, ·) if

μ(U) = F (u, U)

for all open sets U ⊂ Ω. We say that μ weakly represents F (u, ·) if

μ(U) ≤ F (u, U) ≤ μ(Ū)

for all open sets U ⊂ Ω. The following two theorems are the main results of this section. Note that the first one
is Theorem 4.2.

Theorem A.5. Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 . Let u ∈ BV(Ω; RN ) and Floc be as defined in (1.4). Then if Floc(u,Ω) <∞, then there
exists a non-negative, finite Radon measure λ on Ω which represents Floc.

Theorem A.6. Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 . Let u ∈ BV(Ω; RN ) and F be as defined in (1.3). Then if F (u,Ω) < ∞, then there
exists a non-negative, finite Radon measure μ on Ω̄ which weakly represents F .

The following lemma is instrumental in our proofs of these two theorems.

Lemma A.7. Let f : R
N×n → R be a continuous function satisfying the growth condition (1.2) for some

exponent 1 ≤ r < n
n−1 . Let V , W ⊂ Ω be open sets, V ⊂⊂ Ω and Ω = V ∪W , and let u ∈ W 1,1(Ω; RN ). Let

F be as defined in (1.3). Then
F (u,Ω) ≤ F (u, V ) + F (u,W ).

An identical assertion holds for Floc as defined in (1.4).

Proof of Lemma A.7. Let ε > 0. By the definition of F , there exist sequences (vk) ⊂W 1,r(V ; RN ) and (wk) ⊂
W 1,r(W ; RN ) such that

vk
∗
⇀ u weakly* in BV(V ; RN) and wk

∗
⇀ u weakly* in BV(W ; RN ),

and (by eliminating the first terms of the sequences if necessary),�
V

f(∇vk) dx ≤ F (u, V ) + ε,

�
W

f(∇wk) dx ≤ F (u,W ) + ε.

Moreover, by taking subsequences if necessary, we can ensure

‖vk − u‖L1(V ∩W ) ≤ 1
k

and ‖wk − u‖L1(V ∩W ) ≤ 1
k

(A.14)

for all k. Using Lemma A.4, for each k we can find open sets Vk ⊂ V , Wk ⊂ W , and functions (zk) ⊂
W 1,r(Ω; RN ), such that Vk ∪ Wk = Ω, zk = vk on Ω \Wk, and zk = wk on Ω \ Vk. Moreover, by growth
condition (1.2), (A.14), and since by the Uniform Boundedness Principle the sequences (vk), (wk) are bounded
in W 1,1(V ; RN ), W 1,1(W ; RN ) respectively,�

Vk∩Wk

f(∇zk) dx ≤ L

�
Vk∩Wk

(1 + |∇zk|r) dx

≤ Ck−1 + Ckr(n−1)−n
(
‖v‖W 1,1(V ∩W ) + ‖w‖W 1,1(V ∩W ) + k‖w − v‖L1(V ∩W )

)r
≤ Ckr(n−1)−n. (A.15)
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Therefore �
Ω

f(∇zk) dx ≤
�
V

f(∇vk) dx+
�
W

f(∇wk) dx+ Ckr(n−1)−n. (A.16)

Now we show that zk
∗
⇀ u in BV(Ω; RN ). Certainly, since zk = vk on Ω \Wk, zk = wk on Ω \Vk, and by (A.15)

the W 1,r-norm of each zk is bounded on Vk ∩Wk, the sequence is bounded in W 1,1(Ω; RN ). Moreover, using
the fact that L n(Vk ∩Wk) → 0 and Rellich−Kondrachov, we have that each subsequence of (zk) has a sub-
subsequence converging in L1(Ω; RN ) to u. Therefore it follows that zk

∗
⇀ u in BV(Ω; RN ) as required. Hence

by the definition of F and (A.16)

F (u,Ω) ≤ lim inf
k→∞

�
Ω

f(∇zk) dx ≤ F (u, V ) + F (u,W ) + 2ε,

which concludes the proof. The proof for Floc is essentially the same. �

Proof of Theorem A.6. First we assume in addition that f satisfies the coercivity condition

f(ξ) ≥ c0|ξ| (A.17)

for some constant c0 > 0, for all ξ ∈ RN×n. Using Proposition 3.2, let (uk) ⊂ W 1,r(Ω; RN ) be a minimising
sequence for F (u,Ω), i.e. uk

∗
⇀ u in BV(Ω; RN ) and

lim
k→∞

�
Ω

f(∇uk) dx = F (u,Ω).

Note that since the sequence f(∇uj)L n is bounded in M (Ω̄), we that have for some subsequence (for conve-
nience not relabelled) there exists a measure μ in Ω̄ such that

f(∇uj) ∗
⇀ μ in M (Ω̄).

Clearly, since f is non-negative, μ must also be a non-negative measure on Ω̄. In particular, we have

μ(Ω̄) = F (u,Ω) (A.18)

and for every open set V ⊂ Ω

F (u, V ) ≤ lim inf
k→∞

�
V

f(∇uk) dx ≤ μ(V̄ ). (A.19)

Now let V ⊂ Ω be an open set and fix ε > 0. Take an open set Z ⊂⊂ V such that

μ(V ) − μ(Z) < ε.

Now use Lemma A.7, (A.18) and (A.19) to get

μ(V ) ≤ μ(Z) + ε = μ(Ω̄) − μ(Ω̄ \ Z) + ε

≤ F (u,Ω) − F (u, Ω̄ \ Z) + ε

≤ F (u, V ) + ε.

Let ε→ 0 to obtain
μ(V ) ≤ F (u, V ).

Now we show how the coercivity assumption (A.17) may be removed. Define f ε : RN×n → R as

f ε(ξ) := f(ξ) + ε|ξ|,
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for all ξ ∈ RN×n, for some ε > 0. Define F ε to be the corresponding Lebesgue−Serrin extension of f ε as in (1.3).
By the above part of the proof, we obtain a measure με weakly representing F ε. Letting (uk) ⊂ W 1,r(Ω; RN )
be a minimising sequence for F ε(u,Ω), we have

με(Ω̄) = F ε(u,Ω) ≤ F (u,Ω) + ε sup
k

‖uk‖W 1,1 ≤ C. (A.20)

Moreover, if U ⊂ Ω is open, then clearly

F (u, U) ≤ lim inf
k→∞

�
U

f(∇uk) dx ≤ lim inf
k→∞

�
U

f ε(∇uk) dx ≤ με(Ū). (A.21)

Hence, by (A.20), we may select εj → 0 such that the sequence μεj converges weakly* in the sense of measures
to a finite, non-negative, Radon measure μ. Then, by (A.21),

F (u, U) ≤ μεj (Ū),

and passing to the weak* limit,
F (u, U) ≤ μ(Ū).

Conversely, let ε′ > 0, and take a sequence (vk) ⊂W 1,r(U ; RN ) satisfying vk
∗
⇀ u weakly* in BV(U ; RN ) and

�
U

f(∇vk) dx ≤ F (u, U) + ε′

for all k. Then, for j large enough, we have
�
U

f εj(∇vk) dx =
�
U

(
f(∇vk) + εj|vk| + εj |∇vk|

)
dx ≤ F (u, U) + 2ε′,

and so

μεj (U) ≤ F εj (u, U) ≤ lim inf
k→∞

�
U

f εj(∇vk) dx ≤ F (u, U) + 2ε′.

Now we pass to the weak* limit and let ε′ → 0 to conclude the proof. �

Now we show that we also have strong measure representation for F if certain technical conditions are
satisfied. First we establish the following lemma, which will also play a part in our proof of Theorem A.5.

Lemma A.8. Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 . Let u ∈ BV(Ω; RN ) and F be as defined in (1.3). Let U be an open subset of Ω. If μ is
a Radon measure on Ω̄ weakly representing F (u, ·) and

inf
K
{F (u, U \K) : K ⊂ U is compact } = 0, (A.22)

then
μ(U) = F (u, U).

An identical statement holds for Floc as defined in (1.4).

Proof of Lemma A.8. We need to show F (u, U) ≤ μ(U). Let ε > 0 and, using (A.22), let K ⊂ U be a compact
set such that

F (u, U \K) < ε.
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Now take an open set W such that K ⊂W ⊂⊂ U and apply Lemma A.7 to get

F (u, U) ≤ F (u,W ) + F (u, U \K)
≤ F (u,W ) + ε

≤ μ(W̄ ) + ε

≤ μ(U) + ε.

Take ε→ 0 to complete the proof. The proof for Floc is the same. �

This allows us to deduce

Corollary A.9. Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1 . Let u ∈ BV(Ω; RN ) and F be as defined in (1.3). If μ is a finite Radon measure on Ω̄
weakly representing F (u, ·), then μ represents F (u, ·) if and only if there exists a Radon measure ν such that

F (u, U) ≤ ν(U) (A.23)

for all open subsets U ⊂ Ω.

Proof of Corollary A.9. If (A.23) is satisfied, then clearly (A.22) holds for any open set U ⊂ Ω so, by
Lemma A.8, μ represents F (u, ·). The converse implication is trivial, taking ν = μ. �

We are now in a position to prove the remaining main theorem of this section.

Proof of Theorem A.5. Again, assume first that the coercivity condition (A.17) is satisfied. Using the proof of
Theorem A.6, there exists a Radon measure λ on Ω̄ such that for every open set U ⊂ Ω,

λ(U) ≤ Floc(u, U) ≤ λ(Ū).

For a given open set U ⊂ Ω, we shall show additionally that

λ(U) ≥ Floc(u, U).

Take an increasing sequence of open, bounded, smooth sets Uj ⊂⊂ U , j ∈ N, such that Ūj ⊂ Uj+1 for all j and
U =

⋃∞
j=1 Uj . By the definition of Floc, for each j ≥ 3 there exists a sequence (uj,k) ⊂ W 1,r

loc (Uj \ Ūj−2; RN )
such that

uj,k
∗
⇀ u weakly* in BV(Uj \ Ūj−2; RN ) as k → ∞,

and �
Uj\Ūj−2

f(∇uj,k) dx ≤ Floc(u, Uj \ Ūj−2) + 2−j . (A.24)

Fix positive integers αj , which will be determined later, and note that by taking a subsequence (for convenience
not relabelled) we may assume uj,k → u almost everywhere in Uj \ Ūj−2 as k → ∞, and

‖uj,k − u‖L1(Uj\Ūj−2) ≤ 2−j−kα−1
j .

Now use Lemma A.4 to connect uj,k to uj+1,k across Uj \ Ūj−1. There exist open sets V +
j,k, V

−
j+1,k such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V +
j,k ⊂ Uj \ Ūj−2

V −
j+1,k ⊂ Uj+1 \ Ūj−1

Uj+1 \ Ūj−2 = V +
j,k ∪ V −

j+1,k

L n(V +
j,k ∩ V −

j+1,k) ≤ Cj2−j−kα−1
j ,



1120 P. SONEJI

and there exist functions (zj,k) ⊂W 1,r(Uj+1 \ Ūj−2; RN ) such that

zj,k =
{

uj,k on (Uj \ Ūj−2) \ V −
j+1,k,

uj+1,k on (Uj+1 \ Ūj−1) \ V +
j,k,

and
�
V +

j,k∩V −
j+1,k

f(∇zj,k) dx ≤ L

�
V +

j,k∩V −
j+1,k

(
1 + |∇zj,k|r

)
dx

≤ LCj2−j−kα−1
j + Cj(2j+kαj)r(n−1)−n

(
‖uj,k‖W 1,1(Uj\Ūj−1)

+ ‖uj+1,k‖W 1,1(Uj\Ūj−1) + 2j+kαj‖uj+1,k − uj,k‖L1(Uj\Ūj−1)

)r
≤ Cj(2j+kαj)r(n−1)−n,

where Cj is a constant depending on j. Hence we may specify our choice of αj so that αr(n−1)−n
j Cj ≤ 1. Now

define (zk) ⊂W 1,r
loc (Ω \ U1; RN ) by

zk :=
{

zj,k on V +
j,k ∩ V −

j+1,k,

uj+1,k on (Uj+1 \ Uj−1) \ (V +
j,k ∪ V −

j+2,k).

Now fix m ∈ N, m ≥ 2. We have

�
U\Ūm

f(∇zk) dx ≤
∞∑

j=m+1

�
Uj\Ūj−1

f(∇zk) dx

≤
∞∑

j=m+1

( �
Uj+1\Ūj−1

f(∇uj+1,k) dx

+
�
Uj\Ūj−1

f(∇uj,k) dx+
�
V +

j,k∩V −
j+1,k

f(∇zj,k) dx
)

≤
∞∑

j=m+1

(
2Floc(u, Uj+1 \ Ūj−1) + 2−j+1 + 2(j+k)(r(n−1)−n)

)

≤
∞∑

j=m+1

(
2λ(Uj+2 \ Uj−1) + 2−j+1 + 2(j+k)(r(n−1)−n)

)

≤ 6λ(U \ Um−1) + 2−m+1 + 2k(r(n−1)−n)
∞∑

j=m+1

(2n−r(n−1))−j

≤ 6λ(U \ Um−1) + 2−m+1 + 2k(r(n−1)−n) · o(m).

By the coercivity condition (A.17) and the above, we have

�
U\Ūm

|∇zk| ≤ C

�
Ω\Ūm

f(∇zk) dx

≤ C6λ(U \ Um−1) + C

≤ C6Floc(u, U \ Um−1) + C
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for all k so, since Floc(u,Ω) <∞, the sequence (zk) is bounded in W 1,1(U \ Ūm; RN ). Now note that

L n

⎛
⎝ ∞⋃
j=1

(V +
j,k ∩ V −

j+1,k)

⎞
⎠ ≤

∞∑
j=1

L n
(
V +
j,k ∩ V −

j+1,k

)

≤
∞∑
j=1

Cj2−j−kα−1
j

≤
∞∑
j=1

2−j−k

→ 0 as k → ∞.

Hence, arguing using Rellich−Kondrachov as in Lemma A.7, we have that zk
∗
⇀ u in BV(U \Ūm; RN ). Therefore

Floc(u, U \ Ūm) ≤ 6λ(U \ Um−1) + 2−m+1,

and so

inf
K
{F (u, U \K) : K ⊂ U is compact } ≤ lim

m→∞ Floc(u, U \ Ūm)

≤ lim
m→∞

(
6λ(U \ Um−1) + 2−m+1

)
= 0.

Thus condition (A.22) of Lemma A.8 is satisfied, allowing us to conclude that indeed

λ(U) = Floc(u, U).

We remove the coercivity assumption (A.17) using the same argument as in the proof of Theorem A.6. �
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[24] I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Annal. Inst. Henri Poincaré Anal. Non
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