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ON ASYMPTOTIC EXIT-TIME CONTROL PROBLEMS LACKING
COERCIVITY ∗

M. Motta1 and C. Sartori1

Abstract. The research on a class of asymptotic exit-time problems with a vanishing Lagrangian,
begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact
control case, is extended here to the case of unbounded controls and data, including both coercive and
non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control
problem and obtain regularity, characterization and approximation results for the value function of the
problem.
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1. Introduction

We consider the exit-time control problem⎧⎪⎨
⎪⎩

minimize
∫ tx(a)

0
l(y(t), α(t))dt

ẏ(t) = f(y, α), y(0) = x,

y(t) ∈ T c ∀t < tx(α), lim inft→t−x (α) d(y(t), T ) = 0,
(1.1)

where T ⊂ IRn is a non empty, closed subset, which will be called the target, T c is its complement and d is the
distance from it. Here α(t) ∈ A, where A ⊂ IRm is a convex, closed cone containing the origin.

The crucial assumptions of the paper are the sign condition

l(x, a) ≥ 0 ∀(x, a) ∈ T c ×A

and the unboundedness of the control set as well as of the data functions, f and l. Precise hypotheses and
definitions will be given in Section 2.

Our main purpose is to provide sufficient conditions yielding well posedness, characterization, approximation
and regularity results for the asymptotic value function, V , of (1.1).

The term asymptotic is justified by the fact that if l(x, a) = 0 for some (x, a) ∈ T × A, there could be
minimizing trajectories asymptotically approaching the target giving rise to a finite cost, even with an infinite
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exit-time. Not surprisingly, the boundary value problem, associated to the Hamilton–Jacobi equation

H(x, p) .= sup
a∈A

{−〈p, f(x, a)〉 − l(x, a)} = 0 (1.2)

(see for more details (BVP) in (4.1)), has not a unique solution even among the continuous and nonnegative
functions and in the compact control case studied in [16]. Indeed we can expect that V is the maximal subsolution
to (BVP), but not the minimal nonnegative supersolution, which in general turns out to be a different value
function, V m, where also controls that do not steer to the target are admissible. The question is therefore which
sufficient conditions is reasonable to introduce in order to get uniqueness, at least in several problems arising
from applications. Moreover, the continuity of V on the target is not enough to yield the continuity on its
domain and the value functions of regular approximations of the cost may not converge to V .

Besides the questions related to the degeneracy of the Lagrangian, the main issue is now the unboundedness
of the data, which gives rise to a whole new set of problems. In dealing with A unbounded it is often assumed
that f has polynomial growth of power p ≥ 1 in the control variable a and that

l(x, a) ≥ C2|a|q − C1 ∀(x, a) ∈ IRn ×A, (1.3)

for some constants C1 > 0, C2 ≥ 0 and q ≥ p. Condition (1.3) is known as coercivity if q > p and as weak
coercivity when q = p. For the finite horizon case, (1.3) for q > p yields a suitable compactness property for
admissible controls, while for q = p the natural framework is that of generalized controls. Since we have an exit-
time problem, we introduce the following weaker version of (1.3), called in the sequel target-weighted coercivity
(weak, if q = p):

l(x, a) ≥ c2(d(x)) |a|q − C1 ∀(x, a) ∈ T c ×A, (1.4)

where C1 ≥ 0 and c2 :]0,+∞[→]0,+∞[ is a continuous, increasing function. We prove several results assuming
either (1.3) or (1.4), but we cover cases, such as the so-called cheap control problems, where for instance l may
depend only on x, in which neither (1.3) nor (1.4) holds.

As a consequence, it could be optimal to implement controls with energy blow-ups, in the sense that the
energy,

∫ tx(α)

0
|α(t)|q dt, is equal to +∞ for tx(α) < +∞ (see for instance Example 3.10). Moreover, minimizing

sequences of trajectories may converge to a discontinuous function. Hence we embed our problem in an extended
setting, where measures act as controls. To this end, we follow the graph-completion approach introduced in [4],
as developed in [17] (see also [3,11] and the references therein). By the very nature of the problem, minimizing
controls in our case lack the two key properties, that is finite energy or horizon, which either together or
singularly, are generally used in the literature to introduce a proper extension for several problems. In those
cases, the infimum of the cost over extended controls was the same as over original controls. A careful choice of
the set of admissible controls leads us to introduce a wider class of extended controls, which fits the generality
of our problem and is proper, at least if the value function V is continuous on the target.

Furthermore, in Section 4 we thoroughly investigate the important issue of the characterization of the value
function. Using optimality principles, we prove that V , when continuous on the target, is the maximal subsolution
of (BVP), and derive a representation formula for the minimal, nonnegative supersolution of (BVP), V m. As a
consequence, we characterize V as the unique non negative solution of (BVP) by imposing that V m ≡ V . Then
we introduce sufficient conditions ensuring such an equality, satisfied in many applications and generalizing
previous hypotheses (for an overview on known results and some applications we refer to Sect. 5 of [12], to [10],
and to the references therein). In particular, our hypotheses lead to obtain uniqueness even for some weakly
coercive and some cheap control problems.

Finally we extend the regularity and approximation results for V obtained in [16] in the case of A compact to
A unbounded and in both coercive and non coercive problems. We provide several examples to better illustrate
the main topics.

Some last comments. Many infinite horizon problems may be seen as asymptotic exit-time problems by
choosing a suitable target. For instance, the infinite horizon LQR problem and some further generalizations, as
well as singular perturbation of cheap control problems, are included setting, generally, T ≡ {0}.
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For the uniqueness issue, in the case of a nonnegative Lagrangian there is a wide bibliography, mostly
concerning the case of bounded controls, as recalled in [16]. Some optimality principles were stated for the
coercive case in [9, 18] and introduced for weakly coercive problems in [12]. We recall also the paper [6], where
a coercive infinite dimensional problem is considered.

The paper is organized as follows. In Section 2 we state the precise formulation of the problem, and recall
some results from [14], which provide the construction of trajectories approaching asymptotically the target
with finite cost. In Section 3 we introduce the generalized control problem and investigate the well-posedness
issue. Refining the optimality principles in [12], in Section 4 we obtain a uniqueness theorem for the solution
of (BVP). Section 5 is devoted to the approximation and regularization problem. In Section 6 we introduce
explicit conditions, sufficient to propagate the continuity of V from ∂T . The Appendix, containing the proof of
a density result, concludes the paper.

Notations. Let D ⊂ IRN for some N ∈ IN. ∀r > 0 we denote by Dr the closed set B(D, r), while Dc
r = IRN \Dr.

◦
D is the interior of D. Moreover, χD denotes the characteristic function of D, namely for any x ∈ IRN we set

χD(x) = 1 if x ∈ D and χD(x) = 0 if x /∈ D. For any function u : IRn \
◦
T → R ∪ {+∞}, we denote the set

{x ∈ IRn \
◦
T : u(x) < +∞} by Dom(u). [0,+∞[ .= IR+. A function ω : IR+ × IR+ → IR+ is called a modulus

if: ω(·, R) is increasing in a neighborhood of 0, continuous at 0, and ω(0, R) = 0 for every R > 0; ω(r, ·) is

increasing for every r. Let Ω ⊃ T be an open set and let U : Ω \
◦
T → IR+ be a locally Lipschitz function.

Then D∗U(x) .= {p ∈ IRn : p = limk ∇U(xk), xk ∈ diff(U) \ {x}, limk xk = x} is the set of limiting gradients
of U at x (here ∇ denotes the gradient operator and diff(U) is the set of differentiability points of U). U is
said positive definite on Ω \ T if U(x) > 0 ∀x ∈ Ω \ T and U(x) = 0 ∀x ∈ ∂T . U is called proper on Ω \ T
if U−1(K) is compact for every compact set K ⊂ IR+. For the notion of locally semiconcave function and of
viscosity solution we refer e.g. to [2,7]. KL denotes the set of all continuous functions β : IR+ × IR+ → IR+ such
that: (1) β(0, t) = 0 and β(·, t) is strictly increasing and unbounded for each t ≥ 0; (2) β(r, ·) is decreasing for
each r ≥ 0; (3) β(r, t) → 0 as t→ +∞ for each r ≥ 0.

2. Exit-time problems with blow-up

2.1. Basic assumptions

The following general hypotheses (H0) and (H1) will be assumed throughout the whole paper.

(H0) The target set T ⊂ IRn is nonempty, closed, and with compact boundary.
The control set A ⊂ Rm is a convex, closed, nontrivial cone containing the origin.
The functions f : IRn × A → IRn, l : IRn × A → IR are continuous, there exist p, q ∈ IN, q ≥ p ≥ 1,
M > 0, and for any R > 0 there are LR, MR > 0 and a modulus ω(·, R), such that ∀x, x1, x2 ∈ IRn,
∀a ∈ A,

|f(x1, a) − f(x2, a)| ≤ LR(1 + |a|p)|x1 − x2|,
|l(x1, a) − l(x2, a)| ≤ (1 + |a|q)ω(|x1 − x2|, R)

0 ≤ l(x, a) ≤MR(1 + |a|q) if |x1|, |x2|, |x| ≤ R,

|f(x, a)| ≤M(1 + |a|p)(1 + |x|).

(2.1)

(H1) Let Φ ∈ {f, l}. There exists a continuous function Φ∞, called the recession function of Φ, verifying

lim
ρ→0+

ρqΦ(x, ρ−1a) .= Φ∞(x, a) (2.2)

uniformly on compact sets of Rn ×A.

(H1) is a regularity hypothesis in the control variable at infinity, essential in order to introduce the generalized
problem associated to (1.1) (see Sect. 3).
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Example 2.1. Functions f and l which are polynomials in the control variable a, satisfy (H1). If, for instance,
there are some continuous functions fi, Fi,j such that

f(x, a) = f0(x) +
m∑

i=1

fi(x)ai +
m∑

i, j=1

Fi,j(x)ai aj ∀(x, a) ∈ IRn ×A,

then p = 2 and f∞(x, a) =
∑m

i, j=1 Fi,j(x)ai aj if q = 2, while f∞(x, a) ≡ 0 if q > 2.

Notice that if q > p, then one always has f∞ ≡ 0.

2.2. Optimization problems

We consider a nonlinear control system having the form

ẏ(t) = f(y(t), α(t)), y(0) = x (x ∈ IRn) (2.3)

and a payoff

J (t, x, α) =
∫ t

0

l(y(s), α(s)) ds. (2.4)

The controls α are assumed to belong to the set

A .= {α ∈ B ∩ Lq
loc([0, Tα[, A) for some Tα ∈]0,+∞] and

∫ Tα

0 |α(t)|q dt = +∞ if Tα < +∞},

where B denotes the set of the Borel–measurable functions. Tα, if finite, will be called the (energy) blow-up
time. If the growth of l in a is of order less than p, or l does not depend on a, we assume q = p. We refer to
Remark 2.2 below for some comments on the set A.

By hypothesis (H0), for any x ∈ IRn and for any control α ∈ A, the control system in (2.3) admits just one
solution defined on the interval [0, Tα[ and the corresponding payoff is surely defined for all t ∈ [0, Tα[. We use
yx(·, α) (or, when no confusion arises, yx(·)) to denote such a solution.

Let us write two estimates, useful in the sequel, that can be obtained by standard tools. For every x, z ∈ IRn,
∀α ∈ A, and ∀t ∈ [0, Tα[ one has

|yx(t, α)| ≤
(
|x| +Mt+M

∫ t

0

|α(t′)|p dt′
)

eM(t+
∫ t
0 |α(t′)|p dt′) (2.5)

and, if ∃R > 0 such that |yx(t′, α)|, |yz(t′, α)| ≤ R ∀t′ ∈ [0, t], then

|yx(t, α) − yz(t, α)| ≤ |x− z|eLR(t+
∫

t
0 |α(t′)|p dt′). (2.6)

For any x ∈ T c and α ∈ A, we set

tx(α) .= inf{t ∈ [0, Tα[: yx(t, α) ∈ T } (≤ Tα). (2.7)

Notice that tx(α) is an effective exit-time from T c only in case tx(α) < Tα. Otherwise, tx(α) = Tα. Since the
zero-level set of l, defined as follows,

Z .= {x : l(x, a) = 0 for some a ∈ A} (2.8)

may be not empty and we do not assume coercivity, we may have finite cost even if tx(α) = Tα and Tα ≤ +∞.
It is therefore very natural to consider the subset of admissible controls

A(x) .= {α ∈ A : lim inf
t→t−x (α)

d(yx(t, α)) = 0}
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and the (asymptotic) exit-time value function

V(x) .= inf
α∈A(x)

J (tx(α), x, α) (≤ +∞). (2.9)

For the characterization of V that we will discuss in Section 4, it is useful to introduce the following minimal
value function

Vm(x) .= inf
α∈A

J (tx(α), x, α), (2.10)

where also non asymptotic controls with either finite or infinite blow up time are allowed.

Remark 2.2. The choice of the admissible control set A is a delicate point. If we assumed either coercivity
or weak coercivity, i.e. (1.3) for q ≥ p, it would be not a restriction to allow only controls in Lq

loc(IR+, A).
Condition (1.3) implies indeed that

J (t, x, α) ≥ C2

∫ t

0

|α(τ)|q dτ − C1 t ∀t > 0,

hence for controls α ∈ A such that

tx(α) = Tα < +∞ and
∫ Tα

0

|α(t)|q dt = +∞, (2.11)

we will never obtain an optimal cost. Nevertheless, by the generality of our problem, we cannot avoid to consider
minimizing sequences of controls with finite blow-up times (see for instance Example 3.10).

As we will show in Section 5, the minimization of the cost J over some control subsets of A(x), say Ã(x),
gives rise again to the same V as soon as the function

U Ã(x) .= inf
α∈Ã(x)

J (tx(α), x, α)

is continuous on ∂T . For instance, Ã(x) can include just controls of A(x) in Lr
loc(IR+, A), or in Lr(IR+, A) for

some integer r ≥ q, or controls α such that tx(α) < +∞, (see Thm. 5.5 and Rem. 5.6).

2.3. Known results

Let us now recall some notions and results by [14], useful in the sequel. For some terminology borrowed
from non smooth analysis we refer to the Notations in the Introduction. In the rest of this subsection, we fix a
compact control set A′ ⊂ A and a continuous Lagrangian h : IRn ×A′ → IR+.

Definition 2.3. [14] Given an open set Ω ⊂ IRn, Ω ⊃ T we say that U : Ω \
◦
T → IR+ is a local Minimum

Restraint Function, in short, a local MRF, for the pair (h,A′), if U is continuous on Ω \
◦
T , locally semiconcave,

positive definite, proper on Ω \ T ,

∃U0 ∈]0,+∞] : lim
x→x0, x∈Ω

U(x) = U0 ∀x0 ∈ ∂Ω; U(x) < U0 ∀x ∈ Ω \
◦
T ,

and, moreover, ∃k > 0 such that, for every x ∈ Ω \ T ,

min
a∈A′

{〈p, f(x, a)〉 + k h(x, a)} < 0 ∀p ∈ D∗U(x), (2.12)

where D∗U(x) is the set of limiting gradients of U at x.
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By [14] we recall that, ∀x ∈ Ω \ T inequality (2.12) is equivalent to

min
a∈A′

{〈p, f(x, a)〉 + k h(x, a) +m(U(x))} ≤ 0 ∀p ∈ D∗U(x), (2.13)

where m :]0,+∞[→]0,+∞[ is some continuous, increasing function.
The main result of [14] is the following theorem, providing a sufficient condition for local asymptotic control-

lability of the system and boundedness of the cost, in terms of a MRF U . For more details on this topic, we
refer to [14].

Theorem 2.4. [14] If there exists a local MRF U : Ω → IR+ for (h,A′), then for any σ ∈]0, U0[ there is some
β ∈ KL such that ∀η > 0 and ∀x ∈ U−1(]0, σ]), there exists a Borel-measurable control α : IR+ → A′ verifying

d(yx(t, α)) ≤ β(d(x), t) ∀t ∈ IR+ (2.14)

and ∫ tx(α)

0

[k h(yx(t, α), α(t)) +m(U(yx(t, α)))] dt ≤ (1 + η)U(x). (2.15)

Therefore the value function

U(x) .= inf
α∈A(x)

∫ tx(α)

0

h(yx(s, α), α(s)) ds

is continuous on ∂T . In particular, if there exists a local MRF U for (l, A′), then V is continuous on ∂T .

Remark 2.5. The thesis of Theorem 2.4 remains unchanged if, instead of assuming the existence of a local
MRF for (h,A′) for some fixed compact subset of A, we consider the following hypothesis:

there exists a local MRF U for (h,A) such that ∀x ∈ Ω \ T :

min
a∈A∩B(0,R(U(x)))

{〈p, f(x, a)〉 + k h(x, a)} < 0, ∀p ∈ D∗U(x), (2.16)

where R : ]0, σ] →]0,+∞[ is a decreasing continuous function (in particular, we may have limδ→0+ R(δ) = +∞).
With a small abuse of notation, we will refer to such a U as to a local MRF for (h,A).

The proof of the results in [14] can be indeed easily adapted to this case, since the dynamics f = f(x, a) was
supposed there merely continuous on T c × A (hence, possibly unbounded around the target, in spite of the
compactness of the control set assumed there). More precisely, the estimates in the proof of Theorem 1.1 (and
of the technical Lem. 2.1) in [14], were done for x ∈ U−1([μ1, μ2]) for some 0 < μ1 < μ2 ≤ σ, and all the
resulting constants were depending on μ1 and μ2. Thus, in any ”strip” U−1([μ1, μ2]) we can argue in the same
way, simply by replacing the fixed control set considered there by the compact set A′ .= A∩B(0, R(μ1)), which
satisfies (2.12) in view of (2.16).

The following proposition is stated without proof, since it easy follows by Dynamic Programming arguments,
taking into account the estimates (2.5) and (2.6).

Proposition 2.6. If V is continuous on ∂T , Dom(V) is an open set and V is locally bounded and upper
semicontinuous in it.
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3. Generalized problems and well posedness

Since we do not assume coercivity, we introduce, as usual, the impulsive or generalized setting. More pre-
cisely, following the so-called graph completion approach, we represent generalized controls and trajectories as
reparametrizations (through a possibly discontinuous time-change) of controls and trajectories of the extended
minimization problem below, involving bounded-valued controls (see [4, 12, 17] and the references therein).
Then we discuss the well posedness of the extended asymptotic exit-time problem, V, and of the extended mini-
mal value function, V m, candidate to be the minimal nonnegative supersolution to the boundary value problem
associated to V (see Sect. 4). Finally, we consider the degenerate cheap control problem, where l(x, a) ≡ l(x).

Let us remark that by well posedness (or equivalently by proper extension) we mean that the original and the
extended problems have the same values. This result will be proved disregarding the possibility of approximating
any trajectory of the extended system (3.3) below by trajectories of the original system (2.3). In fact, such a
convergence is a stronger requirement, more difficult to hold in an infinite horizon problem.

Define on IRn × (IR+ ×A) the extended dynamics and Lagrangian f , l as follows:

Φ(x,w0, w) .=

{
wq

0 Φ(x,w−1
0 w) if w0 �= 0

Φ∞(x,w) if w0 = 0.
Φ ∈ {f, l}, (3.1)

where Φ∞ is defined in (H1). f , l are continuous, q-positively homogeneous in the control variable (w0, w) and
inherit properties analogous to those of f and l, respectively (see e.g. [12]).

Let S(A) .= (IR+ ×A) ∩ {(w0, w) : wq
0 + |w|q = 1}. Define the set of extended controls as

Γ
.= {(w0, w) : (w0, w) ∈ B(IR+, S(A))}, (3.2)

and ∀(w0, w) ∈ Γ denote by ξ(·) ≡ ξx(·, w0, w) the extended trajectory solving the extended control system

ξ′(s) = f(ξ(s), w0(s), w(s)) ξ(0) = x. (3.3)

For any S > 0, the extended payoff is given by

J(S, x, w0, w) =
∫ S

0

l(ξ(s), w0(s), w(s)) ds. (3.4)

In the next proposition we show that the solutions to (3.3) are simply time-reparametrizations of trajectories
of (2.3) if the controls belong to the subset

Γ+ .= Γ ∩ {(w0, w) : w0 > 0 a.e.} . (3.5)

Proposition 3.1. For any α ∈ A there exist a control (w0, w) ∈ Γ+ and a time-reparametrization t : IR+ →
[0, Tα[ such that yx(t(·), α) is the solution of (3.3) associated to the control (w0, w).

Vice-versa, for any control (w0, w) ∈ Γ+ with T
.=
∫ +∞
0 wq

0(σ) dσ ≤ +∞ there exist a control α ∈ A and
a time-reparametrization s : [0, T [→ IR+ such that ξx(s(·), w0, w) is the solution of (2.3) corresponding to the
control α.

Proof. For any α ∈ A, set s(t) .=
∫ t

0
(1+ |α(τ)|q) dτ for all t ∈ [0, Tα[ and denote with t : IR+ → [0, Tα[ its inverse

function. Applying the chain rule one obtains that yx(t(·), α) is a solution of (3.3) associated to the control
(w0, w) ∈ Γ+ given by w(·) .= α(t(·))

(1+|α(t(·)|q)1/q , w0(·) .= (1 − |w(·)|q)1/q.

Vice-versa, for any control (w0, w) ∈ Γ+, defining t(s) .=
∫ s

0
wq

0(σ) dσ, T .=
∫ +∞
0

wq
0(σ) dσ and s : [0, T [→ IR+

as the (continuous) inverse function of t(s), one has that ξx(s(·), w0, w) is a solution of (2.3) corresponding to
the control α(·) .= w(s(·))

w0(s(·)) ∈ A. �
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Remark 3.2. Considering extended controls where w0(s) = 0 for s in some intervals, is a way to introduce a
notion of generalized control, where the (discontinuous) generalized solution to (2.3) corresponding to (w0, w),
say ygen

x is defined as ygen
x (·) .= ξx(s(·), w0, w), where s(·) is, e.g., the right inverse of t(s) .=

∫ s

0
wq

0(σ) dσ for
s ≥ 0. It is clear that, for q > p, one has f∞ ≡ 0 and ygen

x (·) ≡ yx(·) (for more details, see [17]).

Remark 3.3. In view of Remark 2.2, we notice that the set of controls {α : α ∈ B∩Lq
loc(IR+, A)} is embedded

in the subset of controls (w0, w) ∈ Γ such that∫ +∞

0

wq
0(σ) dσ = +∞. (3.6)

Let x ∈ T c. For any (w0, w) ∈ Γ the extended exit-time is given by

σx(w0, w) .= inf {s > 0 : ξx(s, w0, w) ∈ T } (≤ +∞). (3.7)

Defined the set of extended admissible controls

Γ (x) .= {(w0, w) ∈ Γ : lim inf
s→σ−

x (w0,w)
d(ξx(s, w0, w)) = 0}, (3.8)

the extended (asymptotic) exit-time value function is given by

V (x) .= inf
(w0,w)∈Γ (x)

J(σx(w0, w), x, w0, w) (≤ +∞).

Similarly, we define
Vm(x) .= inf

(w0,w)∈Γ
J(σx(w0, w), x, w0, w), (3.9)

where also the cost J(+∞, x, w0, w) corresponding to extended trajectories remaining away from the target is
allowed. Of course, V m ≤ V .

In view of Proposition 3.1, in the extended setting we can recover both V and Vm, by restricting the min-
imization to Γ+ ∩ Γ (x) and Γ+ in the definition of V and V m, respectively. In general, however, V ≤ V and
V m ≤ Vm and both these and the previous inequalities may be strict, as shown in Examples 3.5 and 3.7 below.

3.1. Well posedness of V

Proposition 3.4. Let q > p. Then the original and the extended exit-time problem are equivalent, that is:
V ≡ V.

Proof. Let x ∈ T c be such that V (x) < +∞ (otherwise, V(x) = V (x) = +∞). In the case q > p, any control
(0, w) ∈ Γ does not belong to Γ (x), since ξx(s, 0, w) = x /∈ T for all s ≥ 0. Thus, owing to Proposition 3.1, in
order to prove that V (x) = V(x), it is enough to show that the payoff corresponding to any control (w0, w) ∈ Γ (x)
such that w0 = 0 on some interval [s1, s2], is greater than or equal to the payoff associated to some control
(w̃0, w̃) ∈ Γ+ ∩ Γ (x).

In fact, in the case that [s1, s2] is the only interval where w0 ≡ 0, the trajectory ξx(s, w0, w) ≡ ξx(s1, w0, w) for
all s ∈ [s1, s2] because of the definition of f∞, while l ≥ 0 implies that

∫ s2

s1
l(ξx(s, w0, w), w0, w) ds ≥ 0. Therefore

J(σx(w0, w), x, w0, w) ≥ J(σx(w̃0, w̃), x, w̃0, w̃) if (w̃0, w̃)(s) .= χ[0,s1[(w0, w)(s)+χ[s1,+∞[(w0, w)(s+s2−s1) for
all s ≥ 0. For the general case, set σ = σ(s) .=

∫ s

0 χ]0,1](w0(s′)) ds′ and let s = s(σ) be the right inverse of σ(·).
It is easy to see that the control (w̃0, w̃)(σ) .= (w0, w)(s(σ)) for all σ ≥ 0 does the job. The above argument lets
us immediately conclude. �

In view of Proposition 3.4, the well-posedness question is significant only if q = p. In this case, the extended
exit-time control problem is not, in general, a proper extension of the original problem, even if the weak coercivity
condition (1.3) for q = p is in force, as shown by the following example.



ON ASYMPTOTIC EXIT-TIME CONTROL PROBLEMS LACKING COERCIVITY 965

Example 3.5. Let T = {(0, 1), (1/2, 0)}, A = IR+, and consider the control system in IR2,{
ẏ1(t) = α(t)
ẏ2(t) = |1 − y1(t)| − y2(t)

with (y1, y2)(0) = (x1, x2). For a fixed parameter β > 0, define the value function

V(x1, x2) = inf
α∈A(x1,x2)

∫ tx(α)

0

[|y2(t)(1 − y2(t))| + β α(t)] dt.

Notice that, in view of Remark 2.2, it is not restrictive to consider only controls α ∈ B ∩ L1
loc(IR+, IR+). Since

y1 is increasing, in order to reach (1/2, 0), any trajectory issuing from (0, 0) has y1(t) ∈ [0, 1/2] for all t > 0
and it is not difficult to see that y2(t) ≥ (1 − e−t)/2 for all t > 0. This makes (1/2, 0) not reachable. Hence
the only point of the target that is (asymptotically) reachable is (0, 1), using the control α ≡ 0. Therefore
V(0, 0) =

∫ +∞
0

(1 − e−t)e−t dt = 3
2 for any choice of β.

Let us now consider the extended system{
ξ̇1(s) = w(s)
ξ̇2(s) = (|1 − ξ1(s)| − ξ2(s))w0(s) (ξ1, ξ2)(0) = (x1, x2),

(3.10)

with (w0, w) ∈ Γ and

V (x1, x2) = inf
(w0,w)∈Γ (x1,x2)

∫ σ(x1 ,x2)(w0,w)

0

[|ξ2(s)(1 − ξ2(s))|w0(s) + βw(s)] ds,

where Γ (x1, x2) is given in (3.8) and σ(x1,x2)(w0, w) is defined as in (3.7). In this case (0, 1) is reachable
from the origin with the same cost as above, but now also the point (1/2, 0) is reachable using the control
(w0, w) = (0, 1)χ[0,1/2] + (1, 0)χ]1/2,+∞[ ∈ Γ (0, 0) with σ(0,0)(w0, w) = 1/2, and we get the cost β/2. Therefore
if β < 3 one has V (0, 0) = β/2 < V(0, 0), while if β ≥ 3 then V (0, 0) = V(0, 0) = 3

2 . Notice that V is not
continuous on T .

In the critical case q = p, we have the following well-posedness result.

Theorem 3.6. Let q = p. If V is continuous on ∂T , then V ≡ V .

Proof of Theorem 3.6. For any x ∈ T c, the inequality V (x) ≤ V(x) is obvious and, if V (x) = +∞, it implies
immediately V (x) = V(x). If V (x) < +∞, let η > 0. On the one hand, by the continuity of V on the compact
set ∂T (where V ≡ 0 by definition), there is some δ > 0 such that

V(x̄) < η/3 ∀x̄ ∈ T c with d(x̄) < δ. (3.11)

On the other hand, the definition of V implies that∫ σx(w̃0,w̃)

0

l̄(ξ̃x, w̃0, w̃)(s) ds < V (x) + η/3, d(ξ̃x(s̄)) < δ/2 (3.12)

for some control (w̃0, w̃) ∈ Γ (x) and some s̄ < σx(w̃0, w̃), if ξ̃x(·) .= ξx(·, w̃0, w̃). For any n ∈ IN, define now

wn
.=

n

n+ 1
w̃ χ[0,s̄[ , w0n

.= (1 − |wn|q)1/q. (3.13)

Such controls belong to Γ+, the trajectories ξn
x (·) .= ξx(·, w0n, wn) tend uniformly to ξ̃x(·) in [0, s̄] (see (A.1)

and (A.3) in the Appendix) so that ∃s̄n ≤ s̄ such that by the regularity of l̄ and the Dominated Convergence
Theorem ∫ s̄n

0

l̄(ξn
x , w0n, wn)(s) ds < V (x) + 2η/3, d(ξn

x (s̄n)) < δ
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for a sufficiently large n. Following the same construction of Proposition 3.1, let us set tn(s) .=
∫ s

0 w0
q
n(σ) dσ

and let us denote by sn(t) its inverse. Let tn(s̄n) .= t̄n, αn(·) .= wn(sn(·))
w0n(sn(·)) , and yx(t̄n, αn) .= xn. Hence αn ∈

A ∩ Lq([0, t̄n], A) and ∫ t̄n

0

l(yx(t, αn), αn(t)) dt < V (x) + 2η/3, d(xn) < δ.

Let now ᾱn ∈ A(xn) be a control such that
∫ txn (ᾱn)

0
l(yxn(t, ᾱn), ᾱn(t)) dt ≤ η/3, which exists in view of (3.11).

Then, the control α(t) = αn(t)χ[0,t̄n](t) + ᾱn(t− t̄n)χ]t̄n,+∞](t) belongs to A(x) and

V(x) ≤
∫ tx(α)

0
l(yx(t, α), α(t)) dt ≤ V (x) + η. (3.14)

By the arbitrariness of η > 0, the proof is concluded. �

3.2. Well posedness of V m

Differently from V and V , V m and Vm do not coincide in general, even if Vm is continuous in some neigh-
borhood of T , as shown in the following example.

Example 3.7. Let T = {(x1, x2) : x1 = 10, 1 ≤ x2 ≤ 3} and consider the bi-dimensional system{
ẏ1(t) = α(t)
ẏ2(t) = f(y1, y2),

where (y1, y2)(0) = (x1, x2), α(t) ∈ IR and f(x1, x2) is any Lipschitz continuous nonnegative function, positive
for x1 > 0, extension to {(x1, x2) : x2 > −1} of the following Lipschitz continuous function defined in D =
{(x1, x2) : 3 ≤ x1 ≤ 12, −1 ≤ x2 ≤ 4} ∪ {(0, x2) : x2 ≥ 0}

g(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2 if x1 = 0,
1 if (3 ≤ x1 ≤ 12) ∧ (−1 ≤ x2 ≤ 1)
−1 if (3 ≤ x1 ≤ 12) ∧ (3 ≤ x2 ≤ 4)
2 − x2 if (3 ≤ x1 ≤ 12) ∧ (1 ≤ x2 ≤ 3).

For x = (x1, x2) the cost is given by

J (T, x, α) =
∫ T

0 |y2(t)(10 − y1(t))| + |α(t)| dt. (3.15)

Notice that by Remark 2.2 we can minimize over the subset of controls α ∈ B ∩ L1
loc(IR+, IR) ⊂ A. We have

V (x) = V(x) = |10 − x1| ∀x ∈ D.

In fact, for every x = (x1, x2) ∈ D let us prove that, setting αn(t) .= (10 − x1)nχ[0, 1
n ](t), (αn)n is a minimizing

sequence of controls. If |x2 − 2| ≤ 1 we have yx(n−1, αn) ∈ T since the second component of the trajectory
issuing from x is monotone and such that limt→0+ y2(t, αn) = x2. Hence the Dominated Convergence Theorem
yields limn→+∞ J (n−1, x, αn) = |10−x1|. Otherwise, for x = (x1, x2) ∈ D with |x2−2| > 1, it is yx(n−1, αn) =
(10, x2 + sgn(|x2 − 2| − 1)n−1). For n large, set tn

.= |x2 − 2| − 1 − n−1 > 0. The null control running for
n−1 ≤ t ≤ tn + n−1 leads the trajectory to the target. Moreover since y1(t) ≡ 10 for t > n−1 we have
J (n−1 + tn, x, αn) = J (n−1, x, αn) and we can conclude as in the previous case. Finally V(x) = |10− x1|, since
for any α ∈ A(x) it is easy to see that one has V(x) ≥

∫ tx(α)

0 |α(t)| dt ≥ |10 − x1|.
Let us now consider the associated extended system, given by{

ξ̇1(s) = w(s)

ξ̇2(s) = f(ξ1, ξ2)w0(s)
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and the extended cost
J(S, x, w0, w) =

∫ S

0 |ξ2(s)(10 − ξ1(s))|w0(s) + |w(s)| ds.
Since V is continuous on ∂T , V ≡ V owing to Theorem 3.6. However, at any point (x1, 0) with x1 > 0, we get

V m(x1, 0) =
{
x1, for 0 < x1 < 5,
10 − x1, for 5 ≤ x1 ≤ 10.

The optimal cost to reach the origin is, indeed, J(∞, (x1, 0), w̃0, w̃) = x1, obtained by implementing the control
(w̃0, w̃)(s) = (0,−1)χ[0,x1](s) + (1, 0)χ[x1,+∞[.

So V m(x1, 0) < V (x1, 0) = V(x1, 0) for all 0 < x1 < 5, being more convenient, if allowed, to reach the origin,
which belongs to Z but not to the target. Actually, this can be done only using an impulsive control, where
w0 = 0 on some interval, whose corresponding extended trajectory is not limit of trajectories of the original
system with finite cost. It is now easy to see that Vm ≡ V ≡ V in the interior of D, so that Vm is continuous

in it, but V m(x1, 0) < Vm(x1, 0) for all 3 < x1 < 5. For any control α ∈ B ∩ L1
loc(IR+, IR) \ A(x) with x ∈

◦
D,

we have indeed that there exists some c̄ > 0 such that J (+∞, x, α) ≥ c̄
∫ +∞
0 |y2(t)| dt = +∞, since y2(·) is

increasing for t ≥ 0. Therefore the infimum over A has to be reached on A(x) and Vm(x) = V(x).

Notice that the lagrangian of Example 3.7 is weakly coercive. Coercivity for q > p is though sufficient to have
Vm = V m. In fact we obtain the following general result.

Proposition 3.8. If either the coercivity condition (1.3) or the target-weighted coercivity hypothesis (1.4) for
q > p holds, then V m ≡ Vm.

Proof. Arguing as in the proof of Proposition 3.4, the cost of any control (w0, w) ∈ Γ \ Γ+ such that∫ +∞
0 w0(s) ds > 0, is greater than or equal to the cost associated to a suitable control (w̃0, w̃) ∈ Γ+ (cor-

responding to an original control α, in view of Prop. 3.1). Hence we only have to show that any control
(0, w) ∈ Γ cannot be optimal. As observed in the proof of Proposition 3.4, for any x ∈ T c, (0, w) ∈ Γ \ Γ (x).
Hence, since wq

0 + |w|q = 1, σx(0, w) =
∫ σx(0,w)

0 |w(s)|q ds = +∞ and assuming either (1.3) or (1.4), one obtains
J(+∞, x, 0, w) = +∞. �

Another situation where Vm ≡ V m, is the degenerate case l(x, a) ≡ l(x). Precisely, we prove what follows.

Proposition 3.9. Assume l(x, a) ≡ l(x). Then Vm ≡ 0 and, if

l(x) ≤ M̄(1 + |x|r) ∀(x, a) ∈ IRn × T (3.16)

for some r, M̄ > 0, we also have Vm ≡ 0.

Proof. For any x ∈ T c, V m(x) = 0 since l(x,w0, w) = l(x)wp
0 and J(+∞, x, 0, w) = 0 for any control (0, w) ∈ Γ

(p the same as in (H0)). Let 0 < Tn ≤ 1 for n ∈ IN be a positive, decreasing sequence converging to zero. For
any n ∈ IN, let αn ∈ B ∩ Lp

loc([0, Tn[, A) be a control such that

kn(t) .=
∫ t

0

|αn(t)|p dt = log(| log(Tn − t)|) ∀t ∈ [0, Tn[,

which always exists, since A is a cone. Therefore Tαn = Tn and, setting yn
x (·) .= yx(·, αn), by (2.5) it follows that

|yn
x (t)| ≤ [|x| +M(t+ kn(t))] eM(t+kn(t)) t ∈ [0, Tn[.

Hence we get
∫ Tn

0

l(yn
x (t)) dt ≤ M̄

(
Tn +

∫ Tn

0

|yn
x (t)|r dt

)
≤ C̄

(
Tn +

∫ Tn

0

kr
n(t) eMrkn(t) dt

)
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for some C̄ > 0. The previous estimates imply that∫ Tn

0

l(yn
x(t)) dt ≤ C̄

(
Tn +

∫ Tn

0

logr(| log(Tn − t)|) | log(Tn − t)|Mr dt

)

where the last expression tends to zero as n tends to +∞. Indeed, by the substitution s = Tn − t, we have∫ Tn

0

logr(| log(Tn − t)|) | log(Tn − t)|Mr dt =
∫ Tn

0

logr(| log(s)|) | log(s)|Mr ds,

which tends to zero as Tn → 0+, since logr(| log(s)|) | log(s)|Mr is an integrable function at 0+. �

In the following example, l is as in (3.16) and the asymptotic value function V(x) is equal to zero. The controls
of any minimizing sequence use infinite energy and their blow-up times converge to 0.

Example 3.10. Let us consider the scalar system

ẏ(t) = −α(t) y(t),

where y(0) = x and α(t) ∈ IR+. The target is T = {0} and the payoff is given by

J (T, x, α) =
∫ T

0

(1 + |y(t)|) dt.

For any x �= 0 and α ∈ A, yx(t, α) = x e−k(t), where k(t) =
∫ t

0
α(t′) dt′ for t ≥ 0. For the same choice of controls

αn used in the proof of Proposition 3.9 for p = 1, one has limt→T−
n
yx(t, αn) = 0 and limn J(Tn, x, αn) = 0, so

that V(x) = 0. Notice that for every x ∈ T c, any admissible control α ∈ A(x) must have
∫ tx(α)

0
|α(t)| dt = +∞.

Moreover, any minimizing control sequence (αn)n has finite blow-up times Tαn converging to zero.

At this point one wonders if in the case l(x, a) ≡ l(x) the value functions V and V are themselves identically
zero. The answer is given in the next example where we have V , V �= 0 and an asymptotically reachable target.

Example 3.11. Let us consider the scalar system

ẏ(t) = −y(t) + α(t),

where y(0) = x and α(t) ∈ IR+. The target is T = {0} and the payoff is given by

J (T, x, α) =
∫ T

0

|y(t)| dt.

Hence p = q = 1, the extended system and payoff are given, respectively, by

ξ̇(s) = −ξ(s)w0(s) + w(s), J(S, x, w0, w) =
∫ S

0

|ξ(r)|w0(r) dr,

and we get

V (x) = V(x) =
{
x if x ≥ 0
0 if x < 0.

Indeed, if x ≤ 0 it is enough to choose the minimizing sequence of controls, αn(t) .= nχ[0,log(1−x/n)](t). On the
other hand, for every x > 0, the optimal control is α ≡ 0. Notice that for x > 0, any control α ∈ A(x) gives
rise to a cost not smaller that x. Indeed, first of all, if for some Tα < +∞ one had

∫ Tα

0 |α(s)| ds = +∞, then
yx(t, α) → +∞ as t → Tα and hence α /∈ A(x). Therefore it is easy to see thet for any α ∈ A(x), tx(α) = +∞
and yx(t, α) = e−t

(
x+

∫ t

0
esα(s) ds

)
≥ xe−t so that

J (+∞, x, α) ≥
∫ +∞

0

xe−s ds = x.
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4. Optimality principles and uniqueness

This section is devoted to introduce sufficient conditions in order to characterize V as unique non negative
solution of a Hamilton–Jacobi equation with suitable boundary conditions. We first show that, under the
following assumption

∀x ∈ T c : |f∞(x, a)| + l∞(x, a) �= 0 ∀a ∈ A \ {0}, (4.1)

the boundary value problem, in short (BVP), associated to the exit-time value functions defined in the previous
sections can be reformulated in terms of the continuous Hamiltonian H defined in (4.5) below. Furthermore
we obtain the optimality principles in Proposition 4.5 and the uniqueness Theorems 4.6, 4.7 by refining anal-
ogous results of [12], proved there under hypothesis (1.3). In view of the optimality principles, the question of
uniqueness is reduced here, for both the cases q > p and q = p, to the control theoretical question of whether
V coincides with Vm. In order to unify the exposition, we use the extended value functions even when they are
equal to the original value functions. We recall that, owing to Propositions 3.4 and 3.8, this happens for instance
if either the coercivity hypothesis (1.3) or the target-weighted coercivity condition (1.4) for q > p holds.

Remark 4.1. Both conditions (1.3) and (1.4) for q ≥ p imply (4.1). Nevertheless, hypothesis (4.1) may be
verified even in very degenerate, cheap control problems, where l(x, a) ≡ l(x), so that l∞(x, a) ≡ 0. In this case,
if f(x, a) = f0(x)+

∑m
i=1 fi(x)ai, then (4.1) is equivalent to assume

∑m
i=1 fi(x)ai �= 0 for all (x, a) ∈ T c×(A\{0}).

In order to apply the results of [12], throughout this section we assume that

for any R > 0, there exists L̄R > 0 such that ω(r,R) = L̄R r,

where ω is the modulus of continuity of l in (H0). In fact, the sublinear growth of l assumed in [12] can be
removed as in [9].

4.1. The boundary value problem

For any (x, p) ∈ IRn × IRn, define the Hamiltonian

H(x, p) .= sup
a∈A

{−〈p, f(x, a)〉 − l(x, a)} . (4.2)

Definition 4.2.
(BVP) Any function v : IRn \

◦
T → IR ∪ {+∞} verifying v∗(x) ≥ 0 on ∂T and such that v∗ is a viscosity

supersolution of
H(x,Dv(x)) = 0 (4.3)

in IRn \ T , is called a supersolution to (BVP). Any pair (v,Ω) where Ω ⊃ T is an open set and v : Ω \
◦
T → IR

is a locally bounded function verifying v∗(x) ≤ 0 on ∂T and such that v∗ is a viscosity subsolution of (4.3) in
Ω \ T , is called a subsolution to (BVP) (in Ω).

Any pair (v,Ω), where v : IRn \
◦
T → IR∪ {+∞} and Ω is an open set, Ω ⊃ T , is called a solution to (BVP)

(in Ω) if v is supersolution and (v,Ω) is a subsolution to (BVP).

For precise definitions and more comments on (BVP), we refer to [12]. Here we just point out that the
exit-time value functions do not satisfy in general the boundary condition

lim
x→x̄

v(x) = +∞ ∀x̄ ∈ ∂Dom(v). (4.4)

If no coercivity is assumed, H may be discontinuous and equal to +∞ in some points. In this case, following
the viscosity theory, in (BVP) one has to consider the upper and lower semi-continuous envelope of H, H∗

and H∗, respectively. In particular v is a subsolution if v∗ is a subsolution to H∗(x,Dv) = 0 while v is a
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supersolution if v∗ is a supersolution to H∗(x,Dv) = 0. However, in view of Proposition 4.3 below, all the
results in the sequel hold with H replaced for any (x, p) ∈ IRn × IRn by the following continuous extended
Hamiltonian H ,

H(x, p) .= max
(w0,w)∈S(A)

{
−〈p, f(x,w0, w)〉 − l(x,w0, w)

}
(4.5)

where f̄ , l̄, S(A) are defined as in (3.1). Actually, considering H turns out to be useful even if H is coercive,
since it allows to obtain optimality principles for dynamics verifying |f(x, a)| ≤M(1 + |a|p)(1 + |x|) instead of
the more restrictive hypothesis |f(x, a)| ≤M(1 + |a|p + |x|), assumed in most of the literature (see e.g. [9,18]).
An analogous remark holds for l.

Proposition 4.3. Let u : IRn \
◦
T → IR ∪ {+∞}.

(i) u is a subsolution of H(x,Du(x)) = 0 at some x iff it is a subsolution of H(x,Du(x)) = 0 at x;
(ii) if u is a supersolution of H(x,Du(x)) = 0 at some x, then it is a supersolution of H(x,Du(x)) = 0 at x.

When (4.1) holds, also the converse implication is true.

Proof. In Theorem 2.1, [12] the hypothesis (1.3) is assumed. From the proof, however, it is immediate to see
that (1.3) is not necessary to prove statement (i) and the first implication in (ii). For the second implication
in (ii), let us assume that u is a viscosity supersolution to H(x,Du) = 0 at x. If u(x) = +∞ the thesis is trivial.
Let u(x) < +∞ and let ϕ ∈ C1(IRn) be such that u − ϕ has a local minimum at x. Since H is continuous, one
has H = H∗ and H(x,Dϕ(x)) ≥ 0. Let (w̄0, w̄) ∈ S(A) be such that

〈−Dϕ(x), f(x, w̄0, w̄)〉 − l(x, w̄0, w̄) = max
(w0,w)∈S(A)

{
−〈p, f(x,w0, w)〉 − l(x,w0, w)

}
≥ 0. (4.6)

If w̄0 > 0 by setting a = w̄
w̄0

one can easily prove that H∗(x,Dϕ(x)) ≥ 0. Let w̄0 = 0. If l(x, 0, w̄) = l∞(x, w̄) > 0,
one has f(x, 0, w̄) = f∞(x, w̄) �= 0 since otherwise (4.6) would be false, while in case l(x, 0, w̄) = 0, the condition
f(x, 0, w̄) �= 0 is guaranteed by (4.1). In both situations, there exists μ(x) > 0 such that |f(x, 0, w̄)|2 ≥ μ(x) > 0.
Let (hn)n be a sequence of positive numbers with hn ≤ 1 and set pn

.= Dϕ(x) − hnf(x, 0, w̄). One has

sup
(w0,w)∈S(A)

{
−〈pn, f(x,w0, w)〉 − l(x,w0, w)

}
≥ hnμ(x),

so that there exists a sequence (w0n , wn) with w0n > 0 such that

−〈pn, f(x, an)〉 − l(x, an) ≥ hnμ(x)
2wq

0n

> 0

where we have set an = wn

w0n
. Hence supa∈A {−〈pn, f(x, a)〉 − l(x, a)} > 0 which implies H∗(x,Dϕ(x)) ≥ 0. �

Proposition 4.4.

(i) Let W ∈ {V , V, Vm}. If W is locally bounded in Dom(W ), Dom(W ) is open and W ∗ ≤ 0 on ∂T , then
(W, Dom(W )) is a subsolution to (BVP).

(ii) V is a nonnegative supersolution to (BVP). If (4.1) holds, then V and V m are nonnegative supersolutions
to (BVP) too.

We omit the proof, since it is analogous to that of Proposition 3.2 in [12].

4.2. Maximal and minimal solutions and uniqueness

Let us briefly introduce the relaxed extended minimal value function, V m,r, obtained by taking the infimum
over relaxed extended controls, μ(·) ∈ Γ r .= L∞(IR+,P(B(0, 1)∩A)). As usual, Ar .= P(B(0, 1)∩A) is theset of
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Radon probability measures on the compact set B(0, 1)∩A endowed with the weak∗ topology and we consider
ψ ∈ {f, l} extended to IRn ×Ar by setting

ψr(x, μ) .=
∫

B(0,1)∩A

ψ(x, (1 − |w|q)1/q, w) dμ ∀μ ∈ Ar.

For any x ∈ T c and μ ∈ Γ r, ξr
x(s, μ) denotes the relaxed trajectory, solution of

ξ̇r = f
r
(ξr , μ) for s > 0, ξr(0) = x (4.7)

and we set σr
x(μ) .= inf {s > 0 : ξr

x(s, μ) ∈ T } (≤ +∞). Finally, we define

V m,r(x) .= inf
μ∈Γ r

∫ σr
x(μ)

0

l
r
(ξr

x(s, μ), μ(s)) ds.

Proposition 4.5.
(i) Assume (4.1). Then V m ≤ u for any nonnegative and continuous supersolution u to (BVP), V m,r is l.s.c

and it is the minimal nonnegative supersolution to (BVP).
(ii) If V is continuous on ∂T , then (V, Dom(V )) is the maximal subsolution to (BVP) among the pairs

(v,Dom(V ))2.

Proof. We only sketch the proof of (i), where some changes with respect to the proof of Theorem 4.3 in [12]
are needed and omit that of (ii), which is the same as in [12]. Actually, we just consider the case where u is
continuous (for u just l.s.c. the rearrangements are obvious). In view of Theorem 4.1 in [12], any nonnegative
continuous viscosity supersolution u to (BVP) satisfies ∀x ∈ T c the following upper optimality principle3:

u(x) = inf
(w0,w)∈B(IR+,S(A))

sup
0≤s<σx(w0,w)

[J(s, x, w0, w) + u(ξx(s, w0, w))],

which implies that

u(x) ≥ inf
(w0,w)∈B(IR+,S(A))

lim sup
s→σx(w0,w)

[J(s, x, w0, w) + u(ξx(s, w0, w))]. (4.8)

Since u is continuous and u ≥ 0 in T c, by (4.8) it follows that

lim sup
s→σx(w0,w)

[J(s, x, w0, w) + u(ξx(s, w0, w))] ≥ J(σx(w0, w), x, w0, w)

for all (w0, w) ∈ B(IR+, S(A)). The last two estimates yield u(x) ≥ V m(x). �

Let us now state the following uniqueness result, whose proof follows from Theorem 4.7 below.

Theorem 4.6. Assume (4.1).
(i) If V ≡ V m and V is continuous in Dom(V) and satisfies the boundary condition (4.4), then V (≡ V ≡ V m)

is the unique nonnegative viscosity solution to (BVP) among the pairs (v,Ω), where v is continuous in Ω
and limx→x̄ v(x) = +∞ ∀x̄ ∈ ∂Ω.

(ii) If V ≡ V m,r and V is continuous on ∂T , then (V ,Dom(V)) (where V ≡ V ≡ V m,r) is the unique nonnegative
viscosity solution to (BVP) among the pairs (v,Ω), where v satisfies (4.4). Moreover, V is continuous4.

2We recall that Dom(V ) is an open set, V is locally bounded and upper semicontinuous in view of Proposition 2.6 (reformulated
for the extended problem).

3 Differently from [12], where the infimum was taken over the subset of controls of B(IR+, S(A)), such that
∫ +∞
0

wq
0(s) ds = +∞,

we drop here the integral constraint. The two infimums coincide if (1.3) is assumed, as done in [12] (see Rems. 2.2, 3.3).
4Since V m,r is lsc and V is usc, when V ≡ V m,r (4.4) is trivially satisfied.
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Notice that, unless either (1.3) or (1.4) for q > p is in force, in view of the results in Section 3.1 condition
V ≡ V m is stronger than the hypothesis V ≡ Vm assumed in an analogous uniqueness theorem obtained in [16],
for the case of bounded controls.

By a Kruzkov transform the free boundary problem (BVP) can be replaced by another boundary value
problem in IRn \T , whose solution, when unique, simultaneously gives both v and Ω .= Dom(v). More precisely,
we introduce the extended Hamiltonian

K(x, u, p) .= max(w0,w)∈S(A){−〈p, f(x,w0, w)〉 − l(x,w0, w) + l(x,w0, w)u}, (4.9)

and we consider the following boundary value problem, in short, (BVPK),{
K(x,W (x), DW (x)) = 0 in IRn \ T
W (x) = 0 on ∂T , (4.10)

where super- and subsolutions are defined analogously to Definition 4.2.
We have the following uniqueness result in IRn.

Theorem 4.7. Assume (4.1).

(i) If V ≡ V m and V is continuous in Dom(V) and satisfies the boundary condition (4.4), then there is a unique
nonnegative viscosity solution U to (BVPK) among the continuous functions. Moreover, V ≡ Ψ−1(U) =
− log(1 − U) and Dom(V) = {x : U(x) < 1}.

(ii) If V ≡ V m,r and V is continuous on ∂T , then there is a unique nonnegative viscosity solution U to (BVPK)
which turns out to be continuous. Moreover, V ≡ Ψ−1(U) = − log(1 − U) and Dom(V) = {x : U(x) < 1}.

Proof. Let us prove (ii), the proof of (i) being analogous and actually simpler. By Proposition 4.5 and the
boundary condition (4.4), for any solution W to (BVPK) we get, for every x ∈ IRn \ T ,

Ψ(V m,r)(x) ≤W∗(x) ≤W (x) ≤W ∗(x) ≤ Ψ(V )(x).

By Proposition 3.4 and Theorem 3.6 for the case q = p, V ≡ V . Since V ≡ V m,r, the thesis follows now easily.
For the continuity of V on ∂T we refer to Theorem 2.4 and Remark 2.5, and to Section 6 for its global

continuity. In the next Section we will establish some sufficient conditions in order to have V ≡ V m or V ≡ V m,r.
We point out that when V �= V m, owing to Proposition 4.5 we can still characterize V as maximal subsolution
of (BVP). Alternatively, in Section 5 we will obtain V as limit of some penalized problems. �

4.3. Conditions to have V ≡ V m or V ≡ V m,r

4.3.1. Conditions for V ≡ V m

Preliminarly, let us notice that, by definition, V ≡ V m if and only if for any x ∈ T c, one has

∫ +∞

0

l(ξx(s, w0, w), w0(s), w(s)) ds ≥ V (x) ∀(w0, w) ∈ Γ \ Γ (x). (4.11)

Clearly, a first situation where (4.11) holds, is when Γ ≡ Γ (x) for any x ∈ T c. For instance, we can get
such an equality if the extended control system (3.3) is globally asymptotically stable, in short, GAS, w.r.t. ∂T
in T c, which, roughly means that all extended trajectories converge to ∂T . We recall that (3.3) is said uniformly
GAS, UGAS, w.r.t. ∂T if, in addition, initial conditions in a compact set give rise to trajectories approaching
the target uniformly. The literature on this subject is huge and we refer the interested reader to [1] and the
references therein. Here we skip precise definitions and, limit ourselves to give a sufficient condition, in terms
of a Lyapunov function, yielding that (3.3) is UGAS w.r.t. ∂T .
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(SC1) There exists a function U : IRn \
◦
T → IR+, C1 in IRn \

◦
T , positive definite, proper on T c, such that

∀x ∈ T c,
max

(w0,w)∈S(A)

{
〈∇U(x), f (x,w0, w)〉

}
≤ −m(d(x)) (4.12)

for some continuous, increasing function m :]0,+∞[→]0,+∞[.

A second explicit condition that implies (4.11), involving just the cost, is

(SC2) There are some continuous, increasing functions c1, c2 :]0,+∞[→]0,+∞[ and some constant C1 ≥ 0
such that

l(x, a) ≥ max{c1(d(x)), c2(d(x))|a|q − C1} ∀(x, a) ∈ T c ×A. (4.13)

In (SC2) we can replace (4.13) by the following stronger hypothesis:

l(x, a) ≥ c1(d(x)) + c2(d(x))|a|q ∀(x, a) ∈ T c × A. (4.14)

In fact, both (4.13), (4.14) imply that ∀(w0, w) ∈ Γ \Γ (x), one has infs≥0 ci(d(ξx(s, w0, w))) ≥ c̄ for some c̄ > 0,
for i = 1, 2. Hence J(+∞, x, w0, w) = +∞ in correspondence of such controls, so that (4.11) turns out to be
satisfied.
Notice that, in the special case c2(d(x)) ≡ c2 > 0 and q > p, (4.13) is assumed in many papers devoted to
the uniqueness issue and includes the infinite horizon LQR problem (seen as an asymptotic exit-time problem
with T = {0}), as e.g. [8]. A previous paper of ours, [15], treats the exit-time problem for a weakly coercive
Lagrangian, where (4.14) holds for p = q = 1 and c1(·), c2(·) are bounded below by a positive constant.

Remark 4.8. If we only have the target-weighted coercivity condition (1.4), then for all controls belonging to
Γ \ Γ (x), one has J(s, x, w0, w) ≥ c̄

∫ s

0
|w(s)|q ds − C1

∫ s

0
wq

0(s) ds for any s ≥ 0. Therefore controls such that∫ +∞
0

wq
0(s) ds < +∞ (implying

∫ +∞
0

|w(s)|q ds = +∞), have an infinite cost. As a consequence, (4.11) is satisfied
as soon as it holds just for controls in Γ \ Γ (x) such that

∫ +∞
0

wq
0(s) ds = +∞. Hypothesis l(x, a) ≥ c1(d(x))

is merely a simple, explicit sufficient condition to this aim.

4.3.2. Conditions for V ≡ V m,r

For any x ∈ T c, let us define the relaxed version of V ,

V r(x) .= inf
μ∈Γ r(x)

∫ σr
x(μ)

0

l
r
(ξr

x(s, μ), μ) ds (≤ +∞),

where Γ r(x) .= {μ ∈ Γ r : lim infs→σr−
x (μ) d(ξr

x(s, μ)) = 0}. In order to have V = V m,r, it is clearly sufficient
to give conditions implying either that V ≡ V m and V m ≡ V m,r or that V r ≡ V m,r and V ≡ V r. Since for any
x ∈ IRn,

co(f(x, S(A)) × l(x, S(A)) = f
r
(x,Ar) × l

r
(x,Ar), (4.15)

standard arguments yield that, if the set

L(x) .=
{
(λ, γ) ∈ IRn+1 : ∃w ∈ B(0, 1) ∩A s.t.

λ = f(x, (1 − |w|q)1/q, w), l(x, (1 − |w|q)1/q , w)) ≤ γ
} (4.16)

is convex for any x ∈ T c, then V r ≡ V and V m,r ≡ V m. Actually, in several situations these equalities are
true under convexity assumptions weaker than (4.16), that are satisfied, for instance, when f is affine and l is
convex in the control variable. Precisely, as established in the next propositions, V r ≡ V under the following
condition, where the (non convex) control set S(A) is replaced by [0, 1]×B(0, 1) ∩A.
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(CV) For any x ∈ T c, the set:

L′(x) .=
{
(λ, γ) ∈ IRn+1 : ∃(w0, w) ∈ [0, 1]×

(
B(0, 1) ∩A

)
, s.t.

λ = f(x,w0, w) l(x,w0, w)) ≤ γ
} (4.17)

is convex.

Proposition 4.9. Assume (CV). Then V r ≡ V .

Proof. Let x ∈ T c be such that V r(x) < +∞. In order to prove that V (x) = V r(x), let μ ∈ Γ r(x) be an
arbitrary relaxed control such that

Jr(σr
x(μ), x, μ) .=

∫ σr
x(μ)

0

l
r
(ξr

x(s, μ), μ) ds < +∞.

Thanks to (CV), by standard arguments there exists a control (w0, w) ∈ B(IR+, [0, 1] × (B(0, 1) ∩ A)) such
that ξr

x(·, μ) ≡ ξx(·, w0, w), σr
x(μ) = σx(w0, w) and Jr(σr

x(μ), x, μ) ≥ J(σx(w0, w), x, w0, w). We point out that
(w0, w) /∈ Γ (x) in general, since wq

0 + |w|q might be strictly smaller than 1. Nevertheless, as soon as∫ σx(w0,w)

0

[wq
0(s) + |w(s)|q ] ds > 0, (4.18)

using the arc-lenght reparameterization Φ−1, where Φ(σ) =
∫ σ

0 [wq
0(s)+|w(s)|q ] ds, the control (w0, w) can be sub-

stituted by one taking values in S(A) having the same cost and trajectory, since f and l are q-positively homoge-
neous in (w0, w). Condition (4.18) is surely satisfied, since, if (w0, w) = 0 a.e., we would have ξx(s, w0, w) = x /∈ T
for all s ≥ 0, in contradiction with the fact that lim infs→σ−

x (w0,w) d(ξx(s, w0, w)) = 0. �

The equality Vm,r ≡ V m holds when, for instance, either (1.3) or (1.4) for q ≥ p is in force and we have the
following condition, stronger than (CV) since we consider now the space-time dynamics (w0, f(x,w0, w)).

(CV)′ For any x ∈ T c, the set:

L′(x) .=
{

(λ0, λ, γ) ∈ IR1+n+1 : ∃(w0, w) ∈ [0, 1]×
(
B(0, 1) ∩A

)
, s.t.

(λ0, λ) = (w0, f(x,w0, w)) l(x,w0, w)) ≤ γ
} (4.19)

is convex.

Proposition 4.10. Assume (CV)′ and either (1.3) or (1.4) for q ≥ p. Then V m,r ≡ V m.

Proof. Arguing as in the previous proposition, for any x ∈ T c and μ ∈ Γ r such that Jr(σr
x(μ), x, μ) < +∞, in

view of (CV)′ there is a control (w0, w) ∈ B(IR+, [0, 1] × (B(0, 1) ∩ A)) such that ξ(·) .= ξr
x(·, μ) ≡ ξx(·, w0, w),

σr
x(μ) = σx(w0, w), Jr(σr

x(μ), x, μ) ≥ J(σx(w0, w), x, w0, w) and in addition∫ σ

0

wq
0(s) ds =

∫ σ

0

(1 − |μ(s)|q) ds ∀σ ≥ 0. (4.20)

If μ ∈ Γ r(x), we can conclude as in the proof of Proposition 4.9. If μ /∈ Γ r(x), σr
x(μ) = +∞ and applying

the arc-lenght reparameterization Φ−1 and the same arguments as above, we obtain a reparametrized control
belonging to Γ only if ∫ +∞

0

[wq
0(s) + |w(s)|q ] ds = +∞. (4.21)



ON ASYMPTOTIC EXIT-TIME CONTROL PROBLEMS LACKING COERCIVITY 975

In fact by (4.20) if we had
∫ +∞
0 wq

0(s) ds = T < +∞, then it would be
∫ +∞
0 |μ(s)|q ds = +∞. Since μ ∈

Γ r \ Γ r(x), then infs≥0 d(ξ(s))) = c̄ > 0 and (1.3) or (1.4) for q ≥ p would yield a cost

Jr(+∞, x, μ) ≥ c̄

∫ +∞

0

|μ(s)|q − C1T = +∞,

which is a contradiction. Therefore
∫ +∞
0

wq
0(s) ds = +∞, which implies (4.21). �

Corollary 4.11. If (CV) and either (SC1) or (SC2) holds, then V = V m,r.

Proof. In view of (4.15), both (SC1) and (SC2) (in the extended setting, namely, l(x,w0, w) ≥
max{c1(d(x))wq

0 , c2(d(x))|w|q − C1w
q
0} for all (x,w0, w)) hold also for the relaxed framework. Therefore by

Section 4.3.1, each one of them yields V r ≡ V m,r. The proof is thus concluded, since (CV) implies V r ≡ V by
Proposition 4.9. �

4.3.3. The degenerate case: l(x, a) ≡ l(x)

In this case we have Vm,r ≡ V m, being V m ≡ 0. Nevertheless, as shown in Example 3.11, it might be that
V and V are not zero. Therefore it is interesting to single out some cases in which V and V are themselves
identically zero. It is rather intuitive that this happens if the following hypothesis holds:

(SC3) V is continuous on ∂T and the control system ξ′(s) = f(s, 0, w(s)), where w(s) ∈ A ∩ {w : |w| = 1} is
asymptotically controllable to T .

In fact, owing to Theorem 3.6, by the continuity of V on ∂T we have V ≡ V . Moreover, the asymptotic
controllability hypothesis implies the existence of a control (0, w), whose corresponding trajectory approaches
asymptotically the target (with zero cost). Therefore V ≡ V ≡ 0.

Example 4.12. By Theorem 2.4 it is easy to see that for an affine dynamics f(x, a) = f0(x) +
∑m

i=1 fi(x)ai, a
sufficient condition for (SC3) is the following.

(SC3)′ There is some U : IRn \
◦
T → IR+ continuous, locally semiconcave, positive definite and proper on T c,

such that, for all x ∈ T c, one has

min
w∈A, |w|=1

〈
p,

m∑
i=1

fi(x)wi

〉
< 0 ∀p ∈ D∗U(x)

while for all x ∈ Tδ for some δ > 0 there is some k > 0 such that:

{〈p, f0(x)〉 + k l(x)} ≤ 0 ∀p ∈ D∗U(x).

5. Approximations and stability

In this section we introduce some value functions Uρ obtained by minimizing over various subsets Aρ(x) of
the control set A(x) where, for instance, either tx(α) < +∞ or energy blow-ups are forbidden. The functions Uρ,
greater in general than V , turn out to be the limits, as ε→ 0, of some values Vρ

ε , obtained by minimizing, over
A(x), some penalized lagrangians l+ ερ. As shown in Theorem 5.7 below, each Uρ coincides with V as soon as
it is continuous on ∂T . As a consequence, under suitable local asymptotic controllability assumptions, the value
function V can be approximated by Vρ

ε , which, in general, are more regular than V , since the penalized problems
can be chosen to be coercive. Moreover, they are the unique nonnegative solutions of the corresponding boundary
value problems, (BVP)ε. Such an approximation can be seen as a stability result for the original Hamilton–Jacobi
equation for which the comparison property does not hold.
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Precisely, for any ρ : IRn ×A→ IR+ continuous and any ε ∈]0, 1], let us set

Kε(x, u, p)
.=

max(w0,w)∈S(A){−〈p, f(x,w0, w)〉 − (l + ερ)(x,w0, w) + (l + ερ)(x,w0, w)u}

(where we tacitly assume that Φ .= l + ερ satisfies (H1)). In view of Theorems 2.4, 4.6 and Corollary 4.11,
Theorem 5.7 below implies the following stability result.

Theorem 5.1. Let ρ : IRn × A → IR+ be a continuous function. Assume (CV) and either (SC1) or (SC2) for
l replaced by l + ρ and suppose that there is a local MRF U for (l + ρ,A). Then for any ε ∈]0, 1] there exists a
unique nonnegative solution Wε to{

Kε(x,W (x), DW (x)) = 0 in IRn \ T
W (x) = 0 on ∂T .

Moreover, as ε → 0+ the Wε converge locally uniformly to a function W such that V ≡ − log(1 − W) and
Dom(V) = {x : W(x) < 1}.

Choosing ρ(x, a) .= (1 + |a|r) for some integer r ≥ q and r > p, then l(x, a) + ρ(x, a) satisfies (SC2) for
q replaced by r and the extended setting coincides with the original one, since we have coercivity. Of course,
Theorem 5.1 applies even to more general ρ, as shown in the following example.

Example 5.2. Let us consider again the degenerate cheap control problem of Example 3.11, where T = {0},
f(x, a) = −x + a, l(x, a) = |x|, x ∈ IR and a ∈ IR+. Let us set ρ(x, a) .= |a| and consider ∀ε > 0 the penalized
value function

Vε(x) = inf
α∈A(x)

∫ tx(α)

0

|y(t)| + ε|α(t)| dt,

One easily sees that

Vε(x) =
{
x if x ≥ 0
ε|x| if x < 0

so that the limit as ε → 0+ coincides with V . Since the convexity hypothesis (CV) and (SC2) hold and all the
above value functions are continuous, in view of Theorem 5.1, for every ε > 0 the function Vε is, the unique
nonnegative solution of the associated boundary value problem, say (BVP)ε (defined as (BVP) with l replaced
by l + ερ and ρ ≡ |a|). Moreover, V is the locally uniform limit of the sequence Vε as ε→ 0+.

Let us now define for every x ∈ T c the subset of ρ-admissible controls

Aρ(x)
.=

{
α ∈ A(x) :

∫ tx(α)

0

ρ(yx(t, α), α(t)) dt < +∞
}

(5.1)

and the corresponding value function

Uρ(x) .= inf
α∈Aρ(x)

J (tx(α), x, α). (5.2)

Example 5.3. Usual choices of the function ρ are

ρ1 ≡ 1, ρ2 ≡ |a|r, and ρ3 ≡ (1 + |a|r) for some integer r ≥ q,
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whose corresponding limit functions Uρi for i = 1, 2, 3 are the following value functions Vf , VLr

, and Vf,Lr

,
respectively:

Vf (x) .= inf{α∈A(x): tx(α)<+∞} J (tx(α), x, α) ∀x ∈ T c,

VLr

(x) .= infα∈Lr(IR+,A)∩A(x) J (tx(α), x, α) ∀x ∈ T c,

Vf,Lr

(x) .= inf{α∈Lr(IR+,A)∩A(x): tx(α)<+∞} J (tx(α), x, α) ∀x ∈ T c.

The finite-time-and-energy exit-time value function Vf,Lr

, in particular, plays an important role for the ap-
proximation issue, since it is the natural limit of penalized problems associated to HJB equations satisfying a
comparison principle. For instance, in Example 5.2 above, V turns out to be approximated by the functions Vε

since it coincides with VL1
.

In general, V ≤ Uρ and the inequality may be strict. In Theorem 5.5 below we show that V ≡ Uρ, as soon as
Uρ is continuous on ∂T .

In the sequel we need the following density result, crucial in order to consider functions ρ with arbitrary
growth in the control variable.

Proposition 5.4. Let T > 0. For any control α ∈ Lq([0, T ], A) there exists a sequence of controls αN ∈
L∞([0, T ], A ∩B(0, N)) for all N ∈ IN, verifying:

lim
N→+∞

|αN (t)| = |α(t)|, and |αN (t)| ≤ |α(t)| for a.e. t ∈ [0, T ],

lim
N→+∞

sup
t∈[0,T ]

|yx(t, αN ) − yx(t, α)| = 0,

lim
N→+∞

J (T, x, αN ) = J (T, x, α).

The proof of Proposition 5.4 is postponed to the Appendix.

Theorem 5.5. If Uρ is continuous on ∂T , then Uρ ≡ V.

Proof. Let x ∈ T c. The inequality V(x) ≤ Uρ(x) is obvious. Hence, if V(x) = +∞, Uρ(x) = +∞ too. Let
V(x) < +∞. Fix η > 0. By the continuity of Uρ on the compact set ∂T , there is some δ > 0 such that

Uρ(x̄) < η ∀x̄ ∈ T c with d(x̄) < δ. (5.3)

By the definition of V , there exists a control α̃ ∈ A(x) such that∫ tx(α̃)

0

l(yx(t, α̃), α̃(t)) dt < V(x) + η, d(yx(t̄, α̃)) < δ/2 (5.4)

for some t̄ < tx(α̃). Since α̃ ∈ Lq([0, t̄], A), in view of Proposition 5.4 we can approximate on [0, t̄] the control α̃
by a compact-valued control α̂ such that

∫ t̄

0 |α̂(t)|q dt ≤
∫ t̄

0 |α̃(t)|q dt and∫ t̄

0

l(yx(t, α̂), α̂(t)) dt < V(x) + 2η, d(yx(t̄, α̂)) < δ. (5.5)

Now by estimate (2.5), there is some R > 0 (depending just on t̄ and
∫ t̄

0
|α̃(t)|p dt) such that |yx(t, α̂)| ≤ R for

all t ∈ [0, t̄]. Hence
∫ t̄

0 ρ(yx(t, α̂), α̂(t)) dt < +∞ because of the continuity of ρ together with the boundedness

of α̂. Let x̄ .= yx(t̄, α̂) and let ᾱ ∈ Aρ(x̄) be a control such that
∫ tx̄(ᾱ)

0
l(yx̃(t, ᾱ), ᾱ(t)) dt < η, which exists in

view of (5.3). Then, the control α(t) = α̂(t)χ[0,t̄](t) + ᾱ(t− t̄)χ]t̄,+∞](t) belongs to Aρ(x) and∫ tx(α)

0
l(yx(t, α), α(t)) dt < V(x) + 3η, (5.6)

so that Uρ(x) < V(x) + 3η. The proof of the theorem is thus concluded, by the arbitrariness of η > 0. �
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Remark 5.6. Another set of controls containing Aρ(x), interesting for our minimization problems, is given by
the following

Aloc
ρ (x) .=

{
α ∈ A(x) :

∫ tx(α)

0

ρ(yx(t, α), α(t)) dt < +∞ if tx(α) < +∞
}
.

Indeed, for instance if ρ ≡ |a|q, then Aloc
ρ (x) = Lq

loc(IR+, A)∩A(x) for any x ∈ T c. If we denote by Ã(x) either
Aρ(x) or Aloc

ρ (x) and by U Ã(x) .= infα∈Ã(x) J (tx(α), x, α) the corresponding value function, then, by the proof

of Theorem 5.5, it is easy to see the V ≡ UÃ when U Ã is continuous on ∂T .

Let now ε > 0. For every x ∈ T c and α ∈ A(x), we define the ε-penalized payoff,

J ρ
ε (t, x, α) .=

∫ t

0

[l(yx(τ, α), α(τ)) + ερ(yx(τ, α), α(τ))] dτ (5.7)

and the corresponding ε-penalized value function,

Vρ
ε (x) .= inf

α∈A(x)
Jε(tx(α), x, α). (5.8)

As in the case of bounded controls, penalized problems converge in general to Uρ ≥ V . Owing to Theorem 5.5,
the limit does coincide with V when Uρ is continuous on ∂T .

Theorem 5.7. Let ρ : IRn ×A→ IR+ be a continuous function. Then

(i) we have
lim

ε→0+
Vρ

ε (x) = Uρ(x) ∀x ∈ T c. (5.9)

(ii) If there is some ε̄ > 0 such that Vρ
ε̄ is continuous on ∂T and V is continuous on its whole domain, then

lim
ε→0+

Vρ
ε = V uniformly on any compact set Q ⊂ Dom(V).

We omit the proof, since it is the same as in the case of bounded controls (see Thm. 3.3 in [16]).
A sufficient condition for the continuity of Uρ on ∂T , based on the existence of a special MRF for (l, A′) for

some compact subset A′ ⊂ A, can be found in [16], Theorem 4.2.
The global continuity of V holds under the assumptions of either Theorem 6.1 or 4.6, while, owing to Theo-

rem 2.4 below and Remark 2.5, a condition for the continuity of the Vρ
ε on ∂T (which yields also the continuity

of Uρ on ∂T ) is the existence of a local MRF U for (l + ρ,A).
Incidentally, Theorem 2.4 also implies that if we have a local MRF U for (l, A), then the Vρ

ε corresponding
to ρ(x, a) .= m(U(x))/k are continuous on ∂T for all ε ∈]0, 1] (for m and k defined as in Thm. 2.4).

6. Continuity

In this section we introduce sufficient conditions in order to propagate the continuity of V from the target
to its whole domain. Since we do not assume any convexity hypothesis, such a result cannot be deduced from
Theorem 4.6.

Hypothesis (TPK) below, loosely speaking says that for any fixed δ - neighborhood of the target, for every
x ∈ Dom(V) one can select a nearly optimal asymptotic trajectory reaching Tδ in finite time T and with
finite Lq-fuel K, depending just on V(x) and δ (that is, uniformly w.r.t. x and α). It can be seen as a kind of
turnpike condition with respect to the target T , where the quite unusual fuel constraint takes into account the
unboundedness of the control system (see [5, 16]).
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(TPK) ∀R, η, δ > 0, there exist some increasing functions T (·), K(·) : IR+ → IR+ such that for every
x ∈ T c

δ ∩Dom(V), d(x) ≤ R, there is a control α ∈ A(x) verifying

∫ tx(α)

0

l(yx(t, α), α(t)) dt ≤ V(x) + η, (6.1)

and
tδx(α) .= inf {t > 0 : yx(t, α) ∈ Tδ} ≤ T (V(x)),∫ tδ

x(α)

0 |α(t)|q dt ≤ K(V(x)).
(6.2)

Theorem 6.1. Assume (TPK). If V is continuous on ∂T , then it is continuous in its domain and it satis-
fies (4.4).

The above result can be stated using the explicit conditions introduced in Subsection 4.3.1.

Proposition 6.2. Assume V continuous on ∂T . Then either (SC1) or (SC2) yields that V is continuous on
Dom(V) and it satisfies (4.4).

We postpone the proof of the above proposition to the end of the section.

Proof of Theorem 6.1.
In view of Proposition 2.6, Dom(V) is an open set of T c where V is locally bounded and upper semicontinuous.
Let x0 ∈ Dom(V) and let ν > 0 be such that B(x0, ν) ⊂ Dom(V). Let M .= sup{V(x) : x ∈ B(x0, ν)} + 3,
R

.= d(x0) + ν. Fix η ∈]0, 1[. By the continuity of V on the compact set ∂T , there is some δ ≡ δη > 0 such that
for any x ∈ T2δ there is a control α̃ ∈ A(x) verifying

∫ tx(α̃)

0

l(yx(t, α̃), α̃(t)) dt ≤ η. (6.3)

Fix x1, x2 ∈ B(x0, ν) and assume e.g. V(x2) ≥ V(x1). By (TPK) there exist some T = T (M), K = K(M) and
an η-optimal control for V(x1), α1 ∈ A(x1), so that

∫ tx1 (α1)

0

l(yx1(t, α1), α1(t)) dt ≤ V(x1) + η < M,

and, for some t̄ ≤ T ∧ tx1(α1), we get

d(yx1(t̄, α1)) < δ and
∫ t̄

0

|α1(t)|q dt ≤ K.

Recalling that q ≥ p, there is some positive constant, denoted again by K, such that the second inequality
above holds also for p. By (2.5) and (2.6) all trajectories starting from points x ∈ B(x0, ν) and corresponding
to a control α such that

∫ T

0 |α(t)|p dt ≤ K, verify |yx(t, α)| ≤ R ∀t ∈ [0, T ] for some R > 0. Moreover,

|yx2(t, α) − yx1(t, α)| ≤ L|x2 − x1| ∀t ∈ [0, T ], ∀x1, x2 ∈ B(x0, ν),

for a suitable L > 0. Therefore, choosing 0 < ν′ < ν small enough, for x1, x2 ∈ B(x0, ν
′) we get

0 ≤ V(x2) − V(x1) ≤
∫ t̄

0
|l(yx2(t, α1), α1(t)) − l(yx1(t, α1), α1(t))| dt+ 3η

≤ T ω(L|x2 − x1|, R) + 3η < 4η,

which implies the continuity of V by the arbitrariness of η > 0. The boundary condition (4.4) can be obtained
arguing as in the proof of Theorem 4.1 in [16].
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The fuel constraint in (6.2) can be dropped in (TPK) if we consider the weak target-weighted coercivity
condition (1.4). In this case, (TPK) turns out to be equivalent to the following more usual turnpike condition,
(TPK)′, introduced in [16] in the case of bounded controls.

(TPK)′ ∀R, η, δ > 0, there exists some increasing function T (·) : IR+ → IR+ such that for every x ∈
T c

δ ∩Dom(V), d(x) ≤ R, there is a control α ∈ A(x) satisfying (6.1) such that tδx(α) ≤ T (V(x)).

Indeed, if (1.4) holds, then ∀x ∈ T c
δ and ∀α ∈ A satisfying (6.1) one has

∫ tδ
x(α)

0

|α(t)|q dt ≤ K
.=
V(x) + η + C1 t

δ
x(α)

c2(δ)
·

Let us remark that (TPK)′ is not sufficient to propagate the continuity of V from ∂T , when the Lq-norm of
minimizing control sequences diverge to +∞.

Proof of Proposition 6.2. It is easy to see that (1.4) yields (TPK)′, therefore (SC2) is a sufficient condition for
(TPK) and by Theorem 6.1 the thesis is verified.

Otherwise, when V is continuous on ∂T , assumption (SC1) implies (TPK) and therefore, the global continuity
of V . In fact, fix R, η and δ > 0. Then (SC1), sufficient for the UGAS property of the extended control
system, implies the existence (see e.g. [1]) of a KL function β such that for every x with d(x) < R, one has
d(ξx(s, w0, w)) ≤ β(R, s) for all s ≥ 0 and for any control (w0, w) ∈ Γ . Let s̄ > 0 be the minimum s such that
β(R, s) = δ. Then, independently from the payoff, one has that d(ξx(s, w0, w)) < δ for all s ≥ s̄. Since this is
true in particular for all (w0, w) ∈ Γ+, in view of Proposition 3.1 it implies (6.2) for all α ∈ A, by choosing
T = K

.= s̄. �

Appendix. A

Proof of Proposition 5.4. For every α ∈ Lq([0, T ], A), following the construction of Remark 3.1 let us define
s(t) .=

∫ t

0
(1 + |α(τ)|q) dτ ∀t ∈ [0, T ], S .= s(T ) and consider the extended control (w0, w) defined by

w(s) .=
α(t(s))

(1 + |α(t(s))|q) 1
q

, w0(s)
.= (1 − |w(s)|q) 1

q ∀s ∈ [0, S],

where t(s) is the inverse function of s(t). For n ∈ IN let (w0n , wn) be the control given by

wn(s) .=
n

n+ 1
w(s), w0n(s) .= (1 − |wn(s)|q)

1
q ∀s ∈ [0, S].

Let us set tn(s) .=
∫ s

0
w0n(σ)q dσ for s ∈ [0, S], Tn

.= tn(S) (> T ), and let us denote by sn(t) its inverse
∀t ∈ [0, Tn]. The controls

αn(t) .=
wn(sn(t))
w0n(sn(t))

∀t ∈ [0, T ]

form a sequence that satisfies the claim. In fact, |αn|q = ( n
n+1 |w|)q

1−( n
n+1 |w|)q ≤ nq

(n+1)q−nq ≤ nq and |αn|q ≤ |α|q. Let us

denote by yn(·) .= yx(·, αn), y(·) .= yx(·, α). If sn is such that tn(sn) = T then sn = S(1 − 1
n ) and

supt∈[0,T ] |yn(t) − y(t)| = sups∈[0,S] |yn(t(s)) − y(t(s))|
= sups∈[0,S] |ξ̃n(s) − ξ(s)|, (A.1)
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where by the correspondence between the solutions to (2.3) and those to (3.3) we have that y(t(·)) = ξ(·) .=
ξx(·, w0, w), yn(t(·)) = ξ̃n(·) .= ξn((sn ◦ t)(·)), setting ξn(·) .= ξx(·, w0n , wn). Since there exists R > 0 such that

sup
0≤s≤S

{|ξn(s)|, |ξ̃n(s)|, |ξ(s)|} ≤ R, (A.2)

thanks to (2.1) in (H0) and (H1), by the Dominated Convergence Theorem and Gronwall’s inequality, standard
calculations imply that there exist a sequence εn approaching 0 and L > 0 such that

sup
t∈[0,T ]

|yn(t) − y(t)| ≤ εneSL. (A.3)

As for the cost, observing that sn ≤ S, by (A.2), (A.3) and (H1), the Dominated Convergence Theorem lets us
conclude that

lim
n→∞J (T, x, αn) = J (T, x, α). �

Remark A.1. If (H1) does not hold, Proposition 5.4 can be proven even assuming either that ρ verifies, for
any R > 0,

0 ≤ ρ(x, a) ≤ M̄R(1 + |a|q) ∀(x, a) ∈ IRn ×A with |x| ≤ R, (A.4)

for some M̄R > 0; or that f and l verify, for any R > 0,

|f(x, a1) − f(x, a2)| ≤ M̄R[1 + (|a1| ∧ |a2|)p−1] |a1 − a2|,
|l(x, a1) − l(x, a2)| ≤ M̄R[1 + (|a1| ∧ |a2|)q−1] |a1 − a2|

(A.5)

∀a1, a2 ∈ A and x ∈ IRn with |x| ≤ R, for some M̄R > 0.
In particular, when (H1) does not hold the density result remains true if we allow penalizations with at most

the same growth q of l in the control variable. Incidentally, this restriction does not prevent us to introduce
coercive penalizations for some noncoercive problems. Consider, for instance, f(x, a) control-affine, l(x, a) =
|ax|2(1 + sin(xa)) and the penalization ρ(x, a) = |a|2 in IR × IR.
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