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RELATING PHASE FIELD AND SHARP INTERFACE APPROACHES
TO STRUCTURAL TOPOLOGY OPTIMIZATION
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Abstract. A phase field approach for structural topology optimization which allows for topology
changes and multiple materials is analyzed. First order optimality conditions are rigorously derived
and it is shown via formally matched asymptotic expansions that these conditions converge to classical
first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple
junctions where e.g. two materials and the void meet. Finally, we present several numerical results for
mean compliance problems and a cost involving the least square error to a target displacement.
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1. Introduction

In structural topology optimization one tries to distribute a limited amount of material in a design domain
such that an objective functional is minimized. Known quantities in these problems are e.g. the applied loads,
possible support conditions, the volume of the structure and possible restrictions as for example prescribed solid
regions or given holes. A priori the precise shape and the connectivity (the “topology”) of the structure is not
known. Often also the problem arises that several materials have to be distributed in the given design domain.

Different methods have been used to deal with shape and topology optimization problems. The classical
method uses boundary variations in order to compute shape derivatives which can be used to decrease the
objective functional by deforming the boundary of the shape in a descent direction, see e.g. [41, 53, 54] and the
references therein. The boundary variation technique has the drawback that it needs high computational costs
and does not allow for a change of topology.
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Sometimes one can deal with the change of topology by using homogenization methods, see [2] and variants
of it such as the SIMP method, see [7] and the reference therein. These approaches are restricted to special
classes of objective functionals.

Another approach which was very popular in the last ten years is the level set method which was originally
introduced in [45]. The level set method allows for a change of topology and was successfully used for topology
optimization by many authors, see e.g. [17, 44]. Nevertheless for some problems the level set method has diffi-
culties to create new holes. To overcome this problem the sensitivity with respect to the opening of a small hole
is expressed by so called topological derivatives, see [54]. Then, the topological derivative can be incorporated
into the level set method, see e.g. [18], in order to create new holes.

The principal objective in shape and topology optimization is to find regions which should be filled by material
in order to optimize an objective functional. In a parametric approach this is done by a parametrization of the
boundary of the material region and in the optimization process the boundary is varied. In a level set method
the boundary is described by a level set function and in the optimization process the level set function changes
in order to optimize the objective. As the boundary of the region filled by material is unknown the shape
optimization problem is a free boundary problem. Another way to handle free boundary problems and interface
problems is the phase field method which has been used for many different free boundary type problems, see
e.g. [20, 23].

In structural optimization problems the phase field approach has been used by different au-
thors [9, 11, 12, 16, 24, 50, 55, 58–61]. The phase field method is capable of handling topology changes and also
the nucleation of new holes is possible, see e.g. [9]. The method is applied for domain dependent loads [11],
multi-material structural topology optimization [60], minimization of the least square error to a target dis-
placement [55], topology optimization with local stress constraints [18], mean compliance optimization [9, 55],
compliant mechanism design problems [55], eigenfrequency maximization problems [55] and problems involving
nonlinear elasticity [50].

Although many computational results on phase field approaches to topology optimization exist there has
been relatively little work on analytical aspects. One result to be mentioned is the Γ -convergence result, see
e.g. [11], which relates the phase field energy in topology optimization to classical objective functionals. There
is an existence result for the phase field model for compliance shape optimization in nonlinear elasticity in [50].
Most other authors derived first order conditions in a formal way and presented numerical examples obtained
by a gradient flow method leading to either an Allen−Cahn [9] or a Cahn−Hilliard type phase field equation
[24, 55, 60]. We also like to mention that in [16] a primal-dual interior point method is used to solve the phase
field topological optimization problem.

Although in principle the phase field approach can also be applied for other problems in topology optimization
we focus on applications formulated in the context of linear elasticity. In the simplest situation given a working
or design domain Ω with a boundary ∂Ω which is decomposed into a Dirichlet part ΓD, a non-homogeneous
Neumann part Γg and a homogeneous Neumann part Γ0 and body and surface forces f and g one tries to find
a domain ΩM ⊂ Ω (M stands for material) and the displacement u such that the mean compliance∫

ΩM

f · u +
∫

Γg∩∂ΩM

g · u

or the error compared to a target displacement uΩ, i.e.(∫
ΩM

c|u − uΩ|2
)ν

, ν ∈ (0, 1]

is minimized, where c is a given weighting function and | · | is the Euclidean norm. In the paper of Allaire et al. [3]
besides other choices the case ν = 1

2 was considered and the case ν = 1 leads to a least square minimization
problem. This is the reason why we consider a range of possible choices for ν. Later we add the perimeter
functional to the functional and then the minima will depend on ν. Here the displacement u is the solution of
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the linearized elasticity system
−∇ ·

(
C

ME(u)
)

= f in ΩM

subject to appropriate boundary conditions. As discussed in [3] the above minimization problem is not well-posed
on the set of all possible shapes and typically a perimeter regularization is used, i.e. one adds

P (ΩM ) =
∫

(∂ΩM )∩Ω

ds

to the above functionals, where ds stands for the surface measure.
In a phase field model the domains with material and the void are described by a phase field ϕ which attains

two given values. Moreover the interface between the domains is not sharp any longer but diffuse where the
thickness of the interface is proportional to a small parameter ε. The phase field rapidly changes in an interfacial
region. Then the perimeter is approximated by a suitable multiple of∫

Ω

(
ε
2 |∇ϕ|2 +

1
ε
Ψ(ϕ)

)
,

where Ψ is a potential function attaining global minima at given values of ϕ which correspond to void and
material. We refer to the next section for a precise formulation of the problem.

In this paper we first give a precise formulation of the problem also in the case of multi-material structural
topology optimization (Sect. 2). In this context we use ideas introduced in [30, 60]. Then we rigorously derive
first order optimality conditions (Sect. 4). In Section 5 we consider the sharp interface limit of the first order
conditions, i.e. we take the limit ε → 0 and therefore the thickness of the interface converges to zero. We obtain
limiting equations with the help of formally matched asymptotic expansions and relate the limit, which involve
classical terms from shape calculus, transmission conditions and triple junction conditions, to the shape calculus
of [3].

Finally we present several numerical computations by using a gradient descent method based on a vol-
ume conserving L2-gradient flow of the energy. The resulting problem is a generalized non-local vector-valued
Allen−Cahn variational inequality coupled to elasticity. We solve this evolution equation using a primal dual
active set method as in [8].

2. Formulation of the problem

In this subsection we first introduce the phase field method and after that we will formulate the structural
topology optimization problem in the phase field context.

2.1. Phase field approach

Given a bounded Lipschitz design domain Ω ⊂ Rd we describe the material distribution with the help of a
phase field vector ϕ := (ϕi)N

i=1, where each component of ϕ stands for the fraction of one material. Hence, d
denotes the dimension of our working domain Ω and N stands for the number of materials. Moreover we denote
by ϕN the fraction of void. We consider systems in which the total spatial amount of phases are prescribed, e.g.
we have additionally the constraint

∫
Ω

− ϕ = m = (mi)N
i=1, where mi ∈ (0, 1) for i ∈ {1, . . . , N} is a fixed given

number. We use the notation
∫

Ω
− f(x)dx := 1

|Ω|f(x)dx with |Ω| being the Lebesgue measure of Ω. To ensure

that all phases are present we require 0 < mi < 1 and
N∑

i=1

mi = 1, where the last condition makes sure that

N∑
i=1

ϕi = 1 can be true. We define RN
+ := {v ∈ RN | v ≥ 0}, where v ≥ 0 means vi ≥ 0 for all i ∈ {1, . . . , N},

the affine hyperplane

ΣN :=

{
v ∈ R

N |
N∑

i=1

vi = 1

}
,
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and its tangent plane

TΣN :=

{
v ∈ R

N |
N∑

i=1

vi = 0

}
.

With these definitions we obtain as the phase space for the order parameter ϕ the Gibbs simplex G = RN
+ ∩ΣN .

We furthermore define G := {v ∈ H1(Ω, RN ) | v(x) ∈ G a.e. in Ω} and Gm := {v ∈ G |
∫

Ω
− v = m}. As

discussed in the introduction we use the well-known Ginzburg–Landau energy

Eε(ϕ) :=
∫

Ω

(
ε

2
|∇ϕ|2 +

1
ε
Ψ(ϕ)

)
, ε > 0, (2.1)

which is an approximation of the weighted perimeter functional. The choice of Eε as an approximation of
surface energy goes back to van der Waals [57] and was also used by Cahn and Hilliard [19] in order to derive
the Cahn−Hilliard equation. In minimization problems the term 1

εΨ(ϕ) requires that ϕ attains values close to
the global minima of Ψ . If several global minima of Ψ exist the function ϕ possibly jumps between the minima.
It turns out that without the gradient term there is no restriction on the size of the jump set. However, the term
ε
2 |∇ϕ|2 penalizes interfacial regions and therefore the size of the jump set. Hence the overall functional can be
interpreted as an approximation of interfacial area. In fact Modica [40] for the scalar case and later Baldo [4]
for the vector-valued case were able to show that the functional Eε converges to the perimeter functional.
The convergence theory of the Ginzburg–Landau energy Eε for ε → 0 relies on the notion of Γ -convergence,
see [4, 40].

In (2.1) the function Ψ : RN → R∪ {∞} is a bulk potential with a N -well structure on ΣN , i.e. with exactly
N global minima ei (i ∈ {1, . . . , N}) and height Ψ(ei) = 0, where ei is the ith unit vector in RN . In this paper
we use obstacle functionals of the form Ψ(ϕ) = Ψ0(ϕ)+ IG(ϕ), where Ψ0 ∈ C1,1(RN , R) and IG is the indicator
function of G, i.e.

IG(ϕ) :=
{

0 for ϕ ∈ G,
∞ otherwise.

Prototype examples for Ψ0 are given by

Ψ0(ϕ) :=
1
2
(1 − ϕ · ϕ) and Ψ0(ϕ) :=

1
2
ϕ · Wϕ, (2.2)

where W is a symmetric N ×N matrix [10,25] with zeros on the diagonal which in addition is negative definite
on TΣN . On ΣN we have (1−ϕ ·ϕ) = ϕ · (1⊗1− Id)ϕ with 1 = (1, . . . , 1)T and hence on ΣN the first choice
is a special case of the second.

We remark that on G we have

Eε(ϕ) =
∫

Ω

(
ε

2
|∇ϕ|2 +

1
ε
Ψ0(ϕ)

)
=: Êε(ϕ). (2.3)

This observation is important for the analysis in Section 4.
We denote by u : Ω → Rd the displacement vector and by

E := E(u) := (∇u)sym

the strain tensor, where Asym := 1
2 (A + AT ) is the symmetric part of a second order tensor A. Furthermore,

we denote by C the elasticity tensor, by f : Ω → Rd a vector-valued volume force and by g : Γg → Rd a
boundary traction acting on the structure. In this paper we always assume f ∈ L2(Ω, Rd) and g ∈ L2(Γg, R

d).
The boundary of our domain is divided into a Dirichlet part ΓD with positive (d − 1)-dimensional Hausdorff
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measure, i.e. Hd−1(ΓD) > 0 and a Neumann part, which consists of a non-homogeneous Neumann part Γg and
a homogeneous Neumann part Γ0. Moreover, in our setting the elasticity equation which is used in structural
topology optimization is given by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−∇ · [C(ϕ)E(u)] =

(
1 − ϕN

)
f in Ω,

u = 0 on ΓD,

[C(ϕ)E(u)] n = g on Γg,

[C(ϕ)E(u)] n = 0 on Γ0,

(2.4)

where n is the outer unit normal to ∂Ω = ΓD ∪ Γg ∪ Γ0. Introducing the notation

〈A,B〉C :=
∫

Ω

A : CB,

where for any matrices A and B the product is given as A : B :=
∑d

i,j=1 AijBij, the elastic boundary value
problem (2.4) can be written in the weak formulation

〈E(u), E(η)〉C(ϕ) = F (η, ϕ), (2.5)

which has to hold for all η ∈ H1
D(Ω, Rd) := {η ∈ H1(Ω, Rd) | η = 0 on ΓD} and where

F (η, ϕ) =
∫

Ω

(
1 − ϕN

)
f · η +

∫
Γg

g · η. (2.6)

The assumptions on the elasticity tensor are Cijkl ∈ C1,1(RN , R), i, j, k, l ∈ {1, . . . , d}, and the symmetry
property

Cijkl = Cjikl = Cijlk = Cklij

holds. Additionally, there exist positive constants θ, Λ, Λ′, such that for all symmetric matrices A,B ∈ Rd×d\{0}
and for all ϕ, h ∈ RN it holds

θ|A|2 ≤ C(ϕ)A : A ≤ Λ|A|2, (2.7)

|C′(ϕ)hA : B| ≤ Λ′|h||A||B|, (2.8)

where C′(ϕ)h :=
(∑N

m=1 ∂mCijkl(ϕ)hm

)d

i,j,k,l=1
.

More information on the theory of elasticity can be found in the books [21, 37]. Discussions on appropriate
interpolations C(ϕ) of the elasticity tensors in the pure material can be found in [7,28,30,34]. In the following
we discuss a concrete choice of the interpolation function, which fulfills the above assumptions.

2.2. Choice of the elasticity tensor

We now discuss how we can define a ϕ-dependent elasticity tensor starting with constant elasticity tensors
C

i, i ∈ {1, . . . , N − 1} which are defined in the pure materials, i.e. when ϕ = ei. We first extend the elasticity
tensor to the Gibbs simplex, then define it on the hyperplane ΣN and eventually on the whole of RN . First
of all we model the void as a very soft material. A possible choice which is appropriate for the sharp interface
limit discussed later and for the numerics is CN = CN (ε) = ε2C̃N , where C̃N is a fixed elasticity tensor. For
the sharp interface analysis it is only necessary that CN (ε) = O(ε). However, a quadratic rate in ε accelerates
the convergence in the void as ε → 0 and is hence chosen in the numerical computations. Moreover, we assume
that there exist positive constants ϑ̃i, ϑi such that for all A ∈ Rd×d \ {0} it holds

ϑi|A|2 ≤ C
iA : A ≤ ϑ̃i|A|2 ∀i ∈ {1, . . . , N}. (2.9)
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In order to model the elastic properties also in the interfacial region the elasticity tensor is assumed to be a
tensor valued function C(ϕ) := (Cijkl(ϕ))d

i,j,k,l=1 and we set for ϕ in the Gibbs simplex

C(ϕ) = C(ϕ) + C
NϕN , ∀ϕ ∈ G, (2.10)

where C(ϕ) :=
N−1∑
i=1

Ciϕi.

We now extend the elasticity tensor C to the hyperplane ΣN . For δ > 0 we define on R a monotone C1,1-
function

w(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−δ for s < −δ,
wl(s) for − δ ≤ s < 0,
s for 0 ≤ s ≤ 1,
wr(s) for 1 < s ≤ 1 + δ,
1 + δ for s > 1 + δ,

(2.11)

where wj , j ∈ {l, r} are monotone C1,1-functions such that w ∈ C1,1. By means of (2.11) we construct an
extension of the elasticity tensor C(ϕ) for ϕ in the affine hyperplane ΣN

Ĉ(ϕ) =
N∑

i=1

C
iw(ϕi), ∀ϕ ∈ ΣN . (2.12)

Indeed for ϕ ∈ G we have w(ϕi) = ϕi, ∀i ∈ {1, . . . , N} and Ĉ(ϕ) = C(ϕ), i.e. in the Gibbs simplex we have a
linear interpolation of the values in the corners of the simplex. Such linear interpolations are frequently used in
the modeling of multi-phase elasticity, see [28, 34]. For ϕ ∈ ΣN we obtain

Ĉ(ϕ)A : A =
N∑

i=1

w(ϕi)CiA : A

=
∑

i∈I<0

w(ϕi)CiA : A +
∑

i∈I≥0

w(ϕi)CiA : A, (2.13)

where the index sets are defined as

I<0 := {i ∈ {1, . . . , N} | ϕi < 0}; I≥0 := {1, . . . , N} \ I<0.

Hence, we obtain, using
∑

i∈I≥0

ϕi ≥ 1,

Ĉ(ϕ)A : A ≥
[

min
i∈I≥0

ϑi − δ max
i∈I<0

ϑ̃i|I<0|)
]
|A|2.

Choosing δ small enough there exists a δ′ > 0 such that for all |I<0|[
min
i∈I≥0

ϑi − δ max
i∈I<0

ϑ̃i|I<0|)
]
≥ δ′

and we can set θ := δ′ in (2.7).
We now define the projection from RN into ΣN by

PΣ(ϕ) = argmin
v∈ΣN

1
2
‖ϕ − v‖2

l2 , ∀ϕ ∈ R

and define an extension Č of Ĉ as follows

Č(ϕ) =
N∑

i=1

C
iw
(
PΣ(ϕ)i

)
, ∀ϕ ∈ R

N . (2.14)

Then Č(ϕ) fulfills (2.7) and (2.8).



PHASE FIELD AND SHARP INTERFACE APPROACHES TO TOPOLOGY OPTIMIZATION 1031

2.3. Structural optimization problem

In the following we are going to formulate an optimization problem involving the mean compliance func-
tional (2.6) and the functional for the compliant mechanism, which is given by

J0(u, ϕ) :=
(∫

Ω

c
(
1 − ϕN

)
|u − uΩ|2

)ν

, ν ∈ (0, 1], (2.15)

with a target displacement uΩ and a given non-negative weighting factor c ∈ L∞(Ω) with |supp c| > 0, where
|supp c| is the Lebesgue measure of supp c.

Given (f , g, uΩ, c) ∈ L2(Ω, Rd) × L2(Γg, R
d) × L2(Ω, Rd) × L∞(Ω) and measurable sets Si ⊆ Ω, i ∈ {0, 1},

with S0 ∩ S1 = ∅, the overall optimization problem is

(Pε)

⎧⎪⎨
⎪⎩

min Jε(u, ϕ) := αF (u, ϕ) + βJ0(u, ϕ) + γEε(ϕ),

over (u, ϕ) ∈ H1
D(Ω, Rd) × H1(Ω, RN ),

s.t. (2.5) is fulfilled and ϕ ∈ Gm ∩ U c,

where α, β ≥ 0, γ, ε > 0, m ∈ (0, 1)N ∩ ΣN and

U c := {ϕ ∈ H1(Ω, RN ) | ϕN = 0 a.e. on S0 and ϕN = 1 a.e. on S1}.

Remark 2.1.

(i) From the applicational point of view it is desirable to fix material or void in some regions of the design
domain, so the condition ϕ ∈ Uc makes sense. Moreover by choosing S0 such that |S0 ∩ supp c| �= 0 we can
ensure that it is not possible to choose only void on the support of c, i.e. in (2.15) |supp (1−ϕN)∩supp c| > 0.

(ii) Taking (2.1) and (2.3) into account we can replace Eε(ϕ) by Êε(ϕ) in (Pε).

3. Analysis of the state equation

In this section we discuss the well-posedness of the state equation (2.4) and show the differentiability of
the control-to-state operator. In this section the functions (f , g) ∈ L2(Ω, Rd) × L2(Γg, R

d) are given. Because
(Gm ∩ U c) ⊂ L∞(Ω, RN ) we assume throughout this section that ϕ ∈ L∞(Ω, RN ).

Theorem 3.1. For any given ϕ ∈ L∞(Ω, RN ) there exists a unique u ∈ H1
D(Ω, Rd) which fulfills (2.5). Fur-

thermore, there exists a positive constant C which depends on the data of the problem such that

‖u‖H1
D(Ω,Rd) ≤ C(‖ϕ‖L∞(Ω,RN ) + 1). (3.1)

Proof. Indeed 〈E(·), E(·)〉C(ϕ) : H1
D(Ω, Rd)×H1

D(Ω, Rd) → R is a bilinear form and we have by (2.7) and Korn’s
inequality, see [63] Corollary 62.13 and [38,43],

〈E(u), E(u)〉C(ϕ) ≥
θ

cK
‖u‖2

H1
D(Ω,Rd) ∀u ∈ H1

D(Ω, Rd), (3.2)

where cK > 0 stems from Korn’s inequality. Hence, 〈E(·), E(·)〉C(ϕ) is H1
D(Ω, Rd)-elliptic. Moreover, using (2.7)

it is easy to check that 〈·, ·〉C(ϕ) is continuous. Applying Hölder’s inequality and the trace theorem we have

|F (η, ϕ)| ≤
∫

Ω

|(1 − ϕN )f · η| +
∫

Γg

|g · η|

≤ C
(
‖1 − ϕN‖L∞(Ω)‖f‖L2(Ω,Rd) + ‖g‖L2(Γg,Rd)

)
‖η‖H1

D(Ω,Rd), (3.3)

where C > 0. Hence, for ϕ ∈ L∞(Ω, RN ) it holds that F (·, ϕ) ∈ (H1
D(Ω, Rd))∗. Applying the Lax−Milgram

theorem we obtain a unique solution u ∈ H1
D(Ω, Rd) to (2.5) and (3.1) follows from (3.3) and (3.2). �
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Based on Theorem 3.1 we define the solution or the control-to-state operator

S : L∞(Ω, RN ) → H1
D(Ω, Rd), S(ϕ) := u, (3.4)

which assigns to a given control ϕ ∈ L∞(Ω, RN ) the unique state variable u ∈ H1
D(Ω, Rd).

In order to derive first-order necessary optimality conditions for the optimization problem (Pε), it is essential
to show the differentiability of the control-to-state operator S. In order to show this we prove the following
stability result.

Theorem 3.2. Let M > 0 and suppose that ϕi ∈ L∞(Ω, RN ) with ‖ϕi‖L∞(Ω,RN ) ≤ M, i = 1, 2, are given. For
ui = S(ϕi), i = 1, 2, there exists a positive constant C which depends on the given data of the problem and on
M such that

‖u1 − u2‖H1
D(Ω,Rd) ≤ C‖ϕ1 − ϕ2‖L∞(Ω,RN ). (3.5)

Proof. Because of ui = S(ϕi) ∈ H1
D(Ω, Rd) it holds

〈E(ui), E(η)〉C(ϕi)
= F (η, ϕi) ∀η ∈ H1

D(Ω, Rd), (3.6)

where i = 1, 2. The difference gives∫
Ω

[C(ϕ1)E(u1) − C(ϕ2)E(u2)] : E(η) =
∫

Ω

(
ϕN

2 − ϕN
1

)
f · η ∀η ∈ H1

D

(
Ω, Rd

)
. (3.7)

Testing (3.7) with η := u1 − u2 ∈ H1
D(Ω, Rd), using

[C(ϕ1)E(u1) − C(ϕ2)E(u2)] = [C(ϕ1) − C(ϕ2)] E(u2) + C(ϕ1)E(u1 − u2)

and (2.7) we get for (3.7)

θ‖E(u1 − u2)‖2
L2(Ω,Rd×d) ≤ 〈E(u1 − u2), E(u1 − u2)〉C(ϕ1)

≤
∣∣∣∣
∫

Ω

[C(ϕ1) − C(ϕ2)]E(u2) : E(u1 − u2)
∣∣∣∣

+
∣∣∣∣
∫

Ω

(ϕN
2 − ϕN

1 )f · (u1 − u2)
∣∣∣∣ .

Because of Hölder’s inequality and the global Lipschitz-continuity of C we obtain

θ‖E(u1 − u2)‖2
L2(Ω,Rd×d) ≤ LC‖ϕ1 − ϕ2‖L∞(Ω,RN )‖E(u2)‖L2(Ω,Rd×d)‖E(u1 − u2)‖L2(Ω,Rd×d)

+ ‖ϕ1 − ϕ2‖L∞(Ω,RN )‖f‖L2(Ω,Rd)‖u1 − u2‖L2(Ω,Rd), (3.8)

where LC denotes the global Lipschitz-constant. Using (3.1), Korn’s inequality, the inequality (3.8) finally
shows (3.5). �

We are now in a position to prove the differentiability of the control-to-state operator.

Theorem 3.3. The control-to-state operator S, defined in (3.4), is Fréchet differentiable. Its directional deriva-
tive at ϕ ∈ L∞(Ω, RN ) in the direction h ∈ L∞(Ω, RN ) is given by

S′(ϕ)h = u∗, (3.9)

where u∗ denotes the unique solution of the problem

〈E(u∗), E(η)〉C(ϕ) = −〈E(u), E(η)〉C′(ϕ)h −
∫

Ω

hNf · η, ∀η ∈ H1
D(Ω, Rd) (3.10)

where u = S(ϕ).
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Remark 3.4. Formally equation (3.10) can be derived by differentiating the implicit state equation

〈E(S(ϕ)), E(η)〉C(ϕ) = F (η, ϕ)

with respect to ϕ ∈ L∞(Ω, RN ). Moreover, there exists a constant C > 0 which depends on the given data of
the problem such that the estimate

‖u∗‖H1
D(Ω,Rd) ≤ C‖h‖L∞(Ω,RN ) (3.11)

holds, which shows that S′(ϕ) is a bounded operator.

Proof of Theorem 3.3. For given h ∈ L∞(Ω, RN ) we define

F̂ (η, h) := −〈E(u), E(η)〉C′(ϕ)h −
∫

Ω

hNf · η, ∀η ∈ H1
D(Ω, Rd).

Using (2.8) we can estimate

|F̂ (η, h)| ≤ |〈E(u), E(η)〉C′(ϕ)h| +
∫

Ω

|hNf · η|

≤ max{Λ′, 1}‖h‖L∞(Ω,RN)(‖f‖L2(Ω,Rd) + ‖u‖H1
D(Ω,Rd))‖η‖H1

D(Ω,Rd).

By (3.1) we can estimate ‖u‖H1
D(Ω,Rd) and we obtain that F̂ (·, h) ∈ (H1

D(Ω, Rd))∗. Hence, the existence of a
unique solution u∗ ∈ H1

D(Ω, Rd) to (3.10) is given by the Lax−Milgram theorem.
Now define uh := S(ϕ + h) and r := uh − u − u∗, where u∗ fulfills (3.10). We have to show that

‖r‖H1
D(Ω,Rd) = o(‖h‖L∞(Ω,RN )) as ‖h‖L∞(Ω,RN ) → 0. (3.12)

Applying the definition of u, uh and u∗ we obtain

〈E(uh), E(η)〉C(ϕ+h) − 〈E(u), E(η)〉C(ϕ) − 〈E(u∗), E(η)〉C(ϕ) = 〈E(u), E(η)〉C′(ϕ)h, ∀η ∈ H1
D(Ω, Rd).

Using
[C(ϕ + h)E(uh) − C(ϕ)E(u)] = [C(ϕ + h) − C(ϕ)]E(uh) + C(ϕ)E(uh − u), (3.13)

we obtain after standard calculations

〈E(r), E(η)〉C(ϕ) = − 〈E(uh), E(η)〉C(ϕ+h)−C(ϕ)−C′(ϕ)h

− 〈E(uh − u), E(η)〉C′(ϕ)h, ∀η ∈ H1
D(Ω, Rd). (3.14)

Now we choose η := r in (3.14). Using (2.7) for the left side of (3.14) we have

|〈E(r), E(r)〉C(ϕ)| ≥ θ‖E(r)‖2
L2(Ω,Rd×d). (3.15)

Due to the differentiability properties of C, see Section 2, we obtain

|C(ϕ + h) − C(ϕ) − C
′(ϕ)h| ≤ |h|

1∫
0

|C′(ϕ + th) − C
′(ϕ)|dt

≤ 1
2
LC′ |h|2, (3.16)
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where we used for the last estimate the global Lipschitz-continuity of C′ with the Lipschitz constant LC′ . We
obtain using Hölder’s inequality for the first summand of the right hand side of (3.14)

|〈E(uh), E(r)〉C(ϕ+h)−C(ϕ)−C′(ϕ)h| ≤LC′‖h‖2
L∞(Ω,RN )·

· ‖E(uh)‖L2(Ω,Rd×d)‖E(r)‖L2(Ω,Rd×d). (3.17)

Owing to (3.1), we can estimate ‖E(uh)‖L2(Ω,Rd×d) in (3.17). For the second summand on the right hand side
of (3.14) with η := r we obtain using (2.8)

|〈E(uh − u), E(r)〉C′(ϕ)h| ≤Λ′‖h‖L∞(Ω,RN)·
‖E(uh − u)‖L2(Ω,Rd×d)‖E(r)‖L2(Ω,Rd×d).

Moreover, (3.5) yields ‖E(uh −u)‖L2(Ω,Rd×d) ≤ C‖h‖L∞(Ω,RN ) and we get that there exists a positive constant
C such that

|〈E(uh − u), E(r)〉C′(ϕ)h| ≤C‖h‖2
L∞(Ω,RN )‖E(r)‖L2(Ω,Rd×d). (3.18)

Using (3.15), (3.17) and (3.18) this establishes (3.12). We now want to prove (3.11). Testing (3.10) with η := u∗

and arguing like in the proof of Theorem 3.2 we end up with (3.11) and hence we proved Theorem 3.3. �

4. Optimal control problem

The goal of this section is to show that the minimization problem (Pε) has a solution and to derive first-order
necessary optimality conditions. In this section (f , g, uΩ, c) ∈ L2(Ω, Rd) × L2(Γg, R

d) × L2(Ω, Rd) × L∞(Ω)
and measurable sets Si ⊆ Ω, i ∈ {0, 1}, with S0 ∩ S1 = ∅, are given.

Theorem 4.1. The problem (Pε) has a minimizer.

Proof. We denote the feasible set by

Fad :=
{
(u, ϕ) ∈ H1

D(Ω, Rd) × (Gm ∩ U c) | (u, ϕ) fulfills (2.5)
}

.

Using (2.5) with η = u it is clear that Jε is bounded from below on Fad. Since Fad is nonempty, the infimum

inf
(u,ϕ)∈Fad

Jε(u, ϕ)

exists and hence we find a minimizing sequence {(uk, ϕk)} ⊂ Fad with

lim
k→∞

Jε(uk, ϕk) = inf
(u,ϕ)∈Fad

Jε(u, ϕ).

Moreover, we obtain, using (3.1), that there exists a positive constant C such that

Jε(uk, ϕk) ≥ γ
ε

2
‖∇ϕk‖2

L2(Ω) − C.

Hence, by virtue of
∫

Ω− ϕk = m for all k ∈ N and the Poincaré inequality the sequence {ϕk} ⊂ (Gm ∩ U c) is
bounded in H1(Ω, RN ) ∩ L∞(Ω, RN ). Theorem 3.1 implies that also the sequence of the corresponding states
{uk} ⊂ H1

D(Ω, Rd) is bounded. Hence there exist some (u, ϕ) ∈ H1
D(Ω, Rd) × H1(Ω, RN ) and subsequences

(also denoted the same) such that as k → ∞

.
uk −→ u weakly in H1

D(Ω, Rd),

ϕk −→ ϕ weakly in H1(Ω, RN ).
(4.1)
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Moreover the set Gm∩U c is convex and closed, hence weakly closed and we get (u, ϕ) ∈ H1
D(Ω, Rd)×(Gm∩U c).

Finally we have to show that Jε is sequentially weakly lower semi-continuous. From the above convergence result
we obtain for k → ∞

uk −→ u strongly in L2(Ω, Rd),

ϕk −→ ϕ strongly in L2(Ω, RN )
(4.2)

and after possibly choosing another subsequence which is again denoted by {k} we obtain

ϕk −→ ϕ a.e. in Ω. (4.3)

Using (4.1), (4.2) and since the norm is weakly lower semi-continuous we immediately obtain

Jε(u, ϕ) ≤ lim
k→∞

Jε(uk, ϕk) .

In addition (4.1), (4.2), (4.3) and the fact that (uk, ϕk) fulfills (2.5) imply that also (u, ϕ) fulfill (2.5). For the
last conclusion we have to pass to the limit in

∫
Ω

C(ϕk)E(uk) : E(η) as k → ∞. Convergence follows due to the
uniformly boundedness of {ϕk}, the properties of the elasticity tensor and since (4.3) provides together with
the dominated convergence theorem of Lebesgue strong convergence of C(ϕk)E(η) to C(ϕ)E(η) in L2(Ω, Rd×d).
Using moreover (4.1) we obtain∫

Ω

C(ϕk)E(uk) : E(η) −→
∫

Ω

C(ϕ)E(u) : E(η) ∀η ∈ H1
D

(
Ω, Rd

)
.

The above discussion shows

−∞ < inf
(u,ϕ)∈Fad

Jε(u, ϕ) ≤ Jε(u, ϕ) ≤ lim
k→∞

Jε(uk, ϕk) = inf
(u,ϕ)∈Fad

Jε(u, ϕ).

Therefore (u, ϕ) ∈ H1
D(Ω, Rd) × (Gm ∩ U c) is a minimizer of (Pε). �

4.1. Fréchet-differentiability of the reduced functional

For the rest of the paper we assume that, in case β �= 0 and ν ∈ (0, 1] we only consider (u, ϕ) such that
J̃0(u, ϕ) :=

∫
Ω

c(1 − ϕN )|u − uΩ|2 �= 0. This will guarantee that J0 = (J̃0)ν is differentiable. In case ν = 1 we
set J0(u, ϕ)

ν−1
ν = (J̃0)ν−1 = 1 even if J0 = 0.

In the following, ϕ ∈ H1(Ω, RN ) ∩ L∞(Ω, RN ) and u = S(ϕ) ∈ H1
D(Ω, Rd) is the associated state. With

the control-to-state operator S : H1(Ω, RN )∩L∞(Ω, RN ) ⊂ L∞(Ω, RN ) → H1
D(Ω, Rd) the cost functional thus

attains the form

Jε(u, ϕ) = Jε(S(ϕ), ϕ)

= αF (S(ϕ), ϕ) + βJ0(S(ϕ), ϕ) + γÊε(ϕ) =: j(ϕ), (4.4)

where F , J0 and Êε are defined as in (2.6), (2.15) and (2.3). The Fréchet-differentiability of the reduced cost-
functional j in H1(Ω, RN ) ∩ L∞(Ω, RN ) is shown in the next lemma.

Lemma 4.2. The reduced cost-functional j : H1(Ω, RN ) ∩ L∞(Ω, RN ) → R is Fréchet-differentiable.

Proof. We first show that Jε : H1
D(Ω, Rd) × (H1(Ω, RN ) ∩ L∞(Ω, RN )) → R is Fréchet differentiable. It is an

easy task to formally calculate the partial derivatives of Jε at (u, ϕ) in the direction (v, h). We obtain

Jε
′u(u, ϕ)v = αF′u(u, ϕ)v + β(J0)′u(u, ϕ)v,

Jε
′ϕ(u, ϕ)h = αF′ϕ(ϕ)h + β(J0)′ϕ(u, ϕ)h + γÊε

′ϕ(ϕ)h, (4.5)
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with

F′u(u, ϕ)v =
∫

Ω

(
1 − ϕN

)
f · v +

∫
Γg

g · v, (4.6a)

(J0)′u(u, ϕ)v = 2νJ0(u, ϕ)
ν−1

ν

∫
Ω

c
(
1 − ϕN

)
(u − uΩ) · v, (4.6b)

F′ϕ(u, ϕ)h = −
∫

Ω

hNf · u, (4.6c)

(J0)′ϕ(u, ϕ)h = −νJ0(u, ϕ)
ν−1

ν

∫
Ω

c hN |u − uΩ|2, (4.6d)

Êε
′ϕ(ϕ)h = ε

∫
Ω

∇ϕ : ∇h +
1
ε

∫
Ω

Ψ ′
0(ϕ) · h. (4.6e)

We remark that v and h appear linearly in the integral expressions in (4.6a-e). Also, the continuity of the
expressions in (4.6a-e) with respect to the directions v and h follow directly. We furthermore will show the
continuity of the expressions in (4.6a-e) with respect to (u, ϕ). Then the Fréchet-differentiability of Jε follows
from Proposition 4.14 of Zeidler [62].

We will only show continuity of the most difficult term in (4.6a-e) namely the term (J0)′u(u, ϕ)v. To this
end, let {(uk, ϕk)} ⊂ H1

D(Ω, Rd) × (H1(Ω, RN ) ∩ L∞(Ω, RN )) be a given sequence such that as k → ∞

(uk, ϕk) −→ (u, ϕ) in H1
D(Ω, Rd) ×

(
H1(Ω, RN ) ∩ L∞ (Ω, RN

))
(4.7)

and after possibly choosing a subsequence which is again denoted by an index k we can in addition assume

(uk, ϕk) −→ (u, ϕ) a.e. in Ω. (4.8)

We have to prove that for all above sequences (uk, ϕk)

(J0)′u(uk, ϕk) −→ (J0)′u(u, ϕ) as k → ∞ (4.9)

in the operator norm. We obtain with the help of the Cauchy–Schwarz inequality

|[(J0)′u(uk, ϕk) − (J0)′u(u, ϕ)] (v)| ≤ C‖J0(uk, ϕk)
ν−1

ν (1 − ϕN
k )(uk − uΩ)

−J0(u, ϕ)
ν−1

ν (1 − ϕN )(u − uΩ)‖L2(Ω,Rd) ‖v‖L2(Ω,Rd) .

Using uk → u in L2(Ω, Rd) and almost everywhere, the fact that ϕk → ϕ uniformly and taking the assumption
at the beginning of Section 4.1 into account we obtain with the help of the generalized majorized convergence
theorem of Lebesgue, see Zeidler [64],

‖J0(uk, ϕk)
ν−1

ν (1 − ϕN
k )(uk − uΩ) − J0(u, ϕ)

ν−1
ν (1 − ϕN )(u − uΩ)‖L2(Ω,Rd) → 0 as k → ∞ .

The facts that the control-to-state operator is Fréchet-differentiable, see Theorem 3.3, the chain rule, see [56]
Theorem 2.20, give that j is Fréchet-differentiable and hence we obtain

j′(ϕ)h = Jε
′u(u, ϕ)u∗ + Jε

′ϕ(u, ϕ)h, (4.10)

where u∗ = S′(ϕ)h, see Theorem 3.3. This shows Lemma 4.2. �
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4.2. Adjoint equation

In this subsection, we discuss the following equation, which is the system formally adjoint to (2.4):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∇ · [C(ϕ)E(p)] = α
(
1 − ϕN

)
f

+ 2βνJ0(u, ϕ)
ν−1

ν c(1 − ϕN )(u − uΩ) in Ω,

p = 0 on ΓD,

[C(ϕ)E(p)] n = αg on Γg,

[C(ϕ)E(p)] n = 0 on Γ0.

(4.11)

We now show existence of a weak solution to the above problem (4.11).

Theorem 4.3. For given (ϕ, u) ∈ (H1(Ω, RN )∩L∞(Ω, RN ))×H1
D(Ω, Rd) there exists a unique p ∈ H1

D(Ω, Rd)
which fulfills (4.11) in the weak sense, i.e.,

〈E(p), E(η)〉C(ϕ) = F̃ (η, ϕ) ∀η ∈ H1
D

(
Ω, Rd

)
, (4.12)

where

F̃ (η, ϕ) := α

∫
Ω

(
1 − ϕN

)
f · η + α

∫
Γg

g · η + +2βνJ0(u, ϕ)
ν−1

ν

∫
Ω

c(1 − ϕN )(u − uΩ) · η.

Proof. One easily can check as in the proof of Theorem 3.3 that F̃ (·, ϕ) ∈ (H1
D(Ω, Rd))∗ for every ϕ ∈

H1(Ω, RN ) ∩ L∞(Ω, RN ). Hence, the existence of a unique weak solution p ∈ H1
D(Ω, Rd) to (4.11) is given

by the Lax−Milgram theorem. �

4.3. First-order necessary optimality conditions

In the following, let ϕ ∈ Gm ∩ U c denote a minimizer of the problem (Pε) and u = S(ϕ) ∈ H1
D(Ω, Rd) is

the associated state variable. Using the reduced functional j, see (4.4), the optimal control problem (Pε) can
be reformulated as follows

min
ϕ∈Gm∩Uc

j(ϕ). (4.13)

Lemma 4.4. Let u∗ ∈ H1
D(Ω, Rd) be the solution to (3.10) and let p ∈ H1

D(Ω, Rd) be the adjoint state defined
as the weak solution to problem (4.11). Then

Jε
′u(u, ϕ)u∗ = −〈E(p), E(u)〉C′(ϕ)h −

∫
Ω

hNf · p. (4.14)

Proof. Testing (4.12) with u∗ ∈ H1
D(Ω, Rd) and using (4.5) gives

Jε
′u(u, ϕ)u∗ = 〈E(u∗), E(p)〉C(ϕ).

Using (3.10) with η := p we end up with (4.14). �
Theorem 4.5. Let ϕ ∈ Gm ∩ U c be a solution to (4.13). Then the following variational inequality is fulfilled:

j′(ϕ)(ϕ̃ − ϕ) ≥ 0 ∀ϕ̃ ∈ Gm ∩ U c, (4.15)

where

j′(ϕ)(ϕ̃ − ϕ) = Jε
′ϕ(u, ϕ)(ϕ̃ − ϕ) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ)

−
∫

Ω

(ϕ̃N − ϕN )f · p.

Proof. Since Gm ∩ U c is convex, the assertion follows directly. �

We can now state the complete optimality system.
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Theorem 4.6. Let ϕ ∈ Gm ∩ U c denote a minimizer of the problem (Pε) and S(ϕ) = u ∈ H1
D(Ω, Rd),

p ∈ H1
D(Ω, Rd) are the corresponding state and adjoint variables, respectively. Then the functions (u, ϕ, p) ∈

H1
D(Ω, Rd) × (Gm ∩ Uc) × H1

D(Ω, Rd) fulfill the following optimality system in a weak sense. We obtain the
state equations (SE)

(SE)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · [C(ϕ)E(u)] =
(
1 − ϕN

)
f in Ω,

u = 0 on ΓD,

[C(ϕ)E(u)] n = g on Γg,

[C(ϕ)E(u)] n = 0 on Γ0,

the adjoint equations (AE)

(AE)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∇ · [C(ϕ)E(p)] = α
(
1 − ϕN

)
f

+2βνJ0(u, ϕ)
ν−1

ν c(1 − ϕN )(u − uΩ) in Ω,

p = 0 on ΓD,

[C(ϕ)E(p)] n = αg on Γg,

[C(ϕ)E(p)] n = 0 on Γ0

and the gradient inequality (GI)

(GI)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γε
∫
Ω
∇ϕ : ∇(ϕ̃ − ϕ) + γ

ε

∫
Ω

Ψ ′
0(ϕ) · (ϕ̃ − ϕ)

−βνJ0(u, ϕ)
ν−1

ν

∫
Ω

c(ϕ̃N − ϕN )|u − uΩ|2

−
∫

Ω(ϕ̃N − ϕN )f · (αu + p) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0,

∀ϕ̃ ∈ Gm ∩ U c.

Proof. The claim follows directly from Theorem 4.5. �

Remark 4.7. In the case β = 0 we get p = αu and the first-order optimality system can be written without
the adjoint state as follows

(SE)M

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · [C(ϕ)E(u)] =
(
1 − ϕN

)
f in Ω,

u = 0 on ΓD,

[C(ϕ)E(u)] n = g on Γg,

[C(ϕ)E(u)] n = 0 on Γ0,

together with

(GI)M

⎧⎪⎪⎨
⎪⎪⎩

γε
∫
Ω ∇ϕ : ∇(ϕ̃ − ϕ) + γ

ε

∫
Ω Ψ ′

0(ϕ)(ϕ̃ − ϕ)

−2α
∫

Ω(ϕ̃N − ϕN )f · u − α〈E(u), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0,

∀ϕ̃ ∈ Gm ∩ Uc.
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5. Sharp interface asymptotics

In this section we derive the sharp interface limit of the optimality system derived in Theorem 4.6. The
discussion in this section will not be rigorous and in particular we will use the method of formally matched
asymptotic expansions where asymptotic expansions in bulk regions have to be matched with expansions in
interfacial regions.

For solutions (uε, ϕε, pε) of the optimality system in Theorem 4.6 we perform formally matched asymptotic
expansions. It will turn out that the phase field ϕε will change its values rapidly on a length scale proportional
to ε. For additional information on asymptotic expansions for phase field equations we refer to [1,27]. From now
on we will assume that C(ϕ) has the form in (2.10) and that the functions c and uΩ in the compliant mechanism
functional J0 are smooth functions. In what follows we need to introduce Lagrange multipliers λ = (λi)N

i=1 with
N∑

i=1

λi = 0 for the integral constraint
∫

Ω
− ϕ = m, see [8,49,65]. Then the gradient inequality (GI) in Theorem 4.6

can be reformulated as

(GI’)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γε
∫
Ω ∇ϕ : ∇(ϕ̃ − ϕ) + γ

ε

∫
Ω Ψ ′

0(ϕ) · (ϕ̃ − ϕ)

−βνJ0(u, ϕ)
ν−1

ν

∫
Ω c(ϕ̃N − ϕN )|u − uΩ |2

−
∫

Ω
(ϕ̃N − ϕN )f · (αu + p) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ)

+
∫

Ω
λ · (ϕ̃ − ϕ) ≥ 0,

∀ϕ̃ ∈ G ∩ U c.

5.1. Outer expansions (expansion in bulk regions)

We first expand the solution in outer regions away from the interface. We assume an expansion of the form

uε(x) =
∞∑

k=0

εkuk(x), pε(x) =
∞∑

k=0

εkpk(x), ϕε(x) =
∞∑

k=0

εkϕk(x), where ϕ0(x) ∈ G,
∫

Ω
− ϕ0 = m, ϕk(x) ∈ TΣN ,∫

Ω− ϕk = 0 for k ≥ 1, ϕ0 ∈ U c and ϕk = 0 on S0 ∪ S1 for k ≥ 1. Since the Ψ -term in the energy (2.1) scales
with 1

ε we obtain

∫
Ω

Ψ(ϕ0) = 0,

which follows by arguments similar as in [4], Theorem 2.5. Hence, Ψ(ϕ0) = 0 a.e. in Ω and we obtain that ϕ0

has to attain the values e1, . . . , eN which are the N global minima of Ψ with height 0. Hence, to leading order
the domain Ω is partitioned into N regions Ωi, i ∈ {1, . . . , N}, where ϕ0 = ei, i ∈ {1, . . . , N}. In the regions
Ωi, i = 1, . . . , N − 1, we observe by using a Taylor expansion in C(ϕε) that up to terms of order ε the following
identity holds C(ϕ0) = C(ei) = Ci, see also Section 2.2. This now makes it straightforward to obtain the leading
order expansion of the state and adjoint equations in the regions Ωi, i = 1, . . . , N − 1. Choosing u = uε and
ϕ = ϕε in the state equation (2.4) we obtain e.g. to leading order ε0 in the first equation of (2.4):

−∇ · [C(ϕ0)E(u0)] = f in Ωi

and on Γg ∩ ∂Ωi we obtain to leading order

[C(ϕ0)E(p0)] n = αg on Γg ∩ ∂Ωi.
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All other terms in the state equation (2.4) and in the adjoint equation (4.11) can be treated similarly and
altogether we obtain for i ∈ {1, . . . , N − 1}

(SE)i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ ·
[
CiE(u0)

]
= f in Ωi,

u0 = 0 on ΓD ∩ ∂Ωi,[
CiE(u0)

]
n = g on Γg ∩ ∂Ωi,[

C
iE(u0)

]
n = 0 on Γ0 ∩ ∂Ωi,

(AE)i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ ·
[
CiE(p0)

]
= αf + 2βνJ0(u, ϕ)

ν−1
ν c(u0 − uΩ) in Ωi,

p0 = 0 on ΓD ∩ ∂Ωi,[
CiE(p0)

]
n = αg on Γg ∩ ∂Ωi,[

CiE(p0)
]
n = 0 on Γ0 ∩ ∂Ωi.

In the domain ΩN the elasticity tensor CN converges to zero, see Section 2.2, and we obtain no relevant equation
to leading order.

5.2. Inner expansions

We now construct a solution in the interfacial regions.

5.2.1. New coordinates in the inner region

Denoting by Γij a smooth interface separating Ωi and Ωj which we expect to obtain in the limit when ε tends
to zero, we now introduce new coordinates in a neighborhood of Γij. To keep the notation simple we sometimes
denote Γij by Γ . Choosing a spatial parameter domain U ⊂ Rd−1 we define a local parametrization

γ : U → R
d

of Γ . By ν we denote the unit normal to Γ pointing from Ωi to Ωj .
Close to γ(U) we consider the signed distance function d(x) of a point x to Γ with d(x) > 0 if x ∈ Ωj . We

introduce a local parametrization of Rd close to γ(U) using the rescaled distance z = d
ε as follows

Gε(s, z) := γ(s) + εzν(s),

where s ∈ U ⊂ Rd−1. Let (s1, . . . , sd−1) ∈ U . Then

∂s1γ + εz∂s1ν, . . . , ∂sd−1γ + εz∂sd−1ν, εν

is a basis of Rd locally around Γ . We refer to Figure 1 for an illustration of the geometry around the interface Γij.
Denoting by sd the z-variable we have for a scalar function b(x) = b̂(z(x), s(x))

∇xb = ∇Γεz b̂ + 1
ε∂z b̂ ν. (5.1)

Here ∇Γεz b̂ is the surface gradient ∇Γεz b|Γεz
on Γεz := {γ(s) + εzν(s) | s ∈ U}. In addition we compute for a

vector quantity j(x) = ĵ(z(x), s(x))

∇x · j = ∇Γεz · ĵ + 1
ε∂z ĵ · ν, (5.2)

where ∇Γεz · ĵ is the divergence on Γεz . We also compute

Δxb = ΔΓεz b̂ + 1
ε (Δxd)∂z b̂ + 1

ε2 ∂zzb̂
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Figure 1. The geometry close to the interface Γij.

and derive

∇Γεz b̂(z, s) = ∇Γ b̂(z, s) + h.o.t. ,

∇Γεz · ĵ(z, s) = ∇Γ · ĵ(z, s) + h.o.t. ,

ΔΓεz b̂(z, s) = ΔΓ b̂(z, s) + h.o.t. ,

where ∇Γ , ∇Γ · and ΔΓ are computed on Γεz with the metric tensor on Γ and h.o.t. stands for higher order
terms in ε, see [1]. We denote by κ the mean curvature which is defined to be the sum of the principal curvatures
κ1, . . . ., κd−1. We choose the sign convention that κ is positive when the surface is curved in the direction of
the normal ν. By |S| we denote the spectral norm of the Weingarten map S and hence |S| = κ2

1 + . . . + κ2
d−1.

We now obtain as in [1]
Δxb = ΔΓ b̂ − 1

ε (κ + εz|S|2)∂z b̂ + 1
ε2 ∂zzb̂ + h.o.t. .

Now using (5.1) we have for a vector quantity b(x) = b̂(z(x), s(x))

∇xb = ∇Γ b̂ + 1
ε∂zb̂ ⊗ ν + h.o.t.. (5.3)

Furthermore, for a second order tensor quantity A(x) = (aij(x))d
i,j=1 = Â(z(x), s(x)) with A = (ji)d

i=1, where
ji = (aij)d

j=1, the divergence is defined by ∇x · A = (∇x · ji)
d
i=1 and by (5.2) we get

∇x · A = ∇Γ · Â +
1
ε
∂zÂν + h.o.t.. (5.4)

For the inner expansion we make the ansatz

U ε(x) =
∞∑

k=0

εkUk(z(x), s(x)), (5.5)

P ε(x) =
∞∑

k=0

εkP k(z(x), s(x)), (5.6)

Φε(x) =
∞∑

k=0

εkΦk(z(x), s(x)), (5.7)

where Φ0(z(x), s(x)) ∈ ΣN , Φk(z(x), s(x)) ∈ TΣN , ∀k ≥ 1. We remark that no interface occurs on S0 ∪ S1 as
we set ϕN = 0 on S0 and ϕN = 1 on S1.
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5.2.2. Matching conditions

The outer expansions hold in the regions Ωi, i = 1, . . . , N , and the inner expansions are supposed to hold
in a tubular neighborhood around Γij which is scaled by ε. These two approximations are assumed to hold
simultaneously in a suitable region close to Γij which is given by points x with the property dist(x, Γ ) ≈ εθ,
0 < θ < 1. Comparing the two expansions in the intermediate region leads to matching conditions which
relate the outer expansions to the inner expansions via boundary conditions for the outer expansions which are
expressed with the help of the inner variables, see [26,27,35] for details. Indeed, we need the following matching
conditions at x = γ(s):

Φ0(z, s) →
{

(ϕ0)j = ej for z → +∞,

(ϕ0)i = ei for z → −∞,
(5.8)

∂zΦ1(z, s) →
{

(∇ϕ0)jν for z → +∞,

(∇ϕ0)iν for z → −∞,
(5.9)

where for a quantity (v)j := lim
δ↘0

v(x+ δν) and (v)i := lim
δ↘0

v(x− δν) for x ∈ Γ . We remark that for δ > 0 small

we have x + δν ∈ Ωj and x − δν ∈ Ωi. In addition we obtain that if

Φ1(z, s) =

{
Aj(s) + Bj(s)z + o(1) for z → +∞,

Ai(s) + Bi(s)z + o(1) for z → −∞,

the identities

Aj(s) = (ϕ1)j , Ai(s) = (ϕ1)i, (5.10)
Bj(s) = (∇ϕ0)jν, Bi(s) = (∇ϕ0)iν (5.11)

have to hold, see [26, 35]. Of course similar relations hold for the other functions like u and p. In the following
we will use for a quantity v the jump across the interface Γ which is denoted by [v]ji and defined as

[v]ji := lim
δ↘0

(v(x + δν) − v(x − δν)) for x ∈ Γ.

5.2.3. The equations to leading order

Plugging the asymptotic expansions into the optimality system in Theorem 4.6 we ask that each individual
coefficient of a power in ε vanishes. For the state equation using (5.1), (5.4) and ∂zν = 0 we compute

−∇x · [C(ϕ)E(u)] = − 1
ε2

∂z[C(Φ)(∂zU ⊗ ν)symν] − 1
ε
∂z [C(Φ)(∇Γεz U)symν]

− 1
ε
∇Γεz · [C(Φ)(∂zU ⊗ ν)sym] −∇Γεz · [C(Φ)(∇Γεz U)sym] .

We obtain to leading order O
(

1
ε2

)
:

∂z

[
C(Φ0)(∂zU0 ⊗ ν)symν

]
= 0. (5.12)

Multiplying (5.12) by U0, integrating over z ∈ (−∞, +∞) we obtain using integration by parts and
lim

z→±∞
∂zU0(z) = 0 (using the matching conditions)

0 =
∫ +∞

−∞
C(Φ0)(∂zU0 ⊗ ν)sym : (∂zU0 ⊗ ν)symdz.
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We obtain (∂zU0 ⊗ ν)sym = 0 which gives that U0 is constant in z. This implies after matching for i, j �= N

[u0]
j
i = 0.

Similarly for the adjoint equation we obtain to leading order O
(

1
ε2

)
that P 0 is constant in z and for i, j �= N

[p0]
j
i = 0.

We now want to analyze the state and the adjoint equation to the next order O
(

1
ε

)
. Using the representation

of ∇x and ∇x· in the new coordinates, see (5.1) and (5.2), we obtain

∇x · (∇xu) = ∇x · (∇Γ U + 1
ε∂zU ⊗ ν) (5.13)

= 1
ε∂z(∇Γ U + 1

ε∂zU ⊗ ν) · ν + ∇Γ · (∇Γ U + 1
ε∂zU ⊗ ν)

Using the expansion (5.5) for U , noting the fact that ∂zU0 = 0 and applying a similar argument for the term
involving (∇xu)T we derive from the equation ∇x · [C(ϕ)E(u)] = 0 to the order O

(
1
ε

)
:

∂z[C(Φ0)(∂zU1 ⊗ ν + ∇Γ U0)symν] = 0. (5.14)

Matching requires

∂zU1 ⊗ ν + ∇Γ U0 →
{

(∇xu0)j for z → +∞,

(∇xu0)i for z → −∞.
(5.15)

Hence (5.14) and (5.15) give for i �= N

C
iEi(u0)ν =

{
0 if j = N,

CjEj(u0)ν if j �= N,

where Ei(u0) := lim
δ↘0

E(u0)(x − δν) and Ej(u0) := lim
δ↘0

E(u0)(x + δν).

A similar reasoning provides for i �= N

C
iEi(p0)ν =

{
0 if j = N,

CjEj(p0)ν if j �= N.

In order to deal with the sum constraint
N∑

i=1

ϕi = 1 we introduce an orthogonal projection, see [8]:

P TΣ : R
N → TΣN , P TΣϕ = ϕ −

(
1
N

N∑
i=1

ϕi

)
1,

where 1 := (1, . . . , 1)T . As the gradient inequality results in an equation in the interior of the Gibbs simplex
using (GI’) we obtain, see also [5], to leading order O

(
1
ε

)
:

λ0 = γ∂zzΦ0 − γP TΣΨ ′
0(Φ0), (5.16)

where λ0 + ελ1 + . . . is the inner expansion of the Lagrange multiplier variable λε. We multiply (5.16) with
∂zΦ0, integrate with respect to z, use (5.8) and Ψ(ei) = 0, i ∈ {1, . . . , N} and obtain λ0 · (ej − ei) = 0. Using
N∑

i=1

λi
0 = 0 we get

λ0 = 0. (5.17)
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Now Φ0 is obtained as a solution of
0 = ∂zzΦ0 − P TΣΨ ′

0(Φ0), (5.18)

connecting the values ei and ej , see [13].
Furthermore in the interior of the Gibbs simplex using (GI’) we obtain to the order O(1):

1
γ

λ1 + ∂zzΦ1 − P TΣΨ ′′
0 (Φ0)Φ1 (5.19)

= κ∂zΦ0 −
βνJ0(u0, ϕ0)

ν−1
ν

γ
c|U0 − uΩ |2eN − 1

γ
f · (αU 0 + P 0)eN

− 1
γ

[C
′
(Φ0)(∂zU1 ⊗ ν + ∇Γ U0)sym : (∂zP 1 ⊗ ν + ∇Γ P 0)sym].

In order to be able to obtain a solution Φ1 from (5.19) a solvability condition has to hold. This solvability
condition will yield a gradient equation in the sharp interface situation. We multiply (5.19) with ∂zΦ0, integrate
with respect to z, use ∂zν = 0, (5.14) and obtain after integration by parts

1
γ

λ1 · (ej − ei) +
∫ ∞

−∞
(∂zz(∂zΦ0) − Ψ ′′

0 (Φ0)∂zΦ0) · Φ1

= σijκ − βνJ0(u0, ϕ0)
ν−1

ν

γ

∫ ∞

−∞
c |U0 − uΩ |2eN · ∂zΦ0

− 1
γ

∫ ∞

−∞
f · (αU0 + P 0)eN · ∂zΦ0

− 1
γ

∫ ∞

−∞

d
dz

(
C(Φ0)(∂zU1 ⊗ ν + ∇Γ U0)sym : (∂zP 1 ⊗ ν + ∇Γ P 0)sym

)
+

1
γ

∫ ∞

−∞

d
dz

[C(Φ0)(∂zP 1 ⊗ ν + ∇Γ P 0)symν · ∂zU1]dz

+
1
γ

∫ ∞

−∞

d
dz

[C(Φ0)(∂zU1 ⊗ ν + ∇Γ U0)symν · ∂zP 1]dz, (5.20)

where σij :=
∫∞
−∞ |∂zΦ0|2dz. By virtue of (5.18) we have

σij = 2
∫ ∞

−∞
Ψ0(Φ0)dz.

Because ∂zΦ0 lies in the kernel of ∂zzΦ1 − Ψ ′′
0 (Φ0)Φ1, see [26], we obtain∫ ∞

−∞
(∂zz(∂zΦ0) − Ψ ′′

0 (Φ0)∂zΦ0) · Φ1 = 0. (5.21)

Now we combine (5.20) and (5.21), use the fact that U0 and P 0 do not depend on z and then obtain after
matching for all i, j �= N

0 = γσijκ − [CE(u0) : E(p0)]
j
i + [CE(u0)ν · (∇p0)ν]ji + [CE(p0)ν · (∇u0)ν]ji − λj

1 + λi
1

and for all i �= N

0 = γσiNκ + CiEi(u0) : Ei(p0) − βνJ0(u0, ϕ0)
ν−1

ν c|u0 − uΩ|2 − f · (αu0 + p0) + λi
1 − λN

1 .
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5.3. Triple junction expansion and matching to the transition layer solutions

In a multi-material structure there are regions occupied by the individual materials (or by void), there are
interfacial regions where two materials (or a material and void) meet and finally there are regions where three
materials (or two materials and void) meet, see e.g. Figure 6. At points where in the sharp interface limit three
materials (or two materials and void) meet in addition another condition has to hold. It is well known that in
situations where only surface energy is considered an angle condition has to hold at such points. We now want
to identify the condition in our setting and are in particular interested to which degree the elasticity equation
influences the angle condition. A method to identify the condition at the triple junction which arises from the
phase field system in the sharp interface limit, has been introduced by [15], see also [13, 33]. In order to do so,
one considers an ε-expansion close to the triple junction in rescaled variables which then is plugged into the
optimality system in Theorem 4.6. As has been done in [13, 15, 33] a first order solution only exists if a certain
solvability condition holds. In other phase field systems this solvability conditions lead to an angle condition
at the triple junction [13, 15, 33]. The question now arises whether this condition is altered in case that elastic
effects are included.

We now construct a solution in the neighborhood of a triple point, where three phases meet, each phase
corresponding to one of the three different values ej , ek, el. We follow the ideas of [13, 15, 46]. We perform the
analysis in R2 but the method also works in R3 by using the arguments in the space normal to the triple line,
see [13, 42]. Assume that Γ ε

jk, Γ
ε
kl, Γ

ε
lj are three curves that meet at the point mε

jkl. We use the notation (ab)
for any of the three pairs (jk), (kl), (lj). On each Γ ε

ab we choose the normal νε
ab to point into Ωb-phase. We

introduce the rescaled coordinates y(x, ε) := (x − mε
jkl)/ε and make the ansatz

utp(x) =
∞∑

k=0

εkUk(y(x, ε)), ptp(x) =
∞∑

k=0

εkPk(y(x, ε)),

and

ϕtp(x) =
∞∑

k=0

εkΘk(y(x, ε)),

where Θ0(y(x, ε)) ∈ ΣN and Θk(y(x, ε)) ∈ TΣN ∀k ≥ 1. We substitute this into the first order optimality
system in Theorem 4.6 and then expand y in powers of ε.

The O( 1
ε2 )-system reads

⎧⎪⎨
⎪⎩

−∇y ·
[
C(Θ0)E(U0)

]
= 0 (SE)tp,

−∇y ·
[
C(Θ0)E(P0)

]
= 0 (AE)tp,

−P TΣ(C
′
(Θ0)E(P0)E(U0)) = 0 (GE)tp.

The adjoint and the state equation allow for solutions constant in z and since matching implies that P0 and U0

remain bounded these are the only solutions. Here one can use arguments as in [36], see Theorem 4.16 (Liouville
theorem). For these constant solutions the gradient equation is also fulfilled. Using the fact that P0 and U0 are
constant and (5.17) the O(1

ε )-system reads

−ΔyΘ0 + P TΣΨ ′
0(Θ0) = 0.

We are looking for a solution of this equation that connects ej to ek at +∞ across Γ ε
jk, ek to el at +∞ across Γ ε

kl

and el to ej at +∞ across Γ ε
lj in form of the associated one-dimensional stationary wave solutions, see [14,15,46]

for details. Such a solution exists only if the force balance condition

σjkν
0
jk + σklν

0
kl + σljν

0
lj = 0
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is satisfied. This identity admits a solution if and only if the coefficients σab fulfill σab +σbc ≥ σca for any cyclic
permutation (a, b, c) of (j, k, l). But, since in the present case, σab can be characterized as

d(ea, eb) := inf
{∫ 1

0

Ψ
1
2
0 (�(t))|�′(t)|dt | � ∈ C1([0, 1], Rd), �(0) = ea, �(1) = eb

}
,

see [4], here this constraint is always fulfilled which follows from the triangle inequality for d. The angles at the
junction satisfy Young’s law which is given as

sin θjk

σjk
=

sin θkl

σkl
=

sin θlj

σlj
,

where θab is the angle between the vectors ν0
bc and ν0

ca.

Remark 5.1. In applications to multi-structural topology optimization it is desirable that at a triple junction
involving void the angle of the void is close to π. If this would not be the case one would expect high stresses
at the junction which could lead to damage. Certain given angles can be achieved in the sharp interface limit
of the phase field model by choosing the function Ψ0 appropriately, see [31].

5.4. The limit problem and its geometric properties

As mentioned before the domain Ω is partitioned into N regions Ωi, i ∈ {1, . . . , N}, which are separated by
interfaces Γij, i < j. We remark that for δ > 0 small we have x + δν ∈ Ωj and x− δν ∈ Ωi. Moreover we define
[w]ji := lim

δ↘0
(w(x + δν) − w(x − δν)). We obtain for i, j ∈ {1, . . . , N − 1}:

(SE)i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
[
CiE(u)

]
= f in Ωi,

[u]ji = 0 on Γij,

[CE(u)ν]ji = 0 on Γij,

u = 0 on ΓD ∩ ∂Ωi,[
CiE(u)

]
n = g on Γg ∩ ∂Ωi,[

CiE(u)
]
n = 0 on Γ0 ∩ ∂Ωi,

(AE)i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
[
CiE(p)

]
= αf + 2βνJ0(u, ϕ)

ν−1
ν c(u − uΩ) in Ωi,

[p]ji = 0 on Γij,

[CE(p)ν]ji = 0 on Γij,

p = 0 on ΓD ∩ ∂Ωi,[
CiE(p)

]
n = αg on Γg ∩ ∂Ωi,[

CiE(p)
]
n = 0 on Γ0 ∩ ∂Ωi,

and we have CiEi(u)ν = CiEi(p)ν = 0 on ΓiN. Moreover we obtain for all i, j �= N

0 = γσijκ − [CE(u) : E(p)]ji + [CE(u)ν · (∇p)ν]ji + [CE(p)ν · (∇u)ν]ji − λj + λi on Γij (5.22)

and remark that the terms involving u and p generalize the Eshelby traction known from materials science,
see [28, 29]. In addition for all i �= N it holds

0 = γσiNκ + C
iEi(u) : Ei(p) − βνJ0(u, ϕ)

ν−1
ν c |u − uΩ|2 − f · (αu + p) + λi − λN on ΓiN.
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Remark 5.2. In the case of N = 2 we have Ω = ΩM ∪ ΩV , where ΩM and ΩV denote the material and the
void part of the domain. The interface which separates the two phases is denoted by ΓMV . Using the notation
Γ M

k := Γk ∩ ∂ΩM , k ∈ {D, g, 0} we obtain as the limit problem

(SE)MV

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∇ ·
[
C

ME(u)
]

= f in ΩM ,[
CMEM (u)

]
ν = 0 on ΓMV ,

u = 0 on Γ M
D ,[

CME(u)
]
n = g on Γ M

g ,[
C

ME(u)
]
n = 0 on Γ M

0 ,

(AE)MV

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∇ ·
[
CME(p)

]
= αf + 2βνJ0(u, ϕ)

ν−1
ν c(u − uΩ) in ΩM ,[

CMEM (p)
]
ν = 0 on ΓMV ,

p = 0 on Γ M
D ,[

CME(p)
]
n = αg on Γ M

g ,[
CME(p)

]
n = 0 on Γ M

0 ,

and we have the equation:

0 = γσMV κ + C
MEM (u) : EM (p) − βνJ0(u, ϕ)

ν−1
ν c |u − uΩ|2 − f · (αu + p) + λMV on ΓMV , (5.23)

where λMV is the difference of the Lagrange multipliers λM and λV discussed further above.

5.5. Relating the sharp interface limit to classical shape calculus

In this subsection we compare the limit problem in Section 5.4 and especially (5.23) with results of [3], which
were obtained using classical shape calculus. For this purpose we reformulate the results in [3] to our setting. Let
Ω ⊂ Rd be defined as in Remark 5.2, that means Ω = ΩM ∪ΩV . Given (f , g, uΩ, c) ∈ L2(Ω, Rd)×L2(Γg, R

d)×
L2(Ω, Rd) × L∞(Ω), measurable sets Si ⊆ Ω, i ∈ {0, 1}, with S0 ∩ S1 = ∅, objective functions

F (ΩM ) =
∫

ΩM

f · u +
∫

Γ M
g

g · u, (5.24)

J0(ΩM ) :=
(∫

ΩM

c |u − uΩ|2
)ν

, ν ∈ (0, 1] (5.25)

and the perimeter P (ΩM ) =
∫

(∂ΩM )∩Ω

ds of ΩM in Ω the optimization problem is

(P0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(ΩM ) := αF (ΩM ) + βJ0(ΩM ) + γσMV P (ΩM ),

over Ud = {ΩM ⊂ Ω such that |ΩM | = V and S0 ⊂ ΩM , S1 ⊂ ΩV },

s.t. (SE)MV

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∇ ·
[
CME(u)

]
= f in ΩM ,[

CMEM (u)
]
ν = 0 on ΓMV ,

u = 0 on Γ M
D ,[

CME(u)
]
n = g on Γ M

g ,[
CME(u)

]
n = 0 on Γ M

0 .
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Note that ∂ΩM = Γ M
D ∪Γg ∪Γ M

0 ∪ΓMV . The authors in [3] used shape calculus and formulated the following
theorem:

Theorem 5.3. Let ΩM be a smooth bounded open set and θ ∈ W 1,∞(Rd; Rd), with θ · n = 0 on ∂ΩM \ ΓMV .
Furthermore let κ be the mean curvature of ΓMV . Assume that f and the solution u of the state equation are
smooth, say f ∈ H1(ΩM , Rd) and u ∈ H2(ΩM , Rd). In addition we assume that g is defined on ∂Ω. The shape
derivative of J(ΩM ) at ΩM in the direction θ is given by

J ′(ΩM )(θ) = −
∫

ΓMV

(
γσMV κ + C

ME(u) : E(p)
)
θ · n ds

+
∫

ΓMV

(
βνJ0(u, ϕ)

ν−1
ν c|u + uΩ|2

)
θ · n ds

+
∫

ΓMV

(f · (αu + p))θ · n ds, (5.26)

where p is the adjoint state, assumed to be smooth, i.e. p ∈ H2(Ω, Rd), defined as the solution of

(AE)MV

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∇ ·
[
CME(p)

]
= αf + 2βνJ0(u, ϕ)

ν−1
ν c(u − uΩ) in ΩM ,[

CMEM (p)
]
ν = 0 on ΓMV ,

p = 0 on Γ M
D ,[

CME(p)
]
n = αg on Γ M

g ,[
CME(p)

]
n = 0 on Γ M

0 .

In contrast to [3] we define g on ∂Ω and in addition we use a different sign convention for the mean curvature κ
and the adjoint state p. We notice that the shape calculus approach, see (5.26), coincides with the results we get
by the asymptotic expansion of the phase field optimality system, see (5.23). This follows since at a minimum of
(P0) we have to take volume constraints into account. Hence (5.26) leads to (5.23) with a Lagrange multiplier
λMV which is related to the volume constraint.

6. Numerical simulations

In this section we derive a finite element approximation of the phase field topology optimization problem and
discuss some computational results.

In order to solve the gradient inequality in Theorem 4.6, we use a gradient flow dynamic, see [8–10], for the
reduced functional yielding the following variational inequality for all ϕ̃ ∈ Gm ∩ Uc and all t > 0:

ε

∫
Ω

∂ϕ

∂t
(ϕ̃ − ϕ)+γε

∫
Ω

∇ϕ : ∇(ϕ̃ − ϕ) +
γ

ε

∫
Ω

Ψ ′
0(ϕ) · (ϕ̃ − ϕ)

−βνJ0(u, ϕ)
ν−1

ν

∫
Ω

c(ϕ̃N − ϕN )|u − uΩ|2

−
∫

Ω

(ϕ̃N − ϕN )f · (αu + p) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0. (6.1)

This is a (vector-valued) Allen−Cahn inequality with a forcing term related to elastic effects, see also [8–10]. If
∂ϕ(t̃,·)

∂t = 0 in (6.1) then ϕ(t̃, ·) is a solution of (GI) in Theorem 4.6. In the numerical experiments we always
choose f ≡ 0 which means no forces act in the interior.

For discretization in space we use the following finite element approximation, see also for example [8]. Here
we assume for simplicity that Ω is a polyhedral domain and we let Th be a regular triangulation of Ω into
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disjoint open simplices T . We define h := maxT∈Th
{diam T } the maximal element size of Th. Associated with

Th is the piecewise linear finite element space

Sh :=
{
φ ∈ C0(Ω)

∣∣∣φ∣∣
T

∈ P1(T ) ∀ T ∈ Th

}
⊂ H1(Ω),

where we denote by P1(T ) the set of all affine functions on T . Furthermore we define

Sh
D(Ω, Rd) =

{
v ∈ (Sh)d

∣∣∣v = 0 on ΓD

}
⊂ H1

D(Ω, Rd),

Gm
h := {χ ∈ (Sh)N | χ ≥ 0,

∫
Ω

− χ = m and
N∑

i=1

χi = 1 in Ω}

and
Uh

c := {χ ∈ (Sh)N | (χN )∣∣
T

≡ 0 for T ⊆ S0,
(
χN
)∣∣

T

≡ 1 for T ⊆ S1, T ∈ Th}.

In time we apply a semi-implicit discretization with a fixed time step τ . The resulting method can also be
interpreted as a pseudo-time stepping approach to (GI). We obtain the following iterative procedure:
Set n = 0 and start with an initial guess ϕ0

h ∈ Gm
h ∩Uh

c . Then solve successively with respect to n the following
inequality for the solution ϕn+1

h ∈ Gm
h ∩ Uh

c in the (n + 1)th (artifical) time step

ε

τ

∫
Ω

(ϕn+1
h − ϕn

h)(ϕ̃h − ϕn+1
h )+γε

∫
Ω

∇ϕn+1
h : ∇(ϕ̃h − ϕn+1

h )

+
γ

ε

∫
Ω

Ψ ′
0(ϕ

n
h) · (ϕ̃h − ϕn+1

h )

−βνJ0(un
h, ϕn

h)
ν−1

ν

∫
Ω

c(ϕ̃N
h − ϕN,n+1

h )|un
h − uΩ|2

−〈E(pn
h), E(un

h)〉C′(ϕn
h)(ϕ̃h−ϕn

h) ≥ 0 ∀ϕ̃h ∈ Gm
h ∩ Uh

c (6.2)

where pn
h, un

h ∈ Sh
D(Ω, Rd) are solutions of the following finite element approximations of the adjoint equation

and the state equation

〈E(pn
h), E(qh)〉C(ϕn

h) =
∫

Ω

2βνJ0(un
h, ϕn

h)
ν−1

ν c(1 − ϕN,n
h )(un

h − uΩ) · qh + α

∫
Γg

g · qh ∀qh ∈ Sh
D, (6.3)

〈E(un
h), E(vh)〉C(ϕn

h) =
∫

Γg

g · vh ∀vh ∈ Sh
D. (6.4)

We use a preconditioned conjugate gradient solver for (6.3) and (6.4), see also [34]. To solve (6.2) we use the
primal-dual active set method presented in [8]. To the resulting system of linear equations we apply the direct
solver UMFPACK [22] when d = 2 and MINRES when d = 3.

We note that the thickness of the interfacial layer between bulk regions is proportional to ε. In order to resolve
this interfacial layer we need to choose h � ε, see [23] for details. Away from the interface h can be chosen larger
and hence adaptivity in space can heavily speed up computations. In fact we use the finite element toolbox
Alberta 2.0, see [51] for adaptivity and we implemented the same mesh refinement strategy as in [6], i.e. a fine
mesh is constructed for all variables ϕn+1

h , pn
h and un

h where 0 < (ϕn
h)i < 1 for at least one index i ∈ {1, . . . , N}

and with a coarser mesh present in the bulk regions where (ϕn
h)i = 0 or (ϕn

h)i = 1 for all i ∈ {1, . . . , N}.
Unless otherwise stated in the two dimensional simulations we choose as the minimal diameter of all elements

hmin = 1
128 , the maximal diameter hmax = 1

16 and the time-step τ = 1.0 · 10−6. In the three dimensional
simulation we take hmin = 1

90 , hmax = 1
16 and τ = 1.0 × 10−5. When there is only one material present, i.e.
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Figure 2. Bridge configuration.

N = 2, then void is described by ϕ2 = 1 − ϕ1. Thus the vector-valued Allen−Cahn inequality with two order
parameters is reduced in the computations to a scalar Allen−Cahn inequality. In all cases the iteration stops
when ϕ does visually not change anymore.

In Sections 6.1−6.3 we display numerical results with β = 0 (in this case it holds pn
h = αun

h). This minimum
compliance problem aims to construct a structure with maximal global stiffness and is a basic problem in
topology optimization, see [7]. Other numerical approaches based on a phase field method can be found e.g.
in [9, 50, 55, 60, 61]. Unless otherwise stated in our examples we set the matrix W in the bulk potential term to
be 1⊗ 1− Id and the interfacial parameters are taken to be γ = 1 with ε = 1

16π for d = 2 and ε = 1
8π for d = 3.

Moreover, we set S0 = S1 = ∅ and hence U c = H1(Ω, RN ) and Gm
h ∩ Uh

c = Gm
h .

In Section 6.4 we present results with α = 0. In this case we want to optimize the error compared to a target
displacement (compliant mechanism). Also this is a standard problem in topology optimization and we refer
to [3, 7, 55] for further details. For our simulation we choose an example in which we aim to minimize the total
displacement under a force acting on the boundary, for the setup see Figure 9. Such a situation is typical in
applications, see [7]. For numerical simulations for the compliant mechanism using the SIMP method we refer
to [7] whereas in [3] the level set method is used and in [55] a phase field method is used to numerically solve
the problem.

6.1. Bridge construction with N = 2 and d = 2

The classical problem of the bridge configuration – depicted in Figure 2 – is considered first. We pose Dirichlet
boundary conditions on the bottom left and right boundaries ΓD and a vertical force is acting on the bottom
at the centre. We take Ω = (−1, 1) × (0, 1) and ΓD = {(x, 0) ∈ R2 : x ∈ (−1,−0.9] ∪ [0.9, 1)}. The force F is
acting on Γg := {(x, 0) ∈ R2 : x ∈ [−0.02, 0.02]} and is defined by a constant function g ≡ (0,−5000)T on Γg.
In our computations we use an isotropic elasticity tensor C1 of the form C1E = 2μ1E +λ1(trE)I with the Lamé
constants λ1 = μ1 = 250 and choose C2 = ε2C1 in the void. Moreover, we assume as much void as material,
hence m = (1

2 , 1
2 )T . We display results from two sets of initial data, the first in which we set ϕ0

h ≡ (1
2 , 1

2 )T and
the second in which we take a checkerboard structure alternating regions with ϕ0

h ≡ (0, 1)T and ϕ0
h ≡ (1, 0)T ,

both sets of data ensure that we approximately have the same proportion of material and void.
In Figures 3 and 4 we see that although the two sets of initial data give rise to different evolutions the final

solution is the same. We point out that the connectivity of the regions occupied by material is found by the
method without using informations on topological derivatives. One also observes several topological changes
during time, see also [60, 61].

6.2. Cantilever beam construction with N = 3 and d = 2

In this section we present a numerical simulation for a cantilever beam geometry, see Figure 5, consisting
of hard as well as soft material and void. We pose Dirichlet boundary conditions on the left boundary ΓD

and a vertical force is acting at the bottom of its free vertical edge. We take Ω = (−1, 1) × (0, 1), and hence
ΓD = {(−1, y) ∈ R2 : y ∈ (0, 1)}. The force F is acting on Γg := {(x, 0) ∈ R2 : x ∈ [0.75, 1)} and is defined
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t = 0.0 t = 0.001 t = 0.003

t = 0.005 t = 0.01 t = 0.03

Figure 3. Bridge simulation with N = 2 and ϕ0
h ≡ (1

2 , 1
2 )T , material in red and void in blue.

t = 0.0 t = 0.0002 t = 0.0003

t = 0.0005 t = 0.001 t = 0.006

Figure 4. Bridge simulation with N = 2 and checkerboard initial data, material in red and
void in blue.

Figure 5. Cantilever beam configuration.
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t = 0.0 t = 0.0001 t = 0.0003

t = 0.02 t = 0.04 t = 0.1

Figure 6. Cantilever beam simulation with N = 3 and W given by (6.5). Hard material in
red, soft material in green and void in blue.

Figure 7. Cantilever beam simulation with N = 3 and W = 1⊗ 1− Id. Hard material in red,
soft material in green and void in blue.

by g ≡ (0,−600)T on Γg. We take γ = 4 and the mass constraints are set such that they enforce 36.5% hard
material, 22% soft material and 41.5% void. For the hard material (associated with ϕ1) we use the isotropic
elasticity tensor C1 (see Sect. 6.1) and the Lamé constants λ1 = μ1 = 5000; for the soft material (associated
with ϕ2) we choose C2 = 1

2C1 and for the void we take C3 = (2ε)2C1. A symmetric choice of Ψ would lead to
120◦ angles at the triple junction, see Section 5.3. When all these three phases meet at a triple point 120◦ it
can be more likely that a crack forms. Hence, in structural topology optimization these 120◦ angle conditions
at triple junctions are typically not wanted. To overcome this the matrix W in the bulk potential is adjusted.
We take

W =

⎛
⎝ 0 0.1 1

0.1 0 1
1 1 0

⎞
⎠ (6.5)

which at a triple junction forces the angle in the void to be larger than the other two angles. This choice is
motivated by the results in [31, 32].

We initialize the order parameter ϕ0
h with random values such that the sum constraint is fulfilled and the

proportions of hard material, soft material and void are as required. Figure 6 shows the results obtained, where
ϕ at t = 0.1 appears to be a numerical steady state.

In Figure 7 we also display the final solution for the choice W = 1 ⊗ 1 − Id which leads to a potential that
is symmetric in the (ϕi)′s, i ∈ {1, 2, 3}. We observe smaller angles in the void at the triple junction. Similar
numerical results for such a symmetric situation have been obtained earlier in [60, 61].
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Figure 8. Cantilever beam simulation with N = 2, d = 3 and checkerboard initial data.

Figure 9. Push configuration.

6.3. Cantilever beam construction with N = 2 and d = 3

A numerical simulation for the extension of the cantilever beam geometry to three space dimensions is
displayed in Figure 8. In particular we take m = (1

2 , 1
2 )T , Ω = (0, 5) × (0, 2.5) × (0, 3), ΓD = {(0, y, z) ∈ R3 :

(y, z) ∈ (0, 2.5) × (0, 3)}, Γg := {(x, y, 0) ∈ R3 : (x, y) ∈ [4.75, 5) × (0, 2.5)} and g ≡ (0, 0,−165)T on Γg. We
use an isotropic elasticity tensor C1 of the form C1E = 2μ1E + λ1(trE)I with λ1 = μ1 = 5000 and we choose
C2 = ε2C1 in the void. We initialize the order parameter ϕ with a similar checkerboard structure to that
described in Section 6.1. In Figure 8 we display the boundary between the material and the void of the final
solution.

6.4. Push construction with N = 2 and d = 2

For the construction problem under pushing forces we present numerical simulations for the configuration
depicted in Figure 9 where one minimizes the target displacement only. We set therefore α = 0 and choose
β = 10, ν = 0.5. We set γ = 0.2 and hmin = 1

94 . We take the constant weighting factor c ≡ 2000 in Ω :=
(−1, 1) × (−1, 1) and no displacement of the material as target, i.e. uΩ = 0. Furthermore we pose Dirichlet
boundary conditions on the top and bottom of both the left and right boundaries, in particular we set ΓD =
{(−1, y)∪ (1, y) ∈ R2 : y ∈ (−1,−0.9]∪ [0.9, 1)}, and apply horizontal forces along the left and right boundaries,
i.e. Γg− ∪ Γg+ with Γg± := {(±1, y) ∈ R2 : y ∈ [−0.8,−0.7] ∪ [−0.1, 0.1] ∪ [0.7, 0.8]} As forces we define
g ≡ (±7, 0)T on Γg± . As in Section 6.1 we use an isotropic elasticity tensor C1 of the form C1E = 2μ1E +
λ1(trE)I and C2 = ε2

C1 in the void with the Lamé constants λ1 = μ1 = 10. However instead of using the
linear interpolation, defined in (2.10), of ϕ in the elasticity tensor we use the following quadratic interpolation,
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t = 0.0 t = 0.002 t = 0.003

t = 0.004 t = 0.005 t = 1.25

Figure 10. Push simulation with N = 2 and ϕ0
h = (1

2 , 1
2 )T on Ω \S0, material in red and void

in blue.

t=0.002 t = 0.005 t = 1.25

t=0.002 t = 0.005 t = 1.25

Figure 11. Displacement vector for the push simulation with N = 2 and ϕ0
h = (1

2 , 1
2 )T on

Ω \ S0; x-component top row, y component bottom row.

C(ϕ) = (1 − ε)2(ϕ1)2C1 + C2. Moreover, we enforce material in Ω, adjacent to the parts of the boundary that
are fixed and where the forces are applied, by setting S0 = (−1,−0.9) × (−1,−0.9) ∪ (−1,−0.9) × (0.9, 1) ∪
(0.9, 1.0) × (−1,−0.9) ∪ (0.9, 1) × (0.9, 1) ∪ (−1,−0.9)× (−0.8,−0.7) ∪ (−1,−0.9) × (−0.1, 0.1) ∪ (−1,−0.9) ×
(0.7, 0.8)(0.9, 1) × (−0.8,−0.7) ∪ (0.9, 1) × (−0.1, 0.1) ∪ (0.9, 1) × (0.7, 0..8). We take S1 = ∅. There shall be
51.25% material and 48.75% void. We display results from the same two sets of initial data as in the bridge
simulation except we have ϕ0

h = (1, 0)T in S0.
In Figures 10 and 12 we see that although the two sets of initial data give rise to different evolutions the final

state solutions are the same. Since there can be many local minima, this is in fact not required. In Figures 11
and 13 we display the displacement vector u and in Figure 14 we display the deformed optimal configuration.
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t = 0.0 t = 0.002 t = 0.01

t = 0.05 t = 0.1 t = 1.25

Figure 12. Push simulation with N = 2 and checkerboard initial data, material in red and
void in blue.

t=0.002 t = 0.01 t = 1.25

t=0.002 t = 0.01 t = 1.25

Figure 13. Displacement vector for the push simulation with N = 2 and checkerboard initial
data; x-component top row, y component bottom row.

Figure 14. Deformed optimal configuration.
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7. Conclusions

A multi-material structural topology optimization problem has been formulated in a phase field context. First-
order necessary optimality conditions are rigorously derived. They are formulated as a variational inequality
since the material concentration functions are restricted to lie on the Gibbs simplex.

It is possible to relate the first-order conditions of the phase field approach to classical necessary conditions
derived in the context of shape calculus by using formally matched asymptotic expansions. In particular, we can
relate our results to the sensitivity analysis of [3]. In addition, at material-material interfaces we obtain terms
generalizing the Eshelby traction from materials science, see (5.22).

Finally numerical simulations show that the approach can be used for mean compliance and for tracking
type functionals. Topology changes and the creation of new holes are possible in the approach without using
topological derivatives.
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