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DUAL-WEIGHTED GOAL-ORIENTED ADAPTIVE FINITE ELEMENTS
FOR OPTIMAL CONTROL OF ELLIPTIC VARIATIONAL INEQUALITIES ∗
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Abstract. A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of
optimal control problems for elliptic variational inequalities is studied. The development is based on
the concept of C-stationarity. The overall error representation depends on primal residuals weighted by
approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also,
a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical
realization of the adaptive concept are provided and a report on numerical tests including the critical
cases of biactivity are presented.
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1. Introduction

In this paper we study goal-oriented adaptive finite element methods for a class of optimal control problems
with variational inequality constraints. The latter problem class falls into the broader category of mathematical
programs with equilibrium constraints, or MPECs for short, which, due to constraint degeneracy, cannot be
treated by qualified Karush-Kuhn-Tucker-type theory for the derivation of stationarity systems; see [28, 35] in
finite dimensions and [4, 30, 31, 33] in function space. The associated difficulties result from so-called biactiv-
ities in a regular setting, i.e. a situation where certain multipliers admit a pointwise interpretation, or – in
the terminology of optimal control – the fact that the control-to-state mapping is in general only directionally
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differentiable. The latter fact renders the problem under investigation non-convex and non-differentiable. This
structural property is responsible not only for the aforementioned theoretical challenges in describing stationar-
ity, but it also causes problems in the design of reliable solution algorithms; see, e.g., the discussion in [14,25,35]
in finite dimensions and [20–22] in function space.

As our underlying problem class is originally posed in function space, the need for discretization for its
numerical realization arises naturally. In this context one is interested in obtaining a specified accuracy in
the approximate solution or a pre-defined target quantity by the least possible computational effort. Besides the
development of efficient solvers, this concerns in particular the design of adaptive finite element methods for the
discretization of the continuous problem or stationarity system. Based on a suitable error estimator or indicator,
the latter technique aims at refining the discretization locally only in regions with large errors while keeping
elements coarse wherever possible. This procedure ideally minimizes the degrees of freedom for computing an
approximate solution to the original problem in order to achieve a user-specified accuracy.

Over the years different approaches to adaptive finite element methods (AFEMs) for the numerical treatment
of partial differential equations have been studied. Here we only refer to the monographs [8, 11, 37, 42] and the
many references therein. By now, a high level of sophistication has been reached. In contrast to this development,
AFEM for elliptic variational inequalities, though well investigated, has not yet reached a comparable level;
see [5, 6, 9, 19, 24, 34, 41] and the references therein. This is due to the presence of the coincidence or active set
with respect to the solution of the variational inequality, which, in general, causes a non-smooth dependence
of the solution on the data and, thus, complicates the numerical treatment significantly. Recently, AFEM
was successfully carried over to control and/or state constrained optimal control problems (not MPECs!);
compare [10, 15–18, 29, 39, 43]. In particular, in [10, 15–18, 43] the dual-weighted residual (DWR) approach
to goal-oriented adaptivity, which was pioneered by [7] (see also the monograph [8]), was extended to the
discretization of control and/or state constrained optimal control problems with partial differential equation
constraints.

In the present paper, we develop a goal-oriented mesh refinement technique in the spirit of the DWR approach
for the adaptive discretization of MPECs in function space. Based on the notion of a modified Lagrangian
function associated with the MPEC or more precisely mathematical program with complementarity constraints
(MPCC, for short), the so-called MPCC-Lagrangian, an error estimator (indicator) is derived which involves
primal residuals weighted by dual variables and vice versa as well as error terms covering the mismatch in
complementarity. The latter error indicators are relevant in the location of the coincidence sets which arise
due to the variational inequality constraint. Finally, we point out that the literature on goal-oriented mesh
adaptivity for MPCCs or MPECs in function space, and in particular for the problem class under investigation,
appears essentially void.

The rest of this text is organized as follows. In Section 2 we outline the problem class under consideration
in the original continuous form and also in its discrete version, and provide basic assertions as optimality
systems and a priori estimates. Section 3 gives an error representation, which turns out to be a combination
of weighted residuals and products reflecting the mismatch in complementarity. Although this representation
is not an estimator, i.e., it depends on the (unknown) solutions of the continuous problem, it guides a way to
an a posteriori error indicator. In Section 4, we derive fully a posteriori indicators for the error contribution
on every element of the discretization. The last Section 5 provides the basic algorithms used in our numerical
solver and reports on numerical results for some test problems.
Notation. Throughout this text, let Ω ⊂ R

n be a bounded domain with ∂Ω denoting its boundary. We write
(z, w)0,Ω for the canonical scalar product in the Lebesgue space L2(Ω), and ‖·‖0,Ω for the induced norm. For
n ∈ {1, 2, 3}, H1(Ω) is the Sobolev space of L2(Ω)-functions with gradients in L2(Ω)n and H1

0 (Ω) := {y ∈
H1(Ω) | y|∂Ω = 0} endowed with the norm ‖z‖1,Ω := ‖∇z‖0,Ω.

For a function z ∈ H1(Ω) and a set ω ⊂ Ω̄, we say that z|ω ≥ 0 in the sense of H1(Ω), if there exists a
sequence (zn)n∈N ⊂ W 1,∞(Ω) such that for all x ∈ ω, zn(x) ≥ 0 and zn → z in H1(Ω). Whenever ω = Ω,
then we simply write y ≥ 0. With this definition, the relations “≤” and “=” on subsets of Ω̄ can be defined
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canonically on H1(Ω) (cf. [26], p. 35). For the relation of non-negativity in the sense of H1(Ω) and the notion
of non-negativity in the almost everywhere sense we refer to ([26], Prop. II.5.2). We abbreviate, for example,
{z ≥ 0} := {x ∈ Ω | z(x) ≥ 0} and, for functions z ∈ L2(Ω), the above set is defined only up to a set of measure
zero.

The dual space of H1
0 (Ω) is denoted by H−1(Ω), and for λ ∈ H−1(Ω) and z ∈ H1

0 (Ω) the dual pairing
is written as 〈λ, z〉−1,1,Ω := λ(z). For functionals z ∈ H−1(Ω) and a subset ω ⊂ Ω, we write z|ω = 0, if
∀φ ∈ H1

0 (Ω) with φ|Ω\ω = 0, it holds that 〈z, φ〉−1,1,Ω = 0, and we write z|ω ≥ 0, if ∀φ ∈ H1
0 (Ω) with φ|Ω\ω = 0

and φ|Ω\ω ≥ 0, it holds that 〈z, φ〉−1,1,Ω ≥ 0.
In the rest of the paper, we simply use the symbol “≥”. For L2(Ω)-functions it refers to “≥” in the almost

everywhere (a.e.) sense, for H1(Ω)-functions and H−1(Ω)-objects it is to be understood in the respective sense
as described above. In particular, for λ ∈ H−1(Ω), λ ≥ 0 refers to 〈λ, z〉1,−1,Ω ≥ 0 for all z ∈ H1

0 (Ω).

2. Statement of the problem and stationarity

2.1. Problem definition

We consider the optimal control problem with a variational inequality constraint given by

Minimize J(y, u) :=
1
2
‖y − yd‖2

0,Ω +
ν

2
‖u‖2

0,Ω (2.1a)

over (y, u) ∈ H1
0 (Ω) × L2(Ω), (2.1b)

subject to y ≥ 0, (2.1c)
∀z ∈ H1

0 (Ω), z ≥ 0, a(y, z − y) ≥ (u+ f, z − y)0,Ω , (2.1d)

i.e. we minimize an objective functional J(y, u) depending on a state variable y ∈ H1
0 (Ω) with homogeneous

Dirichlet boundary conditions and a control variable u ∈ L2(Ω), both defined on a bounded domain Ω ⊂ R
n,

n ∈ {1, 2, 3}. The given function yd ∈ L2(Ω) is the desired state and ν > 0 is the cost of the control action.
The constraint involves on the one hand an obstacle ψ ≡ 0 which bounds the state y from below, i.e., y ≥ 0,

and on the other hand a bounded, H1
0 (Ω)-elliptic bilinear form a : H1

0 (Ω) × H1
0 (Ω) → R which describes

the influence of forces, such as the fixed volume force f ∈ L2(Ω) and the action of the control u, applied to
the state y. We mention that (2.1) models the control of the deflection (y from an equilibrium) of a membrane
covering the domain Ω (and fixed on the boundary ∂Ω), under a given loading f and a fixed rigid obstacle
ψ ≡ 0 yielding y ≥ ψ ≡ 0, towards a desired displacement profile yd, where ν > 0 reflects the L2(Ω)-averaged
cost of the control action. This model can be seen as a simplified version of a control problem for the contact
of an elastic body with a rigid obstacle.

The existence of a solution to problem (2.1) can be shown by arguments based on infimizing sequences; see,
e.g., [4, 32].

Remark 2.1. We note that considering ψ ≡ 0 does not imply restrictions with respect to the choice of the
obstacle aside from H1

0 (Ω)-regularity.

In the formulation of the first order optimality system and in the numerical solver for the optimal control
problem, a reformulation of the variational inequality (2.1d) by means of an additional slack variable ξ is
considered. For this purpose, let y ∈ H1

0 (Ω), y ≥ 0 and u ∈ L2(Ω), and introduce the operator A : H1
0 (Ω) →

H−1(Ω) which satisfies a(y, z) = 〈Ay, z〉−1,1,Ω for all y, z ∈ H1
0 (Ω) as well as a slack variable ξ ∈ H−1(Ω) as

follows,
ξ := Ay − u− f ∈ H−1(Ω).

Then, (2.1c)−(2.1d) is equivalent to

y ≥ 0, ξ ≥ 0 and 〈ξ, y〉−1,1,Ω = 0.



ADAPTIVITY IN OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES 527

Thus, for given data f, yd ∈ L2(Ω) on a domain Ω and ν > 0, problem (2.1) can be rewritten as an optimal
control problem with a partial differential equation and a complementarity constraint as follows: find a solution
(y, u, ξ) ∈ H1

0 (Ω) × L2(Ω) ×H−1(Ω) to the problem

Minimize J(y, u) =
1
2
‖y − yd‖2

0,Ω +
ν

2
‖u‖2

0,Ω (2.2a)

subject to a(y, z) = (u+ f, z)0,Ω + 〈ξ, z〉−1,1,Ω, ∀z ∈ H1
0 (Ω), (2.2b)

y ≥ 0 in H1
0 (Ω), ξ ≥ 0 in H−1(Ω) and 〈ξ, y〉−1,1,Ω = 0. (2.2c)

Due to the complementarity structure of (2.2c) we call (2.2) a mathematical program with complementarity
constraints, or an MPCC, for short.

Remark 2.2 (regularity of the data). In the situation of ([38], Prop. 5:2.2), where A : W → V ′ represents
a strictly T-monotone operator, we set W = H1

0 (Ω), which is a vector lattice and embeds continuously into
H = L2(Ω), and V ′ = H−1(Ω). Then we have ‖Ay�‖0,Ω ≤ CR(Ω)(‖f‖0,Ω + ‖u�‖0,Ω) for the solution y� of the
variational inequality in (2.1d) with control variable u� ∈ L2(Ω). Thus, if for instance A = −Δ on a convex
domain Ω (or a domain with boundary ∂Ω of class C1,1), then y� ∈ H1

0 (Ω) ∩ H2(Ω) (cf. [38], Cor. 5:2.3).
Moreover, in the reformulation resulting in the linear complementarity problem (2.2b)–(2.2c) it holds that
ξ� ∈ L2(Ω).

2.2. Stationarity conditions

In the error analysis in Section 3, we use stationarity conditions which are weaker than those stated in [32], but
yet much stronger than those obtained in [4]. While one can guarantee strong stationarity for a solution of (2.2)
according to [32], here we only use the weaker notion of C(larke)-stationarity of the solution as only C-stationary
points can usually be obtained with guarantee by current state-of-the-art solution algorithms, see [21, 23, 27].
For the aforementioned categorization of stationarity in function space, we refer to [21]. Obviously, the available
stationarity condition is also essential for the development of a posteriori error estimators. For a more general
definition of finite dimensional variants of stationarity concepts we refer to [40]. Function space versions of
C-stationarity conditions in the regular case of Remark 2.2, which are more restrictive than the versions stated
here, can be found in [21].

Definition 2.3 (Clarke or C-stationarity). A point (y, u, ξ) ∈ H1
0 (Ω)×L2(Ω)×H−1(Ω) is called C-stationary

for problem (2.2), if there exist p ∈ H1
0 (Ω), λ ∈ H−1(Ω) and μ ∈ H1

0 (Ω) such that the following conditions
hold,

Ay − u− ξ = f in H−1(Ω), (2.3a)
ξ ≥ 0, y ≥ 0, 〈ξ, y〉−1,1,Ω = 0, (2.3b)

y − λ+ A∗p = yd in H−1(Ω), (2.3c)
νu− p = 0 in H1

0 (Ω), (2.3d)

−μ− p = 0 in H1
0 (Ω), (2.3e)

〈λ, y〉−1,1,Ω = 0, (2.3f)
〈ξ, μ〉−1,1,Ω = 0, (2.3g)
〈λ, μ〉−1,1,Ω ≥ 0. (2.3h)

Definition 2.4 (strong stationarity). A point (y, u, ξ) ∈ H1
0 (Ω)×L2(Ω)×H−1(Ω) is called strongly stationary

for problem (2.2), if it is C-stationary and if the multipliers λ ∈ H−1(Ω) and μ ∈ H1
0 (Ω) in Definition 2.3 satisfy

the sign conditions

∀ψ ∈ H1
0 (Ω), ψ|{y=0} ≥ 0 and 〈ξ, ψ〉−1,1,Ω = 0 : 〈λ, ψ〉−1,1,Ω ≥ 0, (2.4a)

μ|{y=0} ≥ 0. (2.4b)
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We introduce X as the function space X := H1
0 (Ω)×L2(Ω)×H−1(Ω)×H1

0 (Ω) with elements x = (y, u, ξ, p),
and define the MPCC-Lagrangian L : X ×H−1(Ω) ×H1

0 (Ω) → R according to

L(y, u, ξ, p, λ, μ) :=J(y, u) + a(y, p) − (u+ f, p)0,Ω − 〈ξ, p〉−1,1,Ω

− 〈λ, y〉−1,1,Ω − 〈ξ, μ〉−1,1,Ω . (2.5)

Remark 2.5. We note that if (y�, u�, ξ�) is C-stationary and p�, λ�, μ� are the associated dual variables
from (2.3), then

L(x�, λ�, μ�) = J(y�, u�),

and for all δx ∈ X it holds that
∇xL(x�, λ�, μ�)(δx) = 0.

Remark 2.6. The functional L(·, λ�, μ�) : X → R is infinitely Gâteaux differentiable at x ∈ X . The second
Gâteaux derivative ∇xxL(x, λ�, μ�) is independent of the argument (x, λ�, μ�) which for notational convenience
will be omitted in the sequel.

2.3. A priori estimates for solutions of the optimality system

This section is devoted to an a priori analysis of the dependence of a C-stationary point (y�, u�, ξ�) with dual
variables p�, λ� and μ� on the problem input data Ω, f , yd, and ν. The following result states a priori bounds
which are, for instance, relevant in the study of stability of solutions with respect to data perturbations.

For its formulation we invoke the following assumption concerning the data involved in (2.1). The coercive
bilinear form a : H1

0 (Ω) × H1
0 (Ω) → R admits the representation A ∈ L

(
H1

0 (Ω), H−1(Ω)
)

with coercivity
constant ΣA > 0 satisfying

a(y, z) = 〈Ay, z〉−1,1,Ω and a(y, y) ≥ ΣA ‖y‖2
1,Ω

for all y, z ∈ H1
0 (Ω). Let CA(Ω) = ‖A‖L(H1

0 (Ω),H−1(Ω)) abbreviate the norm of the operator A, and let A∗

denote the adjoint of A. Moreover, we denote the Friedrichs constant for the domain Ω by CF(Ω) and the
constant arising from the embedding L2(Ω) ↪→ H−1(Ω) by C−1(Ω), i.e., for all y ∈ H1

0 (Ω) and u ∈ L2(Ω), it
holds that

‖y‖0,Ω ≤ CF(Ω) ‖y‖1,Ω and ‖u‖−1,Ω ≤ C−1(Ω) ‖u‖0,Ω .

Proposition 2.7. A solution (x�, λ�, μ�) of the stationarity system (2.3) satisfies the following a priori bounds,

‖y�‖0,Ω ≤ ‖yd‖0,Ω +
√
ν ‖f‖0,Ω , (2.6)

‖y�‖1,Ω ≤ CF(Ω)
ΣA

(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
, (2.7)

‖u�‖0,Ω ≤ 1√
ν
‖yd‖0,Ω + ‖f‖0,Ω , (2.8)

‖ξ�‖−1,Ω ≤
(
CF(Ω)
ΣA

CA(Ω) + C−1(Ω)
) (

1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
, (2.9)

‖u�‖1,Ω ≤ CF(Ω)
ΣAν

(
2 ‖yd‖0,Ω +

√
ν ‖f‖0,Ω

)
, (2.10)

‖λ�‖−1,Ω ≤
(
CF(Ω)
ΣA

CA(Ω) + C−1(Ω)
) (

2 ‖yd‖0,Ω +
√
ν ‖f‖0,Ω

)
. (2.11)

Under the additional assumptions stated in Remark 2.2 we obtain the estimate

‖Ay�‖0,Ω ≤ CR(Ω)
(

1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
. (2.12)
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Proof. We start by multiplying equations (2.3a) and (2.3c) by p� and y�, respectively. Then, using the con-
straints (2.3d)−(2.3g), we obtain

a(y�, p�) = (u�, p�)0,Ω + (f, p�)0,Ω = ν ‖u�‖2
0,Ω + ν (f, u�)0,Ω , (2.13)

a(y�, p�) = (yd, y
�)0,Ω − ‖y�‖2

0,Ω . (2.14)

Subtracting (2.13) from (2.14), rearranging terms and estimating the inner products one derives

‖y�‖2
0,Ω + ν ‖u�‖2

0,Ω = (yd, y
�)0,Ω − ν (f, u�)0,Ω

≤ 1
2
‖y�‖2

0,Ω +
1
2
‖yd‖2

0,Ω +
ν

2
‖u�‖2

0,Ω +
ν

2
‖f‖2

0,Ω ,

and thus

‖y�‖2
0,Ω + ν ‖u�‖2

0,Ω ≤ ‖yd‖2
0,Ω + ν ‖f‖2

0,Ω . (2.15)

This yields the L2-bounds for y� and u�. Next, we multiply equation (2.3a) by y�, recall that 〈ξ�, y�〉−1,1,Ω = 0
and deduce

‖y�‖2
1,Ω ≤ 1

ΣA

(
(u�, y�)0,Ω + (f, y�)0,Ω

)
≤ CF(Ω)

ΣA

(
‖u�‖0,Ω + ‖f‖0,Ω

)
‖y�‖1,Ω .

This, together with (2.15), implies the bound on ‖y�‖1,Ω, i.e.,

‖y�‖1,Ω ≤ CF(Ω)
ΣA

(
‖u�‖0,Ω + ‖f‖0,Ω

)
≤ CF(Ω)

ΣA

(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
.

The bound on ‖ξ�‖−1,Ω involves the constant C−1(Ω) arising from the embedding L2(Ω) ↪→ H−1(Ω) and the
norm CA(Ω) = ‖A‖L(H1

0(Ω),H−1(Ω)). In fact, from (2.3a), we obtain

‖ξ�‖−1,Ω = ‖Ay� − u� − f‖−1,Ω

≤ CA(Ω) ‖y�‖1,Ω + C−1(Ω)
(
‖u�‖0,Ω + ‖f‖0,Ω

)
≤

(
CF(Ω)
ΣA

CA(Ω) + C−1(Ω)
) (

1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
.

The adjoint equation (2.3c) tested with p� and the sign condition (2.3h) yielding

〈λ�, p�〉−1,1,Ω = −〈λ�, μ�〉−1,1,Ω ≤ 0

imply

‖p�‖2
1,Ω ≤ 1

ΣA

(
(yd, p

�)0,Ω − (y�, p�)0,Ω

)
,

and in the same way as above,

ν ‖u�‖1,Ω = ‖p�‖1,Ω ≤ CF(Ω)
ΣA

(
2 ‖yd‖0,Ω +

√
ν ‖f‖0,Ω

)
.

The bound on ‖λ�‖−1,Ω is derived analogously to the respective bound on ξ�, i.e., one uses the adjoint equation
to obtain

‖λ�‖−1,Ω = ‖A∗p� + y� − yd‖−1,Ω

≤ CA(Ω) ‖p�‖1,Ω + ‖y�‖−1,Ω + ‖yd‖−1,Ω

≤ CA(Ω) ‖p�‖1,Ω + C−1(Ω)
(
‖y�‖0,Ω + ‖yd‖0,Ω

)
≤

(
CA(Ω)

CF(Ω)
ΣA

+ C−1(Ω)
) (√

ν ‖f‖0,Ω + 2 ‖yd‖0,Ω

)
.

This proves the first part of the proposition.
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In the setting of Remark 2.2, we obtain

‖Ay�‖0,Ω ≤ CR(Ω)
(
‖f‖0,Ω + ‖u�‖0,Ω

)
≤ CR(Ω)

(
2 ‖f‖0,Ω +

1√
ν
‖yd‖0,Ω

)
.

This concludes the proof. �

2.4. Discretization of the optimal control problem

We consider the discretization of the optimal control problem (2.1) by finite dimensional spaces Yh ⊂ H1
0 (Ω)

and Uh ⊂ L2(Ω) for the state y and the control u, respectively. Let NYh
and NUh

be sets with cardinality
|NYh

| = dim(Yh) and |NUh
| = dim(Uh). Further, we introduce {ϕz | z ∈ NYh

} and {ψz | z ∈ NUh
} as bases of

Yh and Uh, respectively. Then, a function yh =
∑

z∈NYh
yh,zϕz ∈ Yh with yh,z ∈ R can be identified by its

component vector
yh = (yh,z)z∈NYh

∈ R
|NYh

|.

Similarly, we identify the function uh =
∑

z∈NUh
uh,zψz ∈ Uh with

uh = (uh,z)z∈NUh
.

For the ease of presentation, we assume that the basis of Yh yields yh ≥ 0 in Ω if and only if yh ≥ 0. A particular
example of a discretization satisfying the above conditions is given in Section 4.1.

Next we define the stiffness matrix Ah ∈ R
|NYh

|×|NYh
| and the mass matrix Mh ∈ R

|NYh
|×|NUh

| representing
the bilinear form a on Yh and the L2-scalar-product of functions in Yh with functions in Uh, respectively. Hence,
the elements of these matrices are given by

(Ah)zz̄ := a(ϕz, ϕz̄) and (Mh)zv := (ϕz, ψv)0,Ω

for z, z̄ ∈ NYh
and v ∈ NUh

. Then, for all yh, wh ∈ Yh with vector representation yh, wh and all uh ∈ Uh with
vector representation uh it holds that

yh
TAhwh = a(yh, wh) and yh

TMhuh = (yh, uh)0,Ω .

Analogously, we define mass matrices MY
h and MU

h representing the L2(Ω)-inner products in Yh and Uh,
respectively.

The data vectors fh = (fh,z)z∈NYh
and ydh = (ydh,z)z∈NYh

are defined by

fh,z =
∫

Ω

fϕz dx, ydh,z =
∫

Ω

ydϕz dx.

In the same way as in Section 2, we introduce a slack variable ξh ∈ R
|NYh

| as the vector

ξh := Ahyh −Mhuh − fh.

The error representation in Section 3 requires an interpretation of the vector ξh as an element ξh in H−1(Ω)
such that for all yh ∈ Yh ⊂ H1

0 (Ω) we have

yh
T ξh = 〈ξh, yh〉−1,1,Ω.

Thus, for any ξh ∈ R
|NYh

| let ξ̂h := (MY
h )−1ξh be the coefficients of the function ξh in the basis {ϕz | z ∈ NYh

},
i.e.

ξh :=
∑

z∈NYh

(
(MY

h )−1ξh

)
z
ϕz ∈ L2(Ω) ↪→ H−1(Ω). (2.16)
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Then it holds that

yh
T ξh = yh

TMY
h

(
MY

h

)−1
ξh = yh

TMY
h ξ̂h = (ξh, yh)0,Ω = 〈ξh, yh〉−1,1,Ω. (2.17)

In the following, we identify the vector ξh (rather than ξ̂h) with the function ξh and denote the associated
discrete space by Ξh(= Yh).

Consider an operator Π on L2(Ω) which satisfies

(Πv, vh)0,Ω = (v, vh)0,Ω for all v ∈ L2(Ω) and vh ∈ Yh. (2.18)

The last step to the formulation of the discrete version of the optimal control problem considered in this text is
the definition of the discrete objective functional JΠ : H1

0 (Ω)×L2(Ω) → R. Later, we will also use the discrete
MPCC-Lagrangian LΠ : X ×H−1(Ω) ×H1

0 (Ω) → R. Thus, we define

JΠ(y, u) :=
1
2
‖y −Πyd‖2

0,Ω +
ν

2
‖u‖2

0,Ω , (2.19)

LΠ(x, λ, μ) :=
1
2
‖y −Πyd‖2

0,Ω +
ν

2
‖u‖2

0,Ω (2.20)

+ a(y, p) − (u+Πf, p)0,Ω − 〈ξ, p〉−1,1,Ω

− 〈ξ, μ〉−1,1,Ω − 〈λ, y〉−1,1,Ω.

At this point, we leave it open to chooseΠ . For instance, one may considerΠ either to be equal to the identity on
L2(Ω) or the L2-projection onto Yh. With this notation, we can formulate a discrete stationarity system which
is independent of Π because of the projection property (2.18). Concerning our subsequent error estimation,
however, we are still flexible to estimate the error in the objective with respect to either projected (discrete) or
continuous data; see Remark 3.5.

The discrete optimal control problem finally reads: for given data f, yd and ν > 0, find a solution (yh, uh, ξh) ∈
Yh × Uh ×Ξh to the problem

Minimize JΠ(yh, uh) (2.21a)
such that a(yh, φh) − (uh+Πf, φh)0,Ω − 〈ξh, φh〉−1,1,Ω = 0 (∀φh ∈ Yh), (2.21b)

yh ≥ 0, ξh ≥ 0 and 〈ξh, yh〉−1,1,Ω = 0. (2.21c)

Utilizing standard techniques, one readily obtains the existence of a solution to (2.21). The vector representation
of the latter satisfies the following discrete C-stationarity system (which does not depend on Π owing to (2.18))
with multipliers ph,λh and μh ∈ R

|NYh
|,

Ahyh −Mhuh − ξh = fh, (2.22a)

ξh ≥ 0, yh ≥ 0, yh
T ξh = 0, (2.22b)

MY
h yh − λh + Ahph = ydh, (2.22c)

νMU
h uh −Mhph = 0, (2.22d)

−μh − ph = 0, (2.22e)
λh,z = 0 if yh,z > 0, ∀z ∈ NYh

, (2.22f)
μh,z = 0 if ξh,z > 0, ∀z ∈ NYh

, (2.22g)

λh
T μh ≥ 0. (2.22h)

An optimal solution of (2.21) is strongly stationary, when it satisfies (2.22) and the following sign conditions
on the biactive set,

μh,z ≥ 0 and λh,z ≥ 0, if yh,z = 0 and ξh,z = 0 for z ∈ NYh
. (2.23)
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The multipliers ph and μh may be interpreted as coefficient vectors pertinent to functions in Yh, whereas
λh may be interpreted analogously to ξh. Therefore, with these multipliers, we associate a tuple of functions
(ph, λh, μh) ∈ Yh × Ξh × Yh. For the ease of notation, we abbreviate Xh = Yh × Uh × Ξh × Yh and say that
(x�

h, λ
�
h, μ

�
h) ∈ Xh ×Ξh ×Yh is C- or strongly stationary, if its vector representation is C- or strongly stationary.

Remark 2.8. Suppose that (y�
h, u

�
h, ξ

�
h) is C-stationary for (2.21) with associated multipliers (p�

h, λ
�
h, μ

�
h) ∈

Yh ×Ξh × Yh. Then we have

J(y�
h, u

�
h) = JΠ(y�

h, u
�
h) +

1
2

(
‖yd‖2

0,Ω − ‖Πyd‖2
0,Ω

)
(2.24)

= LΠ(x�
h, λ

�
h, μ

�
h) +

1
2

(
‖yd‖2

0,Ω − ‖Πyd‖2
0,Ω

)
= L(x�

h, λ
�
h, μ

�
h),

and for all xh ∈ Xh,

∇xL (x�
h, λ

�
h, μ

�
h) (xh) = ∇xLΠ (x�

h, λ
�
h, μ

�
h) (xh) = 0. (2.25)

3. Primal-dual-weighted error representation

In our numerics, the adaptive mesh refinement will be guided by the error with respect to the objective
functional, but other choices such as linear or differentiable error functionals as in [8] are conceivable. This
would, however, require a framework extending the one in [8] to non-smooth systems. Here, the objective
represents the target quantity in our goal-oriented mesh adaption approach. For this purpose, we next establish
the associated error representation. Our technique is related to the one in [16].

Theorem 3.1. Assume that (y�, u�, ξ�) and (y�
h, u

�
h, ξ

�
h) are C-stationary for (2.2) and (2.21) with associated

multipliers (p�, λ�, μ�) and (p�
h, λ

�
h, μ

�
h). Then, it holds that

J(y�
h, u

�
h) − J(y�, u�) =

1
2
∇xxL(x�

h − x�, x�
h − x�)

+ 〈λ�, y�
h〉−1,1,Ω + 〈ξ�

h, μ
�〉−1,1,Ω. (3.1)

Proof. In view of (2.24), we have

J(u�
h, y

�
h) − J(u�, y�) = L(x�

h, λ
�
h, μ

�
h) − J(u�, y�). (3.2)

Since the objective functional and the Lagrangian are quadratic, a Taylor expansion of L(x�
h, λ

�
h, μ

�
h) at x� yields

L(x�
h, λ

�
h, μ

�
h) =L(x�, λ�

h, μ
�
h) + ∇xL(x�, λ�

h, μ
�
h)(x�

h − x�)

+
1
2
∇xxL(x�

h − x�, x�
h − x�). (3.3)

For the first term on the right-hand side in (3.3), we use the definition of L in (2.5) and the system (2.3) to
obtain

L(x�, λ�
h, μ

�
h) = J(y�, u�) − 〈λ�

h, y
�〉−1,1,Ω − 〈ξ�, μ�

h〉−1,1,Ω. (3.4)

Taking again advantage of (2.3), for the second term on the right-hand side in (3.3) we find

∇xL(x�, λ�
h, μ

�
h)(x�

h − x�) = 〈λ�, y�
h〉−1,1,Ω + 〈λ�

h, y
�〉−1,1,Ω (3.5)

+ 〈ξ�
h, μ

�〉−1,1,Ω + 〈ξ�, μ�
h〉−1,1,Ω.

Using (3.3)−(3.5) in (3.2) gives the assertion. �
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The following lemma provides a representation of the second order Gâteaux derivative of the MPCC-
Lagrangian.

Lemma 3.2. Under the same assumptions as in Theorem 3.1, for a tuple of discrete functions φh =
(δyh, δuh, δξh, δph) ∈ Xh it holds that

∇xxL(x�
h − x�, x�

h − x�) =∇xL(x�
h, λ

�
h, μ

�
h)(x�

h − x� + φh)
− 〈ξ�

h, μ
�〉−1,1,Ω − 〈ξ�, μ�

h〉−1,1,Ω − 〈λ�, y�
h〉−1,1,Ω − 〈λ�

h, y
�〉−1,1,Ω. (3.6)

Proof. Taylor expansion of ∇xL(x�
h, λ

�
h, μ

�
h)(x�−x�

h) at the point x� and evaluation of ∇xL(x�, λ�
h, μ

�
h)(x�−x�

h)
leads to

∇xL(x�
h, λ

�
h, μ

�
h)(x�

h − x�) =∇xL(x�, λ�
h, μ

�
h)(x�

h − x�) + ∇xxL(x�
h − x�, x�

h − x�)
=〈ξ�

h, μ
�〉−1,1,Ω + 〈ξ�, μ�

h〉−1,1,Ω + 〈λ�, y�
h〉−1,1,Ω

+ 〈λ�
h, y

�〉−1,1,Ω + ∇xxL(x�
h − x�, x�

h − x�),

which readily implies

∇xxL(x�
h − x�, x�

h − x�) =∇xL(x�
h, λ

�
h, μ

�
h)(x�

h − x�) − 〈ξ�
h, μ

�〉−1,1,Ω

− 〈ξ�, μ�
h〉−1,1,Ω − 〈λ�, y�

h〉−1,1,Ω − 〈λ�
h, y

�〉−1,1,Ω. (3.7)

According to (2.25), it holds that ∇xL(x�
h, λ

�
h, μ

�
h)(φh) = 0. This yields the assertion. �

In combination with Theorem 3.1, the previous lemma gives rise to an error representation which will be the
basis for the evaluation of the primal-dual weighted residuals.

Theorem 3.3. In addition to the assumptions in Theorem 3.1 let δxh = (δyh, δuh, δξh, δph) ∈ Xh. Then, it
holds that

J(u�, y�) − J(u�
h, y

�
h) =

1
2
a(y�

h, p
� − δph) − 1

2
(u�

h + f, p� − δph)0,Ω − 1
2
〈ξ�

h, p
� − δph〉−1,1,Ω (3.8a)

+
1
2
a(y� − δyh, p

�
h) +

1
2

(y�
h − yd, y

� − δyh)0,Ω − 1
2
〈λ�

h, y
� − δyh〉−1,1,Ω (3.8b)

+
1
2

(ν u�
h − p�

h, u
� − δuh)0,Ω (3.8c)

+
1
2
〈ξ� − δξh,−μ�

h − p�
h〉−1,1,Ω (3.8d)

− 1
2
〈λ�, y�

h〉−1,1,Ω +
1
2
〈λ�

h, y
�〉−1,1,Ω − 1

2
〈ξ�

h, μ
�〉−1,1,Ω +

1
2
〈ξ�, μ�

h〉−1,1,Ω. (3.8e)

Proof. The combination of (3.1) from Theorem 3.1 and (3.6) from Lemma 3.2 reveals

J(u�, y�) − J(u�
h, y

�
h) = − 1

2
∇xxL(x�

h−x�, x�
h−x�) − 〈λ�, y�

h〉−1,1,Ω − 〈ξ�
h, μ

�〉−1,1,Ω

=
1
2
∇xL(x�

h, λ
�
h, μ

�
h)(x� − x�

h − φh) − 1
2
〈ξ�

h, μ
�〉−1,1,Ω +

1
2
〈ξ�, μ�

h〉−1,1,Ω

− 1
2
〈λ�, y�

h〉−1,1,Ω +
1
2
〈λ�

h, y
�〉−1,1,Ω.

Choosing φh = δxh − x�
h = (δyh − y�

h, δuh − u�
h, δξh − ξ�

h, δph − p�
h) and exploiting the structure of the

MPCC-Lagrangian provides the assertion. �
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Remark 3.4. The terms (3.8a)−(3.8d) in Theorem 3.3 represent the dual and the primal error in the feasibility
and optimality conditions (2.22a), (2.22c), (2.22d), (2.22e), whereas the remaining terms (3.8e) reflect the
mismatch in complementarity as expressed by (2.22f) and (2.22g). We further note that the sign condition on
〈λ, μ〉−1,1,Ω is not reflected in the representation found in Theorem 3.3. This can be attributed to the facts that
〈λ, μ〉−1,1,Ω involves dual quantities only and that this pairing is of course not part of the MPCC-Lagrangian.
This is a consequence of the special nature of MPCCs, which violate standard constraint qualifications for the
existence (and boundedness) of Lagrange multipliers.

Remark 3.5. Note that in Theorems 3.1 and 3.3 one may alternatively consider the error JΠ(y�
h, u

�
h)−J(y�, u�).

In this situation, the error representation includes additional data terms pertinent to replacing yd by Πyd in
the objective, i.e.,

JΠ(y�
h, u

�
h) − J(y�, u�) = J(y�

h, u
�
h) − J(y�, u�) +

1
2
‖Πyd‖2

0,Ω − 1
2
‖yd‖2

0,Ω .

4. Primal-dual-weighted a posteriori estimator

Note that the representation of J(y�, u�)−JΠ(y�
h, u

�
h) is not fully a posteriori, which is, on the one hand, due

to the weights x� − δxh and, on the other hand, due to the dependence of the terms (3.8e) on λ�, y�, μ� and ξ�.
This fact prevents an immediate numerical realization of the representation in Theorem 3.3. In this section
we deduce a fully a posteriori and local estimator from the terms in the error representation in Theorem 3.3.
Below, we utilize a specific discretization based on simplices and P1,0-elements. We emphasize, however, that
other discretizations are possible; see, e.g., [8].

4.1. Detailed discretization

Subsequently, we exemplarily consider specific choices for the bilinear form a and the discrete spaces. In fact,
we set a(y, z) :=

∫
Ω ∇y · ∇z dx on H1

0 (Ω) × H1
0 (Ω). Our numerical tests in Section 5.3 all have Ω ⊂ R

2. For
this reason and without loss of generality, we restrict ourselves from now on to polygonal, bounded domains
Ω ⊂ R

2. Further let T be a triangulation of Ω (into triangles) in the sense of ([1], p. 394). The set of all edges
of triangles in T is denoted by E , whereas N is the set of nodes of triangles in T . For a subset ω ⊂ Ω, we write
T (ω) := {T ∈ T |T ⊂ ω}, and, analogously, E(ω) := {E ∈ E |E ⊂ ω} and N (ω) := {z ∈ N | z ∈ ω}.

By P1,0(T ) we denote the space of T -piecewise affine and globally continuous functions on Ω with zero
boundary conditions and the usual nodal basis

{ϕz ∈ P1,0(T ) | z ∈ N , ∀z̄ ∈ N , ϕz(z̄) = δz,z̄},

where δz,z̄ denotes the Kronecker-Delta with δz,z̄ = 1 if z = z̄ and δz,z̄ = 0 otherwise. We set Yh = P1,0(T )
as well as Uh = P1,0(T ). Then, by (2.22d) and (2.22e), the terms (3.8c) and (3.8d) in the difference of the
objectives yield zero. Indeed, MY

h = Mh is an invertible matrix, and thus p�
h = νu�

h and μ�
h = −p�

h.
On every triangle T ∈ T we approximate y�|T (and p�|T ) by the quadratic interpolant ỹ�

h of y�
h based on

the (at most) six nodes of
⋃
{S ∈ T |S ∩ T ∈ T ∪ E} and p̃�

h of p�
h, respectively (cf. [8]). The left hand side in

Figure 1 shows the situation in the interior of the domain, whereas the right hand side shows a triangle at the
boundary of the domain (ruled), where the boundary edge has no neighboring node outside of the triangle. To
overcome this, we enlarge the triangulation by outer parallelogram points as depicted in Figure 1.

We define the edge jumps of a discrete function vh = φh ∈ Yh with the T -piecewise constant gradient ∇vh

as follows: for a triangle T ∈ T with an edge E ∈ E(T ) we denote by νT,E the outer unit normal vector of T at
the edge E. Assuming that E = T+ ∩ T−, we note that νT−,E = −νT+,E and thus, the edge jump

[∇vh]E :=
(
∇vh|T+ −∇vh|T−

)
· νT+,E =

(
∇vh|T− −∇vh|T+

)
· νT−,E
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T
T

Figure 1. The P2 interpolation of discrete functions given in the nodes of the triangulation
on one triangle T (gray shaded) is defined via its values in the nodes of T (gray circles) and
of the (up to) three triangles sharing an edge with T (black circles). To overcome the lack of
neighboring nodes at the boundary, we enlarge the triangulation as depicted on the right hand
side.

is independent of the permutation of T+ and T−. If E ⊂ ∂Ω, we define [∇vh]E := 0. For z ∈ H1
0 (Ω), T -piecewise

integration by parts yields

a(φh, z) =
∑
T∈T

∑
E∈E(T\∂Ω)

∇φh · νT,E

∫
E

z dS =
∑
E∈E

[∇φh]E

∫
E

z dS.

Rearranging the edge terms according to triangles we obtain the identity

a(φh, z) =
∑
T∈T

∑
E∈E(T )

1
2

[∇φh]E

∫
E

z dS =
∑
T∈T

1
2

[∇φh]∂T

∫
∂T

z dS. (4.1)

The total error estimator, which we derive below, has the structure

ηh :=
∑
T∈T

ηT , (4.2)

where ηT = ηPDE1,T +ηPDE2,T +ηCM,T. On every triangle T , ηPDE1,T reflects the error contribution of the dual-
weighted primal residual (3.8a) on T , while ηPDE2,T contains the error contribution of the primal-weighted dual
equation (3.8b) on T . These estimators are derived in Section 4.2. The complementarity mismatch contribution
to the error is contained in ηCM,T, which is discussed in Section 4.3.

4.2. Primal-dual-weighted PDE residuals

For δph ∈ P1,0(T ), we use (4.1) and the L2-representation of ξh due to (2.16) to write (3.8a) in Theorem 3.3
as

a(y�
h, p

�−δph) −
∫

T

(u�
h + f)(p�−δph) dx− 〈ξ�

h, p
�−δph〉−1,1,Ω

=
∑
T∈T

⎛
⎝ ∑

E∈E(T )

(
1
2

[∇yh]E

∫
E

p�−δph dS
)
−

∫
T

(u�
h+ f+ξ�

h)(p�−δph) dx

⎞
⎠. (4.3)

We set δph = νu�
h, estimate p� by νũ�

h (cf. above section) and recall (2.17) to obtain from (4.3)

ηPDE1,T :=
1
2

∣∣∣∣−
∫

T

ν(u�
h+f +ξ�

h)(ũ�
h−u�

h)dx+
∫

∂T

ν

2
[∇y�

h]∂T (ũ�
h−u�

h)dS
∣∣∣∣ . (4.4)
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An analogue procedure applies to the weighted residual of the adjoint equation (3.8b), and we obtain

ηPDE2,T :=
1
2

∣∣∣∣
∫

T

(y�
h−yd − λ�

h)(ỹ�
h−y�

h)dx+
∫

∂T

ν

2
[∇u�

h]∂T (ỹ�
h−y�

h)dS
∣∣∣∣ . (4.5)

As a consequence, the terms in

ηPDE1 :=
∑
T∈T

ηPDE1,T, ηPDE2 :=
∑
T∈T

ηPDE2,T

are fully a posteriori. The integrals can be evaluated by Gauss quadrature rules which are exact for polynomials
up to a certain degree.

4.3. Complementarity mismatch

The weighted complementarity residual is given by the sum

1
2
(〈ξ�, μ�

h〉−1,1,Ω − 〈ξ�
h, μ

�〉−1,1,Ω + 〈λ�
h, y

�〉−1,1,Ω − 〈λ�, y�
h〉−1,1,Ω),

and is next analyzed term by term. The resulting estimator is the sum of the a posteriori quantities defined
in (4.6)−(4.9).

We begin our analysis with the terms that can be understood as L2-products due to (2.16). In fact, considering
〈λ�

h, y
�〉−1,1,Ω = (λ�

h, y
�)0,Ω, inserting (λ�

h, y
�
h)0,Ω and replacing y� by ỹ�

h we obtain the a posteriori estimator

ηCM1,T :=
1
2

∣∣∣∣
∫

T

(ỹ�
h − y�

h)λ�
h dx

∣∣∣∣ . (4.6)

Further, subtracting (ξ�
h, νu

�
h)0,Ω from −〈ξ�

h, μ
�〉−1,1,Ω and replacing μ� by −νũ�

h we find

ηCM2,T :=
1
2

∣∣∣∣
∫

T

ν(ũ�
h − u�

h)ξ�
h dx

∣∣∣∣ . (4.7)

Next, the term 〈ξ�, μ�
h〉−1,1,Ω which belongs to the mismatch of the continuous and discrete strongly active

sets is analyzed. Due to 〈ξ�, μ�〉−1,1,Ω = 0 following from (2.3g), it holds that

〈ξ�, μ�
h〉−1,1,Ω = 〈ξ�, μ�

h − μ�〉−1,1,Ω.

In the same way as, e.g., in [34], equation (3.3), we exploit (2.3a) to conclude

〈ξ�, μ�
h − μ�〉−1,1,Ω = 〈Ay� − u� − f, μ�

h − μ�〉−1,1,Ω

= (−u� − f, μ�
h − μ�)0,Ω + (∇y�,∇(μ�

h − μ�))0,Ω .

Similarly to above, we use μ� = −νu� and μ�
h = −νu�

h and replace u� by ũ�
h whenever it appears in the weight

and by u�
h in the residual, as well as we use y�

h instead of y�. For T ∈ T we obtain from (4.1)

ηCM3,T :=
ν

2

∣∣∣∣−
∫

T

(u�
h + f)(ũ�

h − u�
h) dx+

∫
∂T

1
2

[∇y�
h]∂T (ũ�

h − u�
h)dS

∣∣∣∣ . (4.8)

Finally, for the term 〈λ�, y�
h〉−1,1,Ω, by (2.3c) it holds that

−〈λ�, y�
h〉−1,1,Ω =〈y� + A∗p� − yd, y

� − y�
h〉−1,1,Ω

= (y� − yd, y
� − y�

h)0,Ω + (∇p�,∇(y� − y�
h))0,Ω .

We replace y� by ỹ�
h when it appears in the weight and by y�

h in the residual, and estimate

ηCM4,T :=
1
2

∣∣∣∣
∫

T

(y�
h − yd)(ỹ�

h − y�
h) dx+

∫
∂T

ν

2
[∇u�

h]∂T (ỹ�
h − y�

h)dS
∣∣∣∣ , (4.9)

where we have used integration by parts as in (4.1).
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SOLVE ESTIMATE MARK REFINE

Figure 2. The typical adaptive scheme as described in Section 5.1.

4.4. Total error

Summarizing our above findings, we obtain the following estimator.
Let (x�, λ�, μ�) ∈ X ×H−1(Ω) ×H1

0 (Ω) be a solution to problem (2.2) and let (x�
h, λ

�
h, μ

�
h) ∈ Xh ×Ξh × Yh

satisfy the conditions (2.22). With ηPDE1,T from (4.4), ηPDE2,T from (4.5) and ηCM,T = ηCM1,T + ηCM2,T +
ηCM3,T + ηCM4,T from (4.6)−(4.9), we estimate the local distribution of the difference J(u�, y�) − J(u�

h, y
�
h) by

ηh =
∑
T∈T

ηPDE1,T + ηPDE2,T + ηCM,T.

5. Numerics

We start by a brief overview of the adaptive finite element method (AFEM) and its subroutines in Section 5.1
before establishing the optimization algorithm yielding a C-stationary point of problem (2.21) on every adaptive
refinement level in Section 5.2. Finally, Section 5.3 contains numerical results.

5.1. Adaptive scheme

AFEM typically follows the scheme displayed in Figure 2. In this context, the mesh-adaption process is
guided iteratively by local error indicators relying on solutions of the considered problem on the current mesh.
Elements with large local error indicators are marked for refinement, and a superset of the marked elements is
actually refined to maintain a regular mesh. The overall Algorithm 1 repeats this cycle until a given complexity
N (e.g. the number of degrees of freedom in the SOLVE procedure) is reached.

Algorithm 1. AFEM for MPEC
Input: Triangulation Th, data fh,ydh, initial state and control yh, uh,

complexity N , bulk parameter θ
1: loop
2: (yh,uh, ξh, λh) = solveMPEC(Th,yh,uh, ξh, fh,ydh)
3: (ηT )T∈Th = estimate(Th,yh,uh, ξh, λh, fh,ydh)
4: if |freenodes(Th)| > N then
5: return (Th,yh,uh, ξh, λh)
6: end if
7: Mh = markbulk(Th, (ηT )T∈Th , θ)
8: (Th,yh, uh, ξh, fh, ydh) = refineRGB(Th,Mh,yh, uh, ξh, fh, ydh)
9: end loop

We briefly discuss the respective steps of Algorithm 1. The solution Step 2 (subroutine solveMPEC) is described
in detail in Section 5.2. The calculation of a local error indicator

ηh =
∑
T∈T

ηT

from the discrete solutions on the coarse mesh T in Step 3 (subroutine estimate) follows from Section 4. We
use a bulk criterion (subroutine markbulk) to mark those elements in T , which are refined to obtain the next



538 M. HINTERMÜLLER ET AL.

AFEM level. In Step 7 this yields the set M ⊂ T of minimal cardinality |M| such that for a bulk parameter
θ ∈ (0, 1) it holds that

θηh ≤
∑

T∈M
ηT .

This criterion stops the marking procedure, relying on a greedy algorithm, as soon as the total error on M has
reached a fraction of θ of the total error on T .

In the refinement Step 8 (subroutine refineRGB) one has to avoid hanging nodes and guarantee shape
regularity of the triangulation. This is achieved by applying an algorithm, which marks additional triangles or
edges; see also [12] or [3] for a similar, earlier treatment.

The AFEM level is indicated by h. In the adaptive scheme the maximum (local) mesh size is not required to
converge to zero globally, as triangles may no longer get refined from some level h on due to the error indicator.

5.2. Optimization algorithm

The discrete optimality system (2.22) is solved iteratively through a sequence of penalized problems (Pγ).
This strategy is inspired by [2]. Recalling the mass and stiffness matrices of Section 2.4, on a fixed AFEM level h
and for a penalty parameter γ > 0 the penalized problem (Pγ) associated with (2.21) reads

Minimize
1
2
(y −M−1

h ydh)TMh(y −M−1
h ydh) +

ν

2
uTMhu + γyT ξ

such that Ahy = Mhu + fh + ξ, (Pγ)
y ≥ 0 and ξ ≥ 0.

Note that a feasible point (y,u, ξ) of (Pγ) satisfies yT ξ ≥ 0. Hence, (Pγ) penalizes violations of yT ξ = 0 by
γ > 0. The necessary first order optimality system of (Pγ) is given by

Rγ,1 := Mhy + γξ + Ahp − λ − ydh = 0, (5.1a)
νMhu −Mhp = 0, (5.1b)

γy − p − μ = 0, (5.1c)
Rγ,2 := Ahy − ξ −Mhu− fh = 0, (5.1d)

and the complementarity conditions

λ ≥ 0, y ≥ 0, λ · y = 0, (5.1e)
μ ≥ 0, ξ ≥ 0, μ · ξ = 0. (5.1f)

We reduce the above system by eliminating the discrete adjoint state p and the multiplier μ. Using the max{0, ·}-
operator (componentwise) and an arbitrary, but fixed constant c > 0, we reformulate (5.1e)−(5.1f) as

Rγ,3 := λ − max{0,λ − cy} = 0,
Rγ,4 := μ − max{0,μ− cξ} = 0. (5.2)

The resulting system (5.1a), (5.1d), (5.2) is solved by a semi-smooth Newton-method (Algorithm 2); see [20]
for details on the latter. As an attempt towards globalization of the Newton solver, we employ a residual based
strategy which adjusts the step size τ ∈ (0, 1) in Algorithm 2 such that the total residual of system (5.1)
decreases in each iteration. In this context, for X = (y,u, ξ,λ), the residual residualγ(X) in Step 7 is the sum
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of four parts belonging to the four equations (5.1a), (5.1d), (5.2), that is,

resγ,1 = |RT
γ,1A−1

h Rγ,1|
1
2 ,

resγ,2 = |RT
γ,2A−1

h Rγ,2|
1
2 ,

resγ,3 = |Rγ,3|1,
resγ,4 = |Rγ,4|1,

residualγ(X) = resγ,1 + resγ,2 + resγ,3 + resγ,4.

In the associated Step 7 of Algorithm 2, we choose τ0 = ΣM , the machine precision. Note that our globalization
strategy is a simple Armijo-type backtracking which worked well in our numerical practice. For theoretical
investigations and guaranteed convergence, however, a more complex strategy like a path search [13, 36] would
be necessary.

Algorithm 2. solvePenMPEC
Input: Data for system (5.1) including γ and initial values y0,u0, ξ0

1: Set k = 0, choose c > 0, ε > 0, ζ ∈ (0, 1), κ ∈ (0, 1)
2: Set initial values λ0 and μ0 according to equations (5.1a) and (5.1c)
3: loop
4: Calculate indices of active and inactive nodes

A(yk) = {z ∈ N |λk(z) ≥ cyk(z)}, I(yk) = N \ A(yk)

A(ξk) = {z ∈ N |μk(z) ≥ cξk(z)}, I(ξk) = N \ A(ξk)

5: Find the solution Xo
k+1 = (yo

k+1,u
o
k+1, ξ

o
k+1, λ

o
k+1, μ

o
k+1) to system (5.1a)−(5.1d) and set

yo
k+1(A(yk)) = 0, λo

k+1(I(yk)) = 0,

ξo
k+1(A(ξk)) = 0, μo

k+1(I(ξk)) = 0.

6: Initialize globalization strategy τ = 1, Xk+1 = Xo
k+1

7: while residualγ(Xk+1) > (1 − κτ )residualγ(Xk) and τ > τ0 > 0 do
8: τ = ζτ
9: Xk+1 = (1 − τ )Xk + τXo

k+1

10: end while
11: if residualγ(Xk+1) ≤ ε(residualγ(X0) + 1) then
12: return yk+1,uk+1, ξk+1

13: end if
14: Set k = k + 1
15: end loop

Algorithm 3 corresponds to Step 2 of Algorithm 1. Concerning its convergence in finite dimensional spaces,
we observe that MPEC-LICQ (see [2], Def. 2) is generically satisfied in the problem class under consideration.
Thus, due to [2], accumulation points of a series (yγ , uγ , ξγ)γ of solutions to the respective penalized problems
for nondecreasing γ are either not feasible for problem 2.2, or satisfy C-stationarity. For completeness we also
mention that under additional assumptions one may even get a strongly stationary point.
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The residual in Step 5 of Algorithm 3 is computed as follows:

R1 := Ahy −Mhu − ξ − fh, res1 = (RT
1 A−1

h R1)
1
2 ,

R2 := Mhy − λ + νAhu− ydh, res2 = (R2A−1
h R2)

1
2 ,

res3 = |uξ|1, res4 = |ξ − max{0, ξ − cy}|1, res5 = |yλ|1,
residual(y,u, ξ,λ) = res1 + res2 + res3 + res4 + res5. (5.3)

Algorithm 3. solveMPEC
Input: Data for Problem (2.21), initial values for y0,u0, ξ0

1: Choose 0 < ε � 1, γ0 ≥ 1, δγ > 1, set γ− = 0 and γ = γ0,
2: loop
3: (yγ , uγ , ξγ) = solvePenMPEC(DATA,yγ−,uγ−, ξγ−)

4: Set λγ according to (2.22c), (2.22d).
5: Compute rγ =residual(yγ ,uγ , ξγ , λγ) due to (5.3)
6: if rγ ≤ ε(rγ0 + 1) then
7: return yγ , uγ , ξγ , λγ

8: end if
9: Set γ− = γ, γ = δγ · γ, ε = ε/(δγ + .001)

10: end loop

5.3. Numerical results

Finally, we present numerical results obtained by our AFEM approach. The bulk parameter in Algorithm 1
is set to θ = 0.5 in both examples.

Example 5.1. We tested our algorithm for solving ([21], Example 6.1), where A = −Δ on the square domain
Ω = (0, 1) × (0, 1) and

z1(x1) = −4096x6
1 + 6144x5

1 − 3072x4
1 + 512x3

1,

z2(x2) = −244.140625x6
2 + 585.9375x5

2 − 468.75x4
2 + 125x3

2,

y∗(x1, x2) =
{
z1(x1)z2(x2) in (0, 0.5) × (0, 0.8),
0 else,

u∗(x1, x2) = y∗(x1, x2),
ξ∗(x1, x2) = 2 max{0,−|x1 − 0.8| − |(x2 − 0.2)x1 − 0.3|+ 0.35}.

The data f, yd is set to

f = −Δy∗ − u∗ − ξ∗, yd = y∗ + ξ∗ − νΔu∗.

The parameter for the cost of the control is chosen as ν = 1. The solution (y�, u�, ξ�) = (y∗, u∗, ξ∗) admits the
regularity as stated in Remark 2.2. In fact, we even have y�, u� ∈ C∞(Ω) ∩H1

0 (Ω) and ξ� = −λ� ∈ W 1,s(Ω)
for s ≥ 1.

On each refinement level in Algorithm 1, the optimization routine in line 2 (Algorithm 3) is employed with
ε = 10−6, γ = 10−3 and δγ = 1.5. The solver for the penalized problem, Algorithm 2, is called with the parameter
choices c = 1, ε = 10−6, ζ = 0.5 and κ = 10−4.

The solution calculated by our adaptive algorithm is shown in Figure 3. As u� = y�, we plot only y�
h. For

visualization purposes, the values of the multiplier vector ξ�
h = −λ�

h in the nodes are plotted on a coarser mesh.
The size of the circles indicates the respective (nonnegative) value of ξ�

h.



ADAPTIVITY IN OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES 541

Figure 3. Solution graphs of the adaptive algorithm in Example 5.1, showing the state y�
h

(= u�
h, left) and the slack variable ξ�

h (= −λ�
h, right). For the sake of clarity, ξ�

h is plotted on a
coarser mesh.
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JU
h − J�

NrDOF

Figure 4. Comparison of convergence of the estimators for adaptive (solid lines) and uniform
refinement (dashed lines) for Example 5.1.

Figure 4 shows on the left-hand side the comparison of convergence of the error estimators as a function of the
number of degrees of freedom in logarithmic scale for adaptive versus uniform refinement. The corresponding
error estimators are denoted by superscript “A” for “adaptive” (solid lines) and “U” for “uniform” refinement
(dashed lines). The right-hand side of Figure 4 shows the convergence of JA

h − J� := Jh(y�
h, u

�
h) − J(y�, u�) for

discrete solutions y�
h, u

�
h on the adapted mesh compared to the convergence of JU

h −J� := Jh(y�
h, u

�
h)−J(y�, u�)

for solutions y�
h, u

�
h on uniform meshes.

All parts of the estimators converge to zero, and in the adaptive variant of the algorithm, the estimated error
is smaller compared to the estimated error on a uniform mesh with the same number of degrees of freedom
(NrDOF). Although the convergence speed (i.e., the slope of the graphs in Fig. 4) is not improved by adaptive
mesh refinement owing to the high regularity of the solution, one can still observe a reduction of complexity
when one aims at a certain accuracy in the objective value.

Table 1 is the convergence history of the adaptive refinement process including effectivity indices

ηA
h

|JA
h − J�|
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Table 1. Convergence history of the adaptive method, AFEM levels 2, 6, 10, 14, 18 and 22
for Example 5.1 including effectivity indices.

NrDOF ηA
h JA

h − J� Eff.Ind.
8 1.03e+02 2.51e+02 0.411
27 6.38e+01 1.81e+02 0.352
225 1.33e+01 2.54e+01 0.524
2806 1.11e+00 1.99e+00 0.557
28 311 1.11e-01 1.92e-01 0.581
235 726 1.33e-02 1.23e-02 1.08

Table 2. Convergence history of the adaptive method, AFEM levels 2, 10, 17, 23 and 29 for
Example 5.2 including effectivity indices.

NrDOF ηh J�
h − J� Eff.Ind.

18 5.51e-02 1.19e-01 0.463
106 2.33e-03 7.20e-03 0.324
1196 2.50e-04 4.08e-04 0.612
13 103 2.57e-05 3.58e-05 0.717
133 458 2.65e-06 2.52e-06 1.05

on the respective AFEM levels h. Note that the value of J� := J(y�, u�) can be computed exactly from
the solutions y�, u� in this problem. The effectivity indices are smaller than 1 on coarse meshes, i.e., we
underestimate the real difference of the objective values. When refining the mesh, the effectivity index increases
to a value greater than 1, which indicates that the error estimator becomes reliable. The same effect occurs in
test computations of [8] when using the DWR approach for discretizing PDE problems or optimization problems
with a PDE constraint (but without inequality constraints).

Example 5.2. We consider again A = −Δ on the L-shaped domain Ω = (−1, 0)× (−1, 1) ∪ (0, 1)× (0, 1) and
define

yd(x) =

{
−1 if |x| ≥ 1

10 ,

1 − 100x2
1 − 50x2

2 else,

f(x) =
1
2

+
1
2
(x1 − x2),

ν = 0.01.

On each refinement level in Algorithm 1, the optimization routine in line 2 (Algorithm 3) is employed with
ε = 10−6, γ = 10−2 and δγ = 1.5. The solver for the penalized problem, Algorithm 2, is called with the
parameter choices c = 0.1, ε = 10−6, ζ = 0.5 and κ = 10−4.

The solutions calculated by our adaptive algorithm are depicted in Figure 5.
In Figure 6, we show again the convergence of the error estimator in adaptive versus uniform refinement (left),

as well as the convergence comparison of Jh(y�
h, u

�
h) − J(y�, u�) (right). The lack of regularity of the solution

due to the non-convexity of Ω seems to favor adaptive refinement when compared to uniform refinement. In
fact, we observe a significantly better convergence rate for AFEM in this case.

Table 2 lists the data from the plots in Figure 6 together with effectivity indices for different AFEM levels.
The effectivity indices show once again that the error estimators are not reliable, but converge to 1, similar
to those in [8] for discretizing PDEs. The value of J(y�, u�) used for the plot and the table is estimated
by solutions on the adaptively generated mesh after additional uniform refinements. Finally, the adaptively
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Figure 5. Solution graphs of the adaptive algorithm in Example 5.2, first row left state y�
h,

right slack variable ξ�
h, second row left control u�

h and right multiplier λ�
h.
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Figure 6. Comparison of convergence of the estimators for adaptive (solid lines) and uniform
refinement (dashed lines) for Example 5.2.

generated mesh is depicted in Figure 7. We observe refinement in the non-convex corner as well as in the regions
where y�

h is steep. Further refinement is found near the boundary between active and inactive sets, which is due
to the complementarity mismatch error.
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Figure 7. Adaptively refined mesh for Example 5.2.

101 102 103 104 105

10−5
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ν = 1 adaptive
ν = 100 adaptive
ν = 0.1 uniform
ν = 1 uniform
ν = 0.01 uniform
ν = 100 uniform

Figure 8. Comparison of convergence of the estimators for adaptive (solid lines) and uniform
refinement (dashed lines) for Example 5.2 with different values of the control cost parameter ν.

We also examined the behavior of our estimator for different values of the control cost ν. In fact, the error
estimator appears robust in this respect; see Figure 8.
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