
ESAIM: COCV 20 (2014) 547–575 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2013075 www.esaim-cocv.org

CONTROLLABILITY OF A SIMPLIFIED MODEL OF FLUID-STRUCTURE
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Abstract. This article aims at studying the controllability of a simplified fluid structure interaction
model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math.
John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11
(2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This
interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states
that, in the radially symmetric case, this system can be controlled from the outer boundary. This
improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203;
M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. Our proof is based on a
spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy
for 1d waves.
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1. Introduction

In this work, we consider a simplified fluid structure interaction model derived and developed in [6, 18, 20],
constituted by a wave equation surrounding an harmonic oscillator.

The model. Let ω and Ω be smooth bounded simply connected domains of R
2 such that ω ⊂ Ω, and set

O = Ω\ω. This corresponds to the geometric configuration represented in Figure 1.
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∂Ωω

Figure 1. The geometric setting.

We are considering the following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′ −Δy = f, (t, x) ∈ (0, T ) ×O,
y(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

∂ny(t, x) = s′ · n, (t, x) ∈ (0, T ) × ∂ω,

s′′ + s = −
∫

∂ω

y′n dσ, t ∈ (0, T ),

(y(0, ·), y′(0, ·)) = (y0, y1),
(s(0), s′(0)) = (s0, s1).

(1.1)

Here, n denotes the unit outward normal vector on O. The function y represents the velocity potential of the
fluid, the function s (∈ R

2) corresponds to the displacement of an oscillator located in ω, and the function
f(t, x) is an external force, acting on the fluid and thus localized in O. Here, the prime denotes differentiation
with respect to the time variable.

Details on the derivation of (1.1) can be found in [6], p. 96. In particular, model (1.1) corresponds to an
inviscid slightly inhomogeneous compressible fluid when the velocity of the fluid is small and assumed to derive
from a potential y. Accordingly, it may be more relevant to consider Neumann boundary conditions for y on
the external boundary ∂Ω. This issue will be discussed in Section 3.6.

The interaction between the wave equation and the oscillator takes place through the boundary conditions
on ∂ω and the source term in the equation in s. Actually, we could also handle an equation of the form
s′′ + A0s = − ∫

∂ω y
′n dσ with A0 a self-adjoint positive definite 2 × 2 matrix for the oscillator, but this would

not yield any particular difficulty and we thus choose A0 = I to simplify the notations.
Before going further, let us briefly present the Cauchy theory for system (1.1). In order to do that properly,

we define the space H1
ext(O) by

H1
ext(O) = { y ∈ H1(O), y|∂Ω = 0}.

Then, according to [18], Theorem 2.1, given an initial data (y0, y1, s0, s1) ∈ H1
ext(O) × L2(O) × (R2)2 and

source term f ∈ L1(0, T ;L2(O)), system (1.1) has a unique solution (y, s) lying in C0([0, T ];H1
ext(O)) ∩

C1([0, T ];L2(O)) × C1([0, T ]; R2).
Note that this is the natural space since, at least formally, solutions (y, s) of (1.1) have an energy

E(t) =
1
2

∫
O

(|∇y(t)|2 + |∂ty(t)|2
)

dx+
1
2
(|s(t)|2 + |s′(t)|2) , (1.2)

which satisfies
dE
dt

=
∫
O
∂ty(t)f(t) dx. (1.3)

In particular, when f = 0, the energy of solutions (y, s) of (1.1) is constant in time.
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The control problem. In this article, we focus on the null-controllability property of system (1.1) when the
control is an external force f localized in some open subset C of O. To be more precise, we consider the following
controlled system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′ −Δy = χCf, (t, x) ∈ (0, T ) ×O,
y(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

∂ny(t, x) = s′ · n, (t, x) ∈ (0, T ) × ∂ω,

s′′ + s = −
∫

∂ω

y′n dσ, t ∈ (0, T ),

(y(0, ·), y′(0, ·)) = (y0, y1),
(s(0), s′(0)) = (s0, s1),

(1.4)

where f is the control function, and χC denotes the indicator function of C.
More precisely, we ask if there exists a time T > 0 such that for any (y0, y1, s0, s1) ∈ H1

ext(O)×L2(O)×(R2)2,
one can find a control function f ∈ L2((0, T ) × C) such that the corresponding solution (y, s) of (1.4) satisfies

(y(T ), y′(T ), s(T ), s′(T )) = (0, 0, 0, 0) ∈ H1
ext(O) × L2(O) × (R2)2. (1.5)

In that case, we say that system (1.4) is null-controllable at time T .
Note that, due to the time-reversibility of system (1.4), one easily checks that the null-controllability of (1.4)

at time T is equivalent to the exact controllability of (1.4) in time T , which states that for any initial and target
states (y0, y1, s0, s1), (yT

0 , y
T
1 , s

T
0 , s

T
1 ) inH1

ext(O)×L2(O)×(R2)2, there exists a control function f ∈ L2((0, T )×C)
such that the corresponding solution of (1.4) satisfies

(y(T ), y′(T ), s(T ), s′(T )) = (yT
0 , y

T
1 , s

T
0 , s

T
1 ) ∈ H1

ext(O) × L2(O) × (R2)2. (1.6)

Hence, in the sequel, we will not distinguish between the null and exact controllability properties.
Of course, the null-controllability property of (1.4) depends on the time T and the set C in which the control

is active. Our goal then is to derive conditions on the time T and the set C under which we can guarantee
null-controllability.

Before stating our results, let us now briefly review previous results on system (1.4) and its controllability
property.

In [18], it was proved that when the control function acts as a source term in all the fluid (i.e. C = O), then
system (1.4) is exactly controllable in any time T > 0. Later on in [20], it was proved that when the control
is localized in space in the fluid part O in a neighborhood of both the boundaries ∂Ω and ∂ω, there exists
a time T such that system (1.4) is controllable. Though, this time T > 0 is not given explicitly in [20]. This
is a drawback of the method used in [20], which relies on resolvent estimates [5, 8, 16, 21]. This result is not
completely satisfactory because one still needs the control region to be localized near the entire outer boundary
∂Ω and also near the entire interior boundary ∂ω. But such a control may not be possible in real situations.

We also refer to [19], which considers a similar coupling between a structure and a fluid but with a fluid
modeled by the Stokes equations. Of course, this yields a completely different model, and the well-posedness
and controllability issues are completely different.

Case of a control region in a neighborhood of both boundaries ∂Ω and ∂ω. Our first main result
handles the case in which the control region contains a neighborhood of both boundaries ∂Ω and ∂ω. Note
that this is precisely the setting dealt with in [20] but we are going to provide new estimates on the time of
controllability.

We suppose that there exists ε > 0 such that

{x ∈ O, d(x, ∂O) ≤ ε } ⊂ C. (1.7)

This geometric condition is represented in Figure 2.
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O

∂Ωω

Figure 2. Condition (1.7) means that the control set C contains the set represented in black,
i.e. a neighborhood of both boundaries ∂Ω and ∂ω.

We also assume that the wave equation in domain O with homogeneous Dirichlet boundary conditions is
null-controllable at time T0 > 0 when the control acts on C.

This means the following: for all (ϕ0, ϕ1) ∈ H1
0 (O)×L2(O), there exists a control function g ∈ L2((0, T0)×C)

so that the solution ϕ of ⎧⎨
⎩
ϕ′′ −Δϕ = χCg, (t, x) ∈ (0, T0) ×O,
ϕ(t, x) = 0, (t, x) ∈ (0, T0) × ∂O,
(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1).

(1.8)

satisfies (ϕ(T0), ϕ′(T0)) = (0, 0).
Note that system (1.8) does not contain any rigid body anymore and simply is a wave equation in O.
According to [1,4], this system is null-controllable in time T0 if and only if (C,O, T0) satisfies the Geometric

Control Condition of Bardos Lebeau and Rauch. Roughly speaking, this condition states that all the rays of
Geometric Optics should meet the control region C in a time less than T0. In our context, these rays of Geometric
Optics simply are straight lines bouncing on the boundary ∂O according to Descartes–Snell’s law (Actually,
since in the present setting the control set C contains a neighborhood of both boundaries ∂Ω and ∂ω, we do
not need here to describe the behavior of the rays on the boundary).

Note that, due to Assumption (1.7) and the geometry under consideration, the time T0 always exists and is
bounded by diam(Ω). For instance in the case Ω = B(0, R0) and ω = B(0, r0), the time T0 can be taken to be
any time larger than 2

√
R2

0 − r20 .
Also note that the Hilbert Uniqueness Method provides a control function g in L2((0, T0) × C) of minimal

L2((0, T0) × C)-norm which moreover satisfies

‖g‖L2((0,T0)×C) ≤ C ‖(ϕ0, ϕ1)‖H1
0 (O)×L2(O) . (1.9)

We then prove the following:

Theorem 1.1. Assume that C satisfies Assumption (1.7) and that system (1.8) is null-controllable at time
T0 > 0. Then system (1.4) is exactly controllable at time T0.

Our argument consists mainly of two things:

• the control result obtained in [18] when the control acts everywhere in the fluid part O;
• the null-controllability of the wave equation (1.8).

The proof of Theorem 1.1 is then reduced to a suitable gluing argument between the two controlled trajectories.
Details of the Proof of Theorem 1.1 are given in Section 2.
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ω

Figure 3. The geometric setting in the radial configuration given by (1.10). Here, the control
set C is represented in black: it is a ring of the form C = B(0, R0)\B(0, R1) localized close to
the external boundary.

The radial case. We then focus on the radial case: we assume that there exists r0, R0, R1 positive real numbers
with 0 < r0 < R1 < R0 and

ω = B(0, r0), Ω = B(0, R0), C = B(0, R0)\B(0, R1), (1.10)

where B(0, r) denotes the ball centered at the origin of radius r > 0. This corresponds to the geometric setting
given in Figure 3.

We then prove the following:

Theorem 1.2. Under Assumption (1.10), system (1.4) is exactly controllable in any time

T > 2
√
R2

1 − r20 . (1.11)

To our knowledge, Theorem 1.2 is the first control result for system (1.4) which does not require the control
to be supported in a neighborhood of ∂ω. The main issue here is to ensure that no energy is trapped near the
boundary ∂ω as the coupled system vibrates according to the model under consideration.

Note however that Theorem 1.2 is restricted to the radial case. As we shall explain in Section 3.4, this
assumption can be slightly weakened and the form of Ω and C can be relaxed. However, the radial assumption
on ω is completely necessary to our arguments.

Let us also emphasize that condition (1.11) is necessarily sharp due to the speed of propagation of waves.
Indeed, following the construction of Ralston in [17], if T < 2

√
R2

1 − r20 , one can construct solutions of the
system (1.1) with source term 0, known as Gaussian beams, which are localized outside (0, T ) × C. By duality,
this provides an impediment for the controllability of (1.4), see Section 4.

As explained in Section 3.1, following the Hilbert Uniqueness Method of Lions [13], the control result stated
in Theorem 1.2 is based on the observability of the adjoint equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′′ −Δϕ = 0, (t, x) ∈ (0, T )×O,
ϕ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

∂nϕ(t, x) = w′ · n, (t, x) ∈ (0, T )× ∂ω,

w′′ + w = −
∫

∂ω

ϕ′n dσ, t ∈ (0, T ),

(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1),
(w(0), w′(0)) = (w0, w1).

(1.12)



552 S. ERVEDOZA AND M. VANNINATHAN

Namely, we are going to study the following observability inequality: there exists a constant C > 0 such that
for all (ϕ0, ϕ1, w0, w1) ∈ H1

ext(O) × L2(O) × (R2)2, the solution (ϕ,w) of (1.12) satisfies

‖(ϕ0, ϕ1, w0, w1)‖2
H1

ext(O)×L2(O)×(R2)2 ≤ C2
obs

∫ T

0

∫
C
χ2
C |ϕ′(t, x)|2 dtdx. (1.13)

In order to prove that observability inequality, we strongly use the radial symmetry of the problem, which
allows us to introduce polar coordinates and to do a spherical harmonic decomposition. In particular, we show
somewhat surprisingly that the interaction between the waves and the oscillator appears only on the first mode
of the Laplace–Beltrami operator on the disk, the other ones being completely decoupled from the displacement
s of the solid. That way, we are able to derive a very precise description of the fluid structure interaction.

The main issue is then to study a 1d wave equation coupled with an oscillator and its observability property.
This study is done using the lateral propagation of the energy of 1d waves, which, roughly speaking, consists in
exchanging the role played by the time and the space. This technique is rather classical and has been developed
extensively in the context of 1d semilinear wave equation (see e.g. [22]).

Note also that our method gives a very precise description of the interaction between the fluid and the solid
parts, which partly explains the difficulty of removing the radially symmetric assumption on the solid ω. As we
shall explain in Section 3.4, using microlocal defect measures as in [3,4], we can remove the spherical assumption
on Ω and C. However, our method fails to apply when the solid part ω is not a disk.

Outline. Section 2 aims at proving Theorem 1.1. Radially symmetric domains are considered in Section 3. In
Section 3.1, we reduce the null controllability problem for (1.4) to the observability inequality (1.13) for the
adjoint system (1.12). Working with polar coordinates and spherical harmonics decomposition of the system,
we show in Section 3.2 that only the first harmonic mode couples with the solid, while other modes are free of
couplings. The problem is thus reduced to proving observability estimates for the individual components of the
decomposition, a task we perform in Section 3.3. In this process, we use the principle of lateral propagation of
the energy for 1d waves to treat the first harmonic mode. Section 3.4 then provides the corresponding control
results and some generalizations of it when the control set does not contain a neighborhood of the entire outer
boundary. Section 3.5 is devoted to the boundary controllability of the model. Section 3.6 discusses control
results when the potential y is assumed to satisfy the Neumann boundary conditions on the external boundary
∂Ω. Finally, in Section 4, we provide the reader with comments and open problems.

2. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1. In particular, in this section, we will always assume
Condition (1.7).

The Proof of Theorem 1.1 is based on the following result, obtained in [18], Theorem 1.1:

Theorem 2.1 ([18]). For any T > 0, for any (z0, z1, σ0, σ1) ∈ H1
ext(O) × L2(O) × (R2)2, there exists a control

function u ∈ L2((0, T ) ×O) such that the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z′′ −Δz = u, (t, x) ∈ (0, T )×O,
z(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
∂nz(t, x) = σ′ · n, (t, x) ∈ (0, T )× ∂ω,

σ′′ + σ = −
∫

∂ω

z′n dσ, t ∈ (0, T ),

(z(0, ·), z′(0, ·)) = (z0, z1),
(σ(0), σ′(0)) = (σ0, σ1)

(2.1)

satisfies the null-controllability requirement

(z(T ), z′(T ), σ(T ), σ′(T )) = (0, 0, 0, 0). (2.2)
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Besides, there exists a constant CT such that

‖u‖L2((0,T )×O) + ‖z‖L∞(0,T ;H1
ext(O)) ≤ CT ‖(z0, z1, σ0, σ1)‖H1

ext(O)×L2(O)×(R2)2 . (2.3)

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let C satisfying (1.7) for some ε > 0, and assume that T0 is so that (C,O, T0) satisfies
the Geometric Control Condition.

Fix (y0, y1, s0, s1) ∈ H1
ext(O) × L2(O) × (R2)2. Then, according to Theorem 2.1, setting (z0, z1, σ0, σ1) =

(y0, y1, s0, s1), there exists a control function u ∈ L2((0, T0)×O) so that the solution (z, σ) of (2.1) satisfies (2.2).
Besides, one has

‖u‖L2((0,T0)×O) + ‖z‖L∞(0,T0;H1
ext(O)) ≤ C ‖(y0, y1, s0, s1)‖H1

ext(O)×L2(O)×(R2)2 . (2.4)

Now, let η1 = η1(x) be a smooth function in O taking value one on {x ∈ O, d(x, ∂ω) ≤ ε/2} and vanishing
identically on {x ∈ O, d(x, ∂ω) ≥ ε}.

Then (η1z, σ) satisfies the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(η1z)′′ −Δ(η1z) = η1u− 2∇η1∇z −Δη1z, (t, x) ∈ (0, T0) ×O,
η1z(t, x) = 0, (t, x) ∈ (0, T0) × ∂Ω,

∂n(η1z)(t, x) = σ′ · n, (t, x) ∈ (0, T0) × ∂ω,

σ′′ + σ = −
∫

∂ω

(η1z)′n dσ, t ∈ (0, T0),

(η1z(0, ·), (η1z)′(0, ·)) = (η1y0, η1y1),
(σ(0), σ′(0)) = (σ0, σ1),
(η1z(T0, ·), (η1z)′(T0, ·)) = (0, 0),
(σ(T0), σ′(T0)) = (0, 0),

(2.5)

We then define η2 = η2(x) as a smooth function in O taking value one on {x ∈ O, d(x, ∂ω) ≤ ε/4} and
vanishing identically on {x ∈ O, d(x, ∂ω) ≥ ε/2}.

Since the wave equation (1.8) is assumed to be null-controllable in time T0, setting (ϕ0, ϕ1) = ((1−η2)y0, (1−
η2)y1) ∈ H1

0 (O) × L2(O) there exists a control function g ∈ L2((0, T0) × C) that steers the solution ϕ of (1.8)
from (ϕ0, ϕ1) to (0, 0) in a time T0 satisfying (1.9) and, following,

‖g‖L2((0,T0)×C) + ‖ϕ‖L∞(0,T0;H1
0 (O)) ≤ C ‖(ϕ0, ϕ1)‖H1

0 (O)×L2(O)

≤ C ‖(y0, y1)‖H1
ext(O)×L2(O) . (2.6)

Moreover, (1 − η1)ϕ satisfies

⎧⎪⎨
⎪⎩

((1 − η1)ϕ)′′ −Δ((1 − η1)ϕ) = (1 − η1)χCg + 2∇η1∇ϕ+Δη1ϕ,
(t, x) ∈ (0, T0) ×O,

((1 − η1)ϕ)(t, x) = 0, (t, x) ∈ (0, T0) × ∂O,
∂n((1 − η1)ϕ)(t, x) = 0, (t, x) ∈ (0, T0) × ∂ω,

(2.7)

with initial and final data{
((1 − η1)ϕ(0, ·), (1 − η1)ϕ′(0, ·)) = ((1 − η1)y0, (1 − η1)y1),
((1 − η1)ϕ(T0, ·), (1 − η1)ϕ′(T0, ·)) = (0, 0), (2.8)

where we have used that, due to the conditions on the support of η1 and η2, (1 − η1)(1 − η2) = (1 − η1).
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Note that (1 − η1)ϕ satisfies null Dirichlet and Neumann boundary conditions on the interface ∂ω. In par-
ticular, setting y = η1z + (1 − η1)ϕ and s = σ, one immediately gets that (y, s) satisfies (1.4) with initial data
(y0, y1, s0, s1), and control function

χCf = η1u− 2∇η1∇z −Δη1z + (1 − η1)χCg + 2∇η1∇ϕ+Δη1ϕ. (2.9)

Indeed, the right hand side terms in (2.9) are all supported in C due to the conditions on the support of η1
and (1.7), and each term belongs to L2((0, T0) × C) thanks to (2.4) and (2.6).

This concludes the Proof of Theorem 1.1 since by construction, (y, s) solves the null controllability require-
ment (1.5) with T = T0. �

3. The radially symmetric case

In this section, we consider the radially symmetric case and assume the geometry given in (1.10):

ω = B(0, r0), Ω = B(0, R0), C = B(0, R0)\B(0, R1), with 0 < r0 < R1 < R0.

To simplify notations, we set A(ra, rb) the annulus B(0, rb)\B(0, ra). We also define S(0, r) as the circle of
radius r > 0.

Note that our assumptions also concern the control region C, which is assumed to be an annulus C =
A(R1, R0). In particular, the control region is a neighborhood of the whole external boundary, but not of the
internal boundary S(0, r0).

Now, system (1.4) is rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y′′ −Δy = χR1<|x|<R0f, (t, x) ∈ (0, T ) ×A(r0, R0),
y(t, x) = 0, (t, x) ∈ (0, T ) × S(0, R0),
∂ny(t, x) = s′ · n, (t, x) ∈ (0, T ) × S(0, r0),

s′′ + s = −
∫

S(0,r0)

y′n dσ, t ∈ (0, T ),

(y(0, ·), y′(0, ·)) = (y0, y1),
(s(0), s′(0)) = (s0, s1).

(3.1)

3.1. Link between observability and controllability

In this section, the fact that we are considering the radially symmetric case is irrelevant. We therefore consider
the control problem (1.4)–(1.5) and the corresponding adjoint system (1.12).

Let us begin by explaining why equation (1.12) can be seen as the adjoint of (1.4). To this end, let us remark
that system (1.4) can be rewritten as a first-order system⎛

⎜⎝
y
y′
s
s′

⎞
⎟⎠

′

= A

⎛
⎜⎝
y
y′
s
s′

⎞
⎟⎠+Bf,

where

A

⎛
⎜⎝
y0
y1
s0
s1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

y1
Δy0
s1

−
∫

∂ω

y1ndσ − s0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎝

0
χC
0
0

⎞
⎟⎠ .

The operator A is an unbounded operator defined on the space

X =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
y0
y1
s0
s1

⎞
⎟⎠ , with

y0 ∈ H1
ext(O),

y1 ∈ L2(O),
s0 ∈ R

2,
s1 ∈ R

2

⎫⎪⎬
⎪⎭
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and its domain is

D(A) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
y0
y1
s0
s1

⎞
⎟⎠ , with

y0 ∈ H2(O) ∩H1
ext(O),

∂ny0 = s1 · n on ∂ω,
y1 ∈ H1

ext(O),
s0 ∈ R

2, s1 ∈ R
2

⎫⎪⎬
⎪⎭ .

Of course, X is a Hilbert space when endowed with its natural scalar product

〈⎛⎜⎝
y0
y1
s0
s1

⎞
⎟⎠ ,

⎛
⎜⎝
z0
z1
σ0

σ1

⎞
⎟⎠
〉

X

=
∫
O
∇y0 · ∇z0 +

∫
O
y1z1 + s0 · σ0 + s1 · σ1.

Besides, one easily checks that A is skew-adjoint with respect to this scalar product. Therefore, system (1.12)
is the adjoint of system (1.4) when identifying the dual of X with itself.

Let us also note that the adjoint system (1.12) is conservative: The energy of solutions (ϕ,w) of (1.12),
defined by

E(t) =
1
2
‖(ϕ(t), ϕ′(t), w(t), w′(t))‖2

H1
ext(O)×L2(O)×(R2)2

=
1
2

∫
O

(|∇ϕ(t)|2 + |ϕ′(t)|2)+
1
2
(|w(t)|2 + |w′(t)|2) ; (3.2)

is constant in time.

Remark 3.1. Let us emphasize that here we made the choice of identifying X with its dual. This will make
our arguments easier since we are going to work only with finite-energy solutions. Other choices are possible,
and in particular the one in [18], which consists in identifying the dual of L2(O) with itself. The adjoint system
should then be stated in the dual of H1

ext(O)×L2(O)× (R2)2, which is not completely obvious to characterize.
This requires a careful analysis done in [18] which we shortcut here.

The by-now classical Hilbert Uniqueness Method (HUM) of Lions [13, 14] then yields the following result:

Theorem 3.2. Assume that T > 0 is such that the observability property (1.13) holds for solutions of (1.12).
Then system (1.4) is exactly controllable in time T : given any initial data (y0, y1, s0, s1) ∈ H1

ext(O) × L2(O) ×
(R2)2, there exists a control function f ∈ L2((0, T ) × C) such that the solution of (1.4) solves (1.5).

Besides, it can be computed as follows. Let us define the functional J on H1
ext(O) × L2(O) × (R2)2 by

J(ϕ0, ϕ1, w0, w1) =
1
2

∫ T

0

∫
C
χ2
C |ϕ′(t, x)|2 dtdx+

∫
O
∇ϕ0 · ∇y0 +

∫
O
ϕ1y1 + w0 · s0 + w1 · s1, (3.3)

where (ϕ, s) is the solution of (1.12) with initial data (y0, y1, s0, s1) ∈ H1
ext(O) × L2(O) × (R2)2.

The functional J has a unique minimizer (ϕ̃0, ϕ̃1, w̃0, w̃1) in H1
ext(O) × L2(O) × (R2)2. Denoting by (ϕ̃, w̃)

the corresponding solution of (1.12), the function

f = χCϕ̃′, (t, x) ∈ (0, T ) × C (3.4)

is an admissible control function for (1.4) and (1.5).
Moreover, it has minimal L2((0, T ) × C)-norm among all admissible controls for (1.4)–(1.5).

Proof. Multiplying the equation of y in (1.4) by ϕ′, ϕ being a smooth solution of (1.12) and integrating by
parts, we obtain∫ T

0

∫
C
χCfϕ′ = −

∫ T

0

∫
O
y′ϕ′′ −

∫ T

0

∫
O
∇y′ · ∇ϕ+

∫
O
∇ϕ · ∇y

∣∣∣∣
T

0

+
∫
O
ϕ′y′

∣∣∣∣
T

0

−
∫ T

0

∫
∂ω

∂nyϕ
′.
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But

−
∫ T

0

∫
O
∇y′ · ∇ϕ =

∫ T

0

∫
O
y′Δϕ−

∫ T

0

∫
∂ω

y′∂nϕ.

Besides, the equations on the boundary ∂ω in (1.12) and in (1.4) yield

−
∫

∂ω

∂ny ϕ
′ −

∫
∂ω

y′∂nϕ = −
∫

∂ω

s′ · nϕ′ −
∫

∂ω

y′w′ · n = − s′ ·
(∫

∂ω

ϕ′n
)
− w′ ·

(∫
∂ω

y′n
)

= s′ · (w′′ + w) + w′ · (s′′ + s) =
d
dt

(s′ · w′ + s · w) .

Combining these last identities, we get∫ T

0

∫
C
χCfϕ′ =

∫
O
∇ϕ · ∇y

∣∣∣∣
T

0

+
∫
O
ϕ′y′

∣∣∣∣
T

0

+ (s′ · w′ + s · w)
∣∣∣T
0
. (3.5)

Therefore, f is an admissible control function for (1.4) if and only if for all (ϕ0, ϕ1, w0, w1) ∈ H1
ext(O)×L2(O)×

(R2)2,

0 =
∫ T

0

∫
C
χCfϕ′ +

∫
O
∇ϕ0 · ∇y0 +

∫
O
ϕ1y1 + s1 · w1 + s0 · w0. (3.6)

If (ϕ̃0, ϕ̃1, w̃0, w̃1) ∈ H1
ext(O) × L2(O) × (R2)2 is a minimizer of the functional J defined in (3.3), then the

corresponding Euler–Lagrange equation coincides with (3.6) for f = χCϕ̃′, hence f = χCϕ̃′ is an admissible
control function for (1.4).

One should then explain that such a minimizer exists. This is precisely due to the observability inequal-
ity (1.13) which easily implies that the functional J is strictly convex and coercive. Therefore it has a unique
minimizer (since J is convex, this also is the only critical point) (ϕ̃0, ϕ̃1, w̃0, w̃1).

We then indicate how to prove that f = χCϕ̃′ is the control function of minimal L2((0, T )×C)-norm. For any
control function f1, and in particular also for f as in (3.4), one can choose (ϕ,w) = (ϕ̃, w̃) in (3.6). Subtracting
the identities with f1 and with f = χCϕ̃′, one obtains∫ T

0

∫
C
χCfϕ̃′ =

∫ T

0

∫
C
χCf1ϕ̃′,

hence

‖f‖2
L2((0,T )×C) =

∫ T

0

∫
C
f1f ≤ ‖f1‖L2((0,T )×C) ‖f‖L2((0,T )×C) .

This completes the Proof of Theorem 3.2. �

In the radially symmetric context we are considering, the adjoint system (1.12) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′′ −Δϕ = 0, (t, x) ∈ (0, T ) ×A(r0, R0),
ϕ(t, x) = 0, (t, x) ∈ (0, T ) × S(0, R0),
∂nϕ(t, x) = w′ · n, (t, x) ∈ (0, T ) × S(0, r0),

w′′ + w = −
∫

S(0,r0)

ϕ′n dσ, t ∈ (0, T ),

(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1),
(w(0), w′(0)) = (w0, w1),

(3.7)

and the corresponding observability inequality is the following one: Find T > 0 for which there exists a con-
stant Cobs > 0 such that all solutions (ϕ,w) of (3.7) with initial data (ϕ0, ϕ1, w0, w1) ∈ H1

ext(A(r0, R0)) ×
L2(A(r0, R0)) × (R2)2 satisfy

‖(ϕ0, ϕ1, w0, w1)‖2
H1

ext(A(r0,R0))×L2(A(r0,R0))×(R2)2 ≤ C2
obs

∫ T

0

∫
A(R1,R0)

χ2
R1<|x|<R0

|ϕ′(t, x)|2 dtdx. (3.8)

We now focus on the proof of the observability result (3.8) for the adjoint system (3.7).



CONTROLLABILITY OF A SIMPLIFIED MODEL OF FLUID-STRUCTURE INTERACTION 557

3.2. A spherical harmonics decomposition

In this section, we introduce polar coordinates and use a decomposition of the solutions ϕ of (3.7) in spherical
harmonics.

Since we are working in two dimensions, the kth spherical harmonics are spanned by cos(kθ), sin(kθ). Hence,
we can write

ϕ(t, x) =
1
π

∞∑
k=1

(ψk,a(t, r) cos(kθ) + ψk,b(t, r) sin(kθ)) +
1
2π
ψ̃(t, r), (3.9)

(t, x) ∈ (0, T )×A(r0, R0),

where x = (r, θ) in the polar coordinates, r ∈ (r0, R0), θ ∈ (0, 2π).
With these notations, we have

−Δϕ = − 1
π

∞∑
k=1

((
1
r
∂r(r∂rψk,a) − k2

r2
ψk,a

)
cos(kθ)

)

− 1
π

∞∑
k=1

((
1
r
∂r(r∂rψk,b) − k2

r2
ψk,b

)
sin(kθ)

)
− 1

2π

(
1
r
∂r(r∂rψ̃)

)
. (3.10)

Simple computations also show that

−
∫

S(0,r0)

ϕ′n dσ = r0

∫ 2π

0

ϕ′(t, x)
(

cos(θ)
sin(θ)

)
dθ = r0

(
ψ′

1,a(t, r0)
ψ′

1,b(t, r0)

)
. (3.11)

Finally, the condition ∂nϕ(t, x) = w′(t) · n on (0, T )× S(0, r0) reads

∂rϕ(t, r0, θ) = w′
a(t) cos(θ) + w′

b(t) sin(θ),

where we write

w(t) =
(
wa(t)
wb(t)

)
.

Therefore, (ϕ,w) is a solution of (3.7) if and only if the functions ψ̃(t, r), (ψk,a(t, r), ψk,b(t, r))k≥1, wa(t),
wb(t) satisfy:

• corresponding to the zero-mode term:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ̃′′ − 1
r
∂r(r∂rψ̃) = 0, (t, r) ∈ (0, T ) × (r0, R0),

∂rψ̃(t, r0) = 0 = ψ̃(t, R0), t ∈ (0, T ),

ψ̃(0, r) =
∫ 2π

0

ϕ0(r, θ) dθ, r ∈ (r0, R0),

ψ̃′(0, r) =
∫ 2π

0

ϕ1(r, θ) dθ, r ∈ (r0, R0),

(3.12)

• corresponding to the kth modes, k ≥ 2, j ∈ {a, b},⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ′′
k,j −

1
r
∂r(r∂rψk,j) +

k2

r2
ψk,j = 0, (t, r) ∈ (0, T ) × (r0, R0),

∂rψk,j(t, r0) = 0 = ψk,j(t, R0), t ∈ (0, T ),

ψk,j(0, r) =
∫ 2π

0

ϕ0(r, θ)ek,j(θ) dθ, r ∈ (r0, R0),

ψ′
k,j(0, r) =

∫ 2π

0

ϕ1(r, θ)ek,j(θ) dθ, r ∈ (r0, R0),

(3.13)
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with

ek,j(θ) =
{

cos(kθ) if j = a, k ≥ 1,
sin(kθ) if j = b, k ≥ 1, (3.14)

• corresponding to the first modes, for j ∈ {a, b},
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ′′
1,j −

1
r
∂r(r∂rψ1,j) +

1
r2
ψ1,j = 0, (t, r) ∈ (0, T ) × (r0, R0),

ψ1,j(t, R0) = 0, t ∈ (0, T ),
∂rψ1,j(t, r0) = πw′

j(t), t ∈ (0, T ),
w′′

j (t) + wj(t) = r0ψ
′
1,j(t, r0), t ∈ (0, T ),

ψ1,j(0, r) =
∫ 2π

0

ϕ0(r, θ)e1,j(θ) dθ, r ∈ (r0, R0),

ψ′
1,j(0, r) =

∫ 2π

0

ϕ1(r, θ)e1,j(θ) dθ, r ∈ (r0, R0),

wj(0) = w0 · ej , w′
j(0) = w1 · ej ,

(3.15)

with e1,j as in (3.14) and

ea =
(

1
0

)
, eb =

(
0
1

)
.

At this stage, the advantages of using a spherical harmonic decomposition are already clear: we have cou-
pling with the solid only in (3.15), and not in (3.12),(3.13). Furthermore, non-locality in space in the original
system (3.7) (in the source term of the equation of the oscillator) has disappeared.

For each k ≥ 2, we define the energy Ek corresponding to the kth mode, solution of (3.13),

Ek[ψk](t) =
∫ R0

r0

|ψ′
k(t, r)|2r dr +

∫ R0

r0

|∂rψk(t, r)|2r dr +
∫ R0

r0

k2

r2
|ψk(t, r)|2r dr. (3.16)

Note that the energy of solutions ψk of (3.13) is constant.
We also define E0 the energy corresponding to the 0th harmonic:

E0[ψ̃](t) =
∫ R0

r0

|ψ̃′(t, r)|2r dr +
∫ R0

r0

|∂rψ̃(t, r)|2r dr, (3.17)

which also is constant in time t ∈ (0, T ) for solutions ψ̃ of (3.12).
Similarly, corresponding to the 1st harmonic solutions, we introduce

E1[ψ1, w](t) =
∫ R0

r0

|ψ′
1(t, r)|2r dr +

∫ R0

r0

|∂rψ1(t, r)|2r dr (3.18)

+
∫ R0

r0

1
r
|ψ1(t, r)|2 dr + π|w′(t)|2 + π|w(t)|2,

which also is independent of time for solutions (ψ1, w) of (3.15).
Moreover, using the L2(S(0, 1)) orthogonality of the modes, the energy of solutions (ϕ,w) of (3.7) can be

decomposed as follows

E(t) =
1
4π
E0[ψ̃](t) +

1
2π

∑
j∈{a,b}

⎛
⎝E1[ψ1,j , wj ](t) +

∑
k≥2

Ek[ψk,j ](t)

⎞
⎠ . (3.19)
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And similarly, the observation operator can also be diagonalized with this spherical harmonic decomposition∫
A(R1,R0)

|ϕ′(t, x)|2 dx =
1
2π

∫ R0

R1

|ψ̃′(t, r)|2r dr +
1
π

∑
k≥1

j∈{a,b}

∫ R0

R1

|ψ′
k,j(t, r)|2r dr.

Therefore, system (3.7) satisfies (3.8) if and only if there exists a constant Cobs such that

• for all k ∈ N\{1}, any solution ψk of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ψ′′

k − 1
r
∂r(r∂rψk) +

k2

r2
ψk = 0, (t, r) ∈ (0, T )× (r0, R0),

∂rψk(t, r0) = 0 = ψk(t, R0), t ∈ (0, T ),
ψk(0, r) = ψk,0(r) r ∈ (r0, R0),
ψ′

k(0, r) = ψk,1(r) r ∈ (r0, R0),

(3.20)

satisfies

Ek[ψk] ≤ C2
obs

∫ T

0

∫ R0

R1

|ψ′
k(t, r)|2r dr, (3.21)

• any solution (ψ,w) of ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ′′ − 1
r
∂r(r∂rψ) +

1
r2
ψ = 0, (t, r) ∈ (0, T )× (r0, R0),

ψ(t, R0) = 0, t ∈ (0, T ),
∂rψ(t, r0) = πw′(t), t ∈ (0, T ),
w′′(t) + w(t) = r0ψ

′(t, r0), t ∈ (0, T ),
ψ(0, r) = ψ0(r) r ∈ (r0, R0),
ψ′(0, r) = ψ1(r) r ∈ (r0, R0),
w(0) = w0, w′(0) = w1,

(3.22)

satisfies

E1[ψ,w] ≤ C2
obs

∫ T

0

∫ R0

R1

|ψ′(t, r)|2r dr. (3.23)

Note that for k = 0, ψ̃ solves (3.20) with k = 0 and should satisfy (3.21) with k = 0, so that the mode k = 0 is
contained in the modes k ∈ N\{1}.
3.3. Observability

In the previous section, we have shown that the observability inequality (3.8) for system (3.7) is equiv-
alent to uniform (with respect to k) observability properties (3.21) for systems (3.20) and the observability
inequality (3.23) for system (3.22).

Based on that equivalence, we show the following result, which directly implies Theorem 1.2 according to
Theorem 3.2:

Theorem 3.3. Let T be such that

T > 2
√
R2

1 − r20 = 2R1

√
1 − r20

R2
1

· (3.24)

Then there exists a constant Cobs such that all solutions (ϕ,w) of (3.7) with initial data in H1
ext(A(r0, R0)) ×

L2(A(r0, R0)) × (R2)2 satisfy (3.8).
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Our proof is based on the spherical harmonics decomposition performed in the previous paragraph. In par-
ticular, this indicates that we need to focus only on the observability of a family of 1d wave equations (3.20)
and of one non-standard wave equation (3.22) involving a coupling term with an oscillator at the boundary.

Hence, Theorem 3.3 relies on the combination of the two following propositions:

Proposition 3.4. For any time T satisfying (3.24), there exists a constant Cobs independent of k ∈ N\{1} so
that for each k ∈ N\{1}, solutions of (3.20) satisfy (3.21).

Proposition 3.5. For any T > 2(R1 − r0), there exists a constant Cobs such that any solution (ψ,w) of (3.22)
satisfies (3.23).

Indeed, once these propositions are proved, according to the previous paragraph, Theorem 3.3 immediately
follows, since

√
R2

1 − r20 ≥ R1−r0. Note that the time of observability for (3.22) is not the same as for the other
modes, given by (3.24). This is due to the fact that (3.22) is a one dimensional wave equation with velocity one,
and then its time of observability simply is twice the length of the interval (r0, R1), or equivalently, the width
of the ring A(r0, R1).

3.3.1. The case k 	= 1

Here, we prove Proposition 3.4.

Proof of Proposition 3.4. Note that the wave equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕ′′ −Δϕ = 0, (t, x) ∈ (0, T )×A(r0, R0),
ϕ(t, x) = 0, (t, x) ∈ (0, T )× S(0, R0),
∂nϕ(t, x) = 0, (t, x) ∈ (0, T )× S(0, r0),
(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1),

(3.25)

is observable through A(R1, R0) in any time T satisfying (3.24), i.e. any solution ϕ of (3.25) satisfies∫
A(r0,R0)

(|∇ϕ0|2 + |ϕ1|2
)

dx ≤ C2
obs

∫ T

0

∫
A(R1,R0)

|ϕ′|2 dtdx. (3.26)

Indeed, the longest rays of Geometric Optics outside the control region are the ones that are tangent to S(0, r0)
and thus this observability property is a direct consequence of the Geometric Control Condition, see [1].

Of course, using a spherical harmonic decomposition for the above problem, that yields

ϕ(t, x) =
1
π

∞∑
k=1

(ψk,a(t, r) cos(kθ) + ψk,b sin(kθ)) +
1
2π
ψ̃(t, r), (t, x) ∈ (0, T ) ×A(r0, R0).

As in the previous paragraph, one easily checks that, respectively, the functions ψ̃ and (ψk,a, ψk,b)k≥1 are
solutions of (3.12) and (3.13) respectively.

Hence, one obtains that there exists a positive constant Cobs so that

1
2π
E0[ψ̃](t) +

1
π

∑
k≥1, j∈{a,b}

Ek[ψk,j ](t) ≤C2
obs

(
1
2π

∫ T∗

0

∫ R0

R1

|ψ̃′(t, r)|2r dr dt

+
1
π

∑
k≥1,j∈{a,b}

∫ T∗

0

∫ R0

R1

|ψ′
k,j(t, r)|2r dr dt

⎞
⎠ , (3.27)

where E1 is defined as in (3.16) for k = 1.
Of course, estimate (3.27) implies (3.21) with the same constants Cobs for all k ∈ N\{1}. �
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3.3.2. The case k = 1

This is the most intricate case, since here, we cannot rely directly on the analysis done on the classical wave
equation, since the structure appears as a coupling condition on the boundary. However, due to the spherical
harmonics decomposition we performed, we have reduced the problem to a 1-dimensional wave equation, for
which many tools are available.

In particular, we shall use the lateral propagation of the energy, a technique that, roughly speaking, consists
in switching the role of the time and space variables.

The proof of Proposition 3.5 requires the use of several lemmas and is postponed to the end of the paragraph.
To begin with, let us introduce the operator

A1 =

⎛
⎜⎜⎜⎝

0 Id 0 0
1
r
∂r(r∂r ·) − 1

r2
0 0 0

0 0 0 Id
0 r0Tr0 −Id 0

⎞
⎟⎟⎟⎠ , Tr0 = Trace Operator at r0,

defined in
X1 = H1

ext(r0, R0) × L2(r0, R0) × R × R,

where H1
ext(r0, R0) is the set of functions ψ ∈ H1(r0, R0) satisfying ψ(R0) = 0 endowed with the norm

‖ψ‖2
H1

ext(r0,R0) =
∫ R0

r0

r|∂rψ|2 dr

with domain

D(A1) = {(ψ0, ψ1, w0, w1) ∈ H2 ∩H1
ext(r0, R0) ×H1

ext(r0, R0) × R × R and ∂rψ
0(r0) = πw1}. (3.28)

One easily checks that this operator is skew-adjoint on X1 and with dense domain but, to justify our com-
putations, we need a slightly stronger regularity result:

Lemma 3.6. We have

D(A2
1) = {(ψ0, ψ1, w0, w1) ∈ H3 ∩H1

ext(r0, R0) ×H2 ∩H1
ext(r0, R0) × R × R,

∂rψ
0(r0) = πw1, ∂r(r∂rψ

0)(R0) = 0, ∂rψ
1(r0) = π(r0ψ1(r0) − w0)}. (3.29)

and D(A2
1) is dense in X1.

In particular, if (ψ0, ψ1, w0, w1) ∈ D(A2
1), then ψ0 ∈ C2([r0, R0]), ψ1 ∈ C1([r0, R0]) and the compatibility

conditions
∂rψ

0(r0) = πw1, ∂r(r∂rψ
0)(R0) = 0, ∂rψ

1(r0) = π(r0ψ1(r0) − w0),

are satisfied.

Proof. The proof is easy and left to the reader. �

We now focus on the observability property of (3.22). We first prove the following weaker version of the
observability property (3.23).

Lemma 3.7. For any T > 2(R1 − r0), there exists a constant Cobs such that any solution (ψ,w) of (3.22) sat-
isfies

E1[ψ,w] ≤ C2
obs

∫ T

0

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.30)
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Proof. Let us first assume that (ψ0, ψ1, w0, w1) satisfies

(ψ0, ψ1, w0, w1) ∈ D(A2
1).

This regularity allows us to justify all the computations below since by Hille–Yosida theorem, the corresponding
solution (ψ,w) of (3.22) then belongs to the functional space C([0, T ];D(A2

1))∩C2([0, T ];X1), which guarantees
a C2([0, T ]× [r0, R0])-smoothness on the function ψ.

Note that, by an easy density argument, it is sufficient to restrict ourselves to the proof of (3.30) for such
regular data.

Let α ∈ (0, r0) and introduce, for r ∈ (r0, R0), the following quantity:

F (r) =
∫ r−α

−r+α

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dt. (3.31)

Note that we are considering negative times. This can be done since system (3.22) is time-reversible.
Then

dF
dr

(r) =
(
r|ψ′(r − α, r)|2 + r|∂rψ(r − α, r)|2 +

1
r
|ψ(r − α, r)|2

)

+
(
r|ψ′(−r + α, r)|2 + r|∂rψ(−r + α, r)|2 +

1
r
|ψ(−r + α, r)|2

)

+
∫ r−α

−r+α

(
|ψ′(t, r)|2 + |∂rψ(t, r)|2 − 1

r2
|ψ(t, r)|2

)
dt

+ 2
∫ r−α

−r+α

(rψ′(t, r)∂rψ
′(t, r) + r∂rψ(t, r)∂rrψ(t, r)) dt

+ 2
∫ r−α

−r+α

(
1
r
ψ(t, r)∂rψ(t, r)

)
dt, (3.32)

so that

dF
dr

(r) =
(
r|ψ′(r − α, r)|2 + r|∂rψ(r − α, r)|2 +

1
r
|ψ(r − α, r)|2

)

+
(
r|ψ′(−r + α, r)|2 + r|∂rψ(−r + α, r)|2 +

1
r
|ψ(−r + α, r)|2

)

+
∫ r−α

−r+α

(
|ψ′(t, r)|2 + |∂rψ(t, r)|2 − 1

r2
|ψ(t, r)|2

)
dt

+ 2rψ′(r − α, r)∂rψ(r − α, r) − 2rψ′(−r + α, r)∂rψ(−r + α, r)

+ 2
∫ r−α

−r+α

(−rψ′′(t, r)∂rψ(t, r) + r∂rψ(t, r)∂rrψ(t, r)) dt

+ 2
∫ r−α

−r+α

(
1
r
ψ(t, r)∂rψ(t, r)

)
dt

≥ −
∫ r−α

−r+α

|∂rψ(t, r)|2dt−
∫ r−α

−r+α

1
r2

|ψ(t, r)|2dt

+
∫ r−α

−r+α

4
r
ψ(t, r)∂rψ(t, r)dt ≥ −3

r
F (r), (3.33)

where we have used successively that 2r|ψ′∂rψ| ≤ r|ψ′|2 + r|∂rψ|2,

−ψ′′(t, r) + ∂rrψ(t, r) = −1
r
∂rψ(t, r) +

1
r2
ψ(t, r),
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and ∣∣∣∣
∫ r−α

−r+α

4
r
ψ(t, r)∂rψ(t, r)dt

∣∣∣∣ ≤ 2
∫ r−α

−r+α

|∂rψ(t, r)|2 dt+ 2
∫ r−α

−r+α

1
r2

|ψ(t, r)|2 dt.

Using (3.33), one easily gets
d
dr

(
r3F (r)

) ≥ 0, r ∈ (r0, R0),

thus yielding
∀(ra, rb) ∈ [r0, R0] satisfying ra < rb , r3aF (ra) ≤ r3bF (rb). (3.34)

In particular, since r0 > 0 and R0 <∞, there exists a constant C > 0 such that

∀(ra, rb) ∈ [r0, R0] satisfying ra < rb , F (ra) ≤ CF (rb). (3.35)

Therefore, ∫ R1

r0

F (r) dr ≤ CF (R1) and F (r0) ≤ CF (R1). (3.36)

Note that

F (r0) =
∫ r0−α

−r0+α

(
r0|ψ′(t, r0)|2 + r0|∂rψ(t, r0)|2 +

1
r0

|ψ(t, r0)|2
)

dt.

According to the transmission condition on w′(t) and ∂rψ(t, r0),∫ r0−α

−r0+α

|w′(t)|2 dt =
1

π2r0

(∫ r0−α

−r0+α

r0|∂rψ(t, r0)|2 dt
)

≤ CF (r0) ≤ CF (R1). (3.37)

Now, let η = η(t) be a smooth non-negative function compactly supported in (0, r0 − α) of unit integral.
Multiplying the equation of w by η, we obtain

∫ r0−α

0

r0ψ
′(t, r0)η(t) dt =

∫ r0−α

0

η(t)w(t) dt −
∫ r0−α

0

η′(t)w′(t) dt.

Using that w(t) = w0 +
∫ t

0
w′(s) ds,

∫ r0−α

0

η(t)w(t) dt = w0 +
∫ r0−α

0

(∫ t

0

w′(s) ds
)
η(t) dt

= w0 +
∫ r0−α

0

w′(t)
(∫ r0−α

t

η(s) ds
)

dt.

Therefore, for some constant C depending on the choice of η and of r0,

|w0|2 ≤ C

(∫ r0−α

−r0+α

r0|ψ′(t, r0)|2 dt+
∫ r0−α

−r0+α

|w′(t)|2dt
)

≤ CF (r0) ≤ CF (R1). (3.38)

Estimates (3.37)−(3.38) imply

∫ r0−α

−r0+α

(|w′(t)|2 + |w(t)|2) dt ≤ CF (R1). (3.39)
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Therefore,

∫ r0−α

−r0+α

∫ R1

r0

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr

+
∫ r0−α

−r0+α

(
π|w′(t)|2 + π|w(t)|2) dt ≤ CF (R1). (3.40)

Now, let ε > 0. Then, using (3.35), there exists a constant Cε > 0 such that

F (R1) ≤ Cε

∫ R1+ε

R1

F (r) dr,

which implies that

F (R1) ≤ Cε

∫ R1+ε

R1

F (r) dr

≤Cε

∫ R1−α+ε

−R1+α−ε

∫ R1+ε

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr

≤Cε

∫ R1−α+ε

−R1+α−ε

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.41)

Of course, one also has

∫ r0−α

−r0+α

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr

≤
∫ R1−α+ε

−R1+α−ε

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.42)

Hence, using (3.40)−(3.41)−(3.42), we obtain

∫ r0−α

−r0+α

∫ R0

r0

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr

+
∫ r0−α

−r0+α

(
π|w′(t)|2 + π|w(t)|2) dt

≤ Cε

∫ R1−α+ε

−R1+α−ε

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.43)

Of course, the left hand side of (3.43) coincides with 2(r0 − α)E1[ψ,w], since the energy E1 is constant in time
for solutions of (3.22).

To sum up, we have proved that

2(r0 − α)E1(0) ≤ Cε

∫ R1−α+ε

−R1+α−ε

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr, (3.44)

for arbitrary ε > 0 and α ∈ (0, r0).
The proof of (3.44) was done only for smooth solutions (ψ,w) of (3.22) but, using Lemma 3.6, a density

argument immediately shows that it also holds for any solutions (ψ,w) of (3.22) with initial data inH1
ext(r0, R0)×

L2(r0, R0) × R
2.
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Since system (3.22) is time reversible and preserves the energy E1(t), one can do a translation in time to
obtain, for all ε > 0 and α ∈ (0, r0), the existence of a positive constant Cε,α such that all solutions of (3.22)
with initial data in H1

ext(r0, R0) × L2(r0, R0) × R
2 satisfy

E1[ψ,w] ≤ Cε

∫ 2R1+2ε−2α

0

∫ R0

R1

(
r|ψ′(t, r)|2 + r|∂rψ(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.45)

For T > 2(R1 − r0), choosing α ∈ (0, r0) and ε > 0 such that 2R1 − 2α + 2ε ≤ T , we obtain (3.30) for all
solutions (ψ,w) of (3.22). �

Let us now remove the term r|∂rψ|2 in the right hand side of (3.30):

Lemma 3.8. For any T > 2(R1 − r0), there exists a constant Cobs such that any solution (ψ,w) of (3.22)
satisfies

E1[ψ,w] ≤ C2
obs

∫ T

0

∫ R0

R1

(
r|ψ′(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.46)

Proof. Let (ψ,w) be a solution of (3.22).
Let T > 2(R1 − r0). Let ε > 0 be such that 4ε < T − 2(R1 − r0).
Multiplying the equation of ψ by rηψ where η = η(t, r) is nonnegative, compactly supported on (R1, R0] ×

(0, T ), and taking value one on (R1 + ε,R0) × (ε, T − ε), one obtains

0 =
∫ T

0

∫ R0

r0

(
ψ′′ − 1

r
∂r(r∂rψ) +

1
r2
ψ

)
rηψ drdt

= −
∫ T

0

∫ R0

r0

rη|ψ′|2 drdt −
∫ T

0

∫ R

r0

rη′ψ′ψ drdt

+
∫ T

0

∫ R0

r0

r∂rψ∂r(ηψ) drdt +
∫ T

0

∫ R0

r0

1
r
ψ2η drdt

= −
∫ T

0

∫ R0

r0

rη|ψ′|2 drdt +
1
2

∫ T

0

∫ R0

r0

rη′′|ψ|2 drdt+
∫ T

0

∫ R0

r0

rη|∂rψ|2 drdt

+
1
2

∫ T

0

∫ R0

r0

r∂r(ψ2)∂rη drdt +
∫ T

0

∫ R0

r0

1
r
ψ2η drdt

= −
∫ T

0

∫ R0

r0

rη|ψ′|2 drdt +
1
2

∫ T

0

∫ R0

r0

rη′′|ψ|2 drdt+
∫ T

0

∫ R0

r0

rη|∂rψ|2 drdt

− 1
2

∫ T

0

∫ R0

r0

|ψ|2∂r(r∂rη) drdt +
∫ T

0

∫ R0

r0

1
r
|ψ|2η drdt. (3.47)

Therefore, ∫ T−ε

ε

∫ R0

R1+ε

r|∂rψ(t, r)|2 drdr ≤ C

∫ T

0

∫ R0

R1

(
r|ψ′(t, r)|2 +

1
r
|ψ(t, r)|2

)
dtdr. (3.48)

Applying Lemma 3.7 to T̃ = T − 2ε and R̃1 = R1 + ε, estimate (3.48) implies (3.46). �

Let us now prove the following unique continuation result:

Lemma 3.9. For any T > 2(R1 − r0), if (ψ,w) is a solution of (3.22) with initial data in H1
ext(r0, R0) ×

L2(r0, R0) × R × R such that ψ′(t, r) vanishes on (0, T )× (R1, R0), then (ψ,w) vanishes identically on (0, T ).
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Proof. First remark that, multiplying (3.22) by rz′ for z ∈ C∞
c ((0, T )× [r0, R0)), we get

∫ T

0

∫ R0

r0

rψ′
(
z′′ − 1

r
∂r(r∂rz) +

z

r2

)
drdt = r0π

∫ T

0

w′(t)z′(t, r0) dt+
∫ T

0

(w′′ + w)∂rz(t, r0) dt, (3.49)

where the last integral has to be understood in the distribution sense.
Let us first set ε > 0 such that 2ε < T −2(R1− r0). Then, for f ∈ C∞

c ((R1 + ε− r0, T −R1 − ε+ r0)× (r0, R0)),
η0 ∈ C∞

c ((R1 + ε− r0, T −R1 − ε+ r0) and η1 ∈ C∞
c (R1 + ε− r0, T −R1 − ε+ r0), we define z̃ the solution of

⎧⎪⎨
⎪⎩
z̃′′ − 1

r
∂r(r∂r z̃) +

z̃

r2
= f, (t, r) ∈ (−R0, T +R0) × (r0, R0),

z̃(T +R0, r) = z̃(−R0, r) = 0, r ∈ (r0, R0),
z̃(t, r0) = η0(t), ∂r z̃(t, r0) = η1(t), t ∈ (−R0, T +R0),

corresponding to a wave equation where we have switched the role of the time and space variables. Since it
is a simple wave equation with velocity one, the solution z̃ is smooth, and compactly supported in the set
{(t, r) ∈ (−R0, T +R0) × [r0, R0], with t ∈ (R1 + ε− r, T −R1 − ε+ r)}.
Note that actually this can also be proved in the same spirit as the proof of Lemma 3.7 by showing that the
“energy” outside the set t ∈ (R1 + ε− r, T −R1 − ε+ r) at r, defined by

G(r) =

(∫ R1+ε−r

−R0

+
∫ T+R0

T−R1−ε+r

)(|∂r z̃(t, r)|2 + |z̃′(t, r)|2 + |z̃(t, r)|2) dt,

similarly as in (3.31), satisfies a differential inequality of the form ∂rG(r) ≤ CG(r) (that can be deduced
similarly as (3.33)) and the conclusion then directly comes from Gronwall’s Lemma as G(r0) = 0.
Now, if we take a smooth cut-off function χ = χ(r) taking value 1 on [r0, R1] and vanishing on [R1 + ε,R0] for
ε > 0 and ε < T − 2(R1 − r0), z(t, r) = χz̃ is a smooth function satisfying⎧⎨

⎩ z′′ − ∂rrz +
∂rz

r
= χf + f̃ , (t, r) ∈ (−R0, T +R0) × (r0, R0),

z(t, r0) = η0(t), ∂rz(t, r0) = η1(t), t ∈ (−R0, T +R0),

where f̃ = [−∂rr + ∂r

r , χ]z̃, and z ∈ C∞
c ((0, T )× [r0, R0)). We then apply identity (3.49) to z and, using ψ′ = 0

on (0, T )× (R1, R0) and the fact that f̃ is supported in (0, T ) × (R1, R1 + ε), we obtain

∫ T

0

∫ R0

r0

ψ′f drdt = r0π

∫ T

0

w′(t)η′0(t) dt+
∫ T

0

(w′′ + w)η1(t) dt,

for all f ∈ C∞
c ((R1 + ε− r0, T −R1 − ε+ r0) × (r0, R0)) and η0, η1 ∈ C∞

c ((R1 + ε− r0, T −R1 − ε+ r0). This
implies that ψ′ = 0 in D′((R1 + ε − r0, T − R1 − ε) × (r0, R0)), w′′ = 0 in D′((R1 + ε − r0, T − R1 − ε)) and
w′′ + w = 0 in D′((R1 + ε− r0, T −R1 − ε)). Thus w = 0 and w′ = 0 for t ∈ (R1 + ε− r0, T −R1 − ε).

Now, if we multiply (3.22) by rz for z ∈ C∞
c ((R1 + ε − r0, T − R1 − ε) × [r0, R0]) with ∂rz(t, r0) = 0 and

z(t, R0) = 0, we get

0 =
∫ T

0

∫ R0

r0

rψ

(
z′′ − 1

r
∂r(r∂rz) +

z

r2

)
drdt. (3.50)

Thus, for any η ∈ C∞
c (R1 + ε − r0, T − R1 − ε + r0) and χ ∈ C∞([r0, R0]) with ∂rχ(r0) = 0 and χ(R0) = 0,

taking z = ηχ, we get

0 =
∫ R0

r0

r

(∫ T

0

ηψ(t, r) dt

)(
χ′′ − 1

r
∂r(r∂rχ) +

χ

r2

)
dr.
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This means that for any η ∈ C∞
c (R1 + ε − r0, T − R1 − ε + r0), the function ψη(r) =

∫ T

0 ηψ(t, r) dt is a weak
solution of

−1
r
∂r(r∂rψη) +

1
r2
ψη = 0 in (r0, R0), ∂rψη(r0) = ψη(R0) = 0.

Hence ψη = 0 in D′(r0, R0). Since it holds for all η ∈ C∞
c (R1 + ε − r0, T − R1 − ε + r0), we have ψ = 0 in

D′((R1 + ε− r0, T −R1 − ε) × [r0, R0]).
This shows that ψ, ψ′, w, w′ identically vanish for t ∈ (R1 + ε− r0, T − R1 − ε). As the energy of (ψ,w) is

preserved in time, this concludes the proof of Lemma 3.9. �
Remark 3.10. Note that the proof of the fact that under the assumptions of Lemma 3.9, ψ′ ≡ 0 in (R1 −
r0, T −R1 + r0) × (r0, R0) can also be derived more rapidly using Holmgren’s uniqueness theorem [12]. But we
have preferred to present the above proof since in this 1d case this result can also be achieved using simple
arguments in the spirit of the ones used in Lemma 3.7.

We are now in position to remove the extra term in (3.46) and conclude the Proof of Proposition 3.5.

Proof of Proposition 3.5. We argue by contradiction. Assume that (3.23) does not hold. Then there exists a
sequence of function (ψ0,n, ψ1,n, w0,n, w1,n) such that

‖(ψ0,n, ψ1,n, w0,n, w1,n)‖H1
ext(r0,R0)×L2(r0,R0)×R×R

= 1 and lim
n→∞

∫ T

0

∫ R0

R1

|ψ′
n(t, r)|2r drdt = 0, (3.51)

where (ψn, wn) is the corresponding solution of (3.22).
Of course, assumptions (3.51) imply that, extracting subsequence if necessary,

(ψ0,n, ψ1,n, w0,n, w1,n) ⇀ (ψ0, ψ1, w0, w1) (3.52)

weakly in H1
ext(r0, R0) × L2(r0, R0) × R

2 and∫ T

0

∫ R0

R1

|ψ′(t, r)|2r drdt = 0, (3.53)

where (ψ,w) is the solution of (3.22) with initial data (ψ0, ψ1, w0, w1). By Lemma 3.9, (3.53) implies that
(ψ0, ψ1, w0, w1) = (0, 0, 0, 0) and the convergence (3.52) can be rewritten as

(ψ0,n, ψ1,n, w0,n, w1,n) ⇀ (0, 0, 0, 0) (3.54)

weakly in H1
ext(r0, R0) × L2(r0, R0) × R

2.
But (3.51) also implies that the solutions (ψn, wn) are uniformly bounded in C([0, T ];H1

ext(r0, R0)) ∩
C1([0, T ];L2(r0, R0)) × C1([0, T ]; R). Since ψn converges in the distribution sense to 0 from (3.54), ψn con-
verges to 0 weakly ∗ in C([0, T ];H1

ext(r0, R0)) ∩ C1([0, T ];L2(r0, R0)) and therefore strongly converges in
L2((0, T ) × (R1, R0)):

lim
n→∞

∫ T

0

∫ R0

R1

|ψn(t, r)|2r drdt = 0. (3.55)

But the combination of (3.51) and (3.55) is not compatible with (3.46). This proves Proposition 3.5. �

3.4. Controllability statements

We now complete the Proof of Theorem 1.2.

Proof of Theorem 1.2. Theorem 1.2 is a simple consequence of Theorems 3.2 and 3.3. �

In what follows, we explain how this result can be slightly improved to more general outer boundary by
combining it with the control results on the wave equation. However, the generalizations we provide will always
require ω to be a disc. We shall comment about the case of ω being different from a disc in Section 4.
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3.4.1. More general outer boundary: when Ω\C is a ball

If the set Ω is not a ball but the control set C is a neighborhood of ∂Ω such that Ω\C = B(0, R1), the result
of Theorem 1.2 still holds:

Theorem 3.11. Let ω = B(0, r0) as above, Ω be an open domain containing ω and C ⊂ O be a neighborhood
of ∂Ω such that Ω\C = B(0, R1) with R1 > r0. Let T > 0 satisfying (3.24).
Then system (1.4) is null-controllable at time T with controls in L2((0, T ) × C).

Sketch of the proof. We first introduce R0 > R1 such that B(0, R0) ⊂ Ω. Then we truncate the solution of (1.4)
in two parts similarly as in Theorem 1.1: one part corresponds to Ω̃ = B(0, R0), ω = B(0, r0) and the control
set C̃ = A(R1, R0), where Theorem 1.2 applies, and the second part corresponds to Ω̂ = Ω \ B(0, R1) with
a control set Ĉ = Ω̂ = Ω \ B(0, R1), which can be easily controlled since the control acts everywhere in the
domain Ω̂.

We then glue these two controls similarly as in Theorem 1.1. �

3.4.2. More general outer boundary and control set C
Theorem 3.11 can be extended to more general control sets C which need not contain an entire neighborhood

of the outer boundary.
In order to describe our results precisely, we shall introduce generalized bicharacteristic rays.
In order to do this, we assume that ∂Ω has no contact of infinite order with its tangent and set M =

(−∞,∞) × Ω and ∂M = (−∞,∞) × ∂Ω, and T ∗M , T ∗∂M their respective cotangent bundles. Set then
T ∗

b M = T ∗M ∪ T ∗∂M and endow it with the topology induced by the canonical projection π of T ∗M on T ∗
b M .

We then introduce Σb = π({ρ = (t, x, τ, ξ) ∈ T ∗(R3), such that τ2 = |ξ|2 	= 0}), i.e. the projection of the
characteristic manifold for the wave operator on T ∗

b M .
The bicharacteristic rays are continuous curves γ : R → Σb such that

• if γ(s0) = (t(s0), x(s0), τ(s0), ξ(s0)) ∈ T ∗M ∩ Σb, then γ is differentiable at s0 and satisfies dγ
ds (s0) =

H�(γ(s0)), where H� is the Hamiltonian vector field of the operator � = ∂tt −Δ whose principal symbol is
−τ2 + |ξ|2.

• If γ(s0) = (t(s0), x(s0), τ(s0), ξ(s0)) ∈ T ∗∂M ∩Σb, i.e. when x(s0) ∈ ∂Ω, the behavior of the curve γ near s0
strongly depends on the geometry of the boundary (depending especially if γ(s0) is hyperbolic or glancing).
We refer to [15] for a precise description of the broken Hamiltonian flow close to T ∗∂M .

Note that, in the above construction, we completely omit the rigid body ω within the description of the
bicharacteristic rays. This is due to the fact that we do not have any precise description of the propagation of
the bicharacteristic rays close to the body ω = B(0, r0). Therefore, we will introduce a parameter ε > 0 and
consider only bicharacteristic rays whose projection on the physical space s �→ x(s) stays outside B(0, r0 + ε),
at least during a certain amount of time, see Theorem 3.12 below.

Let us also remark that in our case, for (t0, x0, τ0, ξ0) ∈ T ∗M ∩ {|τ0|2 = |ξ0|2 	= 0}, the bicharacteristic ray
starting from (t0, x0, τ0, ξ0) simply is, locally around s = 0, γ : s �→ (t0 − 2τ0s, x0 + 2ξ0s, τ0, ξ0), which can be
parametrized by the time t and whose projection on the physical space simply is t �→ x(t) = x0 − ζ0t, where
ζ0 = ξ0/τ0 is a vector of unit norm. Hence these rays travel at velocity one in Ω and correspond (in Ω) to the
classical rays of geometric optics.

Using this remark and the precise description [15] of the broken Hamiltonian flow on T ∗
b M for x in a neigh-

borhood of ∂Ω, the bicharacteristic rays are actually defined up to re-parametrization on SΣ = Σb/ ∼ where
the quotient is taken with respect to the relation ρ1 = (t1, x1, τ1, ξ1) ∼ ρ2 = (t2, x2, τ2, ξ2) if (t1, x1) = (t2, x2)
and there exists α ∈ R

∗
+ such that (τ1, ξ1) = α(τ2, ξ2). Indeed, if two bicharacteristic rays γ1, γ2 are in the

same equivalence class for some s1, s2, i.e. γ1(s1) ∼ γ2(s2) which means in particular (τ1, ξ1) = α(τ2, ξ2) for
some α > 0, then for all s ∈ R, γ1(s) = γ2(g(s)), where g(s) = s2 + α(s − s1). In the following, all bichar-
acteristic rays may simply be parametrized by the time t by imposing the additional constraint |τ0| = 1/2 as
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∂Ω

ω

Figure 4. A geometric setting which satisfies the geometric control condition of Theorem 3.12:
C is the set in black. A disk B(0, r0 + ε) satisfying the assumptions is drawn in dot lines. The
x-projection of a generalized bicharacteristic ray is drawn.

t �→ γ(t) = (t, x(t), τ(t), ξ(t)) ∈ Σb if τ0 = −1/2, and as t �→ γ(t) = (−t, x(t), τ(t), ξ(t)) ∈ Σb if τ0 = 1/2. (Note
that, along these bicharacteristic ray, t �→ τ(t) is constant and |ξ0| = 1/2).

Note that the above identification preserves the orientation of the bicharacteristic rays. But, if we do not
care about the orientation of the rays, remark then that for any γ0 = (t0, x0, τ0, ξ0) ∈ T ∗

b M ∩ Σb with t0 = 0,
τ0 = 1/2 = |ξ0|, denoting t �→ γ(t) = (t, x(t), τ(t), ξ(t)) the bicharacteristic ray starting from γ0, the set
{(t, x(t)), t ∈ R} coincide with the set {(t, x̃(t)), t ∈ R}, where γ̃ : t �→ γ̃(t) = (t, x̃(t), τ(t), ξ(t)) is the
bicharacteristic ray starting from (0, x0,−τ0,−ξ0), the only difference between γ and γ̃ being their orientation:
γ is parametrized forward in time while γ̃ is parametrized backward in time.

We are then in position to state the following result:

Theorem 3.12. Let ω = B(0, r0), Ω be a smooth open domain such that ω ⊂ Ω and assume that C is an open
subset of O = Ω\B(0, r0) such that for some ε > 0,

(H1) B(0, r0 + ε) ⊂ Ω and C ⊂ Ω \B(0, r0 + ε);
(H2) ∂Ω has no contact of infinite order with its tangents.
(H3) There exists T ε

0 > 0 such that the following geometric condition is satisfied:
For all generalized bicharacteristic rays γ : R → Σb, t �→ γ(t) = (t, x(t), τ(t), ξ(t)) starting from
(t0, x0, τ0, ξ0) ∈ T ∗

b M ∩ Σb with t0 = 0, x0 /∈ B(0, r0 + ε) and −τ0 = |ξ0| = 1/2, there exists a
neighborhood (−T−, T+) ⊂ (−T ε

0 , T
ε
0 ) of 0 such that for all t ∈ (−T−, T+), x(t) ∈ Ω \ B(0, r0 + ε) and

C ∩ {x(t), t ∈ (−T−, T+)} 	= ∅.
Then system (1.4) is null-controllable with controls in L2((0, T ) × C) in any time T satisfying T > 2T ε

0 +
2
√

(r0 + ε)2 − r20 .

Condition (H3) can be interpreted as follows: for each generalized bicharacteristic, there is a direction of time
t such that the bicharacteristic ray meets C before meeting B(0, r0 + ε) and in a time interval of length < T ε

0 .
Figure 4 provides an example satisfying the geometric conditions of Theorem 3.12. Figure 4 also presents a

ray of geometric optics for which only one direction of time meets the control region without entering the ball
B(0, r0 + ε).



570 S. ERVEDOZA AND M. VANNINATHAN

Proof. Let ε > 0 be such that B(0, r0 + ε) ⊂ Ω and C ⊂ Ω\B(0, r0 + ε). From Theorem 3.11, we have a
controllability result, hence an observability result according to [13], from the set Ω \ B(0, r0 + ε): for any
Tε > 2

√
(r0 + ε)2 − r20 , there exists a constant Cobs,ε > 0 such that

‖(ϕ0, ϕ1, w0, w1)‖2
H1

ext(O)×L2(O)×(R2)2 ≤ C2
obs,ε

∫ Tε

0

∫
Ω\B(0,r0+ε)

χ2
|x|>r0+ε|ϕ′(t, x)|2 dtdx, (3.56)

where (ϕ,w) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′′ −Δϕ = 0, (t, x) ∈ (0, T )×O,
ϕ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
∂nϕ(t, x) = w′ · n, (t, x) ∈ (0, T )× S(0, r0),

w′′ + w = −
∫

S(0,r0)

ϕ′n dσ, t ∈ (0, T ),

(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1),
(w(0), w′(0)) = (w0, w1).

(3.57)

Assume now that the control set C satisfies the geometric Condition (H3) of Theorem 3.12 in time T ε
0 .

Under this assumption, using the results of propagation of singularity for the waves ([3, 4]), a contradiction
argument based on (3.56) yields that any solution (ϕ,w) of (3.57) satisfies, for any T > 2T ε

0 +2
√

(r0 + ε)2 − r20 ,

‖(ϕ0, ϕ1, w0, w1)‖2
H1

ext(O)×L2(O)×(R2)2 ≤ C2
obs

∫ T

0

∫
C
χ2
C |ϕ′(t, x)|2 dtdx. (3.58)

Indeed, assume that (3.58) is false. Then there exists a sequence (ϕn, wn) of solutions of (3.57), with initial
data (ϕn

0 , ϕ
n
1 , w

n
0 , w

n
1 ) of unit norm in H1

ext(O) × L2(O) × (R2)2 for which (ϕn)′ converges to 0 strongly in
L2((0, T )×C). Of course, extracting sequences if needed, (ϕn

0 , ϕ
n
1 , w

n
0 , w

n
1 ) weakly converges to (Φ0, Φ1,W0,W1)

in H1
ext(O)×L2(O)× (R2)2, and the corresponding solution (Φ,W ) to (3.57) is such that Φ′ vanishes identically

on (0, T )× C.
Using Holmgren’s uniqueness theorem [12] (see also [13], Chap. 1, Sect. 8 for more precisions), one thus

gets Φ′ = 0 on (T ε
0 , T − T ε

0 ) × (Ω\B(0, r0 + ε)). At this stage, let us emphasize that Holmgren’s uniqueness
theorem is a local argument of “propagation of zero”: it can thus be applied in the set {(t, x) ∈ (0, T ) ×
Ω\B(0, r0 + ε), with d(x, C) + |t− T/2| ≤ T/2}, where the distance is the geodesic distance on Ω\B(0, r0 + ε).
This set contains (T ε

0 , T − T ε
0 ) × (Ω\B(0, r0 + ε)) according to assumption (H3).

Remark then that, since (3.57) is autonomous, that is time-translation invariant, the observability esti-
mate (3.56) is valid over any interval of observability of length > 2

√
(r0 + ε)2 − r20 . Thus, applying (3.56), Φ

and W vanishes identically everywhere.
Hence the sequence (ϕn, wn) weakly converges to (0, 0) in H1((0, T )×O) ×H1(0, T ; R2) and (ϕn)′ strongly

converges to 0 in L2((0, T ) × C). Hence the micro-local defect measures μ = μ(t, x, τ, ξ) of the sequence (ϕn)′

vanishes identically on (0, T ) × C × ((R3 \ {0}) ∩ {|τ | = |ξ| = 1/2}). According to the propagation of the
singularities for the waves [3, 4, 11], μ is constant along the bicharacteristics whose projection in the physical
space stays outside B(0, r0 + ε), and thus μ identically vanishes for (t, x) ∈ (T ε

0 , T − T ε
0 ) × (Ω\B(0, r0 + ε)).

This implies that (ϕn)′ strongly converges to 0 on (T ε
0 , T −T ε

0 )× (Ω\B(0, r0 + ε)), which contradicts (3.56) and
the fact that (ϕn

0 , ϕ
n
1 , w

n
0 , w

n
1 ) is of unit norm in H1

ext(O) × L2(O) × (R2)2.
One then immediately deduce Theorem 3.12 from (3.58) and Theorem 3.2. �

3.5. Boundary controllability

Let us now briefly explain what can be said about the case of an observation/control from the external
boundary S(0, R0), still in the radial case. Again, the crucial step of our results is an observability result,
similar to Theorem 3.3.
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Indeed, the Proof of Theorem 3.3 can be modified easily to deal with an observation on the external boundary:

Theorem 3.13. Let r0 < R0 and set ω = B(0, r0), O = A(r0, R0).
Let T be such that

T > 2
√
R2

0 − r20 . (3.59)

Then there exists a constant Cobs such that all solutions (ϕ,w) of (3.7) with initial data in H1
ext(A(r0, R0)) ×

L2(A(r0, R0)) × (R2)2 satisfy

‖(ϕ0, ϕ1, w0, w1)‖2
H1

ext(A(r0,R0))×L2(A(r0,R0))×(R2)2 ≤ C2
obs

∫ T

0

∫
S(0,R0)

|∂nϕ(t, x)|2 dtdσ. (3.60)

Sketch of the proof. The proof is similar to that of Theorem 3.3: it relies on the spherical harmonics decompo-
sition to allow to consider only the boundary observability of the equations (3.20) and (3.22).

Of course, still using [1], Proposition 3.4 can be replaced by the following one:

Proposition 3.14. For any time T satisfying (3.59), there exists a constant Cobs so that for all k ∈ N\{1},
solutions ψk of (3.20) satisfy

Ek[ψk] ≤ C2
obs

∫ T

0

R0|∂rψk(t, R0)|2 dt. (3.61)

And again, using the lateral propagation of the energy, one derives:

Proposition 3.15. For any T > 2(R0 − r0), there exists a constant Cobs such that any solution (ψ,w)
of (3.22) satisfies

E1[ψ,w] ≤ C2
obs

∫ T

0

R0|∂rψ1(t, R0)|2 dt. (3.62)

Actually, the proof of Proposition 3.15 is even simpler than that of Proposition 3.5 since it reduces to the lateral
propagation of the energy argument developed in Lemma 3.7. This follows from the fact that

F (R0) =
∫ R0−α

−R0+α

R|∂rψ(t, R0)|2 dt

precisely coincides with the observed quantity and then (3.40) with R1 = R0 immediately yields (3.62). In
particular, Lemmas 3.8 and 3.9 are not needed in that case of boundary observation. �

Once observability is established, using the Hilbert Uniqueness Method introduced in [13], one can prove a
boundary controllability result similar to Theorem 1.2.

But before stating this result, one should explain what is the functional setting for the Cauchy problem
associated to non-homogeneous boundary conditions on the outer boundary ∂Ω:
Theorem 3.16 ([18]). Let H1

ext(O)∗ be the dual of H1
ext(O). Define Y as the completion of H1

ext(O)×L2(O)×
(R2)2 with respect to the norm

‖(y0, y1, s0, s1)‖2
Y = ‖y0‖2

L2(O) + ‖y1‖2
H1

ext(O)∗ + |s0|2 +
∣∣∣∣s1 +

∫
∂ω

y0n dσ
∣∣∣∣
2

. (3.63)

For any (y0, y1, s0, s1) ∈ Y and f ∈ L2((0, T ) × ∂Ω), there exists a unique solution (y, s) of⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y′′ −Δy = 0, (t, x) ∈ (0, T ) ×O,
y(t, x) = f, (t, x) ∈ (0, T ) × ∂Ω,
∂ny(t, x) = s′ · n, (t, x) ∈ (0, T ) × ∂ω,

s′′ + s = −
∫

∂ω

y′n dσ, t ∈ (0, T ),

(y(0, ·), y′(0, ·)) = (y0, y1),
(s(0), s′(0)) = (s0, s1).

(3.64)

in the transposition sense satisfying (y, y′, s, s′) ∈ C([0, T ];Y ).
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Besides, there exists a constant C such that

sup
t∈[0,T ]

‖(y(t), y′(t), s(t), s′(t))‖Y ≤ C
(
‖f‖L2((0,T )×∂Ω) + ‖(y0, y1, s0, s1)‖Y

)
. (3.65)

The proof is done by duality as in the context of the non-homogeneous wave equation (see [13]). It is then based
on hidden regularity results that are easy to adapt from the ones obtained for the classical waves in [13]. To be
more precise, these results state that, given a solution of the wave equation in the energy space H1

0 (O)×L2(O),
the normal derivative on the boundary lies in L2((0, T )×O) (note that this is not a consequence of the classical
Sobolev embeddings). Here, there is an additional difficulty which consists in identifying the dual of the energy
space H1

ext(O)×L2(O)× (R2)2 when L2(O) is identified with its dual. This difficulty has been raised and solved
in [18] where it is shown that it can be identified with the space Y defined in Theorem 3.16.

We now state the following counterpart of Theorem 3.2:

Theorem 3.17. Assume that T > 0 is such that the observability property

‖(ϕ0, ϕ1, w0, w1)‖2
H1

ext(O)×L2(O)×(R2)2 ≤ C2
obs

∫ T

0

∫
∂Ω

|∂nϕ(t, x)|2 dtdσ

holds for all solutions of (1.12).
Then, given any initial data (y0, y1, s0, s1) ∈ Y , there exists a control function f ∈ L2((0, T )× ∂Ω) such that

the corresponding solution (y, s) of (3.64) satisfies the null-controllability requirement (1.5).
Besides, it can be computed as follows. Let us define the functional J on H1

ext(O) × L2(O) × (R2)2 by

J(ϕ0, ϕ1, w0, w1) =
1
2

∫ T

0

∫
∂Ω

|∂nϕ(t, x)|2 dtdσ

− 〈y1, ϕ0〉H1
ext(O)∗,H1

ext(O) +
∫
O
ϕ1y0 (3.66)

+ s0 ·
(∫

∂ω

ϕ0n dσ + w1

)
− w0 ·

(
s1 +

∫
ω

y0n dσ
)
.

The functional J has a unique minimizer (ϕ̃0, ϕ̃1, w̃0, w̃1) in H1
ext(O) × L2(O) × (R2)2. Denoting by (ϕ̃, w̃) the

corresponding solution of (3.7), the function

f(t, x) = ∂nϕ̃(t, x), (t, x) ∈ (0, T )× ∂Ω, (3.67)

is an admissible control function for (3.64).
Moreover, it has minimal L2((0, T ) × ∂Ω)-norm among all admissible controls for (3.64).

Such Theorem is classical and we refer to [13] for its proof, which can also be done similarly as Theorem 3.2.
Combining Theorems 3.17 with the observability results stated in Theorem 3.13, we obtain:

Theorem 3.18. Let r0 < R0 and set ω = B(0, r0), O = A(r0, R0), Ω = B(0, R0). Let T > 0 satisfying (3.59).
Then system (3.64) is exactly controllable at time T through the outer boundary ∂Ω = S(0, R0), that is: given any
initial data (y0, y1, s0, s1) ∈ Y , there exists a control function f ∈ L2((0, T ) × ∂Ω) such that the corresponding
solution (y, s) of (3.64) satisfies the null-controllability requirement (1.5).

Of course, similarly as in the distributed case handled in Section 3.4, one can consider more general outer
boundaries using the propagation of singularity derived in [2, 4]. Statements are left to the reader.
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3.6. Homogeneous Neumann boundary conditions on the external boundary

The model under consideration is also relevant with Neumann boundary conditions ∂ny = 0 on the external
boundary ∂Ω. In this case, when the control set C is a neighborhood of the whole external boundary ∂Ω, one
can easily derive the same control results as in the case of Dirichlet boundary conditions by a simple gluing
argument in the spirit of Theorem 3.11: one would then obtain control results with control in L2((0, T )×C) for
data in H1(O) × L2(O) × (R2)2 under the same conditions on the time and on the control set. But to handle
situations where the control set C does not necessarily contain an entire neighborhood of ∂Ω, one should be
careful in the duality between observability and controllability and explain the counterpart of Theorem 3.2 in
this case.

We suggest using the following duality argument: f ∈ L2((0, T )×C) is a control for (y0, y1, s0, s1) ∈ H1(O)×
L2(O) × (R2)2, that is the solution (y, s) of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′ −Δy = fχC, (t, x) ∈ (0, T ) ×O,
∂ny(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

∂ny(t, x) = s′ · n, (t, x) ∈ (0, T ) × ∂ω,

s′′ + s = −
∫

∂ω

y′n dσ, t ∈ (0, T ),

(y(0, ·), y′(0, ·)) = (y0, y1),
(s(0), s′(0)) = (s0, s1),

(3.68)

satisfies (1.5), if and only if for all (ϕ0, ϕ1, w0, w1) ∈ H1(O)×L2(O)× (R2)2 and m ∈ R, the solution (ϕ,w) of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′′ −Δϕ = −m, (t, x) ∈ (0, T )×O,
∂nϕ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

∂nϕ(t, x) = w′ · n, (t, x) ∈ (0, T )× ∂ω,

w′′ + w = −
∫

∂ω

ϕ′n dσ, t ∈ (0, T ),

(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1),
(w(0), w′(0)) = (w0, w1).

(3.69)

satisfies

0 =
∫ T

0

∫
C
χCfϕ′ +m

∫
O
y0 +

∫
O
∇ϕ0 · ∇y0 +

∫
O
ϕ1y1 + (s0 · w0 + s1 · w1) . (3.70)

Of course, this equivalence is the counterpart of the necessary and sufficient condition (3.6). Note however that we
have introduced a source termm in the adjoint equation (3.69). This is due to the fact that ‖∇y0‖L2 is not a norm
on H1(O) and we shall instead propose the norm ‖∇y0‖L2 + | ∫O y0|. Also remark that replacing ϕ0 by ϕ0 +c for
constants c ∈ R, the solution of (3.69) is modified into ϕ+c instead of ϕ, but ϕ′ is not modified by a constant shift
on ϕ0. Therefore solutions (ϕ,w) of (3.69) are given in C([0, T ];H1(O)/R) ∩ C1([0, T ];L2(R)) × C1([0, T ]; R2)
for initial data (ϕ0, ϕ1, s0, s1) ∈ H1(O)/R×L2(R)× (R2)2 and source term m ∈ R, where H1(O)/R is the space
H1(O) quotiented by constants.

Hence, f ∈ L2((0, T )× C) is a control for (y0, y1, s0, s1) ∈ H1(O) × L2(O) × (R2)2 if and only if (3.70) holds
for all solutions (ϕ,w) of (3.69) with initial data (ϕ0, ϕ1, w0, w1) ∈ H1(O)/R ×L2(O)× (R2)2 and source term
m ∈ R.

Similarly as in Theorem 3.2, we thus obtain that system (3.69) is controllable at time T > 0 if and only if
there exists a constant C such that for all (ϕ0, ϕ1, w0, w1) ∈ H1(O)/R×L2(O)× (R2)2 and m ∈ R, the solution
(ϕ,w) of (3.69) satisfies

‖(ϕ0, ϕ1, w0, w1)‖H1(O)/R×L2(O)×(R2)2 + |m| ≤ C ‖ϕ′‖L2((0,T )×C) .

Based on this equivalence, one easily checks that Theorem 3.12 with the same assumptions also holds for the
controlled system (3.68) as ϕ′ still solves the wave equation (ϕ′)′′ −Δ(ϕ′) = 0 in O.



574 S. ERVEDOZA AND M. VANNINATHAN

4. Further comments and open problems

1. In Section 3.2, we have shown that in the radial case, system (3.7) can be completely decoupled when
decomposing it into spherical harmonics. To be more precise, the modes k 	= 1 simply satisfy the classical
wave equation ⎧⎪⎨

⎪⎩
ϕ′′ −Δϕ = 0, (t, x) ∈ (0, T )×A(r0, R0),
ϕ(t, x) = 0, (t, x) ∈ (0, T )× S(0, R0),
∂nϕ(t, x) = 0, (t, x) ∈ (0, T )× S(0, r0),
(ϕ(0, ·), ϕ′(0, ·)) = (ϕ0, ϕ1),

(4.1)

Therefore, if for some θ0 ∈ (0, π), the control region is of the form

C = {(r, θ), r ∈ (R1, R0), |θ| ≤ θ0},
we can construct a solution which concentrates on the ray θ = π, r ∈ (r0, R) and violates the observability
inequality (1.13). We refer to [17] (see also [3]) for such an explicit construction. Note that since the Hilbert
Uniqueness Method proves the equivalence between the null-controllability property for (1.4) and the ob-
servability of the adjoint system (1.12), see [13], this counterexample to observability also shows that the
corresponding controlled system is not null-controllable.

2. The above counterexample seems to indicate that the case of two structures in the domain Ω and of a control
set on the outer boundary ∂Ω is non-controllable. Indeed, we conjecture that the required observability
inequality could then be disproved by the existence of a suitable solution of the adjoint equation localized
around the ray trapped between the two structures. But such construction should be done carefully due to
the non-trivial boundary conditions on the fluid-solid interface.

3. Note that system (1.4) fits the abstract setting stated in [9]. Hence, similarly as for the wave equation,
provided the localizing function χC is smooth, the controls constructed by the Hilbert Uniqueness Method
preserves the regularity of the data to be controlled, see [9] for precise statements. We expect this to be
relevant in particular when trying to adapt our results to more complex settings involving, for instance,
nonlinearities (see [7]) or discrete controls (see [10]).

4. Except for Section 2, our results all concern the case ω = B(0, r0). Indeed, due to our strategy, our results
do not apply when the structure ω is not a disk. In particular, even when ω is convex, in which case it is
non-trapping, the controllability of system (1.4) through its outer boundary is completely open.
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