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REGULARITY RESULTS FOR AN OPTIMAL DESIGN PROBLEM
WITH A VOLUME CONSTRAINT
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Abstract. Regularity results for minimal configurations of variational problems involving both bulk
and surface energies and subject to a volume constraint are established. The bulk energies are convex
functions with p-power growth, but are otherwise not subjected to any further structure conditions. For
a minimal configuration (u, E), Hölder continuity of the function u is proved as well as partial regularity
of the boundary of the minimal set E. Moreover, full regularity of the boundary of the minimal set is
obtained under suitable closeness assumptions on the eigenvalues of the bulk energies.
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1. Introduction and statements

In this paper we study minimal energy configurations of a mixture of two materials in a bounded, connected
open set Ω ⊂ R

n, when the perimeter of the interface between the materials is penalized. Precisely, the energy
is given by

I(u,E) :=
∫

Ω

(F (∇u) + χ
E
G(∇u)) dx+ P (E,Ω), (1.1)

where E ⊂ Ω is a set of finite perimeter, u ∈ W 1,p(Ω), p > 1, χE is the characteristic function of the set E
and P (E,Ω) denotes the perimeter of E in Ω. We assume that F, G : R

n → R are C1 integrands satisfying, for
p > 1 and positive constants �, L, α, β > 0 and μ ≥ 0, the following growth and uniform strong p-convexity
hypotheses:

(F1) 0 ≤ F (ξ) ≤ L(μ2 + |ξ|2) p
2 ,

(F2)
∫

Ω

F (ξ + ∇ϕ) dx ≥
∫

Ω

(
F (ξ) + �(μ2 + |ξ|2 + |∇ϕ|2) p−2

2 |∇ϕ|2
)

dx,
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and

(G1) 0 ≤ G(ξ) ≤ βL(μ2 + |ξ|2) p
2 ,

(G2)
∫

Ω

G(ξ + ∇ϕ) dx ≥
∫

Ω

(
G(ξ) + α�(μ2 + |ξ|2 + |∇ϕ|2) p−2

2 |∇ϕ|2
)

dx

for every ξ ∈ R
n and ϕ ∈ C1

0 (Ω).
We are interested in the following constrained problem

min {I(u,E) : u = u0 on ∂Ω, |E| = d} , (P )

where u0 ∈ W 1,p(Ω) and 0 < d < |Ω| are prescribed. Note that the strong convexity of F and G, expressed
by (F2) and (G2), by virtue of Theorem 1.4 below, ensures the existence of solutions of the problem (P).

Energies with surface terms competing with a volume term appear in a plethora of phenomena in materials
science such as models for optimal design [4], phase transitions [18], liquid crystals [19], epitaxy [12] (see also [11]).

Our first regularity result is the following:

Theorem 1.1. Let F and G satisfy assumptions (F1)–(F2) and (G1)–(G2), respectively. Assume, in addition,
that F is p-homogeneous, i.e., F (tξ) = tpF (ξ), for all t ≥ 0. If (u,E) is a minimizer of problem (P), then

u ∈ C
0, 1

p′
loc (Ω), where p′ denotes the Hölder’s conjugate exponent of p, i.e., p′ = p

p−1 . Moreover, Hn−1((∂E \
∂∗E) ∩Ω) = 0.

Previous results in this direction have been obtained in [4] and [20]. Precisely, Ambrosio and Buttazzo [4]
and Lin [20] considered problems of the form∫

Ω

(
σE(x)|∇u|2) dx+ P (E,Ω) (1.2)

with u = 0 on ∂Ω and σE(x) := aχE +bχΩ\E for a and b positive constants. It was proven in [4] that minimizers
of (1.2) exist and that if (u,E) is a minimal configuration then u is locally Hölder continuous in Ω and, up
to a set of Hn−1 measure zero, there is no difference between the theoretic measure boundary of E and its
topological boundary. Recently, in [8], it has been proven that there exists γ = γ(n) such that, for a minimal
configuration (u,E) of (1.2) if 1 < a/b < γ(n), then u is locally Hölder continuous in Ω and ∂∗E, the reduced
boundary of E, is a C1,α-hypersurface. Moreover, Lin [20] showed that if (u,E) is a minimizer of (1.2) among
all configurations such that u and ∂E are prescribed on ∂Ω, then u ∈ C0,1/2(Ω) and ∂∗E, the reduced boundary
of E, is a C1,α-hypersurface away from a singular set Σ of Hn−1 measure zero. In [21], Lin and Kohn establish
a partial regularity result for the boundary of the minimal set of the problem

I(u,E) :=
∫

Ω

(F (x, u,∇u) + χ
E
G(x, u,∇u)) dx+ P (E,Ω), (1.3)

subject to the following constraints
u = Φ on ∂Ω and |E| = d,

requiring that F and G satisfy severe structure assumptions and have quadratic growth. A more detailed analysis
of the minimal configurations of (P) was carried out in the two dimensional case by Larsen in [19]. However,
also in this case only partial regularity of ∂∗E is obtained.

All minimum problems considered in the above mentioned papers have bulk energies of Dirichlet type with
quadratic growth, i.e., of the form | · |2. Here, in Theorem 1.1 we treat constrained problems, we do not require
any additional structure assumption on the bulk energies, and we assume p-growth (not necessarily p = 2) with
respect to the gradient.
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We point out that the Hölder exponent 1
p′ in Theorem 1.1 is critical, in the sense that the two terms in the

energy functional (1.1) locally have the same dimension n − 1 (under appropriate scalings). Actually, we will

show that u ∈ C
0, 1

p′ +δ

loc (Ω), for some δ > 0, under suitable conditions on the eigenvalues of F and G, that,
together with a result in [23] (see Thm. 2.3 in Sect. 2), allows us to conclude that ∂∗E is a C1,δ̃ hypersurface,
for some 0 < δ̃ < 1. More precisely, we have

Theorem 1.2. Let F and G satisfy assumptions (F1)–(F2) and (G1)–(G2), respectively. There exist γ =
γ(n, p, �

L) < 1 and σ̃ = σ̃(n, p) > 0 such that if(
β

α+ 1

)(
β + 1
α+ 1

)σ̃

≤ γ (1.4)

and if (u,E) is a minimizer of problem (P), then u ∈ C
0, 1

p′ +δ

loc (Ω) for some positive δ depending on n, p, α, β.
Moreover ∂∗E is a C1,δ̃-hypersurface in Ω, for some δ̃ < 1

2 depending on n, p, α, β, and Hs((∂E \∂∗E)∩Ω) = 0
for all s > n− 8.

Note that in Theorem 1.2 we do not impose the p-homogeneity of F , condition that we required in Theorem 1.1
only to avoid heavy technicalities.

Consider the prototype integrands

F (ξ) := L(μ2 + |ξ|2) p
2 and G(ξ) := βL(μ2 + |ξ|2) p

2 .

In this case the parameter α in assumption (G2) coincides with β in assumption (G1), and condition (1.4)
reduces to

β ≤ γ

1 − γ
,

with γ = γ(n, p) < 1.
The functional (1.2) is a particular case of (1.1), setting

F (ξ) := b|ξ|2 and G(ξ) := (a− b)|ξ|2, a > b.

In this case, the parameters α, β in (G2) and (G1) are given by

β = α :=
a− b

b
,

and condition (1.4) becomes

1 <
a

b
≤ 1

1 − γ
·

So, Theorem 1.2 gives back Theorem 2 in [8] as a particular case.
Further, without imposing any condition on the eigenvalues of the integrands, we are still able to obtain the

following partial regularity result:

Theorem 1.3. Assume that (F1)–(F2) and (G1)–(G2) hold and let (u,E) be a minimizer of problem (P). Then
there exists an open set Ω0 ⊂ Ω with full measure such that u ∈ C0,η(Ω0), for every positive η < 1. In addition,
∂∗E ∩Ω0 is a C1,η̃-hypersurface in Ω0, for every 0 < η̃ < 1

2 , and Hs((∂E \ ∂∗E) ∩Ω0) = 0 for all s > n− 8.

In the study of regularity properties, the constraint |E| = d introduces extra difficulties, since one can work
only with variations which keep the volume constant. The next theorem allows us to circumvent this extra
difficulties, ensuring that every minimizer of the constrained problem (P) is also a minimizer of a suitable
unconstrained energy functional with a volume penalization.



REGULARITY RESULTS FOR AN OPTIMAL DESIGN PROBLEM WITH A VOLUME CONSTRAINT 463

Theorem 1.4. There exists λ0 > 0 such that if (u,E) is a minimizer of the functional

Iλ(v,A) :=
∫

Ω

(F (∇v) + χAG(∇v)) dx + P (A,Ω) + λ
∣∣|A| − d

∣∣ (1.5)

for some λ ≥ λ0 and among all configurations (v,A) such that v = u0 on ∂Ω, then |E| = d and (u,E) is
a minimizer of problem (P). Conversely, if (u,E) is a minimizer of the problem (P), then it is a minimizer
of (1.5), for all λ ≥ λ0.

Theorem 1.4 is a straightforward modification of a result due to Esposito and Fusco (see [8], Thm. 1). Since
several modifications are needed, we present its proof in Section 3 for the reader’s convenience. Similar arguments
have been used in Fonseca, Fusco, Leoni and Millot [11] (see also Alt and Caffarelli [1]).

From the point of view of regularity, the extra term λ
∣∣|A| − d

∣∣ is a higher order, negligible perturbation,
in the sense that if x0 ∈ ∂∗E ∩ ∂Ω then |E ∩ B	(x0)| decays as �n as � → 0+ while the leading term∫

B�(x0)
(F (∇u) + χ

E
G(∇u)) dx+ P (E,B	(x0)) decays as �n−1.

The proof of Theorem 1.1 is based on a decay estimate for the gradient of the minimizer u, obtained by
blowing-up the minimizer u in small balls. We establish that the minimizers of the rescaled problems converge
to a Hölder continuous function v, and we show that u and v are “close enough” (with respect to the norm in
the Sobolev space W 1,p) in order to ensure that u inherits the regularity estimates of v.

Theorems 1.2 and 1.3 are obtained by a comparison argument between the minimizer of (P) and the minimizer
of a suitable convex scalar functional with p-growth, for which regularity results are well known. Also here, we
show that the two minimizers are “close” enough to share the same good regularity properties. We remark that
in this comparison argument we need that u is a real valued function. In fact, in the vectorial setting (see [22])
minimizers of regular variational functionals may have singularities and only partial regularity results are known
(see for example [3, 7, 13]).

This paper is organized as follows: in Section 2 we fix the notation and collect standard preliminary results.
The proof of Theorem 1.4 is given in Section 3, since the result is needed in the proofs of the other theorems.
The proofs of Theorems 1.1, 1.2 and 1.3 are presented in Sections 4, 5 and 6, respectively.

2. Notations and preliminary results

In this paper we follow usual convention and denote by c a general constant that may vary from expression to
expression, even within the same line of estimates. Relevant dependencies on parameters and special constants
will be suitably emphasized using parentheses or subscripts. The norm we use in R

n is the standard Euclidean
norm, and it will be denoted by | · |. In particular, for vectors ξ, η ∈ R

n we write 〈ξ, η〉 for the inner product
of ξ and η, and |ξ| := 〈ξ, ξ〉 1

2 is the corresponding Euclidean norm. When a, b ∈ R
n we write a ⊗ b for the

tensor product defined as the matrix that has the element arbs in its rth row and sth column. Observe that
(a⊗ b)x = (b · x)a for x ∈ R

n, and |a⊗ b| = |a||b|. When F : R
n → R is C1, we write

DξF (ξ)[η] :=
d
dt

∣∣∣
t=0

F (ξ + tη)

if ξ, η ∈ R
n. It is convenient to express the convexity and growth conditions of the integrands in terms of an

auxiliary function defined for all ξ ∈ R
n as

V (ξ) = Vp,μ(ξ) :=
(
μ2 + |ξ|2) p−2

4 ξ, (2.1)

where μ ≥ 0 and p ≥ 1. We recall the following lemmas.

Lemma 2.1. Let 1 < p <∞ and 0 ≤ μ ≤ 1. There exists a constant c = c(n,N, p) > 0 such that

c−1
(
μ2 + |ξ|2 + |η|2) p−2

2 ≤ |Vp,μ(ξ) − Vp,μ(η)|2
|ξ − η|2 ≤ c

(
μ2 + |ξ|2 + |η|2) p−2

2

for all ξ, η ∈ R
n.
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For the proof we refer to [17], Lemma 8.3. The next lemma can be found in ([15], Lem. 2.1) and ([2], Lem. 2.1)
for p ≥ 2 and 1 < p < 2, respectively.

Lemma 2.2. For 1 < p <∞ and all ξ, η ∈ R
n one has

1
c
≤
∫ 1
0
(μ2 + |ξ + tη)|2) p−2

2 dt

(μ2 + |ξ|2 + |η|2) p−2
2

≤ c,

where c depends only on p.

It is well-known that for convex C1 integrands, the assumptions (F1) and (G1) yield the upper bounds

|DξF (ξ)| ≤ c1(μ2 + |ξ|2) p−1
2 |DξG(ξ)| ≤ c2(μ2 + |ξ|2) p−1

2 (2.2)

for all ξ ∈ R
n, where we can use c1 := 2pL and c2 := 2pβL (see [17]).

Also, if F and G satisfy (F2) and (G2), respectively, then the following strong p-monotonicity conditions
hold:

〈DξF (ξ) −DξF (η), ξ − η〉 ≥ c(p)�|V (ξ) − V (η)|2

〈DξG(ξ) −DξG(η), ξ − η〉 ≥ c(p)α�|V (ξ) − V (η)|2 (2.3)

for all ξ, η ∈ R
n and some c(p) > 0. In fact, (F2) and (G2) are equivalent to the convexity of the functions

ξ → F̃ (ξ) := F (ξ) − �(μ2 + |ξ|2) p
2

and
ξ → G̃(ξ) := G(ξ) − α�(μ2 + |ξ|2) p

2 ,

respectively (see for example [17], p. 164). Hence, the convexity of F̃ implies

F (ξ) − �(μ2 + |ξ|2) p
2 ≥ F (η) − �(μ2 + |η|2) p

2 + 〈DξF (η), ξ − η〉 − �p〈(μ2 + |η|2) p
2−1η, ξ − η〉

and
F (η) − �(μ2 + |η|2) p

2 ≥ F (ξ) − �(μ2 + |ξ|2) p
2 + 〈DξF (ξ), η − ξ〉 − �p〈(μ2 + |ξ|2) p

2−1ξ, η − ξ〉.
Summing previous inequalities and using Lemmas 2.2 and 2.1, we obtain

〈DξF (ξ) −DξF (η), ξ − η〉 ≥ �p〈(μ2 + |ξ|2) p
2−1ξ, ξ − η〉 − �p〈(μ2 + |η|2) p

2−1η, ξ − η〉

≥ �p〈(μ2 + |ξ|2) p
2−1ξ − (μ2 + |η|2) p

2−1η, ξ − η〉

≥ c(p)�
∫ 1

0

(μ2 + |ξ + t(η − ξ)|2) p
2−1 dt|ξ − η|2

≥ c(p)�|V (ξ) − V (η)|2,
i.e., the first inequality in (2.3). The second inequality in (2.3) can be derived arguing similarly.

Further, if F and G are C2, then (F2) and (G2) are equivalent to the following standard strong p-ellipticity
conditions

〈D2F (ξ)η, η〉 ≥ c3(μ2 + |ξ|2) p−2
2 |η|2, 〈D2G(ξ)η, η〉 ≥ c4(μ2 + |ξ|2) p−2

2 |η|2
for all ξ, η ∈ R

n, where ci are positive constants of form c3 = c(p)� and c4 = c(p)α�, respectively.
The next lemma establishes that the uniform strong p-convexity assumptions (F2) and (G2) yield growth

conditions from below for the functions F and G.
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Lemma 2.3. Suppose that H : R
n → [0,+∞) is a C1 function such that

0 ≤ H(ξ) ≤ L̃(μ2 + |ξ|2) p
2 (2.4)

for all ξ ∈ R
n, where p > 1, 0 ≤ μ ≤ 1, L̃ > 0. Assume, in addition, that∫

Q

H(ξ + ∇ϕ) dx ≥
∫

Q

H(ξ) + �̃(μ2 + |ξ|2 + |∇ϕ|2) p−2
2 |∇ϕ|2 dx (2.5)

for all ξ ∈ R
n, ϕ ∈ C1

0 (Q), Q ⊂ R
n and for some positive constant �̃. Then there exists a positive constant

c(p, L̃, �̃, μ) such that

H(ξ) ≥ �̃

2
(μ2 + |ξ|2) p

2 − c(p, L̃, �̃, μ) for all ξ ∈ R
n. (2.6)

Proof. We use again the fact that assumption (2.5) is equivalent to the convexity of the function

ξ → K(ξ) := H(ξ) − �̃(μ2 + |ξ|2) p
2 .

Hence
K(ξ) ≥ K(0) + 〈DξK(0), ξ〉,

or, equivalently,
H(ξ) ≥ �̃(μ2 + |ξ|2) p

2 +H(0) − �̃μp + 〈DξH(0), ξ〉 (2.7)

for all ξ ∈ R
n. By (2.4) and (2.2), we have that

H(0) ≥ 0 and |DξH(0)| ≤ 2pL̃μp−1,

and by Young’s inequality∣∣∣〈DξH(0), ξ〉
∣∣∣ = ∣∣∣〈( �̃ )− 1

pDξH(0),
(
�̃
) 1

p ξ〉
∣∣∣ ≤ c(ε)

(
�̃
)− 1

p−1 |DξH(0)| p
p−1 + ε�̃|ξ|p

≤ c(ε)2
p2

p−1
(
�̃
)− 1

p−1 L̃
p

p−1μp + ε�̃(μ2 + |ξ|2) p
2 . (2.8)

Inserting (2.8) in (2.7), we get

H(ξ) ≥ �̃(μ2 + |ξ|2) p
2 − c(ε)2

p2

p−1
(
�̃
)− 1

p−1 L̃
p

p−1μp − ε�̃(μ2 + |ξ|2) p
2 − �̃μp

and, choosing ε = 1
2 , we conclude that

H(ξ) ≥ �̃

2
(μ2 + |ξ|2) p

2 − cp

(
L̃p

�̃

) 1
p−1

μp − �̃μp. �

As already mentioned in the Introduction, we will compare the minimizer u of the problem (P) with the mini-
mizer of a suitable regular convex variational integral. In order to take advantage of the comparison argument,
we will need the following regularity result (see [10], Thm. 2.2)

Theorem 2.1. Let H : R
n → [0,+∞) be a continuous function such that

0 ≤ H(ξ) ≤ L̃(μ2 + |ξ|2) p
2
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for all ξ ∈ R
n, where p > 1, 0 ≤ μ ≤ 1, L̃ > 0. Suppose, in addition, that∫

Q

H(ξ + ∇ϕ) dx ≥
∫

Q

H(ξ) + �̃(μ2 + |ξ|2 + |∇ϕ|2) p−2
2 |∇ϕ|2 dx

for all ξ ∈ R
n, ϕ ∈ C1

0 (Q), Q ⊂ R
n and for some positive constant �̃. If v ∈ W 1,p(Ω) is a local minimizer of

the functional

H(w,Ω) :=
∫

Ω

H(∇w) dx,

i.e.,
H(v,Br(x0)) = min

{
H(w,Br(x0)) : w ∈ v +W 1,p

0 (Br(x0))
}

for all Br(x0) ⊂ Ω,

then v is locally Lipschitz in Ω, and

ess sup
B R

2
(x0)

(μ2 + |∇v|2) p
2 ≤ c(n, L̃, �̃, p)

∫
BR(x0)

(μ2 + |∇v|2) p
2 dx (2.9)

for every BR
2
(x0) ⊂ BR(x0) ⊂ Ω.

In what follows, we will need a more explicit dependence on the eigenvalues of H of the constant in (2.9).
Actually, a careful inspection of the proof of Theorem 2.2 in [10] reveals that the constant in estimate (2.9) is
of the type

c(n, L̃, �̃, p) = c

(
L̃

�̃

) 2n
p

(2.10)

where c = c(n, p) ≥ 1.
The following is a technical iteration lemma (see [17], Lem. 7.3)

Lemma 2.4. Let ϕ be a nonnegative, nondecreasing function and assume that there exist ϑ ∈ (0, 1), R̄ > 0,
and 0 < β < γ such that

ϕ(ϑr) ≤ ϑγϕ(r) + brβ

for all 0 < r ≤ R̄. Then we have

ϕ(ρ) ≤ C

{(ρ
r

)β
ϕ(r) + bρβ

}
,

for every 0 < ρ < r ≤ R̄, with C = C(ϑ, β, γ).

The next result relates the decay estimate for the gradient of a Sobolev function with its Hölder regularity
properties (see [14], Thm. 1.1, p. 64 and [16], Thm. 7.19)

Theorem 2.2 (Morrey’s Lemma). Let u ∈ W 1,1(Ω) and suppose that there exist positive constants K,
0 < α ≤ 1 such that ∫

Br(x)

|∇u| dx ≤ Krn−1+α,

for all balls B(x, r) ⊂ Ω, x ∈ Ω, r > 0. Then u ∈ C0,α(Ω).

Given a Borel set E in R
n, P (E,Ω) denotes the perimeter of E in Ω, defined as

P (E,Ω) = sup
{∫

E

divφdx : φ ∈ C1
0 (Ω; Rn), |φ| ≤ 1

}
.
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It is known that, for a set of finite perimeter E, one has

P (E,Ω) = Hn−1(∂∗E)

where

∂∗E =

{
x ∈ Ω : lim sup

ρ→0+

P (E,Bρ(x))
ρn−1

> 0

}
is the reduced boundary of E (for more details we refer to [5]).

Given a set E ⊂ Ω of finite perimeter in Ω, for every ball Br(x) � Ω we measure how far E is from being an
area minimizer in the ball by setting

ψ(E,Br(x)) := P (E,Br(x)) − min {P (A,Br(x)) : AΔE � Br(x), χA ∈ BV (Rn)} .

The following regularity result, due to Tamanini (see [23]), asserts that if the excess ψ(E,Br(x)) decays fast
enough when r → 0, then E has essentially the same regularity properties of an area minimizing set.

Theorem 2.3. Let Ω be an open subset of R
n and let E be a set of finite perimeter satisfying, for some

δ ∈ (0, 1
2 ),

ψ(E,Br(x)) ≤ crn−1+δ

for every x ∈ Ω and every r ∈ (0, r0), with c = c(x), r0 = r0(x) local positive constants. Then ∂∗E is a
C1,δ-hypersurface in Ω and Hs ((∂E \ ∂∗E) ∩Ω)) = 0 for all s > n− 8.

3. Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4, which follows closely that of Theorem 1 in [8]. Since
several modifications are needed, we present it here for the convenience of the reader.

Proof of Theorem 1.4.

Step 1. We prove the first part of Theorem 1.4 arguing by contradiction. Assume that there exist a sequence
{λh}h∈N such that λh → ∞ as h → ∞, and a sequence of configurations {(uh, Eh)} minimizing Iλh

such that
uh = u0 on ∂Ω and |Eh| 
= d for all h. Notice that

Iλh
(uh, Eh) ≤ I(u0, E0) =: Θ, (3.1)

where E0 ⊂ Ω is a fixed set of finite perimeter such that |E0| = d. Assume that |Eh| < d for a (not relabeled)
subsequence (if |Eh| > d the proof is similar). We claim that, for h sufficiently large, there exists a configuration
(ũh, Ẽh) such that Iλh

(ũh, Ẽh) < Iλh
(uh, Eh), thus proving that |Eh| = d for all h sufficiently large, say λ ≥ λ0.

By our assumptions on F and G, it follows that the sequence {uh} is bounded in W 1,p(Ω), the perimeters
of the sets Eh are bounded, and |Eh| → d. Therefore, without loss of generality, we may assume, possibly
extracting a subsequence (not relabeled), that there exists a configuration (u,E) such that uh → u weakly in
W 1,p(Ω), χEh

→ χE a.e. in Ω, and E is a set of finite perimeter in Ω with |E| = d.

Step 2. Construction of (ũh, Ẽh). Fix a point x ∈ ∂∗E ∩ Ω (such a point exists since E has finite perimeter
in Ω, 0 < |E| < |Ω|, and Ω is connected). By De Giorgi’s structure theorem for sets of finite perimeter (see [5],
Thm. 3.59), the sets Er = (E − x)/r converge locally in measure to the half space H = {z · νE(x) > 0},
i.e., χEr → χH in L1

loc(R
n), where νE(x) is the generalized inner normal to E at x (see [5], Def. 3.54). Let

y ∈ B1(0) \H be the point y := −νE(x)/2. Given ε > 0 and small (to be chosen at the end of the proof), since
χEr → χH in L1(B1(0)) there exists r > 0 such that

B2r(x) ⊂ Ω, |Er ∩B1/2(y)| < ε, |Er ∩B1(y)| ≥ |Er ∩B1/2(0)| > ωn

2n+2
,
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where ωn denotes the measure of the unit ball of R
n. Therefore, setting xr := x+ ry ∈ Ω, we have

Br(xr) ⊂ Ω, |E ∩Br/2(xr)| < εrn, |E ∩Br(xr)| > ωnr
n

2n+2
·

Assume, without loss of generality, that xr = 0, and in the sequel denote the open ball centered at the origin
and with radius r > 0 by Br. From the convergence of {Eh} to E we have that, for all h sufficiently large,

|Eh ∩Br/2| < εrn, |Eh ∩Br| > ωnr
n

2n+2
· (3.2)

Define the bi-Lipschitz map φ : Br → Br by

Φ(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 − σ(2n − 1)

)
x if |x| < r

2
,

x+ σ

(
1 − rn

|x|n
)
x if

r

2
≤ |x| < r,

x if |x| ≥ r,

(3.3)

for some fixed 0 < σ < 1/2n, to be determined later, such that, setting

Ẽh := Φ(Eh), ũh := uh ◦ Φ−1,

we have |Ẽh| < d. We obtain

Iλh
(uh, Eh) − Iλh

(ũh, Ẽh) =
[∫

Br

(
F (∇uh) + χ

Eh
G(∇uh)

)
dx−
∫

Br

(
F (∇ũh) + χ

Ẽh
G(∇ũh)

)
dy
]

+
(
P (Eh, Br) − P (Ẽh, Br)

)
+ λh

(|Ẽh| − |Eh|
)

=: I1,h + I2,h + I3,h. (3.4)

Step 3. Estimate of I1,h. We start by evaluating the gradient and the Jacobian determinant of Φ in the annulus
Br \Br/2. If r/2 < |x| < r, then we have

∂Φi

∂xj
(x) =
(

1 + σ − σrn

|x|n
)
δij + nσrn xixj

|x|n+2
for all i, j = 1, . . . n

and thus, if η ∈ R
n,

(∇Φ ◦ η) · η =
(

1 + σ − σrn

|x|n
)
|η|2 + nσrn (x · η)2

|x|n+2

from which it follows that

|∇Φ ◦ η| ≥
(

1 + σ − σrn

|x|n
)
|η|.

From this inequality we easily deduce an estimate on the norm of ∇Φ−1, precisely,∥∥∇Φ−1
(
Φ(x)
)∥∥ = max

|η|=1

∣∣∣∣∇Φ−1 ◦
( ∇Φ ◦ η
|∇Φ ◦ η|

)∣∣∣∣ = max
|η|=1

1
|∇Φ ◦ η| (3.5)

≤
(

1 + σ − σrn

|x|n
)−1

≤ (1 − (2n − 1)σ
)−1 for all x ∈ Br \Br/2.

Concerning the Jacobian, we write, for x ∈ Br \Br/2,

Φ(x) = ϕ(|x|) x|x| , (3.6)
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where

ϕ(t) = t

(
1 + σ − σrn

tn

)
, for all t ∈ [r/2, r].

Let I denote the identity map in R
n. Recalling that ifA = I+a⊗b for some vectors a, b ∈ R

n, then detA = 1+a·b,
a straightforward calculation gives for all x ∈ Br \Br/2

JΦ(x) = ϕ′(|x|)
(
ϕ(|x|)
|x|
)n−1

=
(

1 + σ +
(n− 1)σrn

|x|n
)(

1 + σ − σrn

|x|n
)n−1

. (3.7)

We have (
1 + σ − σrn

|x|n
)n−1

= (1 + σ)n−1

(
1 −

σrn

|x|n
1 + σ

)n−1

≥ (1 + σ)n−1

(
1 − (n− 1)

σrn

|x|n
1 + σ

)

= (1 + σ)n−2

(
1 + σ − (n− 1)

σrn

|x|n
)

≥ 1 + σ − (n− 1)
σrn

|x|n . (3.8)

Since x ∈ Br \B r
2
, by (3.7) and (3.8) we have

JΦ(x) ≥
(

1 + σ + (n− 1)
σrn

|x|n
)(

1 + σ − (n− 1)
σrn

|x|n
)

= (1 + σ)2 − (n− 1)2
σ2r2n

|x|2n

≥ (1 + σ)2 − 4n(n− 1)2σ2 = 1 + 2σ −
(
4n(n− 1)2 − 1

)
σ2 > 1 + σ (3.9)

provided that we chose

σ <
1

4n(n− 1)2 − 1
·

On the other hand, from (3.7) we get also

JΦ(x) ≤ 1 + 2nnσ. (3.10)

Let us now turn to the estimate of I1,h. Performing the change of variable y = Φ(x) in the second integral
defining I1,h, and observing that χẼh

(Φ(x)) = χEh
(x), we get

I1,h =
∫

Br

[
F (∇uh(x)) − F

(∇uh(x) ◦ ∇Φ−1
(
Φ(x)
))
JΦ(x)

+χEh
(x)
[
G(∇uh(x)) −G

(∇uh(x) ◦ ∇Φ−1
(
Φ(x)
))
JΦ(x)
]
dx

=: A1,h +A2,h, (3.11)

where A1,h stands for the above integral evaluated in Br/2 and A2,h for the same integral evaluated in Br \Br/2.
Recalling the definition of Φ in (3.3) and the growth assumptions on F,G in (F1) and (G1), respectively, we get

A1,h =
∫

Br/2

[
F (∇uh(x)) − F

(∇uh(x) ◦ (1 − σ(2n − 1)
)−1

I
)(

1 − σ(2n − 1)
)n]dx

+
∫

Br/2

χEh
(x)
[
G(∇uh(x)) −G

(∇uh(x) ◦ (1 − σ(2n − 1)
)−1

I
)(

1 − σ(2n − 1)
)n]dx

≥ −
∫

Br/2

F (∇uh(x) ◦ (1 − σ(2n − 1)
)−1

I
)(

1 − σ(2n − 1)
)n dx
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−
∫

Br/2

χEh
(x)G(∇uh(x) ◦ (1 − σ(2n − 1)

)−1
I
)(

1 − σ(2n − 1)
)n dx

≥ −c(p, β, L)
∫

Br/2

(1 + χEh
(x))
∣∣∇uh(x) ◦ (1 − σ(2n − 1)

)−1
I
∣∣p(1 − σ(2n − 1)

)n dx

−c(p, β, L)μp
(
1 − σ(2n − 1)

)n
rn

≥ −c(p, β, L)
∫

Br/2

(1 + χEh
(x))
∣∣∇uh(x)

∣∣p(1 − σ(2n − 1)
)n−p dx

−c(p, β, L)μp
(
1 − σ(2n − 1)

)n
rn

= −c(1 − σ(2n − 1)
)n−p
∫

Br/2

∣∣∇uh(x)
∣∣p dx− cμp

(
1 − σ(2n − 1)

)n
rn

≥ −C(n, p, β, L, σ, μ)(Θ + rn)

where we used (3.1). Recalling (3.5), (3.10) and (3.1) we have

A2,h =
∫

Br\Br/2

[
F (∇uh(x)) − F

(∇uh(x) ◦ ∇Φ−1
(
Φ(x)
))
JΦ(x)
]
dx

+
∫

Br\Br/2

χEh
(x)
[
G(∇uh(x)) −G

(∇uh(x) ◦ ∇Φ−1
(
Φ(x)
))
JΦ(x)
]
dx

≥ −c(p, β, L)
∫

Br\Br/2

(1 + χEh
(x))|∇uh(x)|p(1 − (2n − 1)σ

)−p(1 + 2nnσ
)
dx

−c(p, β, L)μp
(
1 + 2nnσ

)
rn

≥ −C(n, p, β, L, σ)
∫

Br\Br/2

|∇uh(x)|p dx− c(p, β, L)μp
(
1 + 2nnσ

)
rn

≥ −C(n, p, β, L, σ, μ)(Θ + rn).

Thus, from the above estimates we conclude that

I1,h ≥ −C(n, p, β, L, σ, μ)(Θ + rn). (3.12)

Step 4. Estimate of I2,h. We use the area formula for maps between rectifiable sets. To this aim, for x ∈ ∂∗Eh

denote by Th,x : πh,x → R
n the tangential differential at x of Φ along the approximate tangent space πh,x

to ∂∗Eh, which is defined by Th,x(τ) = ∇Φ(x) ◦ τ for all τ ∈ πh,x. We recall (see [5], Def. 2.68) that the
(n− 1)-dimensional jacobian of Th,x is given by

Jn−1Th,x =
√

det
(
T ∗

h,x ◦ Th,x

)
,

where T ∗
h,x is the adjoint of the map Th,x. To estimate Jn−1Th,x, fix x ∈ ∂∗Eh ∩ (Br \ Br/2). Denote by

{τ1, . . . , τn−1} an orthonormal base for πh,x, and by L the n× (n− 1) matrix representing Th,x with respect to
the fixed base in πh,x and the standard base {e1, . . . , en} in R

n. From (3.6) we have

Lij = ∇Φi · τj =
ϕ(|x|)
|x| ei · τj +

(
ϕ′(|x|) − ϕ(|x|)

|x|
)
xi

|x|
x · τj
|x| , i = 1, . . . , n, j = 1, . . . , n− 1.

Thus, for j, l = 1, . . . , n− 1, we obtain

(L∗ ◦ L)jl =
ϕ2(|x|)
|x|2

n∑
i=1

(ei · τj)(ei · τl) +
(
ϕ′2(|x|) − ϕ2(|x|)

|x|2
)

(x · τj)(x · τl)
|x|2 ·
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Since Jn−1Th,x is invariant by rotation, in order to evaluate det(L∗◦L) we may assume, without loss of generality,
that τj = ej , for all j = 1, . . . , n− 1. We deduce that

L∗ ◦ L =
ϕ2(|x|)
|x|2 I(n−1) +

(
ϕ′2(|x|) − ϕ2(|x|)

|x|2
)
x′ ⊗ x′

|x|2 ,

where I(n−1) denotes the identity map on R
n−1 and x′ = (x1, . . . , xn−1). With a calculation similar to the one

performed to obtain (3.7), from the equality above we easily get that

det(L∗ ◦ L) =
(
ϕ2(|x|)
|x|2
)n−1 [

1 +
|x|2

ϕ2(|x|)
(
ϕ′2(|x|) − ϕ2(|x|)

|x|2
) |x′|2

|x|2
]

and so, using (3.6) we can estimate for x ∈ ∂∗Eh ∩ (Br \Br/2)

Jn−1Th,x =
√

det(L∗ ◦ L) =
(
ϕ(|x|)
|x|
)n−1
√

1 +
|x|2

ϕ2(|x|)
(
ϕ′2(|x|) − ϕ2(|x|)

|x|2
) |x′|2

|x|2 (3.13)

≤
(
ϕ(|x|)
|x|
)n−2

ϕ′(|x|) ≤ ϕ′(|x|) ≤ 1 + σ + 2n(n− 1)σ.

To estimate I2,h, we use the area formula for maps between rectifiable sets ([5], Thm. 2.91), and we get

I2,h = P (Eh, Br) − P (Ẽh, Br) =
∫

∂∗Eh∩Br

dHn−1 −
∫

∂∗Eh∩Br

Jn−1Th,x dHn−1

=
∫

∂∗Eh∩Br\Br/2

(1 − Jn−1Th,x) dHn−1 +
∫

∂∗Eh∩Br/2

(1 − Jn−1Th,x) dHn−1.

Notice that the last integral in the above formula is nonnegative since Φ is a contraction in Br/2, hence
Jn−1Th,x < 1 in Br/2, while from (3.13) and (3.1) we have∫

∂∗Eh∩Br\Br/2

(1 − Jn−1Th,x) dHn−1 ≥ −2nnP (Eh, Br)σ ≥ −2nnΘσ,

thus concluding that
I2,h ≥ −c(n)Θσ. (3.14)

Step 5. Estimate of I3,h. We recall (3.2), (3.3), (3.7) to obtain

I3,h = λh

∫
Eh∩Br\Br/2

(JΦ(x) − 1) dx+ λh

∫
Eh∩Br/2

(JΦ(x) − 1) dx

≥ λhC1(n)
( ωn

2n+2
− ε
)
σrn − λh

[
1 − (1 − (2n − 1)σ

)n]
εrn

≥ λhσr
n
[
C1(n)

ωn

2n+2
− C1(n)ε− (2n − 1)nε

]
.

Therefore, if we choose 0 < ε < ε(n), with ε(n) depending only on the dimension, we have that

I3,h ≥ λhC2(n)σrn (3.15)

for some positive C2(n).

Step 6. Conclusion of Step 1. Estimate (3.15), together with (3.4), (3.12) and (3.14), yields

Iλh
(uh, Eh) − Iλh

(ũh, Ẽh) ≥ λhσC3r
n − C(n, p, σ, μ)(Θ + rn) > 0
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if λh is sufficiently large. This contradicts the minimality of (uh, Eh), thus concluding the proof of the first part
of Theorem 1.4.

Step 7. Conversely, if (u,E) is a minimizer of I and λ0 is as determined on Step 1, then for λ > λ0 Steps 1–5
ensure the existence of a minimizer (uλ, Eλ) of Iλ with |Eλ| = d. Hence, by the minimality,

I(u,E) ≤ I(uλ, Eλ) = Iλ(uλ, Eλ) ≤ Iλ(u,E) = I(u,E)

i.e.,
I(u,E) = Iλ(uλ, Eλ) �

and so (u,E) also minimizes Iλ.

4. Proof of Theorem 1.1

This section is devoted to the proof of our first regularity result, stated in Theorem 1.1. The proof is obtained
by establishing that the bulk energy and the perimeter of the free interface both decay on balls of radius ρ as
ρn−1, for ρ → 0+. We divide it in two steps: In the first we prove the decay estimate for the perimeter, and in
the second we address the decay of the bulk energies.

Proof of Theorem 1.1. Let (u,E) be a solution of the problem (P).

Step 1. First decay estimate. Fix x0 ∈ Ω and let R ≤ dist(x0, ∂Ω). Assume, without loss of generality that
0 < R < 1. Here we want to prove that there exists a constant c0 = c0(n, p, λ0, α, β, �, L) such that∫

Br(x0)∩E

|∇u|p dx+ P (E,Br(x0)) ≤ c0r
n−1, (4.1)

for every 0 < r < R.
First, consider x0 ∈ ∂E ∩ Ω and set Ẽ := E \ Br(x0) where 0 < r < R. For λ0 determined in Theorem 1.4,

we have
Iλ0(u,E) ≤ Iλ0(u, Ẽ),

i.e., ∫
Ω

(
F (∇u) + χ

E
G(∇u)

)
dx+ P (E,Ω)

≤
∫

Ω

(
F (∇u) + χ

Ẽ
G(∇u)

)
dx+ P (Ẽ, Ω) + λ0| |Ẽ| − d |.

Therefore, ∫
Ω

(χE − χ
Ẽ
)G(∇u) dx + P (E,Br(x0)) ≤ P (Br(x0)) + λ0| |Ẽ| − d |,

and so ∫
Br(x0)

χ
E
G(∇u) dx+ P (E,Br(x0)) ≤ c(n)rn−1 + c(n)λ0r

n ≤ c(n, λ0)rn−1,

since r < 1. Lemma 2.3 implies that

α
�

2

∫
Br(x0)

χ
E
|∇u|p dx− c(p, μ, α, β, �, L)|Br(x0) ∩ E| + P (E,Br(x0)) ≤ c(n, λ0)rn−1,

or, equivalently,

α
�

2

∫
Br(x0)

χ
E
|∇u|p dx+ P (E,Br(x0)) ≤ c(n, λ0)rn−1 + c(p, μ, α, β, �, L)|Br(x0) ∩ E|
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≤ c(n, p, μ, α, β, �, L, λ0)rn−1.

Therefore

min
{
α
�

2
, 1
}[∫

Br(x0)

χE |∇u|p dx+ P (E,Br(x0))

]
≤ c(n, p, μ, α, β, �, L, λ0)rn−1.

This inequality yields that ∫
Br(x0)∩E

|∇u|p dx+ P (E,Br(x0)) ≤ c0r
n−1, (4.2)

where we set c0 := c(n, p, λ0, α, β, �, L).
If x0 
∈ ∂E ∩ Ω, or Br(x0) ∩ E is not empty and we argue exactly as before, or Br(x0) ⊂ Ω \ E and

estimate (4.1) is trivially satisfied.

Step 2. Second decay estimate. Here we want to prove that there exist τ ∈ (0, 1
2

)
and δ ∈ (0, 1) such that for

every M > 0 there exists h0 ∈ N such that ∀B(x0, r) ⊂ Ω we have∫
Br(x0)

|∇u|p dx ≤ h0r
n−1 or

∫
Bτr(x0)

|∇u|p dx ≤Mτn−δ

∫
Br(x0)

|∇u|p dx. (4.3)

In order to prove (4.3), we argue by contradiction. Fix τ ∈ (0, 1/2), δ ∈ (0, 1) and choose M > τδ−n. Suppose
that for every h ∈ N, there exists a ball Brh

(xh) ⊂ Ω such that∫
Brh

(xh)

|∇u|p dx > hrn−1
h (4.4)

and ∫
Bτrh

(xh)

|∇u|p dx > Mτn−δ

∫
Brh

(xh)

|∇u|p dx. (4.5)

Note that estimates (4.2) and (4.4) yield∫
Brh

(xh)∩E

|∇u|p dx+ P (E,Brh
(xh)) ≤ c0r

n−1
h <

c0
h

∫
Brh

(xh)

|∇u|p dx, (4.6)

and so ∫
Brh

(xh)∩E

|∇u|p dx <
c0
h

∫
Brh

(xh)

|∇u|p dx. (4.7)

Substep 2.a. Blow-up. Set

ςph =
∫

Brh
(xh)

|∇u|p dx

and, for y ∈ B1(0), introduce the sequence of rescaled functions defined as

vh(y) :=
u(xh + rhy) − ah

ςhrh
, where ah :=

∫
Brh

(xh)

u(x) dx.

We have
∇vh(y) =

1
ςh
∇u(xh + rhy)

and a change of variable yields ∫
B1

|∇vh(y)|p dy =
1
ςph

∫
Brh

(xh)

|∇u(x)|p dx = 1. (4.8)
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Therefore, there exist a subsequence of vh (not relabeled) and v ∈ W 1,p(B1) such that

vh ⇀ v weakly in W 1,p(B1), and vh → v strongly in Lp(B1).

Moreover, the lower semicontinuity of the norm implies∫
B1

|∇v(y)|p dy ≤ lim inf
h→∞

∫
B1

|∇vh(y)|p dy = 1. (4.9)

Substep 2.b. We claim that vh → v in W 1,p
loc (B1). Consider the sets

E∗
h :=

E − xh

rh
∩B1.

Since P (E∗
h, B1) = 1

rn−1
h

P (E,Brh
(xh)), by (4.6) we have that P (E∗

h, B1) are bounded, and so, up to the extrac-

tion of a subsequence (not relabeled), χ
E∗

h
→ χ

E∗ in L1 (and weakly in BV (B1)) for some set of finite perimeter
E∗ ⊂ B1.

Using the minimality of (u,E) with respect to (u + ϕ,E), for ϕ ∈ W 1,p
0 (Brh

(xh)) we obtain∫
Brh

(xh)

(
F (∇u(x)) + χ

E
G(∇u(x))

)
dx ≤
∫

Brh
(xh)

(
F (∇u(x) + ∇ϕ(x)) + χ

E
G(∇u(x) + ∇ϕ(x))

)
dx,

or, equivalently, using the change of variable x = xh + rhy, we get∫
B1

(
F (ςh∇vh(y)) + χ

E∗
h
G(ςh∇vh(y))

)
dy

≤
∫

B1

(
F (ςh∇vh(y) + ∇ψ(y)) + χ

E∗
h
G(ςh∇vh(y) + ∇ψ(y))

)
dx (4.10)

for every ψ ∈ W 1,p
0 (B1). Let η ∈ C∞

0 (B1), 0 ≤ η ≤ 1. Choosing ψh(y) = ςhη(v − vh) as test function in (4.10),
we get ∫

B1

(
F (ςh∇vh(y)) + χ

E∗
h
G(ςh∇vh(y))

)
dy

≤
∫

B1

(
F
(
ςhη∇v(y) + ςh(1 − η)∇vh(y) + ∇ηςh(v − vh)

))
dy

+
∫

B1

χ
E∗

h

(
G
(
ςhη∇v(y) + ςh(1 − η)∇vh(y) + ∇ηςh(v − vh)

))
dy

≤
∫

B1

(
F
(
ςhη∇v(y) + ςh(1 − η)∇vh(y)

))
dy +
∫

B1

χ
E∗

h

(
G
(
ςhη∇v(y) + ςh(1 − η)∇vh(y)

))
dy

+
∫

B1

〈
DξF
(
ςhη∇v(y) + ςh(1 − η)∇vh(y) + ∇ηςh(v − vh)

)
,∇ηςh(v − vh)

〉
dy

+
∫

B1

χ
E∗

h

〈
DξG
(
ςhη∇v(y) + ςh(1 − η)∇vh(y) + ∇ηςh(v − vh)

)
,∇ηςh(v − vh)

〉
dy

≤
∫

B1

(
F
(
ςhη∇v(y) + ςh(1 − η)∇vh(y)

))
dy +
∫

B1

χ
E∗

h

(
G
(
ςhη∇v(y) + ςh(1 − η)∇vh(y)

))
dy

+ c

∫
B1

(
μ2 + |ςh∇vh|2 + |ςh∇v|2 + |ςh(v − vh)|2) p−1

2 |ςh(v − vh)| dy (4.11)
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where, in the last inequality, we used (2.2). Hence, using Hölder’s inequality and the convexity of F and G in
estimate (4.11), we obtain∫

B1

(
F (ςh∇vh(y)) + χ

E∗
h
G(ςh∇vh(y))

)
dy

≤
∫

B1

(
(1 − η)F (ςh∇vh(y)) dy + ηF (ςh∇v(y))

)
dy

+
∫

B1

χ
E∗

h

(
(1 − η)G(ςh∇vh(y)) + ηG(ςh∇v(y))

)
dy (4.12)

+ c

∫
B1

|ςh(v − vh)|p dx+ ςph

(∫
B1

μp + |∇vh|p + |∇v|p dx
) p−1

p
(∫

B1

|v − vh|p dx
) 1

p

,

since we may suppose that ςh > 1 for h large. In fact, by (4.4) and the definition of ςh, we have

ςph ≥ h

rh
, (4.13)

and so ςh → +∞ as h→ +∞. By virtue of (4.8), from estimate (4.12) we infer that∫
B1

η
(
F (ςh∇vh(y)) + χ

E∗
h
G(ςh∇vh(y))

)
dy

≤
∫

B1

(
ηF (ςh∇v(y))

)
dy +
∫

B1

χ
E∗

h

(
ηG(ςh∇v(y))

)
dy

+ cςph

∫
B1

|v − vh|p + cςph

(∫
B1

|v − vh|p dx
) 1

p

. (4.14)

Note that, by changing variable in (4.7), we have

rn
h

∫
B1∩E∗

h

|∇u(xh + rhy)|p dy <
c0
h
rn
h

∫
B1

|∇u(xh + rhy)|p dy,

and thus, by the definition of vh, ∫
B1∩E∗

h

|∇vh(y)|p dy <
c0
h

∫
B1

|∇vh(y)|p dy

and, by the use of (4.8), we get ∫
B1∩E∗

h

|∇vh(y)|p dy <
c0ωn

h
· (4.15)

Since χ
E∗

h
→ χ

E∗ weakly in BV (B1), by Fatou’s Lemma and (4.15) we obtain∫
B1∩E∗

|∇v(y)|p dy ≤ lim inf
h

∫
B1∩E∗

h

|∇vh(y)|p dy = 0. (4.16)

Using assumption (G1) and the homogeneity of F in (4.14), we get∫
B1

ηςphF (∇vh(y)) dy ≤
∫

B1

ηςphF (∇v(y)) dy + c

∫
B1

χ
E∗

h

(|ςh∇v(y)|p + |ςh∇vh(y)|p) dy
+ cςph

∫
B1

|v − vh|p dy + cςph

(∫
B1

|v − vh|p dy
) 1

p

,
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i.e., ∫
B1

ηF (∇vh(y)) dy ≤
∫

B1

ηF (∇v(y)) dy +
∫

B1

χ
E∗

h
(|∇v(y)|p + |∇vh(y)|p) dy

+ c

∫
B1

|v − vh|p dy + c

(∫
B1

|v − vh|p dy
) 1

p

. (4.17)

Passing to the limit as h → +∞ in (4.17), by virtue of (4.16), the strong convergence of vh to v in Lp and the
lower semicontinuity of F , we obtain∫

B1

ηF (∇v(y)) dy ≤ lim inf
h

∫
B1

ηF (∇vh(y)) dy ≤
∫

B1

ηF (∇v(y)) dy,

that is,

lim
h

∫
B1

ηF (∇vh(y)) dy =
∫

B1

ηF (∇v(y)) dy. (4.18)

By the strong p-convexity of F and Lemma 2.1, we have∫
B1
η|V (∇vh(y)) − V (∇v(y))|2 dy (4.19)

≤ c(p, �)
∫
B1
η
(
F (∇vh(y)) − F (∇v(y))

)
− 〈DξF (∇vh(y)), η(∇vh(y) −∇v(y))〉dy.

By the minimality of (u,E), we get∫
Brh

(xh)

〈
DξF (∇u(y)) + χEDξG(∇u(y)),∇ϕ

〉
dx = 0

for every ϕ ∈ W 1,p
0 (Brh

(xh)) or, equivalently,∫
B1

〈
DξF (ςh∇vh(y)) + χ

E∗
h
DξG(ςh∇vh(y)),∇ψ

〉
dx = 0

for every ψ ∈W 1,p
0 (B1), or still∫

B1

〈
DξF (ςh∇vh(y)),∇ψ

〉
dy = −

∫
B1

〈
χ

E∗
h
DξG(ςh∇vh(y)),∇ψ

〉
dx. (4.20)

Then, choosing ψ := η(vh − v) with η ∈ C∞
0 (B1) as test function in (4.20), we obtain∫

B1

〈
DξF (ςh∇vh(y)), η(∇vh −∇v)

〉
dy

= −
∫

B1

〈
DξF (ςh∇vh(y)),∇η(vh − v)

〉
dy

−
∫

B1

χ
E∗

h

〈
DξG(ςh∇vh(y)), η(∇vh −∇v)

〉
dy

−
∫

B1

χ
E∗

h

〈
DξG(ςh∇vh(y)),∇η(vh − v)

〉
dy. (4.21)

Using estimates (2.2) for DξF and DξG, (4.21) yields∣∣∣∣∫
B1

〈
DξF (ςh∇vh(y)), η(∇vh −∇v)

〉
dy
∣∣∣∣



REGULARITY RESULTS FOR AN OPTIMAL DESIGN PROBLEM WITH A VOLUME CONSTRAINT 477

≤ c(p, β, L)
∫

B1

|ςh∇vh(y)|p−1|∇η||vh − v| dy

+ c(p, β, L)
∫

B1∩E∗
h

|ςh∇vh(y)|p−1|η||∇vh −∇v| dy. (4.22)

By the homogeneity of F , Hölder’s inequality, (4.8) and (4.15), (4.22) implies that∣∣∣∣∫
B1

〈
DξF (∇vh(y)), η(∇vh −∇v)

〉
dy
∣∣∣∣

≤ c(p, β, L, ||∇η||∞)
(∫

B1

|∇vh(y)|p dy
) p−1

p
(∫

B1

|vh − v|p dy
) 1

p

+ c(p, β, L, ||η||∞)

(∫
B1∩E∗

h

|∇vh(y)|p dy

) p−1
p (∫

B1

|∇vh|p + |∇v|p dy
) 1

p

≤ c(n, p, β, L, ||∇η||∞)
(∫

B1

|vh − v|p dy
) 1

p

+ c(p, β, L, ||η||∞)
(c0
h

) p−1
p

. (4.23)

Since vh converge strongly to v in Lp(B1), passing to the limit as h→ ∞ in (4.23), we get

lim
h→+∞

∣∣∣∣∫
B1

〈DξF (∇vh(y)), η(∇vh −∇v)〉dy
∣∣∣∣ = 0. (4.24)

Passing to the limit in (4.19) and using (4.18) and (4.24), we obtain

lim
h→+∞

∫
B1

η|V (∇vh(y)) − V (∇v(y))|2 dy = 0,

which, by Lemma 2.1, implies that

lim
h→+∞

∫
B1

η(μ2 + |∇vh(y)|2 + |∇v(y)|2) p−2
2 |∇vh(y) −∇v(y)|2 dy = 0. (4.25)

In the case p ≥ 2, one can easily check that (4.25) implies

vh → v strongly in W 1,p
loc (B1).

In the case 1 < p < 2, it suffices to observe that Hölder’s inequality with exponents 2
p and 2

2−p yields∫
B1

η|∇vh −∇v|p dx

≤
(∫

B1

η(μ2 + |∇vh|2 + |∇v|2) p−2
2 |∇vh −∇v|2 dx

) p
2
(∫

B1

η(μ2 + |∇vh|2 + |∇v|2) p
2 dx
) 2−p

2

≤ c

(∫
B1

η(μ2 + |∇vh|2 + |∇v|2) p−2
2 |∇vh −∇v|2 dx

) p
2

, (4.26)

where we used (4.8). Hence, also in this case, by (4.25) we conclude that

vh → v strongly in W 1,p
loc (B1),

and this asserts the claim.
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Substep 2.c. Reaching a contradiction. Notice that (4.5) can be written as∫
Bτrh

(xh)

|∇u|p dx > Mτ−δ

∫
Brh

(xh)

|∇u|p dx,

or, equivalently,
1
ςph

∫
Bτrh

(xh)

|∇u|p dx > Mτ−δ, (4.27)

by the definition of ςh. By the change of variable x = xh + rhy and the definition of vh, from (4.27) we infer
that

1
ςph

∫
Bτ

|ςh∇vh|p dx > Mτ−δ,

i.e., ∫
Bτ

|∇vh|p dx > Mτ−δ. (4.28)

By virtue of the strong convergence of vh to v in W 1,p
loc (B1) and (4.9), we have that

lim
h

∫
Bτ

|∇vh|p =
∫

Bτ

|∇v|p ≤ 1
τn

· (4.29)

Clearly, (4.29) contradicts (4.28) because M > τδ−n.

Step 3. Conclusion. We conclude that if (u,E) is a solution of (P), then there exist τ ∈ (0, 1
2

)
and δ ∈ (0, 1)

such that, setting M = 1, there exists h0 ∈ N with the property that whenever Br(x) ⊂ Ω, then∫
Br(x0)

|∇u|p dx ≤ h0r
n−1 or

∫
Bτr(x0)

|∇u|p dx ≤ τn−δ

∫
Br(x0)

|∇u|p dx.

Hence, ∫
Bτr(x0)

|∇u|p dx ≤ τn−δ

∫
Br(x0)

|∇u|p dx+ h0r
n−1,

and using Lemma 2.4 with ϕ(ρ) :=
∫

Bρ(x0)
|∇u|p dx, γ = n− δ and β = n− 1, we obtain that

∫
Bρ(x0)

|∇u|p dx ≤ c

{(ρ
r

)n−1
∫

Br(x0)

|∇u|p dx+ h0ρ
n−1

}
,

for every 0 < ρ < r ≤ R, and so ∫
Bρ(x0)

|∇u|p dx ≤ Cρn−1.

By Hölder’s inequality

∫
Bρ(x0)

|∇u| dx ≤ c

(∫
Bρ(x0)

|∇u|p dx

) 1
p

ρ
n
p′ ≤ Cρ

n−1
p + n

p′ = Cρn− 1
p .

Theorem 2.2 yields that, at least, u is locally Hölder continuous with exponent 1
p′ . At this point, the equivalence

between reduced boundary and topological boundary can be obtained arguing as in ([4], Thm. 2.2), with the
obvious modifications. �
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5. Proof of Theorem 1.2 – Full regularity

This section is devoted to the proof of the full regularity result stated in Theorem 1.2. The key point is
to prove that if the ratio β

α+1 , where α and β are the parameters appearing in hypotheses (G1) and (G2), is
sufficiently small then

∫
Bρ

|∇u|p decays as ρn−1+δ.

Proof of Theorem 1.2.

Step 1. Let (u,E) be a minimal configuration of problem (P). We first show that u ∈ C
0,1/p′+δ
loc (Ω) for some

positive δ, with p′ = p
p−1 . Fix x ∈ Ω and a ball Br(x) ⊂⊂ Ω. Assume, without loss of generality, that x = 0

and r < 1. In what follows, we will omit the dependence on the center simply denoting by Br the ball Br(0).
By Theorem 1.4, we have that (u, E) is a minimizer of problem (1.5) for λ sufficiently large. Let v be the
minimizer of

w ∈ W 1,p(Br) �→
∫

Br

(F +G)(∇w) dx,

satisfying the boundary condition v = u on ∂Br. Then∫
Br

(
DξF (∇u) + χ

E
DξG(∇u)

)
· ∇ϕdx = 0 (5.1)

and ∫
Br

Dξ(F +G)(∇v) · ∇ϕdx = 0 (5.2)

for all ϕ ∈W 1,p
0 (Br). Note that assumptions (F1)–(F2) and (G1)–(G2) imply that the integrand F +G satisfies

(H1) 0 ≤ (F +G)(ξ) ≤ L̃(μ2 + |ξ|2) p
2 ,

(H2)
∫

Ω

(F +G)(ξ + ∇ϕ) dx ≥
∫

Ω

(
(F +G)(ξ) + �̃(μ2 + |ξ|2 + |∇ϕ|2) p−2

2 |∇ϕ|2
)

dx,

and (see (2.3))

(H3) 〈Dξ(F +G)(ξ) −Dξ(F +G)(η), ξ − η〉 ≥ c(p)�̃|V (ξ) − V (η)|2,

with growth and coercivity constants L̃, �̃ such that

L̃ ≤ (β + 1)L and �̃ ≥ (α+ 1)�.

By virtue of (H1) and (H2), we can apply Theorem 2.1 and (2.10) to H = F +G, to obtain that for all 0 < � < r
2∫

B�

(
μ2 + |∇v|2) p

2 dx ≤ |B	| sup
B�

(
μ2 + |∇v|2) p

2 ≤ cn�
n sup

B r
2

(μ2 + |∇v|2) p
2

≤ c

(
L̃

�̃

)σ (�
r

)n ∫
Br

(μ2 + |∇v|2) p
2 dx, (5.3)

for some constants c = c(n, p) ≥ 1 and σ = 2n
p . On the other hand if r

2 ≤ � < r, one easily gets that∫
B�

(μ2 + |∇v|2) p
2 dx ≤ 2n �

n

rn

∫
Br

(μ2 + |∇v|2) p
2 dx.
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Therefore estimate (5.3) holds for every 0 < � < r. Subtracting (5.2) from (5.1), we obtain∫
Br

(
Dξ(F +G)(∇u) −Dξ(F +G)(∇v)

)
· ∇ϕdx−

∫
Br\E

DξG(∇u) · ∇ϕdx = 0,

or, equivalently, ∫
Br

(
Dξ(F +G)(∇u) −Dξ(F +G)(∇v)

)
· ∇ϕdx =

∫
Br\E

DξG(∇u) · ∇ϕdx. (5.4)

Next, we treat separately the cases p ≥ 2 and 1 < p < 2.

Case p ≥ 2. Set ϕ := u − v in (5.4). In (5.4) we use (H3) and Lemma 2.1 in the left hand side, the second
condition in (2.2) and Hölder’s inequality in the right hand side, thus obtaining

cp,n�̃

∫
Br

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx ≤ cpβL

∫
Br

(μ2 + |∇u|2) p−1
2 |∇u−∇v| dx

≤ cpβL

(∫
Br

(μ2 + |∇u|2) p
2 dx
) 1

2
(∫

Br

(μ2 + |∇u|2) p−2
2 |∇u−∇v|2 dx

) 1
2

≤ cpβL

(∫
Br

(μ2 + |∇u|2) p
2 dx
) 1

2
(∫

Br

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx

) 1
2

where, in the last inequality, we used that p ≥ 2. Hence∫
Br

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u −∇v|2 dx ≤ cp,n

(
βL

�̃

)2 ∫
Br

(μ2 + |∇u|2) p
2 dx. (5.5)

By virtue of (5.5), one has that for 0 < ρ < r∫
B�

|∇u−∇v|p dx ≤ cp

∫
B�

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx

≤ cp,n

(
βL

�̃

)2 ∫
Br

(μ2 + |∇u|2) p
2 dx, (5.6)

therefore, from (5.3) and (5.6), we get(∫
B�

|∇u|p dx
)1/p

≤
(∫

B�

|∇u−∇v|p dx
)1/p

+
(∫

B�

|∇v|p dx
)1/p

≤ cn,p

(
βL

�̃

) 2
p
(∫

Br

(μ2 + |∇u|2) p
2 dx
)1/p

+ cn,p

(
L̃

�̃

)σ
p (�

r

)n/p
(∫

Br

(μ2 + |∇v|2) p
2 dx
)1/p

. (5.7)

By Lemma 2.3 applied for H = F +G and by the minimality of v, we have∫
Br

(μ2 + |∇v|2) p
2 dx ≤ 2

�̃

∫
Br

(F +G)(∇v) dx + c(n, p, L̃, �̃, μ)rn

≤ 2

�̃

∫
Br

(F +G)(∇u) dx + c(n, p, L̃, �̃, μ)rn



REGULARITY RESULTS FOR AN OPTIMAL DESIGN PROBLEM WITH A VOLUME CONSTRAINT 481

≤ 2L̃

�̃

∫
Br

(μ2 + |∇u|2) p
2 dx+ c(n, p, L̃, �̃, μ)rn, (5.8)

where in last line we used the growth assumption (H1). Combining (5.7) and (5.8), we obtain, for all 0 < � < r,
that (∫

B�

|∇u|p dx

) 1
p

≤ cn,p

(
βL

�̃

) 2
p
(∫

Br

(μ2 + |∇u|2) p
2 dx
) 1

p

+ cn,p

(
L̃

�̃

)σ+1
p (�

r

)n
p

(∫
Br

(μ2 + |∇u|2) p
2 dx
) 1

p

+ c(n, p, L̃, �̃, μ)�
n
p

= cn,p

⎡⎣(βL
�̃

) 2
p

+

(
L̃

�̃

)σ+1
p (�

r

)n
p

⎤⎦(∫
Br

(μ2 + |∇u|2) p
2 dx
) 1

p

+ c(n, p, L̃, �̃, μ)�
n
p ,

and therefore the following estimate holds

∫
B�

|∇u|p dx ≤ cn,p

⎡⎣(βL
�̃

) 2
p

+

(
L̃

�̃

)σ+1
p (�

r

)n
p

⎤⎦p ∫
Br

(μ2 + |∇u|2) p
2 dx

+ c(n, p, L̃, �̃, μ)�n. (5.9)

for every 0 < ρ < r.

Case 1 < p < 2. As before, we choose ϕ = u − v in (5.4). In (5.4) we use (H3) and Lemma 2.1 in the left
hand side, the second condition in (2.2) and Hölder’s inequality in the right hand side to obtain

cn,p�̃

∫
Br

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx ≤ cpβL

∫
Br

(μ2 + |∇u|2) p−1
2 |∇u−∇v| dx

≤ cpβL

∫
Br

(μ2 + |∇u|2 + |∇v|2) p−1
2 |∇u−∇v| dx

≤ cpβL

(∫
Br

(μ2 + |∇u|2 + |∇v|2) p
2 dx
) 1

2
(∫

Br

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx

) 1
2

and so ∫
Br

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx ≤ cn,p

(
βL

�̃

)2 ∫
Br

(μ2 + |∇u|2 + |∇v|2) p
2 dx. (5.10)

On the other hand, for 1 < p < 2, Hölder’s inequality with exponents 2
p and 2

2−p yields∫
B�

|∇u−∇v|p dx

≤
(∫

B�

(μ2 + |∇u|2 + |∇v|2) p−2
2 |∇u−∇v|2 dx

) p
2
(∫

B�

(μ2 + |∇u|2 + |∇v|2) p
2 dx

) 2−p
2

≤ cn,p

(
βL

�̃

)p (∫
Br

(μ2 + |∇u|2 + |∇v|2) p
2 dx
) p

2
(∫

B�

(μ2 + |∇u|2 + |∇v|2) p
2 dx

) 2−p
2
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= cn,p

(
βL

�̃

)p ∫
Br

(μ2 + |∇u|2 + |∇v|2) p
2 dx, (5.11)

where we used (5.10). From (5.3) and (5.11), we get(∫
B�

|∇u|p dx
)1/p

≤
(∫

B�

|∇u−∇v|p dx
)1/p

+
(∫

B�

|∇v|p dx
)1/p

≤ cn,p

(
βL

�̃

)(∫
Br

(μ2 + |∇u|2 + |∇v|2) p
2 dx
)1/p

+ cn,p

(
L̃

�̃

)σ
p (�

r

)n/p
(∫

Br

(μ2 + |∇v|2) p
2 dx
)1/p

≤ cn,p

(
βL

�̃

)(∫
Br

(μ2 + |∇u|2) p
2 dx
)1/p

+ cn,p

⎡⎣(βL
�̃

)
+

(
L̃

�̃

) σ
p (�

r

)n/p

⎤⎦(∫
Br

(μ2 + |∇v|2) p
2 dx
)1/p

. (5.12)

By virtue of (5.8), that holds for all p > 1, from estimate (5.12) we obtain(∫
B�

|∇u|p dx
)1/p

≤ cn,p

(
βL

�̃

)(∫
Br

(μ2 + |∇u|2) p
2 dx
)1/p

+ cn,p

⎡⎣(βL
�̃

)
+

(
L̃

�̃

) σ
p (�

r

)n/p

⎤⎦( L̃
�̃

) 1
p (∫

Br

(μ2 + |∇u|2) p
2 dx
)1/p

+ c(n, p, L̃, �̃, μ)r
n
p

≤ cn,p

⎡⎣(βL
�̃

)(
L̃

�̃

) 1
p

+

(
L̃

�̃

)σ+1
p (�

r

)n/p

⎤⎦(∫
Br

(μ2 + |∇u|2) p
2 dx
)1/p

+ c(n, p, L̃, �̃, μ)r
n
p . (5.13)

Therefore ∫
B�

|∇u|p dx ≤ cn,p

⎡⎣(βL
�̃

)(
L̃

�̃

) 1
p

+

(
L̃

�̃

) σ+1
p (�

r

)n/p

⎤⎦p ∫
Br

(μ2 + |∇u|2) p
2 dx

+ c(n, p, L̃, �̃, μ)rn. (5.14)

Hence, both estimates (5.9) and (5.14) can be written as∫
B�

|∇u|p dx ≤ cn,p

⎡⎣ζ +

(
L̃

�̃

)σ+1
p (ρ

r

)n/p

⎤⎦p ∫
Br

|∇u|p dx+ c(n, p, L̃, �̃, μ)rn, (5.15)

where

ζ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

βL

�̃

) 2
p

if p ≥ 2,

(
βL

�̃

)(
L̃

�̃

) 1
p

if 1 < p < 2.

(5.16)
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We find the largest ζ < 1 for which there exists ϑ < 1 such that

cn,p

(
ζ +

(
L̃

�̃

) σ+1
p

ϑn/p

)p

= ϑn−1.

This equality is equivalent to

ζ =
ϑ(n−1)/p

c
1
p

−
(
L̃

�̃

) σ+1
p

ϑn/p =: f(ϑ),

where, for simplicity, we set c = cn,p, c > 1. Note that such ϑ, ζ ∈ [0, 1) exist. Indeed

df

dϑ
(ϑ) =

1
p
ϑ

n
p −1

⎛⎝n− 1

c
1
p

ϑ−
1
p − n

(
L̃

�̃

) σ+1
p

⎞⎠ ,
and so

df

dϑ
(ϑ) = 0 ⇔ ϑ =

1
c

(
n− 1
n

)p
(
L̃

�̃

)−(σ+1)

.

Set

ϑ0 :=
1
c

(
n− 1
n

)p
(
L̃

�̃

)−(σ+1)

and ζ0 := f(ϑ0).

Since �̃ ≤ L̃ and c ≥ 1 it follows that ϑ0 ∈ (0, 1) and

f(ϑ0) = max
ϑ∈[0,1]

f(ϑ).

Moreover,

ζ0 =
ϑ

(n−1)p
0

c
1
p

−
(
L̃

�̃

) σ+1
p

ϑ
n
p

0 = ϑ
n
p

0

⎛⎝ϑ− 1
p

0

c
1
p

−
(
L̃

�̃

) σ+1
p

⎞⎠
= ϑ

n
p

0

(
n

n− 1
− 1
)(

L̃

�̃

) σ+1
p

= ϑ
n
p

0

(
1

n− 1

)(
L̃

�̃

) σ+1
p

We write

ζ0 =
(n− 1)(n−1)

nn

1
c

n
p

(
L̃

�̃

) σ+1
p (1−n)

= c̃n,p

(
�̃

L̃

)σ̃

with c̃n,p :=
(n− 1)(n−1)

nn

1
c

n
p

and σ̃ := σ+1
p (n− 1). Note that ζ0 ∈ (0, 1). In case in which p ≥ 2, we need

(
βL

�̃

) 2
p

< ζ0 . (5.17)

Recalling that �̃ ≥ (α+ 1)� and L̃ ≤ (β + 1)L, in order to have (5.17) it suffices to impose that(
β

α+ 1

) 2
p
(
β + 1
α+ 1

)σ̃

< c̃n,p

(
�

L

)σ̃+ 2
p

. (5.18)
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In fact

(βL)
2
p

(
(β + 1)L

)σ̃
< c̃n,p

(
(α+ 1)�)σ̃+ 2

p ⇒ (βL)
2
p L̃σ̃ < c̃n,p(�̃) σ̃+ 2

p

⇔
(
βL

�̃

) 2
p

< ζ0 = c̃n,p

(
�̃

L̃

)σ̃

,

and inequality (5.18) is clearly fulfilled if the ratio β
α+1 is sufficiently small.

Similarly, in case in which 1 < p < 2, we need

(
βL

�̃

)(
L̃

�̃

) 1
p

< ζ0 . (5.19)

In order to have (5.19), it suffices to impose

β

α+ 1

(
β + 1
α+ 1

)σ̃+ 1
p

< c̃n,p

(
�

L

)σ̃+1+ 1
p

. (5.20)

In fact
β(β + 1)σ̃+ 1

pLσ̃+1+ 1
p < c̃n,p((α+ 1)�)σ̃+1+ 1

p ⇒ (βL)L̃σ̃+ 1
p < c̃n,p(�̃)σ̃+1+ 1

p

⇔
(
βL

�̃

)(
L̃

�̃

) 1
p

< c̃n,p

(
�̃

L̃

)σ̃

= ζ0

and inequality (5.20) is clearly fulfilled if the ratio β
α+1 is sufficiently small.

Then, choosing α, β such that (5.17) (if p ≥ 2) or (5.19) (if 1 < p < 2) are satisfied, in view of (5.15) there
exist ϑ ∈ (0, ϑ0) and δ̄ > 0, depending on α, β, n, p, �, L, such that∫

Bϑr

|∇u|p dx ≤ ϑn−1+pδ̄

∫
Br

|∇u|p dx+ c(n, p, μ, L̃, �̃)rn.

Since r < 1, the term rn can be majorized by rn−1+pδ , for every 0 < δ < min{δ̄, 1
p}, and from the previous

estimate, we deduce that∫
Bϑr

|∇u|p dx ≤ ϑn−1+pδ̄

∫
Br

|∇u|p dx+ c(n, p, μ, L̃, �̃)rn−1+pδ.

This estimate, by virtue of Lemma 2.4, yields that for all 0 < � < r < 1∫
B�

|∇u|p dx ≤ c(n)
(�
r

)n−1+pδ
∫

Br

|∇u|p dx+ cρn−1+pδ (5.21)

So, for 0 < �� 1 ∫
B�

|∇u|p dx ≤ cρn−1+pδ

and by Hölder’s inequality

∫
B�

|∇u| dx ≤ c

(∫
B�

|∇u|p dx

) 1
p

�
n
p′ ≤ c�

n−1+pδ+n(p−1)
p = cρn−1+δ+ 1

p′ .
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By Theorem 2.2, the previous inequality implies that u ∈ C
0, 1

p′ +δ

loc (Ω) whenever (5.18) (if p ≥ 2) or (5.20) (if
1 < p < 2) hold true.

Step 2. Fix a point x ∈ Ω and let r̄ > 0 be such that dist(x, ∂Ω) > r̄. Consider 0 < r < r0 ≤ r̄ and denote by
A any set of finite perimeter such that EΔA ⊂⊂ Br(x). From Theorem 1.4 we have that

Iλ0(u,E) ≤ Iλ0(u,A),

and thus ∫
Ω

(
F (∇u) + χ

E
G(∇u)

)
dx+ P (E,Ω) + λ0

∣∣|E| − d
∣∣

≤
∫

Ω

(
F (∇u) + χ

A
G(∇u)

)
dx+ P (A,Ω) + λ0

∣∣|A| − d
∣∣.

Using that EΔA ⊂⊂ Br(x), we deduce that

P (E,Br(x)) − P (A,Br(x)) ≤
∫

Br

(
χ

A
(x) − χ

E
(x)
)
G(∇u) dx + λ0

∣∣|A| − |E|∣∣
≤ βL

∫
Br

|∇u|p + crn,

where we invoked assumption (G2). By the decay estimate (5.21), we infer that

P (E,Br(x)) − P (A,Br(x)) ≤ crn−1+pδ + crn ≤ crn−1+pδ

since r < 1. As δ can be replaced by any smaller number, we can choose pδ < 1
2 and the result follows from

Theorem 2.3. �

6. Partial regularity – Proof of Theorem 1.3

In this section, we prove that a partial regularity result holds without imposing any bounds on α and β, as
stated in Theorem 1.3.

Proof of Theorem 1.3. Set

Ω0 :=

{
x ∈ Ω : lim sup

ρ→0

1
ρn−1+pδ

∫
Bρ

|∇u|p = 0

}
,

for an arbitrary 0 < δ < 1
p . Note that (see Thm. 3, Sect. 2.4.3, in [9]), |Ω \Ω0| = 0. Fix a point x ∈ Ω0 and let

r0 be such that dist(x, ∂Ω) > r0. Since x ∈ Ω0, for every ε > 0 there exists a radius R = R(ε) < r0 such that

1
rn−1+pδ

∫
Br

|∇u|p < ε (6.1)

for all 0 < r ≤ R(ε). By (5.15) and (5.17), for all 0 < � < r we have

∫
B�

|∇u|p dx ≤ cn,p

⎡⎣ζ +

(
L̃

�̃

)σ+1
p (ρ

r

)n/p

⎤⎦p ∫
Br

|∇u|p dx+ c(n, p, L̃, �̃, μ)rn.

Inserting (6.1) in previous inequality, we get∫
B�

|∇u|p dx ≤ c ε
1
2

[
1 +
(�
r

)n/p
]p
r

n−1+pδ
2

(∫
Br

|∇u|p dx
) 1

2

+ crn,
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where c = c(n, p, μ, α, β, �, L). By Young’s inequality, we deduce that∫
B�

|∇u|p dx ≤ c ε
1
2

[
1 +
(�
r

)n/p
]p{∫

Br

|∇u|p dx+ rn−1+pδ

}
+ crn

≤ c ε
1
2

[
1 +
(�
r

)n/p
]p ∫

Br

|∇u|p dx+ crn−1+pδ. (6.2)

for every 0 < ρ < r ≤ R(ε), since we may suppose, without loss of generality, that r < 1. Therefore, in particular,
writing (6.2) for ρ = r

2 , we get∫
B r

2

|∇u|p dx ≤ c ε
1
2

[
1 +
(

1
2

)n/p
]p ∫

Br

|∇u|p dx+ crn−1+pδ . (6.3)

Choosing ε in (6.3) such that

ε
1
2 <

21−p

c
(
1 + 2

n
p

)p ,
we obtain ∫

B r
2

|∇u|p dx ≤ 21−p(
1 + 2

n
p

)p
[
1 +
(

1
2

)n/p
]p ∫

Br

|∇u|p dx+ crn−1+pδ

=
21−p(

1 + 2
n
p

)p
(
1 + 2

n
p

)p
2n

∫
Br

|∇u|p dx+ crn−1+pδ

=
(

1
2

)n−1+p ∫
Br

|∇u|p dx+ crn−1+pδ. (6.4)

From (6.4), thanks to Lemma 2.4 applied with ϕ(r) :=
∫

Br
|∇u|p dx and ϑ = 1

2 , we obtain that∫
B�

|∇u|p dx ≤ cρn−1+pδ (6.5)

for all 0 < � < r < r0 and some c = c(n, p, α, β, �, L). Hence, by virtue of Theorem 2.2 and Hölder inequality,
we deduce that u ∈ C

0, 1
p′ +δ(Ω0), for every 0 < δ < 1

p .
Let us denote by A any set of finite perimeter such that EΔA ⊂⊂ Bρ(x). From Theorem 1.4 we have that

Iλ0(u,E) ≤ Iλ0(u,A),

therefore, by assumption (G1) and the decay estimate (6.5), we deduce that

P (E,Bρ(x)) − P (A,Bρ(x)) ≤
∫

Bρ

(χA(x) − χE(x))G(∇u) dx + λ0

∣∣|A| − |E|∣∣
≤ βL

∫
Bρ

|∇u|p dx+ λ0

∣∣|A| − |E|∣∣ ≤ cρn−1+pδ + cλ0ρ
n

and the conclusion follows again by Theorem 2.3 applied to Ω0 in place of Ω. �
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