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ON INDECOMPOSABLE SETS WITH APPLICATIONS

Andrew Lorent
1

Abstract. In this note we show the characteristic function of every indecomposable set F in the plane
is BV equivalent to the characteristic function a closed set F, i.e. ‖11F − 11F‖BV (IR2) = 0. We show by
example this is false in dimension three and above. As a corollary to this result we show that for every
ε > 0 a set of finite perimeter S can be approximated by a closed subset Sε with finitely many inde-
composable components and with the property that H1(∂MSε\∂MS) = 0 and ‖11S − 11Sε‖BV (IR2) < ε.
We apply this corollary to give a short proof that locally quasiminimizing sets in the plane are BVl

extension domains.
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1. Introduction

Sets of finite perimeter are the largest class of sets that permit a broad theory of analysis. They have wide
application in the Calculus of Variations, PDE, image processing and fracture mechanics. In some sense the
theory of sets of finite perimeter is an analogue for sets of what the theory of Sobolev functions is for functions.
A very useful notion for Sobolev functions is the notion of precise representative for a function f ∈ W 1,p,
this is a function f̃ ∈ W 1,p with ‖f − f̃‖W 1,p = 0 and f̃ has additional smoothness and regularity properties.
Another very useful result is Whitney’s theorem that for any ε > 0 there exists a smooth function f̂ such that
‖f̂ − f‖W 1,p < ε. We prove analogues results for sets of finite perimeter in the plane and we apply them to give
a short proof that quasiminimizing sets are BVl extension domains.

Recall a set E is said to be of finite perimeter in domain Ω if it is measurable and

Per (E, Ω) := sup
{∫

E

divφ : φ ∈ [C1
c (Ω)

]N
, ‖φ‖∞ ≤ 1

}
< ∞.

A set is simply called a set of finite perimeter if it is of finite perimeter in IRn and we define Per(E) :=
Per(E, IRn). When dealing with sets of finite perimeter it is common to work with the representative that has
negligible points removed. Given a set E we define Neg(E) := {x ∈ E : |Br(x) ∩ E| = 0 for some r > 0}. Let
Ẽ = E\Neg(E). By Proposition 3.3 [1] we know ‖11E − 11Ẽ‖BV (IR2) = 0. If a set F is such that Neg(F ) = ∅ we
say F is shaved.
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A set of finite perimeter is called indecomposable iff for any disjoint subsets A, B ⊂ E such that E = A ∪ B
we have Per(E) = Per(A) + Per(B) then either |A| = 0 or |B| = 0.

The main theorem we will establish in this note is the following.

Theorem 1.1. If F ⊂ IR2 is a shaved indecomposable set then the closure F̄ of F has the property

‖11F − 11F̄‖BV (IR2) = 0.

Consequently the characteristic function of any indecomposable set is BV equivalent to the characteristic func-
tion of a closed set.

A straightforward corollary to this is:

Corollary 1.2. Suppose E ⊂ IR2 is a set of finite perimeter, then for any ε > 0 we can find a closed subset
E ⊂ E with finitely many indecomposable components such that H1(∂ME\∂ME) = 0 and

‖11E − 11E‖BV (IR2) < ε. (1.1)

We will show by example that Theorem 1.1 is false for indecomposable sets of finite perimeter in IRn for
n ≥ 3. Our example also shows that Theorem 7 of [2] for saturated indecomposable sets in the plane does not
hold true in dimension three and above. It is unclear to us if Corollary 1.2 is true in dimension three and above.

Theorem 1.3. There exists a shaved set of finite perimeter S ⊂ Q = (−1, 1) × (−1, 1) × (−1, 1) with the
following properties

(i) S is connected and Sc is connected. Hence S is an indecomposable saturated set.
(ii)

∣∣S̄\S∣∣ > 3999
4000 .

(iii) H2
(
∂MS\φ(S2)

)
> 0 for any Lipschitz map φ : S2 → IR3.

Our main application of Theorem 1.1 will be to show that local quasiminimizers in the plane are BVl extension
domains. This is already known as a consequence of the work of David−Semmes [5], however our proof is much
shorter. Specifically we say a set E of finite perimeter E is a K-quasiminimal set in Ω iff for all open U ⊂⊂ Ω
and all Borel sets F, G ⊂ U we have Per(E, U) ≤ KPer((E ∪ F )\G, U). And we say a set E of finite perimeter
is locally K-quasiminimizing if there exists δ > 0 such that for any x ∈ ∂E the set E is a K-quasiminimal
in Bδ(x). In the case where E is bounded δ can be chosen depending on x.

Finally a set E of finite perimeter is a BVl extension domain if and only if there are constants c ≥ 1 and
δ > 0 such that whenever u ∈ BV (E) is such that the diameter of the support of u is smaller than δ, then there
is a function Tu ∈ BV such that ‖DTu‖ ≤ c‖Du‖(E) and Tu = u on E.

Corollary 1.4. If E ⊂ IR2 is a locally K-quasiminimizing set then it is a BVl extension domain.

Note also that if Corollary 1.2 were true in dimension three and above then the proof of Corollary 1.4 would
work in these dimensions too. A generalization of Corollary 1.2 to higher dimensions could potentially be a
useful technical tool in the study of sets of finite perimeter.

In addition we will obtain the following corollary which is also an easy corollary to Theorem 7 [2]. Firstly
some definitions, Ambrosio et al. [2] (Def. 2) define a hole of a set of finite perimeter S to be an indecomposable
component of Sc with finite measure. A set S is called saturated (again see Def. 2, [2]) if it is the union of itself
and all its holes.

Corollary 1.5 (To Thm. 1.1). Suppose S ⊂ IR2 is a indecomposable saturated set then there exists an open
set S such that ‖11S − 11S‖BV (IR2) = 0.
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2. Sketch of proof of main theorem

The proof of the Theorem 1.1 follows from three basic steps. Each follows from the last in a fairly natural
way. We will firstly state the steps then sketch the reasons they hold afterwards.

Since E is a shaved indecomposable set it has the property

|Br(x) ∩ E| > 0 for any x ∈ E, r > 0. (2.1)

Step 1. Let Z :=
{

z ∈ R2 : lim supr→0
|E∩Br(x)|

πr2 ≥ 1
2

}
. We will show we can find a countable collection of balls

{Brn(xn) : xn ∈ Z} with the following properties.

(i)
{
B rn

5
(xn) : n ∈ N

}
are disjoint.

(ii) Z ⊂ ⋃n Brn(xn).

(iii) |Brn(xn) ∩ E| ≥ πr2
n

4 for each n.
(iv) Π :=

⋃
n Brn(xn) is connected.

Step 2. We will show that for H1 a.e. x ∈ ∂E\Z there exists rx > 0 such that

H1(∂E ∩ Br(x)) >
r

1600
for all r ∈ (0, rx] . (2.2)

Step 3. We will show that H1(∂E\Z) = 0.
Sketch of Step 1. By definition of Z for any z ∈ Z we can find rz > 0 such that |Br(z) ∩ Z| ≥ πr2

4 for
all r ∈ (0, rz]. So by the 5r Covering Theorem we can find a subcollection

{
Brzn

(zn) : n ∈ N
}

such that{
B rzn

5
(zn) : n ∈ N

}
are pairwise disjoint and Z ⊂ ⋃

n Brzn
(zn). The only remaining issue is to show that

Π :=
⋃

n Brzn
(zn) is connected. Suppose it is not, so there are two non-empty disjoint connect components

of Π0 and Π1 such that Π = Π0 ∪ Π1. Letting Q0 = E ∩ Π0 and Q1 = E ∩ Π1 it is possible to show that
H1(∂MQ0 ∩ ∂MQ1) = 0 and this implies E is not an indecomposable set, contradiction. Thus Π is connected.

Sketch of Step 2. Now we can assume without loss of generality that x ∈ E0. So we can find px > 0 such that
|E ∩ Br(x)| < r2

10000 for all r ∈ (0, px). Note also by (2.1) for any x ∈ ∂E we have that
∣∣E ∩ B r

1000
(x)
∣∣ > 0 for

any r > 0. So let r ∈ (0, px), by Step 1 we have a countable collection of balls {Brn(xn) : n ∈ N} that satisfy
(i), (ii), (iii), (iv). A subcollection of these balls

{
Brpk

(xpk
) : k ∈ N

}
is such that Brpk

(xpk
) ∩ Br(x) �= ∅ for

any k ∈ N, E ∩ Br(x) ⊂ ⋃k Brpk
(xpk

) and Π̃ :=
⋃

k Brpk
(xpk

) is a connected set. So Π̃ is a ‘tentacle’ of balls
that reaches from the outside of Br(x) to B r

1000
(x). And note that any ball Brpk

(xpk
) has at least a quarter of

its area is filled by E. On the other hand most of Br(x) is empty of E. So assume for the moment for simplicity
that the tentacle reaches into B r

1000
(x) in something like a line, pick a direction v that is roughly orthogonal to

the line. Now there must be a large set of lines in direction v running through Br(x) that start at some point
in E ∩ Br(x) and end in some point in Ec ∩ Br(x). The variation of 11E restricted to any of these lines is at
least 1, so integrating across these lines gives (2.2). Note the reason our proof works in IR2 and does not work
in higher dimension2 is that a ‘tentacle’ in higher dimension has arbitrarily small surface area, where as in two
dimension the surface area of a tentacle is O(1).

Sketch of Step 3. Suppose H1(∂E\Z) > 0. Assume for simplicity H1(∂E\Z) < ∞. Let μ(A) := H1(∂ME ∪
(∂E\Z)). We can find an open set U with ∂ME ⊂ U and a compact set C ⊂ ∂ME such that μ(U) ≤ μ(∂ME)+ ε

and μ(C) ≥ μ(∂ME) − ε. We can assume ε is sufficiently small so that μ(∂E\U) > H1(∂E\Z)
2 .

2And recall indeed by the example constructed in Theorem 1.3 shows the result in false in higher dimension.
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Now since δ = dist(∂U, C) > 0 we can find a countable collection of pairwise disjoint balls
{Brn(xn) : xn ∈ ∂E\U, rn < δ} such that

∑
n rn ≥ c0μ(∂E\U) some constant c0 > 0. By Step 2 we have

that
∑

n H1(∂ME ∩ Brn(xn)) ≥ c0
1600μ(∂E\U). Since Brn(xn) ∩ C = ∅ for all n we have∑

n

H1(∂ME ∩ Brn(xn)) + H1(C) ≥ c0

1600
μ(∂E\U) + H1(∂ME) − ε

which is contradiction for small enough ε.

3. Sketch of proof of the application to quasiminimizing sets

As stated the main application of Theorem 1.1 is Corollary 1.4. So to establish this we will use the criteria for
BVl extension domains found in [3, 4]. Namely E is a BVl extension domain if for every set of finite perimeter
F ⊂ E with diam(F ) < γ we can find F̂ with F ⊂ F̂ and Per(F̂ , IR2) ≤ CPer(F, E). Following the method of
(the preprint form of) [6] we take F̂ to be equal to F and it will suffice to show that

Per(F̂ , IR2) ≤ (1 + K)Per(F, E) (3.1)

for any set of finite perimeter F ⊂ E with diam(F ) < γ. We will achieve this in the following way: for any δ > 0
we will find an open set Ω with F ⊂⊂ Ω and

H1(∂ME ∩ Ω) ≤ H1(∂ME ∩ ∂MF ) + δ. (3.2)

Then by the fact that E is a local K-quasiminimizer Per(E, Ω) ≤ KPer(E\F, Ω). Now

H1(∂ME ∩ ∂MF ) ≤ H1(∂ME ∩ Ω)
= Per(E, Ω)
≤ KPer(E\F, Ω)
= K

(
H1(∂MF ∩ E) + H1

((
∂ME\∂MF

) ∩ Ω
))

(3.2)

≤ KPer(F, E) + Kδ. (3.3)

As this holds for arbitrary δ > 0 we have inequality (3.1). Note this inequality can not work unless we can
show (3.2) and hence establish H1((∂ME\∂MF ) ∩ Ω) < δ. Now for arbitrary sets of finite perimeter F ⊂ E it
is not true we can find Ω such that F ⊂⊂ Ω and (3.2) holds true. For a counter example let E = B1(0) and
pick z0 ∈ ∂E, let α ∈ (0, 1) and let ζk be the set of points with rational coordinates in E ∩Bα(z0). Then the set
F =

⋃
k Bα2−(1000+n)(ζn)∩E is a set of finite perimeter for which (3.2) is false for any open set Ω with F ⊂⊂ Ω.

However we will be able to carry out this argument by replacing F by the set F afforded to us by Corollary 1.2.
The set F has almost the same characteristics of F and we can find an open set Ω with F ⊂⊂ Ω such that
H1(∂ME ∩ Ω) ≤ H1(∂ME ∩ ∂MF) + δ. So we can carry out the chain of inequalities to establish (3.3). Having
established (3.3) for F the same inequality follows for F with arbitrarily small error by (1.1). See Lemma 6.4
and Section 6.2 for full details.

4. Preliminaries

As in Definition 3.60 [1] we every t ∈ [0, 1] we let Et denote the set of points of t density, i.e.

Et :=
{

x ∈ IRn : lim
r→0

|E ∩ Br(x)|
Γ (n)rn

= t

}
(4.1)

where Γ (n) = |B1(0)|.
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It is a fundamental result of Federer (see Thm. 3.61 [1]) that if E is a set of finite perimeter in Ω,
Hn−1

(
Ω\
(
E0 ∪ E

1
2 ∪ E1

))
= 0.

The measure theoretic boundary is defined by

∂ME :=
{

x ∈ IRn : lim sup
r→0

|E ∩ Br(x)|
|Br(x)| > 0 and lim sup

r→0

|Ec ∩ Br(x)|
|Br(x)| > 0

}
.

It is well-known that Hn−1(∂ME\E 1
2 ) = 0 and |D11E | = Hn−1

∂M E , see Theorems 3.59 and 3.61 [1].

5. Preliminary lemmas

Lemma 5.1. Suppose E ⊂ IR2 is indecomposable. Then we can find a countable collection

{Brn(xn) : xn ∈ E}

such that (⋃
n

Brn(xn)

)
is connected, (5.1)

|Br(xn) ∩ E| >
πr2

4
for all r ∈ (0, rn] , n ∈ N. (5.2)

As a consequence for H1 a.e. x ∈ ∂E\(E1 ∪ ∂ME) there exists rx > 0 such that

H1(∂E ∩ Br(x)) >
r

1600
for all r ∈ (0, rx] . (5.3)

Proof of Lemma 5.1. Let Z = E1 ∪ E
1
2 . By Theorem 3.61 [1]

H1(E\Z) = 0. (5.4)

So for any x ∈ Z there exists rx > 0 such that

|Br(x) ∩ E| >
πr2

4
for all r ∈ (0, rx] . (5.5)

Step 1. By the 5r Covering Theorem (see Thm. 2.11 [8]) we can find a disjoint sub-collection{
B rxn

5
(xn) : xn ∈ Z

}
such that Z ⊂ ⋃n Brxn

(xn) =: Π . We will show Π is connected.

Proof of Step 1. We argue by contradiction. Suppose Π is disconnected. Let Π0 be a connected non-empty
component of Π and let Π1 = Π\Π0. Now define Q0 = E ∩ Π0 and Q1 = E ∩ Π1. These are both the
intersection of two sets of finite perimeter and hence are sets of finite perimeter.

We claim
H1 ((E\Q0) \Q1) = 0. (5.6)

So let ω = E\Z, note H1(ω)
(5.4)
= 0 and E\(Q0 ∪ Q1) = E\Π ⊂ (Z ∪ ω)\Π ⊂ ω. So equality (5.6) follows. We

also claim
Q1\(E\Q0) = ∅. (5.7)

Now (Q1 ∪ Q0)\E = Π ∩ E\E = ∅ so (5.7) is immediate. So we actually have

H1 (Q1
(E\Q0)) = 0. (5.8)
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By Proposition 3.38 [1] this is more than enough to conclude

Per(Q1) = Per(E\Q0). (5.9)

We will show
H1
(
Q

1
2
0 ∩ Q

1
2
1

)
= 0. (5.10)

Now if x ∈ Q
1
2
1 we must have

lim
r→0

|E ∩ Π1 ∩ Br(x)|
πr2

=
1
2

so

lim
r→0

|E ∩ Br(x)|
πr2

≥ 1
2
· (5.11)

Hence (5.11) together with Theorem 3.61 [1] implies

H1
(
Q

1
2
1 \Z

)
= 0

so
H1(Q

1
2
1 \Π) = 0. (5.12)

Now note that if x ∈ Q
1
2
1 ∩ Π we can not have x ∈ Π0 because Π0 is open and so Bδ(x) ⊂ Π0 for some δ > 0.

By the fact x ∈ Q
1
2
1 also we must be able to find y ∈ Bδ(x)∩Q1 which contradicts the fact Π1, Π0 are disjoint.

Thus
Q

1
2
1 ∩ Π ⊂ Q

1
2
1 ∩ Π1. (5.13)

And in the same way since Π1 is open for all small enough r we have that Br(x) ⊂ Π1. Thus if x ∈ Q
1
2
1 ∩Π1

by definition of Q
1
2
1 , limr→0

|(E∩Π1)
c∩Br(x)|

πr2 = 1
2 we actually have

lim
r→0

|Ec ∩ Br(x)|
πr2

=
1
2

hence x ∈ E
1
2 . Thus

Q
1
2
1 ∩ Π1 ⊂ E

1
2 . (5.14)

Hence

H1
(
Q

1
2
1 \
(
E

1
2 ∩ Π1

))
≤ H1

(
Q

1
2
1 \Π

)
+ H1

(
Q

1
2
1 ∩ Π\Q 1

2
1 ∩ Π1

)
+ H1

(
Q

1
2
1 ∩ Π1\E 1

2 ∩ Π1

)
(5.12),(5.13),(5.14)

= 0. (5.15)

Now going in the opposite direction if x ∈ E
1
2 ∩ Π1 again since Π1 is open for all small enough r we have that

lim
r→0

|Br(x) ∩ E|
πr2

= lim
r→0

|Br(x) ∩ E ∩ Π1|
πr2

=
1
2

and
lim
r→0

|Br(x) ∩ Ec|
πr2

= lim
r→0

|Br(x) ∩ (E ∩ Π1)c|
πr2

=
1
2
·

So E
1
2 ∩ Π1 ⊂ (E ∩ Π1)

1
2 = Q

1
2
1 hence putting this together with (5.15) we have established

H1
(
E

1
2 ∩ Π1
Q

1
2
1

)
= 0·
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In exactly the same way we can show that H1(E
1
2 ∩Π2
Q

1
2
2 ) = 0. Since Π1, Π0 are disjoint this completes the

proof of (5.10).

Now E = Q0 ∪ Q1 and Per(Q0) = H1(Q
1
2
0 ), Per(Q1) = H1(Q

1
2
1 ) and Per(E) = Per(Q0) + Per(Q1)

(5.9)
=

Per(Q0) + Per(E\Q0). So as Q0, E\Q0 are both sets of finite perimeter this contradicts the fact E is
indecomposable. This concludes the proof of Step 1.

Step 2. We will establish (5.3).

Proof of Step 2. Firstly by Theorem 3.61 [1] we can assume x ∈ E0. Now recall from the sketch of the proof
(see property (2.1)), for any y ∈ E we have |Br(y) ∩ E| > 0 for any r > 0. Thus since x ∈ ∂E it has the same
property. Now since x ∈ E0 we can find px > 0 such that

|E ∩ Br(x)| <
r2

100000
for all r ∈ (0, px). (5.16)

However we must also have that
∣∣E ∩ B r

1000
(x)
∣∣ > 0. So by property (i) we have established in Step 1 we can

find a countable collection {
Brk

(xk) : xk ∈ E, rk <
r

1000

}
such that E1 ∪ E

1
2 ⊂ ⋃k Brk

(xk) and (
⋃

k Brk
(xk)) is connected. Now pick a point x0 ∈ E1 ∩ B r

1000
(x) and a

point y0 ∈ E1\Br(x). Since
⋃

k Brk
(xk) is open and connected it is path connected and so we must be able to

find a path φ : [0, t] → ⋃
k Brk

(xk) with φ(0) = x0, φ(t) = y0. Let s ∈ (0, t) be the smallest number such that
φ(s) ∈ ∂B r

4
(x), by compactness clearly this number exists. So

{φ(w) : 0 ≤ w ≤ s} ⊂ B r
4
(x). (5.17)

Let v = φ(s)−x0
|φ(s)−x0| . For any vector w let 〈w〉 := {λw : λ ∈ IR}. Define PV (x) to be the orthogonal projection of x

onto subspace V . Note that for every k

H1
(
P〈v〉 (Br(xk) ∩ E)

) ≥ r

16
for all r ∈ (0, rk] (5.18)

since if this was not true we would have that |Br(xk) ∩ E| ≤ r2

8 which contradicts (5.2).

We know φ([0, t]) ⊂ ⋃k Brk
(xk), let

{
Brpk

(xpk
) : k ∈ N

}
be a subcollection defined by

{φ(w) : 0 ≤ w ≤ s} ∩ Brpk
(xpk

) �= ∅ for any k. (5.19)

So
{φ(w) : 0 ≤ w ≤ s} ⊂

⋃
k

Brpk
(xpk

). (5.20)

And ⋃
k

Brpk
(xpk

)
(5.19),(5.17)⊂ B r

3
(x). (5.21)

Now since

P〈v〉 ({φ(w) : w ∈ [0, s]}) (5.20)⊂
⋃
k

P〈v〉
(
Brpk

(xpk
)
)

(5.22)

by the 5r Covering Theorem (see Thm. 2.11 [8]) we can find a subcollection{
Brqk

(xqk
) : k ∈ N

}
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such that {
P〈v〉

(
Brpk

(xpk
)
)

: k ∈ N

}
⊂
{

P〈v〉
(
Brqk

(xqk
)
)

: k ∈ N

}
(5.23)

and {
P〈v〉

(
B rqk

5
(xqk

)
)

: k ∈ N

}
are disjoint. (5.24)

Now as H1
(
P〈v〉 ({φ(w) : w ∈ [0, s]})) ≥ r

5 so putting this together with (5.22) and (5.24) we have∑
k

rqk

(5.24)
=

∑
k

2−1H1
(
P〈v〉(Brpk

(xpk
))
)

(5.22)

≥ 2−1H1
(
P〈v〉({φ(w) : w ∈ [0, s]}))

≥ r

10
. (5.25)

So let O :=
⋃

k B rqk
5

(xqk
) ∩ E. By (5.18), (5.24) and (5.25) we have

H1
(
P〈v〉(O)

) (5.24)
=

∑
k

H1
(
P〈v〉

(
B rqk

5
(xqk

) ∩ E
))

(5.18)

≥
∑

k

rqk

80

(5.25)

≥ r

800
· (5.26)

Now by (5.21) O ⊂ B r
3
(x). We claim we can find a subset Π ⊂ P〈v〉(O) with |Π | ≥ r

1600 such that

H1
(
P−1
〈v〉 (ω) ∩ Ec ∩ A

(
x,

r

3
, r
))

> 0 for any ω ∈ Π. (5.27)

Suppose this is not true. So there is a set Λ ⊂ P〈v〉(O) where |Λ| ≥ r
1600 such that H1(P−1

〈v〉 (ω)∩Ec∩A(0, r
3 , r)) = 0

for all ω ∈ Λ. Let Ξ =
⋃

ω∈Λ P−1
〈v〉 (ω) ∩ E ∩ A(0, r

3 , r) and by Fubini |Ξ| ≥ |Λ| 2r
3 ≥ r2

2400 and |Ξ ∩ Ec| = 0 and
this contradicts (5.16). We have established (5.27).

Now by Theorem 3.103 [1] we know that

r

1600
≤
∫

w∈Π

V
(
11E , P−1

〈v〉 (w) ∩ Br(x)
)

dw

≤ V (11E, Br(x))
= H1

(
∂ME, Br(x)

)
.

So this establishes (5.3). �

Proof of Theorem 1.1. Firstly as before, without loss of generality we can assume that for any x ∈ F ,
|F ∩ Bδ(x)| > 0 for all δ > 0.

Step 1. We will show H1(F̄\(∂MF ∪ F 1)) = 0.
Proof of Step 1. Suppose

H1(F̄\(∂MF ∪ F 1)) > 0. (5.28)

Let Z = F̄\(∂MF ∪ F 1). Note that Z ∩ Int(F ) = ∅ because if x ∈ Z ∩ Int(F ) then x ∈ F 1 which contradicts
the definition of Z. So as Z ⊂ F̄ we know that Z ⊂ ∂F and thus Z ⊂ ∂F\∂MF .
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Let ε > 0. If H1(Z) = ∞ pick B ⊂ Z with H1(B) = 1 and define S = B ∪ ∂MF otherwise define
S = (F̄\F 1) ∪ ∂MF . Let μ(A) := H1(A ∩ S). Note

μ(∂F\∂MF ) ≥ min
{
H1(F̄\(F 1 ∪ ∂MF )), H1(B)

}
= β > 0. (5.29)

Measure μ is Radon so we can find an open set U such that ∂MF ⊂ U such that

μ(U) < μ(∂MF ) + ε (5.30)

and we can find a compact set C ⊂ ∂MF such that

μ(C) > μ(∂MF ) − ε. (5.31)

And so
dist(C, ∂U) = δ > 0. (5.32)

We can take � > 0 and a subset Γ0 ⊂ ∂F\U with

H1((∂F\U)\Γ0) < ε (5.33)

and for any r ∈ (0, �), x ∈ Γ0 we have that μ(Br(x)) = H1(Br(x) ∩ S) ≤ 2r. By Lemma 5.1 we can find σ > 0,
Γ1 ⊂ Γ0 such that

H1(∂MF ∩ Br(x)) >
r

1600
for all x ∈ Γ1, r ∈ (0, σ). (5.34)

And
H1(Γ0\Γ1) < ε. (5.35)

Now by Vitali covering theorem (see Thm. 2.8 [8]) we can find a pairwise disjoint collection

{Brk
(xk) : xk ∈ Γ1}

such that

μ(Γ1\(
∞⋃

k=1

Brk
(xk))) = 0 (5.36)

and

sup {rk : k ∈ IN} < min
{

δ

2
, �, σ

}
. (5.37)

Note

β ≤ μ(∂F\∂MF )
= μ(∂F\U) + μ(∂F ∩ U\∂MF )
≤ μ(∂F\U) + μ(U\∂MF )

(5.30)

≤ μ(∂F\U) + ε.

So μ(∂F\U) > β − ε. Now

∑
k

μ(Brk
(xk))

(5.36),(5.35),(5.33)

≥ μ(∂F\U) − 2ε
(5.30)

≥ μ(∂F\∂MF ) − 3ε. (5.38)

By (5.34) and the fact xk ∈ Γ1, rk < σ we have

1600H1(∂MF ∩ Brk
(xk)) ≥ rk for all k.
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Since we choose rk < � and xk ∈ Γ1 ⊂ Γ0 be definition of Γ0, μ(Brk
(xk)) ≤ 2rk so

μ(Brk
(xk)) ≤ 3200H1(∂MF ∩ Brk

(xk)) (5.39)

thus putting this together with (5.38) we have

∑
k

3200H1(∂MF ∩ Brk
(xk)) ≥ μ(∂F\∂MF ) − 3ε

(5.29)

≥ β

2
. (5.40)

Now since xk ∈ Γ1 ⊂ ∂F\U by (5.32) and (5.37) we know that C ∩ Brk
(xk) = ∅ for any k, so

H1(∂MF ) ≥ H1(C) +
∑

k

H1(Brk
(xk) ∩ ∂MF )

(5.40),(5.31)

≥ H1(∂MF ) +
β

6400
− ε (5.41)

which is a contradiction assuming ε is small enough.

Step 2. We will show that F̄ is a set of finite perimeter and D11F̄ = D11F .

Proof of Step 2. By Step 1
∣∣F̄\∂MF ∪ F 1

∣∣ =
∣∣F̄\F ∣∣ = 0. So by Proposition 3.38 [1] we have Per(F̄ ) = Per(F )

and hence F̄ is a set of finite perimeter and D11F̄ = D11F . �

6. The applications

6.1. Quasiminimizing sets

The following lemmas hold true in IRn without additional complexity, so we state them in IRn.

Lemma 6.1. Given as set of finite perimeter S, suppose Hn−1(A) = 0 then Per(S, A) = 0.

Proof Lemma 6.1. By Theorem 1.9 (2), Corollary 1.11 [8] measure μ defined by

μ(H) := Hn−1(∂MS ∩ H)

is a Radon measure.
Suppose set A has the property Hn−1(A) = 0. Then μ(A) = 0, so

0 = inf {μ(V ) : A ⊂ V, V is open }
= inf {Per(S, V ) : A ⊂ V, V is open }
= Per(S, A).

Using the fact A → Per(S, A) is also Radon measure, see Proposition 3.38(a) and Proposition 1.43 [1].

Lemma 6.2. Let E, F be sets of finite perimeter in IRn, F ⊂ E. Then

Per(F, ∂ME) = Hn−1(∂MF ∩ ∂ME). (6.1)

and
Per(E, ∂MF ) ≥ Hn−1(∂MF ∩ ∂ME). (6.2)

Hence
Per(F, ∂ME) ≤ Per(E, ∂MF ). (6.3)
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Proof of Lemma 6.2. Note that the measure ν(A) := Hn−1(∂MF ∩ A) is a Radon measure. Letting σ > 0 be
some small number. Pick open Ω with

∂ME ∩ ∂MF ⊂ Ω (6.4)

such that
ν(Ω) = Hn−1(∂MF ∩ Ω) < Hn−1(∂ME ∩ ∂MF ) + σ = ν(∂ME) + σ. (6.5)

Step 1. We will establish (6.1).
Proof of Step 1. Define

B :=
{

x ∈ (∂MF )c : lim sup
r→0

Hn−1(∂MF ∩ Br(x))
rn−1

> 0
}

(6.6)

and
D :=

{
x ∈ ∂ME : lim inf

r→0
Hn−1(∂ME ∩ Br(x))/rn−1 < 1

}
.

By Theorem 6.2 [8] we have that Hn−1(B) = 0 and since ∂ME is rectifiable by Theorem 16.2 [8] Hn−1(D) = 0.
So using Lemma 6.1 for the last equality

Per(F, ∂ME) = Per(F, ∂ME ∩ ∂MF ) + Per(F, ∂ME\∂MF )
= Per(F, ∂ME ∩ ∂MF ) + Per(F, ∂ME\(∂MF ∪ B ∪ D)). (6.7)

Note Hn−1(∂ME) < C. Let ε > 0. We can find a decreasing sequence of number δm → 0 such that the sets

Um :=

{
x ∈ ∂ME\(∂MF ∪ B ∪ D) : Hn−1(∂M F∩Br(x))

rn−1 < ε

and Hn−1(∂M E∩Br(x))
rn−1 ≥ 1

2 for all r ∈ (0, δm)

}
(6.8)

have the property that ∂ME\(∂MF ∪ B ∪ D) ⊂ ⋃∞
m=1 Um.

Let U1 = U1\ (
⋃∞

i=2 Ui), U2 = U2\ (
⋃∞

i=3 Ui), . . . Uk = Uk\
(⋃∞

i=k+1 Ui

)
. Now Ul, Uk are disjoint for any l, k

and

∂ME\(∂MF ∪ B ∪ D) =
∞⋃

i=1

Ui =
∞⋃

i=1

Ui. (6.9)

Since {U1, U2, . . . } are pairwise disjoint

∑
m

Hn−1(Um)
(6.9)
< Hn−1(∂ME\∂MF ). (6.10)

Pick m. Since by Section 5.1 [8] we have S1(Um) ≤ 2H1(Um) where S1 denotes Spherical Hausdorff measure.
So we can find a collection

{
B rk

2
(zk) : rk < δm

}
such that Um ⊂ ⋃

k B rk
2

(zk) and
∑

k Γ (n − 1)
(

rk

2

)n−1 ≤
2S1(Um). Now for each k we can pick xk ∈ B rk

2
(zk) ∩ Um and then we have a collection of balls

{Brk
(xk) : xk ∈ Um, rk < δm} (6.11)

such that
Um ⊂

⋃
k

Brk
(xk) =: Vm (6.12)

and ∑
k

rn−1
k ≤ cS1(Um) ≤ cH1(Um). (6.13)
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Hence using the fact that xk ∈ Um ⊂ Um we have

Hn−1(Vm ∩ ∂MF )
(6.12)

≤
∑

k

Hn−1(∂MF ∩ Brk
(xk))

(6.11),(6.8)

≤ c
∑

k

εrn−1
k

(6.13)

≤ cεHn−1(Um). (6.14)

Now

Per(F, ∂ME\(∂MF ∪ B ∪ D))
(6.9),(6.12)

≤ Per

(
F,
⋃
m

Vm

)
≤

∑
m

Hn−1(Vm ∩ ∂MF )

(6.14)

≤
∑
m

cεHn−1(Um)

(6.10)

≤ cεHn−1(∂ME\∂MF ). (6.15)

Taking the limit as ε → 0 we have Per(F, ∂ME\(∂MF ∪ B ∪ D)) = 0. So putting this together (6.7) we have

Per(F, ∂ME) = Per(F, ∂ME ∩ ∂MF ). (6.16)

And

Per(F, ∂ME ∩ ∂MF )
(6.4)

≤ Per(F, Ω)

≤ Hn−1(∂MF ∩ Ω)
(6.5)

≤ Hn−1(∂MF ∩ ∂ME) + σ. (6.17)

Now as σ is arbitrary, from (6.17) and (6.16), Per(F, ∂ME) ≤ Hn−1(∂MF ∩ ∂ME). Conversely for any open
set Ω with ∂ME ⊂ Ω we have Per(F, Ω) ≥ Hn−1(∂MF ∩ ∂ME). Thus by taking the infimum over all such
open sets we have Per(F, ∂ME) ≥ Hn−1(∂MF ∩ ∂ME) and this completes the proof of Step 1.

Step 2. We will establish (6.2).
Proof of Step 2. First note that ∂ME∩∂MF is an (n−1) rectifiable set. Let δ > 0, for Hn−1 a.e. x ∈ ∂ME∩∂MF
there exists rx > 0 such that∣∣Hn−1(∂MF ∩ ∂ME ∩ Bh(x)) − nΓ (n)hn−1

∣∣ < δhn−1 for any h ∈ (0, rx). (6.18)

Let α > 0. Defining Γ0 :=
{
x ∈ ∂MF ∩ ∂ME : α < rx

}
for all small enough α > 0 we have that

Hn−1(∂MF ∩ ∂ME\Γ0) < δ. (6.19)

Since A → Per(E, A) is a Radon measure we can extract a compact subset Γ1 ⊂ Γ0 such that

Per(E, Γ1) + δ > Per(E, Γ0).
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And we can find a compact subset Γ2 ⊂ Γ0 such that Hn−1(Γ2) + δ > Hn−1(Γ0). Let Γ3 = Γ1 ∪ Γ2. So Γ3 is
compact and has the properties

Per(E, Γ3) + δ > Per(E, Γ0) and Hn−1(Γ3) + δ > Hn−1(Γ0). (6.20)

And
Γ3 ⊂ Γ0 ⊂ ∂MF ∩ ∂ME. (6.21)

Again since we are dealing with a Radon measure we can find an open set U with Γ3 ⊂ U and

Per(E, U) < Per(E, Γ3) + δ. (6.22)

Now dist(Γ3, U) =: β > 0 by Vitali covering theorem we can find a collection of pairwise disjoint balls
{Brk

(xk) : xk ∈ Γ3, k ∈ IN} where
sup {rk : k ∈ IN} < min {β, α}

and

Hn−1(Γ3\(
∞⋃

k=1

Brk
(xk))) = 0. (6.23)

Now since
⋃∞

k=1 Brk
(xk) ⊂ U we know

Per

(
E,

∞⋃
k=1

Brk
(xk)

)
≤ Per(E, U)

(6.22)
< Per(E, Γ3) + δ. (6.24)

But as Γ3 ⊂ Γ0

Per

(
E,

∞⋃
k=1

Brk
(xk)

)
=

∞∑
k=1

Per (E, Brk
(xk))

=
∞∑

k=1

Hn−1(∂ME ∩ Brk
(xk))

(6.18)

≥
∞∑

k=1

(nΓ (n) − δ)rn−1
k . (6.25)

Now recall Γ3 ⊂ Γ0 ⊂ ∂ME ∩ ∂MF so
∞∑

k=1

nΓ (n)(1 + δ)rn−1
k

(6.18)

≥
∞∑

k=1

Hn−1(∂ME ∩ ∂MF ∩ Brk
(xk))

(6.21)

≥
∞∑

k=1

Hn−1(Γ3 ∩ Brk
(xk))

(6.23)
= Hn−1(Γ3)

(6.20)

≥ Hn−1(Γ0) − δ

(6.19)

≥ Hn−1(∂ME ∩ ∂MF ) − 2δ. (6.26)

Now putting (6.24)–(6.26) together we have

Per (E, Γ3) ≥ Hn−1(∂ME ∩ ∂MF ) − 3δ − c

∞∑
k=1

δrn−1
k . (6.27)
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Now since the collection of balls {Brk
(xk) : xk ∈ Γ3, k ∈ IN} are pairwise disjoint and xk ∈ Γ3 we know

by (6.18) we know Per(E, Brk
(xk)) ≥ nΓ (n)rn−1

k

2

nΓ (n)
2

∑
k

rn−1
k ≤

∑
k

Per(E, Brk
(xk))

≤ Per(E, IRn).

So ∑
k

rn−1
k ≤ cPer(E, IRn). (6.28)

Now putting (6.27) and (6.28) together we have

Per (E, Γ3) ≥ Hn−1(∂ME ∩ ∂MF ) − 3δ − cδPer(E, IRn). (6.29)

Since Per
(
E, ∂MF

) ≥ Per (E, Γ3) and δ is arbitrarily small this establishes (6.2).

Proof of Lemma completed. By applying Step 1 and Step 2 we have

Per(E, ∂MF )
(6.2)

≥ Hn−1(∂ME ∩ ∂MF ) (6.30)
(6.1)
= Per(F, ∂ME) �

Lemma 6.3. We will show that if E ⊂ IRn is an open set of finite perimeter and F ⊂ E is a relatively closed
set of finite perimeter, then

∂M (E\F) = (∂MF ∩ E) ∪ (∂ME\∂MF). (6.31)

Proof. The lemma above holds true for arbitrary sets of finite perimeter E and F ⊂ E, we will only need it for
open set E and relatively closed set F and as the proof is easier in this case we argue only this result.

Let
Γ1 = ∂M (E\F) ∩ F and Γ2 = ∂M (E\F)\F. (6.32)

Since F is relatively closed, if x ∈ Γ2 then for some small enough δ > 0, (Bδ(x) ∩ E) ∩ F = ∅ so

lim
r→0

|Br(x) ∩ (E\F)|
Γ (n)rn

= lim
r→0

|Br(x) ∩ E|
Γ (n)rn

=
1
2

and thus Γ2 ⊂ ∂ME and hence Γ2 ⊂ (∂ME\F) ⊂ ∂ME\∂MF. On the other hand Γ1 ⊂ F ⊂ E and E is
open. By definition of ∂M (E\F) for any x ∈ Γ1, for all small enough r we have |Br(x) ∩ (E\F)| ≈ Γ (n)rn

2 and
|Br(x) ∩ (E\F)c| ≈ Γ (n)rn

2 . But as E is open Br(x) ⊂ E for all small enough r so we must have x ∈ ∂MF. Thus
Γ1 ⊂ ∂MF ∩ E and hence as Γ1 ∪ Γ2 = ∂M (E\F) this establishes (6.31). �

Lemma 6.4. Let E ⊂ IRn be a locally K-quasiminimizing set and let F ⊂ E be a relatively closed subset of
finite perimeter. Then

Per(F, ∂ME) ≤ KPer(F, E). (6.33)

Proof of Lemma 6.4. First note by Theorem 4.2 [6] we know the topological boundary ∂E is equal to the
measure theoretic boundary ∂ME.

Step 1. We will show there exists open set Ω with F ⊂ Ω such that

Hn−1((∂E\∂MF) ∩ Ω) ≤ ε. (6.34)
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Proof of Step 1. Let μ(A) := Hn−1(A ∩ ∂E). So μ is a Radon measure on IRn and hence we must be able to
find open set U with ∂E ∩ ∂F ⊂ U such that μ(U) ≤ Hn−1(∂E ∩ ∂F) + ε.

Note ∂F∩ ∂E is a closed set. So δ = inf {|x − y| : x ∈ ∂F ∩ ∂E, y �∈ U} > 0. Let Π =
⋃

x∈∂F∩∂E Bδ(x). Note

μ(Π) ≤ μ(U) ≤ Hn−1(∂E ∩ ∂MF ) + ε. (6.35)

Note by compactness there exists λ > 0 such that Nλ(∂E) ∩ F ⊂ Π . Let Λ =
⋃

x∈F\Nλ(∂E) Bλ
2
(x). Note

Λ ∩ ∂E = ∅. And
F = (F ∩ Nλ(∂E)) ∪ (F\Nλ(∂E)) ⊂ Π ∪ Λ.

Now

μ(Λ ∪ Π) = μ((Λ ∪ Π) ∩ ∂E) = μ(Π ∩ ∂E)
(6.35)

≤ Hn−1(∂E ∩ ∂MF) + ε.

So letting Ω = Λ ∪ Π , open set Ω satisfies (6.34).

Proof of Lemma completed. Note that for any open set O with E ⊂ O,

Hn−1(∂MF ∩ E ∩ Ω) ≤ Hn−1(∂MF ∩ E) ≤ Per(F,O).

Thus
Per(F, E) ≥ Hn−1(∂MF ∩ E ∩ Ω). (6.36)

So using Lemma 6.2

Per(E\F, Ω)
(6.31)
= H1(∂MF ∩ E ∩ Ω) + H1((∂ME\∂MF) ∩ Ω)

(6.36),(6.34)

≤ Per(F, E) + ε. (6.37)

Now since F ⊂⊂ Ω and E is a quasiminimizer

Per(E, Ω) ≤ KPer(E\F, Ω)
(6.37)
= K(Per(F, E) + ε) (6.38)

And since F is closed, ∂MF ⊂ F so

Per(F, ∂ME)
(6.3)

≤ Per(E, ∂MF) ≤ Per(E, F), (6.39)

thus

Per(F, ∂ME) + Per(E, Ω\F)
(6.39)

≤ Per(E, F) + Per(E, Ω\F)

= Per(E, Ω)
(6.38)

≤ KPer(F, E) + Kε. (6.40)

Since this gives
Per(F, ∂ME) ≤ KPer(F, E) + Kε.

And as ε is arbitrary this establishes (6.33). �
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6.2. Proof of Theorem 1.4.

As stated in Section 3 by the criteria for BVl extension domain of [3,4], E is a BVl extension domain if for every
set of finite perimeter F ⊂ E with diam(F ) < δ we can find F̂ with F ⊂ F̂ with Per(F̂ , IRn) ≤ (1+K)Per(F, E).
We will take F̂ = F and we will show

Per(F, IR2) ≤ (1 + K)Per(F, E). (6.41)

So start using Corollary 1.2 we can take closed subset F ⊂ F with H1(∂MF\∂MF ) = 0 and

‖11F − 11F ‖BV < ε. (6.42)

Now by Lemma 6.4
Per(F, ∂ME) ≤ KPer(F, E). (6.43)

Note since F is closed, Per(F, Fc) = 0. And note since F ⊂ E we know H1(E0∩F) = 0 and so Per(F, E0∩F) = 0
by Lemma 6.1. So

Per(F, E0) = Per(F, E0 ∩ Fc) + Per(F, E0 ∩ F) = 0. (6.44)

Now again by Lemma 6.1

Per(F, IR2) ≤ Per(F, E1) + Per(F, ∂ME) + Per(F, E0)
(6.43),(6.44)

≤ (1 + K)Per(F, E). (6.45)

Hence

Per(F, IR2)
(6.42)

≤ Per(F, IR2) + ε
(6.45)

≤ (1 + K)Per(F, E) + ε. (6.46)

For any open set O with E ⊂ O we have

Per(F, E) ≤ Per(F,O) = H1(∂MF,O) ≤ H1(∂MF,O) = Per(F,O).

As this is true for all open sets O with E ⊂ O we have Per(F, E) ≤ Per(F, E) thus putting this into (6.46) we
have Per(F, IR2) ≤ (1 + K)Per(F, E) + ε and this holds for all ε > 0, so this establishes (6.41). �

6.3. Saturated indecomposable sets.

Proof of Corollary 1.5.

Step 1. First we show that |S| < ∞.
Proof of Step 1. By the isoperimetric inequality (see [1] Thm. 46) we have that

min
{|S| , ∣∣IR2\S∣∣} ≤ (4π)−1

(
Per(S, IR2)

)2
Now if

∣∣IR2\S∣∣ ≤ (4π)−1
(
Per(S, IR2)

)2
then IR2\S must have an indecomposable component with finite

measure which contradicts the definition of saturated, so this can not happen.

Step 2. Let

a = inf {τ > 0 : |D11S| (Bτ (0)) > 0} and b = sup
{
ω > 0 : |D11S | (IR2\Bω(0)) > 0

}
.

We will show
H1(∂MS ∩ ∂Bs) > 0 or H1(S ∩ ∂Bs) > 0 for all s ∈ (a, b). (6.47)
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Proof of Step 2. Suppose not, so for some s ∈ (a, b) we have that

H1(∂MS ∩ ∂Bs) = 0 and H1(S ∩ ∂Bs) = 0. (6.48)

Now by definition of a, b we know Per(S, Bs) > 0 and Per(S, B̄s
c) > 0. Now let A = S ∩ Bs and B = S ∩ B̄s

c.
So A, B are both sets of finite perimeter.

Now for H1 a.e. x ∈ ∂MA\∂MS, since A ⊂ S we must have x ∈ S1 (recall definition (4.1)) and so x ∈ ∂Bs.
Thus

H1(∂MA\(∂MS ∩ B̄s ∪ (S ∩ ∂Bs))) = 0.

In the same way
H1(∂MB\(∂MS ∩ Bc

s ∪ (S ∩ ∂Bs))) = 0.

Thus by (6.48) we have that H1(∂MA ∩ ∂MB) = 0 and as |A ∩ B| = 0 by Proposition 1 [2] we have Per(A) +
Per(B) = Per(S) which contradicts the fact that S is indecomposable.

Now suppose b = ∞, then letting

H1 :=
{
s > a : H1(∂MS ∩ ∂Bs) > 0

}
. (6.49)

and
H2 :=

{
s > a : H1(S ∩ ∂Bs) > 0

}
.

We have two cases to consider. Either |H1| = ∞ or |H2| = ∞. We will deal with each in turn. Firstly we will
use a standard adaptation of Theorem 3.103 [1] we have that for any u ∈ L1(BR(0))

V (u, BR(0)) =
∫ R

0

V (u, ∂Bs(0))ds (6.50)

where

V (u, ∂Bs(0)) = sup
{∫ 2πs

0

u

(
s cos

(
θ

s

)
, s sin

(
θ

s

))
φ′(θ)dθ : φ ∈ C∞

0 ([0, 2πs])
}

. (6.51)

Now suppose |H1| = ∞ then

V (11S , IR2)
(6.50),(6.49)

≥
∫

H1

V (11S , ∂Bs(0))ds = ∞. (6.52)

Which contradicts the fact that S a set of finite perimeter. Now suppose |H2| = ∞. Let B2 :={
s ∈ H2 : H1(∂Bs(0) ∩ S) ≥ πs

}
then by the Coarea formula

∞ > |S| ≥
∫

s∈B2

H1(∂Bs(0) ∩ S)ds ≥
∫

s∈B2

πsds ≥ |B2 ∩ {x : x ≥ 1}| . (6.53)

Hence |B2| < ∞. Now for any t ∈ H2\B2 we must have V (11S , ∂Bs(0)) ≥ 1. Thus as in (6.52),
V (11S , IR2) ≥ |H2\B2| = ∞ which contradicts the fact S has finite perimeter. So in either case we have
a contradiction, thus b < ∞.

Step 3. We will show
∣∣∣Bb(0)

c ∩ S
∣∣∣ = 0.

Proof of Step 3. Since |D11S | (Bb(0)
c
) = 0 either

∣∣∣Bb(0)
c ∩ S

∣∣∣ = 0 or
∣∣∣Bb(0)

c ∩ Sc
∣∣∣ = 0 in the latter case Sc has

an indecomposable component of finite measure which contradicts the fact that S is stratified.

Step 4. We will show Sc has only one indecomposable component.
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Proof of Step 4. Let U1, U2, . . . be the indecomposable components of Sc. Since S is saturated, |Uk| = ∞ for
any k ∈ N. Thus |Uk ∩ Bc

b | > 0 for all k. Since H1(∂MUk ∩ Bc
b) = 0, thus |D11Uk

| (Bc
b) = 0 so either 11Uk

≡ 1
on Bc

b or 11Uk
≡ 0 on Bc

b . As |Uk ∩ Bc
b | > 0 the former is true and so |Bc

b\Uk| = 0. Thus for every k, l we have
|Uk ∩ Ul| > 0 which is a contradiction. So there is only one indecomposable component.

Proof of Corollary completed. By Theorem 1.1, Sc can be represented by an indecomposable component Π̃
which is closed. So S := (Π̃)c then S is open and D11S = D11S. �

7. Example: Proof of Theorem 1.3

The construction. Let {ζk : k ∈ N} be an enumeration of the points in the unit square in the e1, e2 plane with
rational coordinates, i.e. points in the set Q1 := {xe1 + ye2 : x, y ∈ [−1, 1]} that can be written as xe1 + ye2 for
some x, y ∈ [−1, 1] ∩ Q.

We will define a thin column in direction e3 around ζk by

Πk :=
{

xe1 + ye2 + ze3 + ζk :
√

(x − ζk · e1)2 + (y − ζk · e2)2 < 2−10000−k, 0 < z ≤ 1
}

.

And we define O =
⋃

k∈N
Πk. Let

U = {(x, y, z) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 0} .

Finally let
S = O ∪ U .

Since O and U are shaved so U is also a shaved set.

Step 1. We will show S is path connected.
Proof of Step 1. From the construction it is clear that for any p ∈ S, the line interval[
p, (p · e1)e1 + (p · e2)e2 − e3

2

] ⊂ U . Thus for any p1, p2 ∈ O

L1 =
[
p1, (p1 · e1)e1 + (p1 · e2)e2 − e3

2

]
⊂ S (7.1)

and
L2 =

[
p2, (p2 · e1)e1 + (p1 · e2)e2 − e3

2

]
⊂ S. (7.2)

Finally
L3 =

[
(p1 · e1)e1 + (p1 · e2)e2 − e3

2
, (p2 · e1)e1 + (p1 · e2)e2 − e3

2

]
⊂ U ⊂ S. (7.3)

So
L1 ∪ L2 ∪ L3 ⊂ S.

Thus p1 and p2 are connected in S.

Step 2. We will show Sc is connected.
Proof of Step 2. Let Q = (−1, 1) × (−1, 1) × (−1, 1). If p ∈ Q\S then p + λe3 �∈ S for any λ > 0. Thus given
any two points p1, p2 ∈ Q\S we have [p1, p2 + 2e3] ⊂ Sc and [p1, p2 + 2e3] ⊂ Sc and thus the path

P = [p1, p1 + 2e3] ∪ [p1 + 2e3, p2 + 2e3] ∪ [p2 + 2e3, p2] ⊂ Sc,

thus P is connected.
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Step 3. We will show S is a set of finite perimeter.
Proof of Step 3. Let ON =

⋃N
k=1 Πk and define

SN = ON ∪ U .

Note that SN is a set of finite perimeter and

Per(SN ) ≤
N∑

k=1

2π2−10000−k + 17 ≤ 18.

Now SN converges in measure to S (see Rem. 3.36 [1]) so by Proposition 3.37 (b) we know Per(S) ≤ 18 and
thus S is a set of finite perimeter.

Step 4. For a.e. p ∈ Q\S there exists rp > 0 such that

|S ∩ Br(p)| > 0, |Sc ∩ Br(p)| > 0 for all r ∈ (0, rp) (7.4)

and
Per(S, Br(p)) > 0 for any r ∈ (0, rp). (7.5)

Proof of Step 4. By Lebesgue density theorem for a.e. p ∈ Q\S there exists rp > 0 such that

|Br(p) ∩ Sc|
|Br(p)| >

1
2

for any r ∈ (0, rp] . (7.6)

Now for any r ∈ (0, rp] we can find x, y ∈ Q such that (x, y, p · e3) ∈ O∩B r
4
(p) and as O is an open set for some

ρ ∈ (0, r
4 ) we know

|Bρ(p) ∩ O| > 0. (7.7)

So (7.7) and (7.6) together establish (7.4).
Now arguing by contradiction and assuming Per(S ∩ Br(x)) = 0 then as this means |D11S | (Br(x)) = 0 so

by Theorem 3.44, [1] we have that
∫

Br(x)

∣∣11S − (11S)Br(x)

∣∣dz = 0. However by (7.7) and (7.6) and this is a
contradiction. Thus (7.5) is established.

Step 5. We will show that Q\O ⊂ S̄.
Proof of Step 5. For any p ∈ Q\O either we have p ∈ U or p ∈ (Q\U)\S. So using (7.4) of Step 4 for the latter
case we know that for a.e. p ∈ Q\O, p ∈ S̄. So there exists a subset G ⊂ Q\O with |(Q\O)\G| = 0 and G ⊂ S̄.
Thus Ḡ ⊂ S̄ and since Q\O ⊂ Ḡ this completes the proof of Step 5.

Proof of Theorem completed. By Step 1 and Step 2, S and Sc are connected. Since S is a set of finite perimeter
by Proposition 2 [2] we have that S is an indecomposable set. Since H2(∂MSc) = H2(∂MS) < ∞ in the same
way by Proposition 2, Sc is indecomposable. Thus it is its own only indecomposable component. Hence (1.3) is
established.

Now note by Step 5, Q\O ⊂ S̄ and

|Q\S| = 4 −
∞∑

k=1

π(2−10000−k)2 ≥ 3999
4000

,

so (1.3) is established.
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Finally by Step 4 we can find a set G ⊂ Q\S with |(Q\S)\G| = 0 and for every p ∈ G there exists rp > 0
such that (7.5) holds true. So arguing by contradiction suppose there exists a Lipschitz map φ : S2 → IR3 such
that H2(∂MS\φ(S2)) = 0. Now by Theorems 3.59 and 3.61 [1],

H2(φ(S2) ∩ Br(p)) ≥ H2(∂MS ∩ Br(p)) = Per(S, Br(p)) > 0 for all r ∈ (0, rp).

So p ∈ ¯φ(S2) = φ(S2). Thus G ⊂ φ(S2) but this is a contradiction because H2(φ(S2)) ≤ (Lip(φ))2H2(S2) =
4π(Lip(φ))2. Thus we have established (1.3) and completed the proof of the theorem. �

Remark 7.1. The example constructed in Theorem 1.3 also shows that Theorem 7 of [2] has no analogue in
higher dimension. Note by property (1.3) there are no bounded components of Sc so S has no holes and is
therefore saturated. Thus the set S constructed is an example of a set Ambrosio et al. define as simple (see
Defs. 3 and 2 [2]). And by property (1.3) ∂MS can not be almost everywhere covered by the Lipschitz image of
the sphere.
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