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QUASI-STATIC RATE-INDEPENDENT EVOLUTIONS: CHARACTERIZATION,
EXISTENCE, APPROXIMATION AND APPLICATION TO FRACTURE

MECHANICS ∗

Matteo Negri1

Abstract. We characterize quasi-static rate-independent evolutions, by means of their graph parame-
trization, in terms of a couple of equations: the first gives stationarity while the second provides the
energy balance. An abstract existence result is given for functionals F of class C1 in reflexive separable
Banach spaces. We provide a couple of constructive proofs of existence which share common features
with the theory of minimizing movements for gradient flows. Moreover, considering a sequence of
functionals Fn and its Γ -limit F we provide, under suitable assumptions, a convergence result for the
associated quasi-static evolutions. Finally, we apply this approach to a phase field model in brittle
fracture.
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1. Introduction

In the last few years the analysis of quasi-static rate-independent evolutions has been the object of several
important advances. Theoretical and applied results have been developed essentially along two alternative lines:
on the one hand the evolutions by global minima (usually named “energetic evolutions”) on the other the
evolutions by critical points.

To illustrate the picture in a simple setting, consider a stored energy E : [t0, t1]×V → R, where [t0, t1] is the
time interval and V is a separable reflexive Banach space (either finite or infinite dimensional) together with
a dissipation distance Δ : V × V → [0,+∞]. Given an initial condition v(t0) = v0 (with v0 globally stable) a
trajectory v : [t0, t1] → V is an energetic evolution [24] if the following conditions hold,

(S) for every t ∈ [t0, t1] it holds

E(t, v(t)) ≤ E(t, φ) +Δ(φ, v(t)) for every φ ∈ V ,
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(E) for every t ∈ [t0, t1] it holds

E(t, v(t)) = E(t0, v(t0)) −Δ(v(t), v(t0)) +
∫ t

t0

∂tE(s, v(s)) ds.

The letters (S) and (E) denote respectively (global) stability and energy balance. Assuming further that there
exists a dissipation “potential” D : V → [0,+∞) such that Δ(v, w) = D(v) −D(w) and introducing the energy
functional F(t, v) = E(t, v) + D(v) the (S)-(E) conditions read

(S) for every t ∈ [t0, t1] it holds
F(t, v(t)) ≤ F(t, φ) for every φ ∈ V ,

(E) for every t ∈ [t0, t1] it holds

F(t, v(t)) = F(t0, v(t0)) +
∫ t

t0

∂tF(s, v(s)) ds.

Often a representation of the form Δ(v, w) = D(v) − D(w) holds under some constraint on the admissible
increment (it is indeed the case in brittle and cohesive fracture and in associative plasticity), however, to keep
the presentation clear, we will not introduce any constraint in the abstract picture; we will see how to deal
with a constrained problem in Section 8. It is important to highlight that in the above definition there are no
derivatives of the stored energy E with respect to the state variable v, thanks to this fact it is possible to prove
existence of energetic evolutions under (very) low regularity assumptions on E , including the case of spaces
without a vectorial structure, see for instance [13] for an application to fracture. On the other hand, it may
happen that the behaviour of energetic solutions is not physically admissible: when a discontinuity occurs the
evolution typically “tunnels” under an energy barrier.

Let us turn to evolutions by critical points, assuming from now on that F is of class C1. In the literature
there are several equivalent definitions, most of them formulated in terms of the trajectory t �→ v(t), as the BV
solutions of [26, 27]. Here we will adopt a graph parametrization of solutions, inspired by [16], which provides
in turn a parametrized BV solution (see Sect. 3 and [25]). The idea is to define the evolution by means of
a (Lipschitz) parametrization of the extended graph, of the type τ �→ (t(τ), v(τ)) for τ ∈ [0, T ). This is a
convenient choice to focus on discontinuities, indeed with this parametrization jumps at a certain time ts are
represented by “vertical parts” of the extended graph, of the form τ �→ (t(τ), v(τ)) for τ ∈ [τ−, τ+] with t(τ) = ts
and v(τ−) �= v(τ+). Adopting graph parametrization, our goal is first to provide a definition which resembles
the (S)-(E) formulation above and then to provide an existence result in separable reflexive Banach spaces. Let
us see in more detail our definition: let τ �→ (t(τ), v(τ)) be a Lipschitz map with 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1 (t′

and v′ denote the derivatives with respect to τ). We will say that (t, v) is (a parametrization of) a quasi-static
evolution if

(S′) for every τ with t′(τ) > 0 it holds
‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) = F(t(0), v(0)) −
∫ τ

0

‖∂vF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds,

where ‖∂vF(t, v)‖ is the norm in the dual V ′, i.e.

‖∂vF(t, v)‖ = max {∂vF(t, v)[φ] : ‖φ‖ ≤ 1}.

Here the labels (S′) and (E′) stand respectively for stationarity and energy balance while the prime symbol
suggests the dependence on derivatives of the stored energy. Close to our definition of evolutions by critical



QUASI-STATIC RATE-INDEPENDENT EVOLUTIONS 985

points are those of [16, 26, 32, 37] while close to our existence proof are those on minimizing movements for
gradient flows, e.g. [1, 2, 15, 33, 35].

Several properties of the evolution follow from this definition. First of all, note that (S′) can be written also
in the (norm free) form

∂vF(t(τ), v(τ))[φ] = 0 for every φ ∈ V .

Next, if t′(s) > 0 for every s ∈ [τ1, τ2] (and thus there are no jump discontinuities in [t(τ1), t(τ2)]) then (E′)
yields

F(t(τ2), v(τ2)) = F(t(τ1), v(τ1)) +
∫ τ2

τ1

∂tF(t(s), v(s)) t′(s) ds,

which, up to a change of variable, is equivalent to (E). On the contrary, if t′(s) = 0 for every s ∈ [τ−, τ+] (and
thus there is a jump discontinuity at time t = t(s)) then (E′) reads

F(t, v(τ+)) = F(t, v(τ−)) −
∫ τ+

τ−
‖∂vF(t, v(s))‖ ds,

and in particular F(t, v(τ2)) ≤ F(t, v(τ1)) for every τ− ≤ τ1 < τ2 ≤ τ+. Most important, the path τ �→ v(τ)
between v(τ−) and v(τ+) is a curve of maximal (normalized) slope [2] for the autonomous functional F(t, ·);
this property will follow from the optimality of v′(τ) described hereafter. By the chain rule we can write

dτF(t(τ), v(τ)) = ∂vF(t(τ), v(τ)) [v′(τ)] + ∂tF(t(τ), v(τ))t′(τ),

and thus for τ1 < τ2

F(t(τ2), v(τ2)) = F(t(τ1), v(τ1)) +
∫ τ2

τ1

dτF(t(τ), v(τ)) ds

= F(t(τ1), v(τ1)) +
∫ τ2

τ1

∂vF(t(τ), v(τ)) [v′(τ)] dτ +
∫ τ2

τ1

∂tF(t(τ), v(τ)) t′(τ) dτ.

On the other hand, by (E′) we can write

F(t(τ2), v(τ2)) = F(t(τ1), v(τ1)) −
∫ τ2

τ1

‖∂vF(t(τ), v(τ))‖ dτ +
∫ τ2

τ1

∂tF(t(τ), v(τ)) t′(τ) dτ.

Therefore, ∂vF(t(τ), v(τ)) [v′(τ)] = −‖∂vF(t(τ), v(τ))‖ for a.e. τ . Since ‖v′‖ ≤ 1 it follows that for a.e. τ

v′(τ) ∈ argmin
{
∂vF(t(τ), v(τ)) [φ] : ‖φ‖ ≤ 1

}
.

If t′(τ) > 0 the above property is not of interest since ∂vF(t(τ), v(τ)) = 0 and thus any v′ is a minimizer. On the
contrary, on jump discontinuities, where ∂vF(t(τ), v(τ)) �= 0, it says that v′(τ) is the steepest descent direction;
in a Hilbert space setting, v would solve the normalized gradient flow

v′(τ) = −∇F(t, v(τ))/‖∇F(t, v(τ))‖,

where ∇F is the gradient of F (with respect to the norm ‖ · ‖), τ belongs to the jump interval [τ−, τ+] and
t = t(τ) is the discontinuity point. To understand the idea behind the normalization of the gradient consider at
time t a transition between the equilibrium configurations v(t−) and v(t+). Since v(t−) and v(t+) are equilibrium
configurations a (non-normalized) gradient flow would provide in general a transition in an infinite interval, say
[τ−,+∞), and thus it would not be possible to extend the parametrization after the time t. On the contrary,
a normalized gradient flow allows to find a parametrization of the evolution in a finite interval, say [τ−, τ+],
whenever the length of the path τ �→ v(τ) is finite.
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Under suitable conditions on the energy functional, we prove existence of such an evolution both by means
of a “parametrized” minimizing movement and by means of a forward Euler scheme; the proofs, based on
sequences of incremental problems, do not employ vanishing viscosity arguments. The common structure of
the existence results could be summarized as: construction of a discrete evolution, discrete stationarity and
discrete energy inequality, construction of a continuum interpolation, compactness, convergence of stationarity
and energy inequality to their continuum counterparts (E′) and (S′).

Next, following the scheme of [34], we provide an approximation result of the following type. Consider a
sequence of functionals Fn together with the corresponding quasi-static evolutions, say (tn, vn). Assume that
Fn Γ -converge to F with respect to convergence in t and weak convergence in v. Under suitable conditions on
the convergence of ‖∂vFn‖ and ∂tFn to ‖∂vF‖ and ∂tF respectively, we show that the quasi-static evolutions
(tn, vn) converge (up to subsequences) to a quasi-static evolution (t, v) for the Γ -limit F . The proof is based on
the same arguments developed for the convergence of discrete stationarity and energy inequality, which appear
in the existence result. We could consider this result as the analogue of [29], developed for energetic evolutions.

Moreover, we consider the quasi-static evolution with respect to a weaker norm, induced by the continuous
immersion of V in a reflexive separable Banach space W . In this context the existence result developed in
the norm of V is not suitable, we follow instead a “Galerkin approach” approximating the evolution in finite
dimensional spaces and then passing to the limit by virtue of the approximation result.

The last part of the paper is dedicated to quasi-static evolutions for a phase field model in brittle fracture [6].
The presence of a constraint, related to the irreversibility of the crack, does not change the core of the previous
arguments; indeed we prove existence of a parametrized quasi-static evolution in the H1 and L2 norm. The
reader interested in phase field models for fracture will find also an energetic evolution in [19], an L2-gradient
flow (in the displacement) in [4], an L1-viscosity solution in [21] and a dynamic visco-elastic evolution in [23].
Besides our interest for the specific application, this example shows that the formulation and the existence
result, both with some modifications, are suitable also in the case of constrained problems.

2. Definitions and statements of the main results

Let V be a reflexive, separable Banach space, with norm ‖ · ‖, and let [t0, t1] be a time interval. Let F :
[t0, t1]×V → [0,+∞) be an energy functional. Assume that F is of class C1. Within this setting the quasi-static
evolutions of interest in this work are characterized by the following definition.

Definition 2.1. Let (t, v) : [0, T ) → [t0, t1] × V be a Lipschitz map with (t(0), v(0)) = (t0, v0), 0 ≤ t′ ≤ 1 and
‖v′‖ ≤ 1; (t, v) is (a parametrization of) a quasi-static evolution if

(S′) the following stationarity condition holds: for every τ with t′(τ) > 0

‖∂vF(t(τ), v(τ))‖ = 0, (2.1)

(E′) the following energy balance holds: for every τ

F(t(τ), v(τ)) = F(t0, v0) −
∫ τ

0

‖∂vF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds, (2.2)

where ‖∂vF(t, v)‖ denotes the norm in the dual space V ′.

In general, according to the previous Definition, if v0 is an equilibrium configuration the trivial parametriza-
tion τ �→ (t0, v0) is an admissible quasi-static evolution. Note also that using parametrizations it may happen
that the solution is instead a pure jump, of the form (t0, v(τ)), which is the only possible solution when there are
no equilibrium configurations. To conclude, note that the continuity of ∂tF and ∂vF are enough for integrability
in (2.2) for every Lipschitz parametrization.

In the next two sections we will prove the following existence result by means of both a minimizing movement
and an explicit Euler scheme.
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Theorem 2.2. Let F : [t0, t1] × V → [0,+∞) be of class C1 with

F(t, v) ≤ lim inf
m

F(tm, vm) for tm → t and vm ⇀ v, (2.3)

‖∂vF(t, v)‖ ≤ lim inf
m

‖∂vF(tm, vm)‖ for tm → t and vm ⇀ v, (2.4)

∂tF(t, v) = lim
m
∂tF(tm, vm) for tm → t and vm ⇀ v. (2.5)

Moreover assume that there exists a non-decreasing modulus of continuity C such that

‖∂vF(t, v) − ∂vF(t, w)‖ + |∂tF(t, v) − ∂tF(t, w)| ≤ C(‖v − w‖) uniformly w.r.t. t ∈ [t0, t1]. (2.6)

Under the above hypotheses there exists a quasi-static evolution in the sense of Definition 2.1.

Note that the coercivity of the functional F(t, ·) is not required for existence. Note also that in several cases,
usually in the presence of irreversibility constraints, it is possible (see Lem. 3.2 in [16], and Sect. 8) to guarantee
the existence of non-trivial solutions.

The next Theorem, in the spirit of [8, 34, 35], shows the connection between Γ -convergence [7, 11] of energy
functionals and the associated quasi-static evolutions (the proof is contained in Sect. 6). A typical application
of this Theorem is to finite element approximation, however it can be used also as an existence result (as we
will see in the sequel).

Theorem 2.3. Let Fh : [t0, t1]×Vh → [0,+∞) be a family of C1 functionals defined on the subspaces Vh ⊂ V.
Assume that Vh, endowed with the norm of V, are Banach spaces. Let (th, vh) : [0, T ) → [t0, t1]×Vh be a family
of quasi-static evolutions for Fh (in the sense of Def. 2.1) with initial condition (t0, vh,0). Let F : [t0, t1]×V →
[0,+∞) of class C1. Assume that

F(t, v) ≤ lim inf
h

Fh(th, vh) for th → t and vh ⇀ v in V , (2.7)

‖∂vF(t, v)‖ ≤ lim inf
h

‖∂vFh(th, vh)‖h for th → t and vh ⇀ v in V , (2.8)

∂tF(t, v) = lim
h
∂tFh(th, vh) for th → t and vh ⇀ v in V , (2.9)

where ‖∂vFh(th, vh)‖h is the norm in the dual V ′
h. Assume also that the initial condition is “well-prepared”, i.e.

that
vh,0 ⇀ v0 in V and that Fh(t0, vh,0) → F(t0, v0), (2.10)

and that the power ∂tFh(th(s), vh(s)) is uniformly bounded. Then there exists a subsequence (not relabelled)
such that th(τ) → t(τ) and vh(τ) ⇀ v(τ), for every τ ∈ [0, T ); the limit (t, v) is a quasi-static evolution for F
(in the sense of Def. 2.1) with initial condition (t0, v0).

Finally, consider the Banach space V to be continuously embedded in a Banach space W and endowed with
the norm of W . (The prototype example is the inclusion of H1 in L2). Let F : [t0, t1] × V → [0,∞) be again of
class C1. Clearly ∂vF(t, v)[·] is linear and continuous on V , endowed with the norm ‖ · ‖V . If ∂vF(t, v)[·] is also
linear and continuous on V , endowed with the norm ‖ · ‖W , it is possible to define also

‖∇WF(t, v)‖ = sup{∂vF(t, v)[φ] : φ ∈ V , ‖φ‖W ≤ 1}.

If ∂vF(t, v)[·] is not linear and continuous on V , endowed with the norm ‖ · ‖W , we set ‖∇WF(t, v)‖ = ∞.
Within this framework we can define the quasi-static evolution with respect to the norm ‖ · ‖W exactly as we
did in Definition 2.1.
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Definition 2.4. Let (t, v) : [0, T ) → [t0, t1] × V be a Lipschitz map with (t(0), v(0)) = (t0, v0), 0 ≤ t′ ≤ 1 and
‖v′‖W ≤ 1; (t, v) is (a parametrization of) a quasi-static evolution if

(S′) for every τ with t′(τ) > 0
‖∇WF(t(τ), v(τ))‖ = 0, (2.11)

(E′) for every τ

F(t(τ), v(τ)) = F(t0, v0) −
∫ τ

0

‖∇WF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds. (2.12)

In the weak norm setting the existence result provided by Theorem 2.2 is not really useful since the uniform
continuity of the derivatives, with respect to ‖ · ‖W , is often too restrictive (think of the Dirichlet energy with
respect to L2). However, using a sequence of finite dimensional approximations together with Theorem 2.3 we
will prove in Section 7 the following existence result.

Theorem 2.5. Let F : [t0, t1] × V → [0,+∞) of class C1 and such that

F(t, v) ≤ lim inf
m

F(tm, vm) for tm → t and vm ⇀ v in V , (2.13)

∂vF(t, v)[φ] = lim
m
∂vF(tm, vm)[φ] for tm → t, vm ⇀ v in V and φ ∈ V , (2.14)

∂tF(t, v) = lim
m
∂tF(tm, vm) for tm → t and vm ⇀ v in V. (2.15)

Moreover assume that there exists a non-decreasing modulus of continuity C s.t.

‖∂vF(t, v) − ∂vF(t, w)‖ + |∂tF(t, v) − ∂tF(t, w)| ≤ C(‖v − w‖) uniformly w.r.t. t ∈ [t0, t1]. (2.16)

Let V be continuously embedded in a separable reflexive Banach space W. Assume also that F is coercive with
respect to ‖ · ‖V and that for some A,B independent of t and v it holds

|∂tF(t, v)| ≤ AF(t, v) +B. (2.17)

Then there exists a quasi-static evolution in the sense of Definition 2.4.

Before proving the above results, it is fair to mention that the statements are far from being sharp, for
instance, (2.5) could be replaced by a limsup condition, the uniform continuity of (2.6) could be made time
dependent while conditions (2.7)–(2.9) could include the energy excess, as in [34]. In this work our goal is indeed
to present a scheme and the essential ingredients, rather than providing a general framework.

3. Comparison with BV solutions

We will start presenting an abstract framework for BV solutions, making reference to [25,28] for the general
and precise assumptions. Then we will see how our parametrized solutions fits into the above framework.

Let V be a reflexive, separable Banach space. Denote by E : [t0, t1] × V → R the stored energy and by
R : V ×V → [0,+∞] the dissipation functional. We will write E(t, v) and R(v, z) having in mind that v denotes
the state variable while z denotes the velocity, say v̇. Note that in [25,28] the dissipation is actually of the form
R(z). With this notation the dissipation distance between the states v0 and v1 is

DistR(v0, v1) = inf
{∫ 1

0

R(v(s), v′(s)) ds : v ∈ W 1,1([0, 1],V), v(0) = v0, v(1) = v1

}
.

For BV trajectories (in analogy with the variation) the amount of dissipated energy is given by

DissBV (v, [ta, tb]) = sup

{
m∑

i=0

DistR(vi, vi+1) : vi = v(ti) , ta ≤ t0 < . . . < tm+1 = tb

}
.
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Now, consider the ε-viscous dissipation functional Rε(v, z) = R(v, z) + (ε/2)‖z‖2 together with its Legendre
transform R∗

ε(v, ξ). We then introduce the vanishing viscosity contact potential

p(v, z, ξ) inf
ε>0

{Rε(v, z) + R∗
ε(v, ξ)}

and finally the Finsler distance

Distp(t, v0, v1) = inf
{∫ 1

0

p
(
v(s), v′(s),−∂vE(t, v(s))

)
ds : v ∈ W 1,1([0, 1],V), v(0) = v0, v(1) = v1

}
.

We have now all the ingredients to define a BV solution, for sake of simplicity we will restrict ourselves to the
case of left continuous solutions for energies of class C1. We denote by J(v) the set of jump points of v. A
(left-continuous) map v ∈ BV ([t0, t1],V) with v(t0) = v0 is a BV solution if

(S̄) for t ∈ [t0, t1] \ J(v) it holds
∂zR(v(t), 0) + ∂vE(t, v(t)) � 0,

(Ē) for every t it holds

E(t, v(t)) + DissBV (v, [t0, t]) +
∑

s∈ J(v)∩ [t0,t)

Distp

(
s, v(s), v

(
s+

))
− DistR

(
v(s), v

(
s+

))

= E(t0, v0) +
∫ t

t0

∂tE(s, v(s)) ds.

Now let us re-write the above conditions remembering that in our setting the dissipation functional R admits
a potential D : V → [0,+∞) (depending only on the state variable v) such that R(v, z) = ∂vD(v)[z]. Therefore
we have

∂zR(v, z)[φ] = ∂vD(v)[φ] for every φ ∈ V .

In particular ∂zR(v, 0) = ∂vD(v) and then (S̄) reads: for t ∈ [t0, t1] \ J(v) it holds

∂vD(v(t)) + ∂vE(t, v(t)) = 0.

In terms of the free energy F(t, v) = E(t, v) + D(v) the above equation becomes the Euler–Lagrange equation
∂vF(t, v(t)) = 0. Moreover, if D is of class C1 and v left-continuous the equilibrium equation ∂vF(t, v(t)) = 0
holds for every t ∈ (t0, t].

Next, for an absolutely continuous map s �→ v(s) we have

dsD(v(s)) = ∂vD(v(s))[v′(s)] = R(v(s), v′(s))

and thus ∫ 1

0

R(v(s), v′(s)) ds = D(v(1)) −D(v(0)).

Therefore
DistR(v0, v1) = D(v1) − D(v0), DissBV (v, [ta, tb]) = D(v(tb)) −D(v(ta)).

Now, let us see the role of the vanishing viscosity. The viscous dissipation takes the form Rε(v, z) = ∂vD(v) +
(ε/2)‖z‖2, therefore its Legendre transform is

R∗(v, ξ) =
1
2ε

‖ξ − ∂vD(v)‖2.
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As a consequence the contact potential reads

p(v, z, ξ) = inf
ε>0

{Rε(v, z) + R∗
ε(v, ξ)} = ∂vD(v) + inf

ε>0
{(ε/2)‖z‖2 + (1/2ε)‖ξ − ∂vD(v)‖2}

= ∂vD(v) + ‖z‖‖ξ − ∂vD(v)‖.

In particular p(v, v′,−∂vE(t, v)) = ∂vD(v) + ‖v′‖‖ − ∂vF(t, v)‖ and the Finsler distance becomes

Distp(t, v0, v1) = inf
{∫ 1

0

∂vD(v) + ‖v′‖‖ − ∂vF(t, v)‖ ds : v ∈W 1,1([0, 1],V), v(0) = v0, v(1) = v1

}

= D(v1) −D(v0) + inf
{∫ 1

0

‖v′‖‖ − ∂vF(t, v)‖ ds : v ∈W 1,1([0, 1],V), v(0) = v0, v(1) = v1

}
.

Note that −dsF(t, v(s)) = −∂vF(t, v(s))[v′(s)] ≤ ‖v′(s)‖‖∂vF(t, v(s))‖ and that equality holds if and only if
v′(s) ∈ argmin{∂vF(t, v(s))[φ] : ‖φ‖ = ‖v′(s)‖}. Hence, if there exists v ∈ W 1,1([0, 1],V) such that v(0) = v0
and v(1) = v1 and such that v′(s) ∈ argmin{∂vF(t, v(s))[φ] : ‖φ‖ = ‖v′(s)‖} a.e. in [0, 1] then we can write

inf
{∫ 1

0

‖v′(s)‖‖ − ∂vF(t, v(s))‖ ds
}

= −
∫ 1

0

dsF(t, v(s)) ds = F(t, v0) −F(t, v1).

Thus, the term concentrated on the jumps becomes

Distp

(
s, v(s), v

(
s+

))
− DistR

(
v(s), v

(
s+

))
= D

(
v

(
s+

))
−D(v(s)) + F(t, v(s)) −F

(
t, v

(
s+

))
−D

(
v

(
s+

))
+ D(v(s))

= F(t, v(s)) −F
(
t, v

(
s+

))
.

Thus (Ē) reads: for every t it holds

E(t, v(t)) + D(v(t)) −D(v0) +
∑

s∈ J(v)∩ [t0,t)

F(s, v(s)) −F(s, v(s+)) = E(t0, v0) +
∫ t

t0

∂tE(s, v(s)) ds.

Rearranging the terms and writing ∂tE(t, v) = ∂tF(t, v) we get

F(t, v(t)) +
∑

s∈ J(v)∩ [t0,t)

F(s, v(s)) −F(s, v(s+)) = F(t0, v0) +
∫ t

t0

∂tF(s, v(s)) ds.

Therefore, in our setting we will say that a (left-continuous) trajectory v ∈ BV ([0, 1],V) with v(t0) = v0 is a
BV solution if

(S̄) for every t ∈ (t0, t1] it holds
∂vF(t, v(t)) = 0,

(Ē) for every t ∈ [t0, t1] it holds

F(t, v(t)) +
∑

s∈ J(v)∩ [t0,t)

F(s, v(s)) −F(s, v(s+)) = F(t0, v0) +
∫ t

t0

∂tF(s, v(s)) ds.
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Let us see how the conditions (S′) and (E′) of the parametrized solution correspond to (S̄) and (Ē). For
convenience, we bring to mind that a Lipschitz map (t, v) : [0, T ) → [t0, t1] × V with (t(0), v(0)) = (t0, v0),
0 ≤ t′ ≤ 1, ‖v′‖ ≤ 1 is a parametrization of a quasi-static evolution if

(S′) for every τ with t′(τ) > 0 it holds
‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) +
∫ τ

0

‖∂vF(t(s), v(s))‖ ds = F(t0, v0) +
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds.

It is not restrictive to consider the map τ �→ t(τ) to be surjective but it is not possible to assume that it is
invertible; however, using monotonicity, we can define for s ∈ [t0, t1]

τ−1(s) = inf{τ : t(τ) = s}.
It is not difficult to check that τ−1 is strictly increasing, bounded, left-continuous and of course that t◦τ−1(s) = s.
Being τ �→ v(τ) Lipschitz continuous, it follows that the function w(t) = v ◦ τ−1(t) is left-continuous and of
class BV ([t0, t1],V). Let us check that w is indeed a BV solution.

Consider the set I+ = {s ∈ [t0, t1] : s = t(τ) with t′(τ) > 0}. Note that the set I+ is dense in [t0, t1] (e.g. by
a contradiction argument). If t̄ ∈ I+ and t̄ = t(τ̄ ) then, being t′(τ̄ ) > 0, we have τ−1(t̄) = τ̄ . By (S′) for every
t̄ ∈ I+ it holds ∂vF(t̄, w(t̄)) = ∂vF(t(τ̄ ), v(τ̄ )) = 0. The density of I+ together with the continuity of ∂vF and
the left-continuity of w lead to (S̄).

It remains to show that (Ē) follows from (E′). Fix t̄ ∈ I+ and let t̄ = t(τ̄ ). We claim that∫ τ̄

0

‖∂vF(t(τ), v(τ))‖ dτ =
∑

s∈J(τ−1)∩ [t0,t̄)

∫ τ−1(s
+)

τ−1(s−)

‖∂vF(t(τ), v(τ))‖ dτ. (3.1)

Let τ ∈ [0, τ̄ ]. If there exists a sequence τn → τ with t′(τn) > 0 then ‖∂vF(t(τn), v(τn))‖ = 0 and by continuity
‖∂vF(t(τ), v(τ))‖ = 0. Thus, to evaluate the integral on the left hand side, it is sufficient to consider those
values τ for which t′ = 0 in a neighbourhood of τ . In this case s = t(τ) is a discontinuity point for τ−1 and
τ ∈ (τ−1(s−), τ−1(s+)). Thus (3.1) is proved. Moreover,∫ τ−1(s+)

τ−1(s−)

‖∂vF(t(τ), v(τ))‖ dτ =
∫ τ−1(s+)

τ−1(s−)

−∂vF(s, v(τ)) [v′(τ)] dτ

= F
(
s, v ◦ τ−1

(
s−

))
−F

(
s, v ◦ τ−1

(
s+

))
= F(s, w(s)) −F

(
s, w

(
s+

))
.

Hence ∫ τ̄

0

‖∂vF(t(τ), v(τ))‖ dτ =
∑

s∈ J(τ−1)∩ [t0,t̄)

F(s, w(s)) −F(s, w(s+)).

Note that if s ∈ J(w) then (being v continuous) s ∈ J(τ−1). Moreover, if s ∈ J(τ−1) \ J(w) then F(s, w(s)) =
F(s, w(s−)) = F(s, w(s+)). In conclusion we can write that∫ τ̄

0

‖∂vF(t(τ), v(τ))‖ dτ =
∑

s∈ J(w)∩ [t0,t̄)

F(s, w(s)) −F
(
s, w

(
s+

))
. (3.2)

Next, by a change of variable we obtain the integral of the power∫ t̄

t0

∂tF(t, w(t)) dt =
∫ τ̄

0

∂tF(t(τ), v(τ)) t′(τ) dτ. (3.3)

Since t̄ ∈ I+ we have F(t(τ̄ ), v(τ̄ )) = F(t̄, w(t̄)) and thus, using (3.2) and (3.3), we get that (Ē) holds for every
t ∈ I+. If t̄ �∈ I+ it is sufficient to use again the continuity of F , ∂tF , ∂vF together with the left-continuity of
w and the density of I+ in [t0, t1].
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4. Existence by a parametrized minimizing movement

4.1. Incremental problem

In this section we prove the existence result following the discretization used in [16]. We will assume that F
satisfies the hypotheses of Theorem 2.2. Let Δτn → 0+. For every n ∈ N we define a discrete in time evolution
by means of constrained incremental minimization problems. Set the initial conditions tn,0 = t0 and vn,0 = v0;
known tn,k < t1 and vn,k define tn,k+1 and vn,k+1 as{

vn,k+1 ∈ argmin {F(tn,k, v) : ‖v − vn,k‖ ≤ Δτn},
tn,k+1 = tn,k +

(
Δτn − ‖vn,k+1 − vn,k‖

)
.

(4.1)

Existence of a minimizer follows by the direct method of the calculus of variations: weak compactness of the
closed ball ‖v − vn,k‖ ≤ Δτn is a consequence of V being reflexive while the weak lower semi-continuity of
F(tn,k, ·) is assumed in (2.3). (Note that a similar incremental problem, actually without parametrization,
appears in [15], Example 1.3). Let k̄n = sup {k : tn,k < t1} where k̄n ∈ N ∪ {∞} (the incremental construction
can be finite or infinite). Note that 0 ≤ tn,k+1 − tn,k ≤ Δτn and thus k̄n ≥ (t1 − t0)/Δτn.

Next, let τn,k = kΔτn for 0 ≤ k ≤ k̄n and denote Tn = k̄nΔτn ≥ (t1 − t0). Now we consider the affine
interpolation of tn,k and vn,k in the points τn,k; in this way we define the discrete evolutions (tn, vn) : [0, Tn) →
[t0, t1]×V . It is important to remark that the map (tn, vn) is Lipschitz continuous with t′n ≥ 0 and t′n +‖v′n‖ = 1
a.e. in [0, Tn).

Now, let us see the two properties which will provide the base to get (S′) and (E′) in the limit as Δτn → 0+.

Proposition 4.1. If tn,k+1 > tn,k then vn,k+1 satisfies the equilibrium condition

‖∂vF(tn,k, vn,k+1)‖ = 0. (4.2)

Proof. If tn,k+1 > tn,k then by (4.1) we have ‖vn,k+1 − vn,k‖ < Δτn. Since vn,k+1 is a minimizer in the open
ball ‖v − vn,k‖ < Δτn the Euler–Lagrange equation (4.2) holds. �

Proposition 4.2. The following incremental energy estimate holds

F(tn,k+1, vn,k+1) ≤ F(tn,k, vn,k) −
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+
∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + 3 C(Δτn)Δτn, (4.3)

where C is the modulus of continuity appearing in (2.6).

Proof. Given (tn,k, vn,k) let
φn,k ∈ argmin{∂vF(tn,k, vn,k)[φ] : ‖φ‖ ≤ 1}.

Now, we write

F(tn,k+1, vn,k+1) = F(tn,k, vn,k+1) +
∫ tn,k+1

tn,k

∂tF(t, vn,k+1) dt

≤ F(tn,k, vn,k + (τn,k+1 − τn,k)φn,k) +
∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ

= F(tn,k, vn,k) +
∫ τn,k+1

τn,k

∂vF(tn,k, vn,k + (τ − τn,k)φn,k)[φn,k] dτ

+
∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ.
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We consider separately the two integrals on the right hand side. For every τ ∈ [τn,k, τn,k+1] by (2.6) we can
write

∂vF(tn,k, vn,k + (τ − τn,k)φn,k)[φn,k] ≤ ∂vF(tn,k, vn,k)[φn,k] + C(Δτn)

≤ −‖∂vF(tn,k, vn,k)‖ + C(Δτn)

≤ −‖∂vF(tn,k, vn(τ))‖ + 2 C(Δτn).

Thus ∫ τn,k+1

τn,k

∂vF(tn,k, vn,k + (τ − τn,k)φn,k)[φn,k] dτ ≤ −
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ + 2 C(Δτn)Δτn.

Similarly, again by (2.6), for every τ ∈ [τn,k, τn,k+1]

∂tF(tn(τ), vn,k+1) ≤ ∂tF(tn(τ), vn(τ)) + C(Δτn).

As 0 ≤ t′n ≤ 1 we get∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ ≤
∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + C(Δτn)Δτn,

which concludes the proof. �

4.2. Compactness and convergence

Proposition 4.3. Let (tn, vn) : [0, Tn) → [t0, t1] × V be given by Section 4.1. Let 0 < T < lim infn Tn. There
exists a subsequence (not relabelled) such that tn

∗
⇀ t in W 1,∞(0, T ) and vn

∗
⇀ v in W 1,∞(0, T ;V). In particular

tn(τn) → t(τ) and vn(τn) ⇀ v(τ) in V if τn → τ . Moreover 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1 a.e. in (0, T ).

Proof. As Tn ≥ (t1 − t0) we have lim infn Tn > 0. Then, for n sufficiently large Tn > T and we can consider
(tn, vn) to be defined in (0, T ). Since |t′n(τ)| ≤ 1 there exists a subsequence (not relabelled) with tn

∗
⇀ t in

W 1,∞(0, T ). As tn is non-decreasing the limit t is non-decreasing, moreover we have 0 ≤ t′ ≤ 1.
Being V reflexive and separable its dual V ′ is reflexive and separable, thus the space L1(0, T ;V ′) is separable

and its dual is L∞(0, T ;V). The sequence v′n is bounded in L∞(0, T ;V) and thus there exists a subsequence
(not relabelled) such that v′n

∗
⇀ v′ in L∞(0, T ;V). Let τn → τ . Denoting by 〈 , 〉 the duality pairing between V

and V ′ and by ( , ) the corresponding duality between L1(0, T ;V ′) and L∞(0, T ;V), we can write

〈vn(τn), ψ〉 = 〈v0 +
∫ τn

0

v′n(s) ds, ψ〉 = 〈v0, ψ〉 +
∫ τn

0

〈v′n(s), ψ〉ds = 〈v0, ψ〉 +
(
v′n, ψχ(0,τn)

)
from which it follows that 〈vn(τn), ψ〉 → 〈v(τ), ψ〉 for every ψ ∈ V ′. By the lower semi-continuity of the norm
with respect to weak∗ convergence in L∞(0, T ;V) it follows that ‖v′(τ)‖ ≤ 1 for a.e. τ ∈ (0, T ). �

Theorem 4.4. Let (tn, vn) and (t, v) be as in Proposition 4.3; then (t, v) is a quasi-static evolution in the sense
of Definition 2.1, i.e. it satisfies (t(0), v(0)) = (t0, v0), 0 ≤ t′ ≤ 1, ‖v′‖ ≤ 1, and

(S′) for every τ > 0 with t′(τ) > 0 it holds

‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) = F(t0, v0) −
∫ τ

0

‖∂vF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds.
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Proof. If t′(τ) > 0 then t(τ) < t(τ + δ) for every δ > 0, further, since tn converges to t pointwise, for every n
sufficiently large there exists an index k (depending on n) such that τ < τn,k < τ + δ and tn,k = tn(τn,k) <
tn(τn,k+1) = tn,k+1. Since tn,k < tn,k+1 by Lemma 4.1 we get

‖∂vF(tn,k, vn,k+1)‖ = 0.

By the arbitrarity of δ it follows that there exists a sequence kn with τn,kn → τ such that tn,kn < tn,kn+1 and
‖∂vF(tn,kn , vn,kn+1)‖ = 0. By Proposition 4.3 we known that tn,kn = tn(τn,kn) → t(τ) and that vn,kn+1 =
vn(τn,kn+1) ⇀ v(τ) weakly in V . Then, by (2.4)

‖∂vF(t(τ), v(τ))‖ ≤ lim inf
n

‖∂vF(tn,kn , vn,kn+1)‖ = 0

which is (S′).
For the proof of (E′) it is more convenient to have τ as the integration variable, so we will show that for

every s

F(t(s), v(s)) = F(t0, v0) −
∫ s

0

‖∂vF(t(τ), v(τ))‖ dτ +
∫ s

0

∂tF(t(τ), v(τ)) t′(τ) dτ.

For every n ∈ N let k ∈ N (depending on n) such that s ∈ [τn,k, τn,k+1). Iterating the incremental energy
estimate of Proposition 4.2 yields

F(tn,k, vn,k) ≤ F(t0, v0) −
k−1∑
m=0

∫ τn,m+1

τn,m

‖∂vF(tn,m, vn(τ))‖ dτ

+
∫ τn,k

0

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + 3 C(Δτn)T .

Taking the limsup we get

lim sup
n

F(tn,k, vn,k) ≤ F(t0, v0) − lim inf
n

k−1∑
m=0

∫ τn,m+1

τn,m

‖∂F(tn,m, vn(τ))‖ dτ

+ lim sup
n

∫ τn,k

0

∂tF(tn(τ), vn(τ)) t′n(τ) dτ.

Given τ , let m (depending on n and τ) with τn,m ≤ τ < τn,m+1; since tn,m = t(τn,m) → t(τ) and vn(τ) ⇀ v(τ)
by (2.4) we get

‖∂vF(t(τ), v(τ))‖ ≤ lim inf
n

‖∂vF(tn,m, vn(τ))‖

and by Fatou’s Lemma we get

∫ s

0

‖∂vF(t(τ), v(τ))‖ dτ ≤ lim inf
n

k−1∑
m=0

∫ τn,m+1

τn,m

‖∂vF(tn,m, vn(τ))‖ dτ.

By (2.5) we know that ∂tF(tn(τ), vn(τ)) converges to ∂tF(t(τ), v(τ)). Since ‖v′n‖ ≤ 1 it follows that ‖vn(τ)−
v0‖ ≤ T for every τ ∈ (0, T ). Then (2.6) implies that ∂tF(tn(·), vn(·)) is uniformly bounded from above; therefore
by dominated convergence ∂tF(tn(·), vn(·)) converge to ∂tF(t(·), v(·)) strongly in L1(0, T ). We already know
from Proposition 4.3 that t′n

∗
⇀ t′ in L∞(0, T ). As a consequence

lim
n

∫ τn,k

0

∂tF(tn(τ), vn(τ)) t′n(τ) dτ =
∫ s

0

∂tF(t(τ), v(τ)) t′(τ) dτ.
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Therefore

lim sup
n

F(tn,k, vn,k) ≤ F(t0, v0) −
∫ s

0

‖∂vF(t(τ), v(τ))‖ dτ +
∫ s

0

∂tF(t(τ), v(τ)) t′(τ) dτ.

Since ‖v′‖ ≤ 1 we can write
−‖∂vF(t(τ), v(τ))‖ ≤ ∂vF(t(τ), v(τ))[v′(τ)]

and by the chain rule

lim sup
n

F(tn,k, vn,k) ≤ F(t0, v0) −
∫ s

0

‖∂vF(t(τ), v(τ))‖ dτ +
∫ s

0

∂tF(t(τ), v(τ)) t′(τ) dτ

≤ F(t0, v0) +
∫ s

0

∂vF(t(τ), v(τ))[v′(τ)] dτ +
∫ s

0

∂tF(t(τ), v(τ)) t′(τ)dτ

≤ F(t0, v0) +
∫ s

0

dτF(t(τ), v(τ)) dτ = F(t(s), v(s)). (4.4)

Thus lim supn F(tn,k, vn,k) ≤ F(t(s), v(s)). On the other hand, tn,k → t(s) and vn,k ⇀ v(s) by Proposition 4.3,
thus by (2.3) we can write F(t(s), v(s)) ≤ lim infn F(tn,k, vn,k). It follows that

lim sup
n

F(tn,k, vn,k) = lim
n

F(tn,k, vn,k) = F(t(s), v(s)) (4.5)

and all the inequalities in (4.4) become equalities, which gives (E′). �

As a by-product of the previous results we get the convergence of energies, stated in the next Corollary.

Corollary 4.5. F(tn(τ), vn(τ)) → F(t(τ), v(τ)) for every τ ∈ [0, T ).

Proof. For τ ∈ [τn,k, τn,k+1) both ‖vn(τ) − vn,k‖ ≤ Δτn and |tn(τ) − tn,k| ≤ Δτn therefore by (4.5) together
with the uniform continuity of F we get the pointwise convergence of the energy. �

Finally, note that, without further assumptions, it is not obvious that the limit (t, v) (provided by Prop. 4.3)
is not the trivial evolution (t(τ), v(τ)) = (t0, v0). For instance, consider the energy

F(t0, v) =

{
0 if ‖v‖ ≤ 1,

(‖v‖ − 1)2 otherwise.

The unit ball is the set of minimizers of this functional. If Δτn ≤ 1 and if v0 = 0 it is possible to choose a
sequence vn,k with ‖vn,k‖ ≤ Δτn and with ‖vn,k+1 − vn,k‖ = Δτn. As a consequence tn,k = t0 and vn,k → v0,
therefore the limit is the trivial solution. In the applications irreversibility conditions are usually helpful to rule
out this solution, see [16].

5. Existence by a forward Euler scheme

5.1. Incremental problem

In applications and in numerical simulations sometimes it is not feasible to minimize (even locally) the energy
of a non-convex function, as in the previous scheme, while it is more feasible to employ a forward scheme, based
on descent directions. Let us see how to define the evolution in this way.

We will assume that F satisfies the hypotheses of Theorem 2.2. Let Δτn be positive with Δτn → 0 and denote
again by τ the parametrization variable. Let τn,k = kΔτn. As before, we will provide a sequence converging
to (the parametrization of) a quasi-static evolution, according to Definition 2.1. Let the initial conditions (for
τn,0 = 0) be tn,0 = t0 and vn,0 = v0. Given tn,k and vn,k we will employ a further sequence, denoted by vn,k,i
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for i ∈ N, in order to define vn,k+1 and then tn,k+1. For convenience we will also introduce a sequence τn,k,i

which actually depends on vn,k,i. Let vn,k,0 = vn,k and τn,k,0 = τn,k; given vn,k,i and τn,k,i consider the steepest
descent direction

φn,k,i ∈ argmin{∂vF(tn,k, vn,k,i)[φ] : ‖φ‖ ≤ 1}. (5.1)

Note for future reference that the minimum value in (5.1) is non-positive. Existence of φn,k,i is straightforward.
Uniqueness holds for instance when ∂vF(tn,k, vn,k,i) �= 0 and V is uniformly convex: indeed, if ∂vF(tn,k, vn,k,i) �=
0 then ‖φn,k,i‖ = 1, thus if

ζ, ξ ∈ argmin{∂vF(tn,k, vn,k,i)[φ] : ‖φ‖ ≤ 1}
then by linearity (ζ + ξ)/2 is a minimizer and thus ‖(ζ + ξ)/2‖ = 1; the uniform convexity of V implies that
ζ = ξ. On the contrary, if ∂vF(tn,k, vn,k,i)[φ] = 0 then every φ is a minimizer, in this case it is convenient to
choose again a direction φn,k,i with ‖φn,k,i‖ = 1 in order to avoid any trouble in the following construction. In
any case

∂vF(tn,k, vn,k,i)[φn,k,i] = −‖∂vF(tn,k, vn,k,i).

Once the direction φn,k,i is found the step sn,k,i is given by a gradient descent in the direction φn,k,i. To this
end, for s ∈ [0, Δτn − (τn,k,i − τn,k)] = [0, Δτn − (τn,k,i − τn,k,0)], let us introduce the function

f(s) = F(tn,k, vn,k,i + sφn,k,i)

and the associated ode {
s′(r) = [−f ′(s(r))]+,

s(0) = 0,
(5.2)

where [·]+ denotes the positive part (the independent variable r in the ode is purely auxiliary and has no
physical meaning). Here, in analogy with curves of maximal slope, the positive part in (5.2) guarantees that
the solution s is non-negative and non-decreasing and that the energy f(s(r)) is thus non-increasing. Moreover,
since

f ′(s) = ∂vF(tn,k, vn,k,i + sφn,k,i)[φn,k,i]

it follows, by the assumptions on ∂vF , that the right hand side in (5.2) is continuous and bounded, therefore
there exists a solution s of the ode. Being s non-decreasing it makes sense to take sn,k,i = supr s(r) ≤ Δτn −
(τn,k,i−τn,k). In particular, it may happen that either the solution s reaches the upper bound Δτn−(τn,k,i−τn,k)
in a finite interval or that s exists in [0,+∞). In the latter case

lim
r→+∞ s′(r) = lim

r→+∞[−f ′(s(r))]+ = [−f ′(sn,k,i)]+ = 0.

On the other hand f(s(r)) is non-increasing, hence f ′(s(r)) ≤ 0 and

lim
r→+∞ f ′(s(r)) = f ′(sn,k,i) ≤ 0.

Therefore, if sn,k,i < Δτn − (τn,k,i − τn,k) then the solution s is defined in [0,+∞) and

f ′(sn,k,i) = ∂vF(tn,k, vn,k,i + sn,k,i φn,k,i)[φn,k,i] = 0. (5.3)

At this point we can define

vn,k,i+1 = vn,k,i + sn,k,i φn,k,i,

τn,k,i+1 = τn,k,i + sn,k,i ≤ τn,k +Δτn = τn,k+1.

Note that with this definition

‖vn,k,i+1 − vn,k,i‖ = τn,k,i+1 − τn,k,i = sn,k,i. (5.4)
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Next, let us define

vn,k+1 = lim
i
vn,k,i = vn,k +

∞∑
i=0

(vn,k,i+1 − vn,k,i) and τ̄n,k = lim
i
τn,k,i = τn,k +

∞∑
i=0

sn,k,i.

Note that the sequence τn,k,i is non-decreasing, with respect to i, and bounded from above by τn,k+1 = τn,k+Δτn,
thus the limit τ̄n,k exists and is bounded by the same constant. Moreover, the limit of vn,k,i exists because

∞∑
i=0

‖vn,k,i+1 − vn,k,i‖ =
∞∑

i=0

sn,k,i = τ̄n,k − τn,k.

In particular ‖vn,k+1 − vn,k‖ ≤ Δτn. Finally, let

tn,k+1 = tn,k + (τn,k+1 − τ̄n,k). (5.5)

As in the previous section, let k̄n = sup {k : tn,k < t1} and denote Tn = k̄nΔτn ≥ (t1 − t0). Now we
define the sequences vn : [0, Tn) → V and tn : [0, Tn) → [t0, t1]. In the subinterval [τn,k, τ̄n,k) we define vn to
be the piecewise affine interpolation of vn,k,i in the points τn,k,i while in the subinterval [τ̄n,k, τn,k+1] we set
vn = vn,k+1. The definition of tn is somehow complementary: in the subinterval [τn,k, τ̄n,k) we define tn = tn,k

while in the subinterval [τ̄n,k, τn,k+1] we take the affine interpolation of tn,k and tn,k+1. In this way in the
subinterval [τn,k, τ̄n,k) we have ‖v′n‖ = 1, thanks to (5.4), and t′n = 0; in the subinterval [τ̄n,k, τn,k+1] we have
v′n = 0 and t′n = 1, thanks to (5.5). Therefore we still have t′n + ‖v′n‖ = 1.

Proposition 5.1. If tn,k+1 > tn,k then vn,k+1 satisfies the equilibrium condition

‖∂vF(tn,k, vn,k+1)‖ = 0. (5.6)

Proof. If tn,k+1 > tn,k then 0 ≤ τ̄n,k < τn,k+1 and sn,k,i < Δτn − (τn,k,i − τn,k) for every i, hence by (5.3)

∂vF(tn,k, vn,k,i+1) [φn,k,i] = 0.

By (5.1) and by the uniform continuity (2.6) of ∂vF it follows that

‖∂vF(tn,k, vn,k,i)‖ = |∂vF(tn,k, vn,k,i) [φn,k,i]| ≤ C(‖vn,k,i+1 − vn,k,i‖) = C(sn,k,i).

Then, by the lower semi-continuity (2.4) of ‖∂vF‖ and by the convergence of vn,k,i we get

‖∂vF(tn,k, vn,k+1)‖ ≤ lim inf
i

‖∂vF(tn,k, vn,k,i)‖ ≤ lim inf
i

C(sn,k,i) = 0,

which is (5.6). �

Proposition 5.2. The following incremental energy estimate holds

F(tn,k+1, vn,k+1) ≤ F(tn,k, vn,k) −
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+
∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + 3 C(Δτn)Δτn, (5.7)

where C is the modulus of continuity appearing in (2.6).
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Proof. Arguing as in the proof of Proposition 4.2 we obtain

F(tn,k+1, vn,k+1) = F(tn,k, vn,k+1) +
∫ tn,k+1

tn,k

∂tF(t, vn,k+1) dt

= F(tn,k, vn,k) +
∫ τn,k+1

τn,k

∂vF(tn,k, vn(τ))[v′n(τ)] dτ

+
∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ

but this time we cannot use minimality for vn,k+1. Thus, for τ ∈ [τn,k,i, τn,k,i+1] we have v′n(τ) = φn,k,i ∈
argmin{∂vF(tn,k, vn,k,i)[φ] : ‖φ‖ = 1} and then by (2.6) we can write

∂vF(tn,k, vn(τ))[v′n(τ)] ≤ ∂vF(tn,k, vn,k,i)[φn,k,i] + C(‖vn,k,i+1 − vn(τ)‖)

≤ −‖∂vF(tn,k, vn,k,i)‖ + C(sn,k,i)

≤ −‖∂vF(tn,k, vn(τ))‖ + 2 C(sn,k,i).

Then ∫ τn,k,i+1

τn,k,i

∂vF(tn,k, vn(τ))[v′n(τ)] dτ ≤ −
∫ τn,k,i+1

τn,k,i

‖∂vF(tn,k, vn(τ))‖ dτ

+ 2 C(sn,k,i) |τn,k,i+1 − τn,k,i|

and hence in the subinterval [τn,k, τ̄n,k] we have∫ τ̄n,k

τn,k

∂vF(tn,k, vn(τ))[v′n(τ)] dτ ≤ −
∫ τ̄n,k

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+ 2 C(Δτn) |τ̄n,k − τn,k|.

In the subinterval [τ̄n,k, τn,k+1] (if it is not a single point) we have by Proposition 5.1

∂vF(tn,k, vn(τ))[v′n(τ)] = ‖∂vF(tn,k, vn,k+1)‖ = 0.

Therefore in the whole interval [τn,k, τn,k+1] we can write∫ τn,k+1

τn,k

∂vF(tn,k, vn(τ))[v′n(τ)] dτ ≤ −
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ + 2 C(Δτn)Δτn.

Finally, again by (2.6)∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ ≤
∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + C(Δτn)Δτn,

which concludes the proof. �

5.2. Compactness and convergence

Arguing exactly as in Section 4.2 we can prove the next results; this is possible thanks to the fact that the
proofs of Proposition 4.3, Theorem 4.4 and Corollary 4.5 depend only on Propositions 4.1 and 4.2.

Proposition 5.3. Let (tn, vn) : [0, Tn) → [t0, t1] × V be given by Section 5.1. Let 0 < T < lim infn Tn. There
exists a subsequence (not relabelled) such that tn

∗
⇀ t in W 1,∞(0, T ) and vn

∗
⇀ v in W 1,∞(0, T ;V). In particular

tn(τn) → t(τ) and vn(τn) ⇀ v(τ) in V if τn → τ . Moreover 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1 a.e. in (0, T ).
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Theorem 5.4. Let (tn, vn) and (t, v) be as in Proposition 5.3; then (t, v) is (a parametrization of) a quasi-static
evolution, i.e. it satisfies (t(0), v(0)) = (t0, v0), 0 ≤ t′ ≤ 1, ‖v′‖ ≤ 1, and

(S′) for every τ > 0 with t′(τ) > 0 it holds

‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) = F(t0, v0) −
∫ τ

0

‖∂vF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds.

Corollary 5.5. F(tn(τ), vn(τ)) → F(t(τ), v(τ)) for every τ ∈ [0, T ).

6. Proof of the approximation result

In this section we will prove Theorem 2.3. Let (th, vh) : [0, T ) → [t0, t1] × Vh ⊂ V be a family of Lipschitz
maps with (th(0), vh(0)) = (t0, vh,0), 0 ≤ t′h ≤ 1 and ‖v′h‖ ≤ 1, and such that

(S′
h) for every τ with t′h(τ) > 0 it holds

‖∂vFh(th(τ), vh(τ))‖h = 0, (6.1)

(E′
h) for every τ it holds

Fh(th(τ), vh(τ)) = Fh(t0, v0) −
∫ τ

0

‖∂vFh(th(s), vh(s))‖h ds+
∫ τ

0

∂tFh(th(s), vh(s)) t′h(s) ds. (6.2)

By assumption (th, vh) is sequentially weakly∗ compact in W 1,∞(0, T ) × W 1,∞(0, T ;V), therefore by the
arguments of Proposition 4.3 there exists a subsequence (not relabelled) such that th

∗
⇀ t in W 1,∞(0, T ) and

vh
∗
⇀ v in W 1,∞(0, T ;V), th(τh) → t(τ) and vh(τh) ⇀ v(τ) if τh → τ , 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1 a.e. in (0, T ). In

particular th(τ) → t(τ), vh(τ) ⇀ v(τ) for every τ ∈ [0, T ).
Now, to check that the limit (t, v) satisfies conditions (S′) and (E′) we follow the same arguments used

in the proof of Theorem 4.4, roughly speaking replacing (tn, vn) with (th, vh) and conditions (2.3)–(2.5) with
(2.7)–(2.9).

Let τ with t′(τ) > 0. Since th converges to t pointwise there exists a sequence τh → τ such that t′h(τh) > 0
and thus ‖∂vFh(th(τh), v(τh))‖h = 0, by (S′

h). As τh → τ we also have vh(τh) ⇀ v(τ) in V . Therefore, thanks
to (2.8) we get

‖∂vF(t(τ), v(τ))‖ ≤ lim inf
h

‖∂vF(th(τh), v(τh))‖h = 0.

It remains to show that (E′) follows from (E′
h). Taking the limsup in (6.2) yields

lim sup
h

Fh(th(τ), vh(τ)) ≤ lim
h

Fh(t0, vh,0) − lim inf
h

∫ τ

0

‖∂vFh(th(s), vh(s))‖h ds

+ lim sup
h

∫ τ

0

∂tFh(th(s), vh(s)) t′h(s) ds.

By (2.10) we know that
lim
h

Fh(t0, vh,0) = F(t0, v0).

As th(s) → t(s) and vh(s) ⇀ v(s) by (2.8) we have ‖∂vF(t(s), v(s))‖ ≤ lim infh ‖∂vFh(th(s), vh(s))‖h and then
by Fatou’s Lemma ∫ τ

0

‖∂vF(t(s), v(s))‖ ds ≤ lim inf
h

∫ τ

0

‖∂vFh(th(s), vh(s))‖h ds.
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By (2.9) we have ∂tF(t(s), v(s)) = limh ∂tFh(th(s), vh(s)) ≤ C where (by assumption) the upper bound C
is uniform. By dominated convergence it follows that ∂tFh(th(·), vh(·)) → ∂tF(t(·), v(·)) strongly in L1(0, T ).
Since t′h

∗
⇀ t′ in L∞(0, T ) we get

lim
h

∫ τ

0

∂tFh(th(s), vh(s)) t′h(s) ds =
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds.

In conclusion,

lim sup
h

Fh(th(τ), vh(τ)) ≤ F(t0, v0) −
∫ τ

0

‖∂vF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds. (6.3)

Since ‖v′‖ ≤ 1 and since τ �→ F(t(τ), v(τ)) is absolutely continuous by the chain rule we deduce again that

F(t0, v0) −
∫ τ

0

‖∂vF(t(s), v(s))‖ ds+
∫ τ

0

∂tF(t(s), v(s)) t′(s) ds ≤ F(t(τ), v(τ))

and thus lim suph Fh(th(τ), vh(τ)) ≤ F(t(τ), v(τ)). The liminf inequality

F(t(τ), v(τ)) ≤ lim inf
h

Fh(th(τ), vh(τ))

is provided by (2.7). Therefore

lim sup
h

Fh(th(τ), vh(τ)) = lim
h

Fh(th(τ), vh(τ)) = F(t(τ), v(τ)).

As a consequence from (6.3) we get (E′). Note also that, in the language of Γ -convergence, (th(τ), vh(τ)) is a
recovery sequence for every τ ∈ [0, T ).

7. Existence in a weaker norm

In this section we will prove the existence result stated in Theorem 2.5. We will not follow the proofs of
the previous existence Theorems; we will use instead a “Galerkin proof” approximating the evolution in finite
dimensional spaces. To this end, let Vh be a monotone sequence of finite dimensional subspaces of V with ∪hVh

dense in V . Let Fh be the restriction to Vh of the energy functional F . Being Vh ⊂ V ⊂ W and being Vh finite
dimensional, the norms ‖ · ‖V and ‖ · ‖W are equivalent in Vh as it is for the weak and strong topologies.

First of all let us prove the existence of the discrete evolutions. As Fh = F in Vh it turns out that the energy
functionals Fh : [t0, t1] × Vh → [0,+∞) are of class C1 with respect to ‖ · ‖V and thus with respect to ‖ · ‖W .
For v ∈ Vh denote by ∇VFh(t, v) and by ∇WFh(t, v) the gradients in the first and second norm respectively.
For v ∈ Vh

‖∇WFh(t, v)‖ = max{∂vFh(t, v)[φ] : φ ∈ Vh, ‖φ‖W ≤ 1}
and similarly for ‖∇VFh(t, v)‖. Since Fh is of class C1 in [t0, t1] × Vh it is clear that

Fh(t, v) ≤ lim inf
m

Fh(tm, vm) for tm → t and vm → v, (7.1)

‖∇WFh(t, v)‖ ≤ lim inf
m

‖∇WFh(tm, vm)‖ for tm → t and vm → v, (7.2)

∂tFh(t, v) = lim
m
∂tFh(tm, vm) for tm → t and vm → v. (7.3)

Remember that in the finite dimensional setting weak and strong convergence coincide. Now, let us check that
there exists a modulus of continuity Ch such that in [t0, t1] × Vh we have

‖∇WFh(t, v) −∇WFh(t, w)‖ + |∂tFh(t, v) − ∂tFh(t, w)| ≤ Ch(‖v − w‖W). (7.4)
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Note that, being Fh = F on Vh, for v ∈ Vh we have

‖∂vF(t, v)‖ = max{∂vF(t, v)[φ] : φ ∈ V , ‖φ‖V ≤ 1} ≥ ‖∇VFh(t, v)‖,

(note that the last term is the norm of the finite dimensional functional Fh) and then, by equivalence of norms,
we can write

Ch‖∇WFh(t, v)‖ ≤ ‖∇VFh(t, v)‖ ≤ ‖∂vF(t, v)‖.
Therefore, again by the equivalence of norms, from

‖∂vF(t, v) − ∂vF(t, w)‖ + |∂tF(t, v) − ∂tF(t, w)| ≤ C(‖v − w‖V)

we get (7.4). Now, let vh,0 ∈ Vh with vh,0 → v0 in V . Thanks to (7.1)–(7.4) we can invoke Theorem 2.2 which
provides the existence of a quasi-static evolution (th, vh) : [0, Th) → [t0, t1] × Vh with (th(0), vh(0)) = (t0, vh,0),
0 ≤ t′h ≤ 1 and ‖v′h‖W ≤ 1 and such that

(S′
h) for every τ with t′h(τ) > 0

‖∇WFh(th(τ), vh(τ))‖ = 0, (7.5)

(E′
h) for every τ

Fh(th(τ), vh(τ)) = Fh(t0, vh,0) −
∫ τ

0

‖∇WFh(th(s), vh(s))‖ ds

+
∫ τ

0

∂tFh(th(s), vh(s)) t′h(s) ds. (7.6)

Next, let us prove compactness. As already observed in Proposition 4.3, we have Th ≥ (t1 − t0). Let 0 < T <
lim infh Th. Since th is bounded in W 1,∞(0, T ) and vh is bounded in W 1,∞(0, T ;W) it follows (by the arguments
of Prop. 4.3) that there exists a subsequence (not relabelled) such that th

∗
⇀ t in W 1,∞(0, T ) and vh

∗
⇀ v in

W 1,∞(0, T ;W). Moreover, for every τ ∈ [0, T ) we have th(τ) → t(τ) and vh(τ) ⇀ v(τ) in W . Clearly 0 ≤ t′ ≤ 1
and ‖v′‖W ≤ 1 a.e. in (0, T ).

Now, let us see that vh(τ) ⇀ v(τ) in the weak topology of V (we will need this property in the sequel). By
the chain rule, for every τ1 ≤ τ2 we can write

Fh(th(τ2), vh(τ2)) = Fh(th(τ1), vh(τ1)) +
∫ τ2

τ1

F ′
h(th(τ), vh(τ)) dτ

where F ′
h denotes the (total) derivative with respect to τ . At the same time by (E′

h) we have

Fh(th(τ2), vh(τ2)) ≤ Fh(th(τ1), vh(τ1)) +
∫ τ2

τ1

∂tFh(th(τ), vh(τ)) t′h(τ) dτ.

Since t′h ≤ 1 and by (2.17) it follows that for a.e. τ it holds

F ′
h(th(τ), vh(τ)) ≤ ∂tFh(th(τ), vh(τ)) t′h(τ) ≤ AFh(th(τ), vh(τ)) +B (7.7)

(for A,B independent of h). By Gronwall Lemma

F(th(τ), vh(τ)) = Fh(th(τ), vh(τ)) ≤ C(Fh(t0, vh,0) + 1) eAτ ≤ C′

and hence Fh(th(τ), vh(τ)) is bounded, uniformly with respect to τ ∈ [0, T ) and h ∈ N. By the coercivity of
F(t, ·) it follows that ‖vh(τ)‖V is bounded. We already know that for every τ we have vh(τ) ⇀ v(τ) in the
weak topology of W . Since vh(τ) is bounded in V , which is reflexive, for every subsequence vhk

(τ) there exists
a further subsequence (not relabelled) such that vhk

(τ) ⇀ z in the weak topology of V . Since V is continuously
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embedded in W it follows that vhk
(τ) ⇀ z in the weak topology of W and thus z = v(τ). As a consequence for

the whole sequence we have vh(τ) ⇀ v(τ) in V .
Finally, let us see the convergence of (S′

h) and (E′
h). In order to pass to the limit in (7.5) it is sufficient to

show that for every τ
‖∇WF(t(τ), v(τ))‖ ≤ lim inf

h
‖∇WFh(th(τ), vh(τ))‖.

For h ≥ h′ and φh′ ∈ Vh′ with ‖φh′‖W ≤ 1 we can write

‖∇WFh(th(τ), vh(τ))‖ = max{∂vF(th(τ), vh(τ))[φ] : φ ∈ Vh, ‖φ‖W ≤ 1}
≥ ∂vF(th(τ), vh(τ))[φh′ ].

Since vh(τ) ⇀ v(τ) in V we can use (2.14) to get

lim inf
h

‖∇WFh(th(τ), vh(τ))‖ ≥ ∂vF(t(τ), v(τ))[φh′ ] for every φh′ ∈ Vh′ .

Since ∪h′Vh′ is dense in V it is enough to take the supremum with respect to φh′ ∈ Vh′ with ‖φh′‖W ≤
1. Note that ∂vF(th(τ), vh(τ))[φh′ ] = ∂vFh(th(τ), vh(τ))[φh′ ] is measurable, therefore its pointwise limit
∂vF(t(τ), v(τ))[φh′ ] and then the supremum ‖∇WF(t(τ), v(τ))‖ are measurable, and actually integrable.

Following the arguments of Section 6, to pass to the limit in (7.6) it is sufficient to show that

F(t(τ), v(τ)) ≤ lim inf
h

Fh(th(τ), vh(τ)), (7.8)

lim sup
h

Fh(t0, vh,0) ≤ F(t0, v0), (7.9)

lim
h
∂tFh(th(·), vh(·)) = ∂tF(t(·), v(·)) in L1(0, T ). (7.10)

Remembering that Fh is just the restriction of F on Vh the first and the third condition follow respectively
from (2.13) and (2.15) together with the uniform bound (7.7). The second is instead a direct consequence of
the fact that vh,0 → v0 strongly in V and thus the initial datum is well prepared.

8. A phase field model for brittle fracture

After [18] fracture propagation has been extensively studied in the framework of quasi-static rate-independent
evolutions, following various approaches. At the current stage, what makes the biggest difference in the math-
ematical and mechanical aspects is the representation of the crack: on the one hand is the representation by a
set, on the other hand the representation by means of a phase-field variable.

In the former case, BV or parametrized solutions are well defined only along regular pre-assigned crack
paths [20, 31, 38]. For general unknown cracks, BV solutions are instead not applicable since in general the
energy is not differentiable: a couple of interesting works indicate indeed a delicate behaviour of the slope in
the L2-norm of the displacement [14] and in the Hausdorff metric of the crack [10]. Alternatively, it is possible
to employ energetic evolutions, see e.g. [9, 13, 17], or the ε-slide approach of [22].

The phase field approach offers instead a regularized framework in which general crack paths are represented
by a (phase field) function in such way that the energy is of classC1 in a Sobolev space, usuallyH1. The regularity
of the energy turns out to be useful both theoretically, since it allows BV solutions, and numerically, since it
allows efficient descent algorithms. Several numerical studies indicate a good agreement with experimental
results, see e.g. [5].

In statics a precise link between the two approaches is provided by several Γ -convergence results [3, 9]; for
quasi-static propagations a link is established in full generality only for energetic solutions [19] while for BV
solutions it is proved only is some special cases [4, 30, 36]; at the moment general results like [34] are not at
hand.
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8.1. Energy

Let Ω be an open, bounded Lipschitz set in R
2. Let ∂DΩ ⊂ ∂Ω with H1(∂DΩ) > 0. For p > 2 let g ∈

W 1,p(Ω,R2). For t ∈ [0, T ] let the space of admissible displacement be

U(t) = {u ∈ H1(Ω,R2) : u = tg in ∂DΩ}.

Denoting by U the space U(1) we can write U(t) = tU . For the moment we assume that the phase-field variable
v belongs to the space V = H1(Ω) and in particular we do not impose the bounds 0 ≤ v ≤ 1. For ε > 0 and
0 < ηε = o(ε) the energy functional is the Ambrosio–Tortorelli energy [3] for linear elasticity:∫

Ω

(v2 + ηε)W (Du) dx+Gc

∫
Ω

(v − 1)2/4ε+ ε|∇v|2 dx,

where Gc is the toughness and W is the linear elastic energy density, i.e.

W (Du) = 1
2Du : CDu, CDu = (2με(u) + λtr(ε(u))I, ε(u) = 1

2 (Du+DuT ).

Thanks to the 2-homogeneity of the density W , it is possible (and convenient) to consider the evolution for the
energy Fε : [0, T ]× U × V → R given by

Fε(t, u, v) = t2
∫

Ω

(v2 + ηε)W (Du) dx+Gc

∫
Ω

(v − 1)2/4ε+ ε|∇v|2 dx.

It is convenient to introduce also a notation for the elastic energy and the dissipation potential, respectively

Eε(t, u, v) = t2
∫

Ω

(v2 + ηε)W (Du) dx,

Dε(v) = Gc

∫
Ω

(v − 1)2/4ε+ ε|∇v|2 dx.

Since we are concerned with quasi-static evolutions, we can “condense” the energy considering only the dis-
placement at equilibrium, to this end let u(v) be the unique minimizer of Eε(t, ·, v) and denote

Eε(t, v) = Eε(t, u(v), v) = min{Eε(t, u, v) : u ∈ U},
Fε(t, v) = Eε(t, v) + Dε(v) = min{Fε(t, u, v) : u ∈ U}.

Finally, note that, if v(t) is an absolutely continuous trajectory, the dissipation (rate of dissipated energy) is
given by

dtDε(v(t)) = dvD(v(t))[v̇(t)] = 2Gc

∫
Ω

(v(t) − 1)v̇(t)/4ε+ ε∇v(t) · ∇v̇(t) dx.

In particular the dissipation depends on the state v and is linear with respect to v̇ (the latter is indeed always
the case when there exists a dissipation potential).

In the evolution, the irreversibility of the crack is given by the monotonicity constraint v(t2) ≤ v(t1) if t2 ≥ t1.
Hence, given v ∈ V the set of admissible variations is the cone

Φ = {v ∈ V : v ≤ 0}.

In analogy with the un-constrained case let us define the unilateral slope

|∂vFε(t, v)| = max{−∂vFε(t, v)[φ] : φ ∈ Φ, ‖φ‖ ≤ 1}.
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Note that the functions φ appearing in the definition of the slope belong to the cone Φ of admissible variations,
thus in general the slope does not coincide with

‖∂vFε(t, v)‖ = max{∂vFε(t, v)[φ] : ‖φ‖ ≤ 1}.

Moreover, since −Φ �= Φ it is not possible to write that

max{−∂vFε(t, v)[φ] : φ ∈ Φ, ‖φ‖ ≤ 1} = max{∂vFε(t, v)[φ] : φ ∈ Φ, ‖φ‖ ≤ 1}.

Since φ = 0 is an admissible variation we always have |∂vFε(t, v)| ≥ 0. Note also that Φ is weakly closed and
that it is not restrictive to choose ‖φ‖ = 1 in the definition of the slope.

The energy Fε and its derivatives have been studied in detail in the recent work [21], the interested reader
will find there the proof of the following Lemma which provides the properties, corresponding to (2.3)–(2.5),
employed in the existence result.

Lemma 8.1. The functional Fε : [0, T ]× V → [0,+∞) is of class C1 with

∂tFε(t, v) = 2t
∫

Ω

(v2 + ηε)Du(v) : CDg dx, (8.1)

∂vFε(t, v) [φ] = 2t2
∫

Ω

vφW (Du(v)) dx + 2Gc

∫
Ω

(v − 1)φ/4ε+ ε∇v · ∇φdx. (8.2)

There exists a constant C such that

|∂vFε(t, v)[φ] − ∂vFε(t, w)[φ]| + |∂tFε(t, v) − ∂tFε(t, w)| ≤ C‖v − w‖ (8.3)

for every t ∈ [0, T ] and for every φ ∈ Φ with ‖φ‖ ≤ 1. Moreover,

Fε(t, v) ≤ lim inf
m

Fε(tm, vm) for tm → t and vm ⇀ v (8.4)

|∂vFε(t, v)| ≤ lim inf
m

|∂vFε(tm, vm)| for tm → t and vm ⇀ v (8.5)

∂tFε(t, v) = lim
m
∂tFε(tm, vm) for tm → t and vm ⇀ v. (8.6)

Proof. For (8.1)–(8.2) see Lemma 2.7 in [21]. For (8.4)–(8.6) see Corollary 2.9 in [21]. For (8.3) see respec-
tively (2.28) and (2.36) in [21] while the continuity of ∂vDε is standard. �

8.2. Evolution in the H1-norm

We use the implicit scheme of Section 4. LetΔτn → 0+. Given the initial conditions tn,0 = 0 and vn,0 = v0 ≤ 1
and known tn,k < T and vn,k, the updates vn,k+1 and tn,k+1 are defined by{

vn,k+1 ∈ argmin{Fε(tn,k, v) : v ∈ V , v ≤ vn,k, ‖v − vn,k‖ ≤ Δτn},
tn,k+1 = tn,k +

(
Δτn − ‖vn,k+1 − vn,k‖

)
.

(8.7)

As in Section 4 for k̄n = sup {k : tn,k < T } let Tn = k̄nΔτn and τn,k = kΔτn for 0 ≤ k ≤ k̄n. Next, we define
the affine interpolations (tn, vn) : [0, Tn) → [0, T ] × V which are Lipschitz continuous and satisfy t′n ≥ 0 and
t′n + ‖v′n‖ = 1 a.e. in (0, Tn). Let us see the discrete equilibrium and energy inequality.

Proposition 8.2. If tn,k+1 > tn,k then vn,k+1 satisfies the equilibrium condition

|∂vFε(tn,k, vn,k+1)| = 0. (8.8)
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Proof. Since ‖vn,k+1 − vn,k‖ < Δτn, the minimality of vn,k+1 implies that

lim
h→0+

Fε(t, vn,k+1 + hφ) −Fε(t, vn,k+1)
h

= 0,

which gives ∂vFε(tn,k, vn,k+1) [φ] = 0 for every φ ∈ Φ. �

Proposition 8.3. The following incremental energy estimate holds

Fε(tn,k+1, vn,k+1) ≤ Fε(tn,k, vn,k) −
∫ τn,k+1

τn,k

|∂vFε(tn,k, vn(τ))| dτ

+
∫ τn,k+1

τn,k

∂tFε(tn(τ), vn(τ)) t′n(τ) dτ + 3C‖vn,k − vn,k+1‖Δτn, (8.9)

where C is the Lipschitz constant appearing in (8.3).

Proof. We can argue exactly as in the proof of Theorem 4.2, replacing the norm ‖∂Fε(t, v)‖ with the slope
|∂vFε(t, v)| and using (8.3). �

Proposition 8.4. Let (tn, vn) : [0, Tn) → [0, T ] × V be given as above. Let 0 < T < lim infn Tn. There exists
a subsequence (not relabelled) such that tn

∗
⇀ t in W 1,∞(0, T ) and vn

∗
⇀ v in W 1,∞(0, T ;V). In particular

tn(τn) → t(τ) and vn(τn) ⇀ v(τ) in V if τn → τ . Moreover 0 ≤ t′ ≤ 1, v′ ≤ 0 and ‖v′‖ ≤ 1 a.e. in (0, T ).

Proof. It is sufficient to follow the proof of Proposition 4.3. �

Theorem 8.5. There exists (a parametrization of) an evolution (t, v) : [0, T )→ [0, T ]×V such that (t(0), v(0)) =
(0, v0), 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1, v′ ≤ 0; moreover

(S′) for every τ with t′(τ) > 0 it holds
|∂vFε(t(τ), v(τ))| = 0, (8.10)

(E′) for every τ it holds

Fε(t(τ), v(τ)) = Fε(0, v0) −
∫ τ

0

|∂vFε(t(s), v(s))| ds +
∫ τ

0

∂tFε(t(s), v(s)) t′(s) ds. (8.11)

Proof. In order to prove (S′) and (E′) it is sufficient again to follow step by step the proof of Theorem 4.4,
replacing ‖∂vFε(t, v)‖ with the slope |∂vFε(t, v)| and using (8.5) and (8.6). �

As a by-product we get also the convergence of the energies and then the strong convergence of the phase
field variable.

Corollary 8.6. Fε(tn(τ), vn(τ)) → Fε(t(τ), v(τ)) and then vn(τ) → v(τ) strongly in H1(Ω)

Proof. The convergence of the energy follows from Corollary 4.5. For the strong convergence of the phase field
variable it is instead enough to observe that Eε(tn(τ), vn(τ)) → Eε(t(τ), v(τ)) if tn(τ) → t(τ) and vn(τ) ⇀ v(τ).
Since Fε(tn(τ), vn(τ)) → Fε(t(τ), v(τ)) it follows that Dε(vn(τ)) → Dε(v(τ)) from which the strong convergence
of vn(τ). �
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8.3. Evolution in the L2-norm

In this section we will show the existence of a quasi-static evolution with respect to the L2-norm. The first
step is the definition of a slope which takes into account the irreversibility constraint:

|∇L2 Fε(t, v)| = max{−∂vFε(t, v)[φ] : φ ∈ Φ, ‖φ‖L2 ≤ 1}.

Theorem 8.7. There exists (a parametrization of) an evolution (t, v) : [0, T )→ [0, T ]×V such that (t(0), v(0)) =
(0, v0), 0 ≤ t′ ≤ 1, ‖v′‖ ≤ 1 and v′ ≤ 0, v ≥ 0 and such that

(S′) for every τ with t′(τ) > 0 it holds
|∇L2Fε(t(τ), v(τ))| = 0, (8.12)

(E′) for every τ it holds

Fε(t(τ), v(τ)) = Fε(0, v0) −
∫ τ

0

|∇L2Fε(t(s), v(s))| ds +
∫ τ

0

∂tFε(t(s), v(s)) t′(s) ds. (8.13)

Proof. Thanks to the properties listed in Lemma 8.1 we can employ the Galerkin approach of Theorem 2.5, see
Section 7. Let Vh be a monotone sequence of finite dimensional subspaces of V with ∪hVh dense in V and let
Fε,h be the restrictions of Fε to Vh. For v ∈ Vh let us introduce the slope

|∇L2 Fε,h(t, v)| = max{−∂vFε,h(t, v)[φ] : φ ∈ Φ ∩ Vh, ‖φ‖L2 ≤ 1}.

Using (8.3) and the equivalence of norms we get that there exists a constant Ch such that

|∇L2 Fε,h(t, v) −∇L2 Fε,h(t, w)| + |∂tFε,h(t, v) − ∂tFε,h(t, w)| ≤ Ch‖v − w‖L2 (8.14)

for every t ∈ [0, T ] and for every v, w ∈ Vh. Moreover, invoking Lemma 8.1,

Fε,h(t, v) ≤ lim inf
m

Fε,h(tm, vm) for tm → t and vm → v, (8.15)

|∇L2 Fε,h(t, v)| ≤ lim inf
m

|∇L2 Fε,h(tm, vm)| for tm → t and vm → v, (8.16)

∂tFε,h(t, v) = lim
m
∂tFε,h(tm, vm) for tm → t and vm → v. (8.17)

As a consequence we can employ the minimizing movement to define a discrete evolution in each space Vh:
given th,n,0 = 0 and 0 ≤ vh,n,0 = vh,0 ≤ 1 and known th,n,k < T and vh,n,k, the incremental problem for vh,n,k+1

and th,n,k+1 is given by{
vh,n,k+1 ∈ argmin {Fε,h(th,n,k, v) : v ∈ Vh, v ≤ vn,k, ‖v − vh,n,k‖L2 ≤ Δτn},
th,n,k+1 = th,n,k +

(
Δτn − ‖vh,n,k+1 − vh,n,k‖L2

)
.

Let us see that vh,n,k+1 ≥ 0 even if this constraint is not explicitly imposed in the incremental problem: by a
simple truncation argument for every v ∈ V with v ≤ w we have Fε(t, v) ≥ Fε(t, v̄) and ‖w−v‖L2 ≥ ‖w−v̄‖L2 for
v̄ = max{v, 0} (it is interesting to note that in theH1-norm in general it is not true that ‖w−v‖H1 ≥ ‖w−v̄‖H1).

Then, using (8.14)–(8.17) and following step by step the previous section we obtain for every Vh a discrete
evolution (th, vh) : [0, T ) → [0, T ]×Vh such that (th(0), vh(0)) = (0, vh,0), t′h ≥ 0, ‖v′h‖ ≤ 1, v′h ≤ 0 and vh ≥ 0,
moreover

(S′
h) for every τ with t′h(τ) > 0

|∇L2 Fε,h(th(τ), vh(τ))| = 0,
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(E′
h) for every τ

Fε,h(th(τ), vh(τ)) = Fε,h(0, vh,0) −
∫ τ

0

|∇L2Fε,h(th(s), vh(s))| ds

+
∫ τ

0

∂tFε,h(th(s), vh(s)) t′h(s) ds.

The final step consists in passing to the limit with respect to h. To this end we will follow the last part of
Section 7. Compactness does not present any particular difficulty and provides (up to subsequences) a limit
parametrization (t, v) : [0, T ) → [0, T ] × V such that 0 ≤ t′ ≤ 1, v′ ≤ 0 and ‖v′‖L2 ≤ 1 a.e. in (0, T ). It is
important to remark that (up to subsequences) vh(τ) ⇀ v(τ) weakly in H1 and thus strongly in L2. As a
consequence the limit evolution will still satisfy also the constraint 0 ≤ v(τ) ≤ v0. Next, to pass to the limit in
(S′

h) it is enough to check that

|∇L2Fε(t(τ), v(τ))| ≤ lim inf
h

|∇L2Fε,h(th(τ), vh(τ))|.

Once again, it is enough to follow Section 7. �

To conclude let us spend few more words on some results closely related to ours. In [19] it is employed an
energetic evolution, i.e. satisfying the (S) and (E) condition, in which the incremental problem is based on
global minimization of the phase field energy. In this setting it is possible to show not only the existence of a
quasi-static evolution but also the convergence as ε → 0 of the phase field evolutions, say (uε, vε), to a sharp
crack evolution, say (u,K), where K is the crack set. In the abstract context of energetic evolutions, this is an
example of the general framework developed in [29]. Comparing with [19] and with [34], it would be of great
interest to know if the BV evolutions, say (τε, uε, vε), of Theorems 8.5 and 8.7 converge as ε → 0 to a BV
evolution, say (τ, u,K). In its generality this problem is quite hard since it requires at least a notion of slope for
the sharp crack problem. However, a couple of positive answers have been obtained recently in [30, 36] under
some suitable hypotheses which in turn guarantee that the L2 distance of the phase field variable is equivalent
(up to a multiplicative constant) to the lenght along a known crack path; in the limit as ε → 0 it is found an
evolution in the sense of [20, 31].

In [12] it is used instead a sharp crack approach, in SBV , and it is studied a minimizing movement with
respect to the L2 distance of the displacement. Note that in our approach it is employed instead the L2 distance
of the phase-field variable; technically the difference is important because the L2 distance (of the displacement) in
general is not equivalent to the Hausdorff distance of the crack [14]. The evolution of [12] is naturally associated
with the L2 gradient flow of the energy, which has been recently studied in [4] in the context of the phase field
approach.
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