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VIA PENALIZATION METHOD ∗, ∗∗
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Abstract. In this paper we are concerned with questions of multiplicity and concentration behavior
of positive solutions of the elliptic problem

(Pε)

⎧⎪⎨⎪⎩
Lεu = f(u) in IR3,

u > 0 in IR3,

u ∈ H1(IR3),

where ε is a small positive parameter, f : R → R is a continuous function, Lε is a nonlocal operator
defined by

Lεu = M

(
1

ε

∫
IR3

|∇u|2 +
1

ε3

∫
IR3

V (x)u2

) [−ε2Δu + V (x)u
]
,

M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.
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1. Introduction

In this paper we shall focus our attention on questions of multiplicity, concentration behavior and positivity
of solutions for the following problem

(Pε)

⎧⎪⎨⎪⎩
Lεu = f(u) in IR3,

u > 0 in IR3,

u ∈ H1(IR3),
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where ε is a small positive parameter, f : R → R is a continuous function, Lε is a nonlocal operator defined by

Lεu = M

(
1
ε

∫
IR3

|∇u|2 +
1
ε3

∫
IR3

V (x)u2

) [−ε2Δu + V (x)u
]
,

M : IR+ → IR+ and V : IR3 → IRare continuous functions that satisfy some conditions which will be stated later
on.

Problem (Pε) is a natural extension of two classes of very important problems in applications, namely,
Kirchhoff problems and Schrödinger problems.

a) When ε = 1 and V = 0 we are dealing with problem⎧⎨⎩−M

(∫
R3

|∇u|2dx

)
Δu = f(u) in R

3,

u > 0 in IR3, u ∈ H1(IR3),

which represents the stationary case of Kirchhoff model [17] for small transverse vibrations of an elastic string
by considering the effect of the changes in the length during the vibrations.

In fact, since the length of string is variable during the vibrations, the tension in the string changes with time
and depends of the L2 norm of the gradient of the displacement u. More precisely, we have

M(t) =
P0

h
+

E

2L
t, t > 0,

where L is the length of the string, h is the area of cross-section, E is the Young modulus of the material and
P0 is the initial tension.

Moreover, problem (Pε) is catch nonlocal because of the presence of the term M

(∫
R3

|∇u|2
)

which im-

plies that the equation in (Pε) is no longer a pointwise identity. This phenomenon causes some mathematical
difficulties which makes the study of such a class of problem particularly interesting.

The version of problem (Pε) in bounded domain began to call attention of several researchers especially after
the work of Lions [20], where a functional analysis approach was proposed to attack it.

We have to point out that nonlocal problems also appear in other fields as, for example, biological systems
where u describes a process which depends on the average of itself (for example, population density). See, for
example, [3] and its references.

The reader may consult [1–3, 9, 10, 14, 21] and the references therein, for more informations on nonlocal
problems.

b) On the other hand, when M = 1 we have the problem{−ε2Δu + V (x)u = f(u) in IR3,

u > 0 in IR3, u ∈ H1(IR3),
(1.1)

which appear in different models, for example, it is related to the existence of standing waves of the nonlinear
Schrodinger equation

iε
∂Ψ

∂t
= −εΔΨ + (V (x) + E)Ψ − f(Ψ), ∀x ∈ IRN , (1.2)

where f(t) = |t|p−2u and 2 < p < 2∗ =
2N

N − 2
. A standing wave of (1.2) is a solution of the form Ψ(x, t) =

exp(−iEt/ε)u(x). In this case, u is a solution of (1.1). Existence and concentration of positive solutions for the
problem (1.1) have been extensively studied in recent years, see for example the papers [7, 8, 11, 12, 15, 24] and
their references.
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A considerable effort has been devoted during the last years in studying problems of the type (Pε), as can be
seen in [4, 16, 18, 23, 27, 29] and references therein. This is due to their significance in applications as well as to
their mathematical relevance.

Before stating our main result, we need the following hypotheses on the function M :

(M1) There is m0 > 0 such that M(t) ≥ m0, ∀t ≥ 0.
(M2) The function t �→ M(t) is increasing.
(M3) For each t1 ≥ t2 > 0,

M(t1)
t1

− M(t2)
t2

≤ m0

(
1
t1

− 1
t2

)
,

where m0 is given in (M1).

The potential V is a continuous function satisfying:

(V1) There is V0 > 0 such that V0 = inf
x∈IR3

V (x).

(V2) For each δ > 0 there is a bounded and Lipschitz domain Ω ⊂ IR3 such that

V0 < min
∂Ω

V, Π = {x ∈ Ω : V (x) = V0} 
= ∅

and
Πδ = {x ∈ IR3 : dist(x, Π) ≤ δ} ⊂ Ω.

Moreover, we assume that the continuous function f vanishes in (−∞, 0) and verifies

(f1)

lim
t→0+

f(t)
t3

= 0·

(f2) There is q ∈ (4, 6) such that

lim
t→∞

f(t)
tq−1

= 0·

(f3) There is θ ∈ (4, 6) such that
0 < θF (t) ≤ f(t)t, ∀t > 0.

(f4) The application

t �→ f(t)
t3

is non-decreasing in (0,∞).

The main result of this paper is:

Theorem 1.1. Suppose that the function M satisfies (M1)–(M3), the potential V satisfies (V1)–(V2) and the
function f satisfies (f1)–(f4). Then, given δ > 0 there is ε = ε(δ) > 0 such that the problem (Pε) has at least
CatΠδ

(Π) positive solutions, for all ε ∈ (0, ε). Moreover, if uε denotes one of these positive solutions and ηε ∈ R3

its global maximum, then
lim
ε→0

V (ηε) = V0.

A typical example of function verifying the assumptions (M1)–(M3) is given by M(t) = m0 + bt, where m0 > 0

and b > 0. More generally, any function of the form M(t) = m0 + bt +
k∑

i=1

bit
γi with bi ≥ 0 and γi ∈ (0, 1) for

all i ∈ {1, 2, . . . , k} verifies the hypotheses (M1)–(M3).
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A typical example of function verifying the assumptions (f1)–(f4) is given by f(t) =
k∑

i=1

ci(t+)qi−1 with

ci ≥ 0 not all null and qi ∈ [θ, 6) for all i ∈ {1, 2, . . . , k}.
Recently some authors have considered problems of the type (Pε). For example, He and Zou [16], by us-

ing Lusternik–Schnirelmann theory and minimax methods, proved a result of multiplicity and concentration
behavior for the following equation⎧⎪⎪⎨⎪⎪⎩

−(ε2a + bε

∫
IR3

|∇u|2)Δu + V (x)u = f(u) in IR3

u > 0 in IR3,
u ∈ H1(IR3),

(1.3)

assuming, between others hypotheses, that f ∈ C1(IR) has a subcritical growth 3-superlinear and the potential
V verifies a assumption introduced by Rabinowitz [24], namely,

(R) V∞ = lim inf
|x|→∞

V (x) > V0 = inf
IR3

V (x) > 0.

In [27], Wang, Tian, Xu and Zhang have considered the problem⎧⎪⎪⎨⎪⎪⎩
−(ε2a + bε

∫
IR3

|∇u|2)Δu + V (x)u = λf(u) + |u|4u in IR3

u > 0 in IR3,
u ∈ H1(IR3).

(1.4)

Assuming that f is only continuous, has subcritical growth 3-superlinear and the potential verifies (R), the au-
thors showed that (1.6) has multiple positive solutions when λ is large enough, by using Lusternik–Schnirelmann
theory, minimax methods and a approach as in [26] (see also [25]).

Other results for the problem Schödinger–Kirchhoff type can be seen in [4, 18, 23, 29] and references therein.
Motivated by results found in [4, 12, 16, 27], we study multiplicity via Lusternik–Schnirelmann theory and

concentration behavior of solutions for the problem (Pε). Here we use the hypotheses (V1)–(V2) that were first
introduced by Del Pino and Felmer [12] for laplacian case. For p-laplacian case, see [5].

We emphasize that, at least in our knowledge, does not exist in the literature actually available results
involving problems Schrödinger–Kirchhoff type, where the potential is like that introduced by Del Pino and
Felmer [12]. This is a difficulty that occurs, possibly by competition between the growth of nonlocal term and
the growth of nonlinearity.

Here, we use the same type of truncation explored in [12], however, we make a new approach and some
estimates are totally different, for example, we show that solution of truncated problem is solution of the
original problem with distinct arguments.

Moreover, we completed the results found in [4, 16, 27] in the following sense:

1 - Since M is a function more general than those in [16] and [27], we have a additional difficulty. In general,
the weak limit of the Palais–Smale sequences is not weak solution of the autonomous problem. We overcome
this difficulty with assumptions different from those found in [4].

2 - Since the function f is only continuous, we cannot use standard arguments on the Nehari manifold. Hence,
our result is similar then those found in [27]. However, since the hypotheses on function V are different, our
arguments are completely different. Moreover, our result is for all positive lambda.

The paper is organized as follows. In the Section 2 we show that the auxiliary problem has a positive solution
and we introduce some tools needed for the multiplicity result, namely, Lemma 2.3 and Proposition 2.4. In the
Section 3 we study the autonomous problem associated. This study allows us to show that the auxiliary problem
has multiple solutions. In the Section 4 we prove the main result using Moser iteration method [22].
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2. The auxiliary problem

Considering the change of variable x = εz in (Pε) we obtain the modified problem

(P̃ε)

⎧⎪⎨⎪⎩
L̃εu = f(u) in IR3,

u > 0 in IR3,

u ∈ H1(IR3),

where

L̃εu = M

(∫
IR3

|∇u|2 +
∫

IR3
V (εx)u2

)
[−Δu + V (εx)u] ,

which is clearly equivalent to (Pε).
Since (f1) and (f4) imply that

lim
t→0+

f(t)
t

= 0

and

t �→ f(t)
t

is a application increasing in (0,∞) and unbounded, we can adapt to our case the penalization method introduced
by Del Pino and Felmer [12].

For this, let K >
2

m0
, where m0 is given in (M1) and a > 0 such that f(a) =

V0

K
a. We define

f̃(t) =

{
f(t) if t ≤ a,

V0
K t if t > a

and
g(x, t) = χΩ(x)f(t) + (1 − χΩ(x))f̃(t),

where χ is characteristic function of set Ω. From hypotheses (f1)–(f4) we get that g is a Carathéodory function
and the following conditions are observed:

(g1)

lim
t→0+

g(x, t)
t3

= 0, uniformly in x ∈ IR3.

(g2)

lim
t→∞

g(x, t)
tq−1

= 0, uniformly in x ∈ R
3,

(g3) (i)
0 ≤ θG(x, t) < g(x, t)t, ∀x ∈ Ω and ∀t > 0

and
(ii)

0 ≤ 2G(x, t) ≤ g(x, t)t ≤ 1
K

V0t
2, ∀x ∈ IR3\Ω and ∀t > 0.

(g4) For each x ∈ Ω, the application t �→ g(x,t)
t3 is increasing in (0,∞) and for each x ∈ IR3\Ω, the application

t �→ g(x,t)
t3 is increasing in (0, a).
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Moreover, from definition of g, we have g(x, t) ≤ f(t), for all t ∈ (0, +∞) and for all x ∈ IR3, g(x, t) = 0 for all
t ∈ (−∞, 0) and for all x ∈ IR3.

Now we study the auxiliary problem

(Pε,A)

⎧⎪⎨⎪⎩
L̃εu = g(εx, u), IR3

u > 0, IR3

u ∈ H1(IR3).

Observe that positive solutions of (Pε,A) with u(x) ≤ a for each x ∈ IR3\Ω are also positive solutions of (P̃ε).
We obtain solutions of (Pε,A) as critical points of the energy functional

Jε(u) =
1
2
M̂

(∫
IR3

|∇u|2 +
∫

IR3
V (εx)u2

)
−

∫
IR3

G(εx, u),

where M̂(t) =
∫ t

0

M(s)ds and G(x, t) =
∫ t

0

g(εx, s)ds, which is well defined on the Hilbert space Hε, given by

Hε = {u ∈ H1(IR3) :
∫

IR3
V (εx)u2 < ∞},

provided of the inner product

(u, v)ε =
∫

IR3
∇u∇v +

∫
IR3

V (εx)uv.

The norm induced by inner product is denoted by

‖u‖2
ε =

∫
IR3

|∇u|2 +
∫

IR3
V (εx)u2.

Since M and f are continuous we have that Jε ∈ C1(Hε, IR) and

J ′
ε(u)v = M(‖u‖2

ε)(u, v)ε −
∫

IR3
g(εx, u)v, ∀u, v ∈ Hε.

Now, we will fix some notations. We denote the Nehari manifold associated to Jε by

Nε = {u ∈ Hε\{0} : J ′
ε(u)u = 0}

and by Ωε the set
Ωε = {x ∈ IR3 : εx ∈ Ω},

by H+
ε the subset of Hε given by

H+
ε = {u ∈ Hε : |supp (u+) ∩ Ωε| > 0}

and by S+
ε the intersection Sε ∩ H+

ε , where Sε is the unit sphere of Hε.

Lemma 2.1. The set H+
ε is open in Hε.

Proof. Suppose by contradiction there are a sequence {un} ⊂ Hε\H+
ε and u ∈ H+

ε such that un → u in Hε.
Hence |supp (u+

n ) ∩ Ωε| = 0 for all n ∈ IN and u+
n (x) → u+(x) a.e. in x ∈ Ωε. So,

u+(x) = lim
n→∞u+

n (x) = 0, a.e in x ∈ Ωε.

But, this contradicts the fact that u ∈ H+
ε . Therefore H+

ε is open. �
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From definition of S+
ε and from Lemma 2.1 it follows that S+

ε is a incomplete C1,1-manifold of codimension 1,
modeled on Hε and contained in the open H+

ε . Thus, Hε = TuS+
ε ⊕ IR u for each u ∈ S+

ε , where TuS+
ε = {v ∈

Hε : (u, v)ε = 0}.
Finally, we mean by weak solution of (Pε,A) a function u ∈ Hε such that

M(‖u‖2
ε)(u, v)ε =

∫
IR3

g(εx, u)v, ∀v ∈ Hε.

Therefore, critical points of Jε are weak solutions of (Pε,A).

Lemma 2.2. The functional Jε satisfies the following conditions:
a) There are α, ρ > 0 such that

Jε(u) ≥ α, with ‖u‖ε = ρ.

b) There is e ∈ Hε\Bρ(0) with Jε(e) < 0.

Proof. The item a) follows directly from the hypotheses (M1), (g1) and (g2).
On the other hand, it follows from (M3) that there is γ1 > 0 such that M(t) ≤ γ1(1 + t) for all t ≥ 0. So, for

each u ∈ H+
ε and t > 0 we have

Jε(tu) =
1
2
M̂(‖tu‖2

ε) −
∫

IR3
G(εx, tu)

≤ γ1

2
t2‖u‖2

ε +
γ1

4
t4‖u‖4

ε −
∫

Ωε

G(εx, tu).

From (g3)(i), we obtain C1, C2 > 0 such that

Jε(tu) ≤ γ1

2
t2‖u‖2

ε +
γ1

4
t4‖u‖4

ε − C1t
θ

∫
Ωε

(u+)θ + C2|supp(u+) ∩ Ωε|.

Since θ ∈ (4, 6) we conclude b). �

Once f and M are only continuous the next two results are very important, because allow us to overcome
the non-differentiability of Nε (see Lem. 2.3 (A3) and Prop. 2.4) and the incompleteness of S+

ε (see Lem. 2.3
(A4)).

Lemma 2.3. Suppose that the function M satisfies (M1)–(M3), the potential V satisfies (V1)–(V2) and the
function f satisfies (f1)–(f4). So:

(A1) For each u ∈ H+
ε , let h : IR+ → IR be defined by hu(t) = Jε(tu). Then, there is a unique tu > 0 such that

h′
u(t) > 0 in (0, tu) and h′

u(t) < 0 in (tu,∞).
(A2) there is τ > 0 independent on u such that tu ≥ τ for all u ∈ S+

ε . Moreover, for each compact set W ⊂ S+
ε

there is CW > 0 such that tu ≤ CW , for all u ∈ W.
(A3) The map m̂ε : H+

ε → Nε given by m̂ε(u) = tuu is continuous and mε := m̂ε∣∣S
+
ε

is a homeomorphism

between S+
ε and Nε. Moreover, m−1

ε (u) = u
‖u‖ε

·
(A4) If there is a sequence (un) ⊂ S+

ε such that dist(un, ∂S+
ε ) → 0, then ‖mε(un)‖ε → ∞ and Jε(mε(un)) → ∞.

Proof. To prove (A1), it is sufficient to note that, from the Lemma 2.2, hu(0) = 0, hu(t) > 0 when t > 0 is
small and hu(t) < 0 when t > 0 is large. Since hu ∈ C1(IR+, IR), there is tu > 0 global maximum point of hu

and h′
u(tu) = 0. Thus, J ′

ε(tuu)(tuu) = 0 and tuu ∈ Nε. We see that tu > 0 is the unique positive number such
that h′

u(tu) = 0. Indeed, suppose by contradiction that there are t1 > t2 > 0 with h′
u(t1) = h′

u(t2) = 0. Then,
for i = 1, 2

tiM(‖tiu‖2
ε)‖u‖2

ε =
∫

IR3
g(εx, tiu)u.
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So,
M(‖tiu‖2

ε)
‖tiu‖2

ε

=
1

‖u‖4
ε

∫
IR3

[
g(εx, tiu)

(tiu)3

]
u4.

Therefore,
M(‖t1u‖2

ε)
‖t1u‖2

ε

− M(‖t2u‖2
ε)

‖t2u‖2
ε

=
1

‖u‖4
ε

∫
IR3

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4.

It follows from (M3) and (g4) that

m0

‖u‖2
ε

(
1
t21

− 1
t22

)
≥ 1

‖u‖4
ε

∫
(IR3\Ωε)∩{t2u≤a<t1u}

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4

+
1

‖u‖4
ε

∫
(IR3\Ωε)∩{a<t2u}

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4.

By using the definition of g we obtain

m0

‖u‖2
ε

(
1
t21

− 1
t22

)
≥ 1

‖u‖4
ε

∫
(IR3\Ωε)∩{t2u≤a<t1u}

[
V0

K

1
(t1u)2

− f(t2u)
(t2u)3

]
u4

+
1

‖u‖4
ε

1
K

(
1
t21

− 1
t22

) ∫
(IR3\Ωε)∩{a<t2u}

V0u
2.

Multiplying both sides by ‖u‖4
ε(

1
t21

− 1
t22

) and using the hypothesis t1 > t2, it follows that

m0‖u‖2
ε ≤ t21t

2
2

t22 − t21

∫
(IR3\Ωε)∩{t2u≤a<t1u}

[
V0

K

1
(t1u)2

− f(t2u)
(t2u)3

]
u4

+
1
K

∫
(IR3\Ωε)∩{a<t2u}

V0u
2.

Therefore,

m0‖u‖2
ε ≤ −

(
t22

t21 − t22

)
1
K

∫
(IR3\Ωε)∩{t2u≤a<t1u}

V0u
2

+
(

t21
t21 − t22

) ∫
(IR3\Ωε)∩{t2u≤a<t1u}

f(t2u)
t2u

u2 +
1
K

∫
(IR3\Ωε)∩{a<t2u}

V0u
2.

So,

m0‖u‖2
ε ≤ 1

K

∫
IR3\Ωε

V0u
2 ≤ 1

K
‖u‖2

ε.

Since u 
= 0, we have that m0 ≤ 1
K < m0, but this is a contradiction. Thus, (A1) is proved.

(A2) Now, let u ∈ S+
ε . From (M1), (g1), (g2) and from the Sobolev embeddings

m0tu ≤ M(t2u)tu =
∫

IR3
g(εx, tuu)u ≤ ξ

4
C1t

4
u +

Cξ

q
C2t

q
u.

From previous inequality we obtain τ > 0, independent on u, such that tu ≥ τ .
Finally, if W ⊂ S+

ε is compact, suppose by contradiction that there is {un} ⊂ W such that tn = tun → ∞.
Since W is compact, there is u ∈ W with un → u in Hε. It follows from the arguments used in the proof of item
b) of the Lemma 2.2 that

Jε(tnun) → −∞. (2.1)
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On the other hand, note that if v ∈ Nε, then by (g3)(i)

Jε(v) = Jε(v) − 1
θ
J ′

ε(v)v

≥ 1
2
M̂(‖v‖2

ε) −
1
θ
M(‖v‖2

ε)‖v‖2
ε +

1
θ

∫
IR3\Ωε

[g(εx, v)v − θG(εx, v)] .

From (g3)(ii) we have

Jε(v) ≥ 1
2
M̂(‖v‖2

ε) −
1
θ
M(‖v‖2

ε)‖v‖2
ε −

(
θ − 2
2θ

)
1
K

∫
IR3\Ωε

V (εx)v2,

and so

Jε(v) ≥ 1
2
M̂(‖v‖2

ε) −
1
θ
M(‖v‖2

ε)‖v‖2
ε −

(
θ − 2
2θ

)
1
K

‖v‖2
ε.

By using the hypothesis (M3), we derive M̂(t) ≥ [M(t) + m0]
2

t, for all t ≥ 0. Then,

Jε(v) ≥
(

θ − 4
4θ

)
M(‖v‖2

ε)‖v‖2
ε +

m0

4
‖v‖2

ε −
(

θ − 2
2θ

)
1
K

‖v‖2
ε.

From (M1), we conclude

Jε(v) ≥
(

θ − 2
2θ

) (
m0 − 1

K

)
‖v‖2

ε.

Once {tnun} ⊂ Nε the previous inequality contradicts (2.1). Therefore (A2) is true.
(A3) First of all we observe that m̂ε, mε and m−1

ε are well defined. In fact, by (A1), for each u ∈ H+
ε , there

is a unique mε(u) ∈ Nε. On the other hand, if u ∈ Nε then u ∈ H+
ε . Otherwise, we have |supp(u+) ∩ Ωε| = 0

and by (g3)(ii)

0 < M(‖u‖2
ε)‖u‖2

ε =
∫

IR3
g(εx, u)u =

∫
IR3\Ωε

g(εx, u+)u+ ≤ 1
K

∫
IR3\Ωε

V (εx)u2.

Hence, from (M1)

0 <

(
m0 − 1

K

)
‖u‖2

ε ≤ 0,

a contradiction. Consequently m−1
ε (u) = u

‖u‖ε
∈ S+

ε , m−1
ε is well defined and it is a continuous function. Since,

m−1
ε (mε(u)) = m−1

ε (tuu) =
tuu

tu‖u‖ε
= u, ∀ u ∈ S+

ε ,

we conclude that mε is a bijection. To show that m̂ε : H+
ε → Nε is continuous, let {un} ⊂ H+

ε and u ∈ H+
ε be

such that un → u in Hε. Thus un/‖un‖ε → u/‖u‖ε in Hε and from (A2), there is t0 > 0 such that t( un
‖un‖ε

) → t0.
Since, t( un

‖un‖ε
)(un/‖un‖ε) ∈ Nε, we obtain

M
(
t2( un

‖un‖ε
)

)
t( un

‖un‖ε
) =

1
‖un‖ε

∫
IR3

g

(
εx, t( un

‖un‖ε
)

un

‖un‖ε

)
un, ∀ n ∈ IN.

Passing to the limit n → ∞, it follows that

M(t20)t0 =
1

‖u‖ε

∫
IR3

g

(
εx, t0

u

‖u‖ε

)
u.

Hence t0
u

‖u‖ε
∈ Nε and, by (A1), t( u

‖u‖ε
) = t0, showing that m̂ε(un) = m̂ε( un

‖un‖ε
) → m̂ε( u

‖u‖ε
) = m̂ε(u) in Hε.

So, m̂ε and mε are continuous functions and (A3) is proved.
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(A4) Finally, let {un} ⊂ S+
ε be a sequence such that dist(un, ∂S+

ε ) → 0. Since, for each v ∈ ∂S+
ε and n ∈ IN,

we have
u+

n (x) ≤ |un(x) − v(x)| a.e in x ∈ Ωε,

it follows that ∫
Ωε

(u+
n )s ≤ inf

v∈∂S+
ε

∫
Ωε

|un − v|s, ∀ n ∈ IN and ∀s ∈ [2, 6]. (2.2)

Hence, from (V1), (V2) and Sobolev’s embedding, there is C(s) > 0 such that∫
Ωε

(u+
n )s ≤ C(s) inf

v∈∂S+
ε

{∫
Ωε

[|∇(un − v)|2 + V (εx)(un − v)2
]}s/2

≤ C(s)dist(un, ∂S+
ε )s, ∀ n ∈ IN.

From (g1), (g2) and (g3)(ii), there are positive constants C1 and C2, such that, for each t > 0∫
IR3

G(εx, tun) ≤
∫

Ωε

F (tun) +
t2

K

∫
IR3\Ωε

V (εx)u2
n

≤ C1t
4

∫
Ωε

(u+
n )4 + C2t

q

∫
Ωε

(u+
n )q +

1
K

t2‖un‖2
ε

≤ C1C(4)t4dist(un, ∂S+
ε )4

+ C2C(q)tqdist(un, ∂S+
ε )q +

1
K

t2.

Therefore,

lim sup
n→∞

∫
IR3

G(εx, tun) ≤ 1
K

t2, ∀t > 0.

From definition of mε, we have

lim inf
n→∞ Jε(mε(un)) ≥ lim inf

n→∞ Jε(tun) ≥ 1
2
M̂(t2) − 1

K
t2, ∀ t > 0.

It follows from (M1) and from the particular choice of K, that

lim
n→∞ Jε(mε(un)) = ∞.

Since 1
2M̂(t2un

) ≥ Jε(mε(un)), for each n ∈ IN, we conclude from (M3) that ‖mε(un)‖ε → ∞ as n → ∞. The
Lemma is proved. �

We set the applications
Ψ̂ε : H+

ε → IR and Ψε : S+
ε → IR,

by Ψ̂ε(u) = Jε(m̂ε(u)) and Ψε := (Ψ̂ε)|
S
+
ε

.
The next proposition is a direct consequence of the Lemma 2.3. The details can be seen in the relevant

material from [26]. For the convenience of the reader, here we do a sketch of the proof.

Proposition 2.4. Suppose that the function M satisfies (M1)–(M3), the potential V satisfies (V1)–(V2) and
the function f satisfies (f1)–(f4). Then:

(a) Ψ̂ε ∈ C1(H+
ε , IR) and

Ψ̂ ′
ε(u)v =

‖m̂ε(u)‖ε

‖u‖ε
J ′

ε(m̂ε(u))v, ∀u ∈ H+
ε and ∀v ∈ Hε.
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(b) Ψε ∈ C1(S+
ε , IR) and

Ψ ′
ε(u)v = ‖mε(u)‖εJ

′
ε(mε(u))v, ∀v ∈ TuS+

ε .

(c) If {un} is a (PS)d sequence for Ψε then {mε(un)} is a (PS)d sequence for Jε. If {un} ⊂ Nε is a bounded
(PS)d sequence for Jε then {m−1

ε (un)} is a (PS)d sequence for Ψε.
(d) u is a critical point of Ψε if, and only if, mε(u) is a nontrivial critical point of Jε. Moreover, corresponding

critical values coincide and
inf
S+

ε

Ψε = inf
Nε

Jε.

Proof. (a) Consider u ∈ H+
ε and v ∈ Hε. From definition of Ψ̂ε, definition of tu and mean value Theorem,

Ψ̂ε(u + sv) − Ψ̂ε(u) = Jε(tu+sv(u + sv)) − Jε(tuu)
≤ Jε(tu+sv(u + sv)) − Jε(tu+svu)
= J ′

ε(tu+sv(u + τsv))tu+svsv,

where |s| is small sufficient and τ ∈ (0, 1). On the other hand,

Ψ̂ε(u + sv) − Ψ̂ε(u) ≥ Jε(tu(u + sv)) − Jε(tuu) = J ′
ε(tu(u + ςsv))tusv,

where ς ∈ (0, 1). Since u �→ tu is a continuous application, it follows from previous inequalities that

lim
s→0

Ψ̂ε(u + sv) − Ψ̂ε(u)
s

= tuJ ′
ε(tuu)v =

‖m̂ε(u)‖ε

‖u‖ε
J ′

ε(m̂ε(u))v.

Since Jε ∈ C1, it follows that the Gateaux derivative of Ψ̂ε is linear, bounded on v and it is continuous on u.
From ([28], Prop. 1.3), Ψ̂ε ∈ C1(H+

ε , IR) and

Ψ̂ ′
ε(u)v =

‖m̂ε(u)‖ε

‖u‖ε
J ′

ε(m̂ε(u))v, ∀u ∈ H+
ε and ∀v ∈ Hε.

The item (a) is proved.
(b) The item (b) is a direct consequence of the item (a).
(c) Once Hε = TuS+

ε ⊕ IR u for each u ∈ S+
ε , the linear projection P : Hε → TuS+

ε defined by P (v + tu) = v
is continuous, namely, there is C > 0 such that

‖v‖ε ≤ C‖v + tu‖ε, ∀ u ∈ S+
ε , v ∈ TuS+

ε and t ∈ IR . (2.3)

From item (a), we obtain

‖Ψ ′
ε(u)‖∗ = sup

v∈TuS
+
ε

‖v‖ε=1

Ψ ′
ε(u)v = ‖w‖ε sup

v∈TuS
+
ε

‖v‖ε=1

J ′
ε(w)v, (2.4)

where w = mε(u). Since w ∈ Nε, we conclude that

J ′
ε(w)u = J ′

ε(w)
w

‖w‖ε
= 0. (2.5)

By (2.4), we have

‖Ψ ′
ε(u)‖∗ ≤ ‖w‖ε‖J ′

ε(w)‖ = ‖w‖ε sup
v∈TuS

+
ε ,t∈IR

v+tu�=0

J ′
ε(w)(v + tu)
‖v + tu‖ε

·
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Hence, from (2.3) and (2.5)

‖Ψ ′
ε(u)‖∗ ≤ ‖w‖ε‖J ′

ε(w)‖ ≤ C‖w‖ε sup
v∈TuS+

ε \{0}

J ′
ε(w)(v)
‖v‖ε

= C‖Ψ ′
ε(u)‖∗,

showing that,
‖Ψ ′

ε(u)‖∗ ≤ ‖w‖ε‖J ′
ε(w)‖ ≤ C‖Ψ ′

ε(u)‖∗, ∀ u ∈ S+
ε . (2.6)

Since w ∈ Nε, we have ‖w‖ ≥ τ > 0. Therefore, the inequality in (2.6) together with Jε(w) = Ψε(u) imply the
item (c).

(d) It follows from (2.6) that Ψ ′
ε(u) = 0 if, and only if, J ′

ε(w) = 0. The remainder follows from definition
of Ψε. �

By using (M1)–(M3) we have, as in [26], the following variational characterization of the infimum of Jε

over Nε:

cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε

max
t>0

Jε(tu) = inf
u∈S+

ε

max
t>0

Jε(tu). (2.7)

The main feature of the modified functional is that it satisfies the Palais–Smale condition, as we can see from
the next results.

Lemma 2.5. Let {un} be a (PS)d sequence for Jε. Then {un} is bounded.

Proof. Since {un} a (PS)d sequence for Jε, then there is C > 0 such that

C + ‖un‖ε ≥ Jε(un) − 1
θ
J ′

ε(un)un, ∀n ∈ IN.

From (M3) and (g3), we obtain

C + ‖un‖ε ≥
(

θ − 2
2θ

)(
m0 − 1

K

)
‖un‖2

ε, ∀n ∈ IN.

Therefore {un} is bounded in Hε. �

Lemma 2.6. Let {un} be a (PS)d sequence for Jε. Then for each ξ > 0, there is R = R(ξ) > 0 such that

lim sup
n→∞

∫
IR3\BR

[|∇un|2 + V (εx)u2
n

]
< ξ.

Proof. Let ηR ∈ C∞(IR3) such that

ηR(x) =

⎧⎨⎩0 se x ∈ BR(0)

1 se x 
∈ B2R(0),

where 0 ≤ ηR(x) ≤ 1, |∇ηR| ≤ C

R
and C is a constant independent on R. Note that {ηRun} is bounded in Hε.

From definition of Jε∫
IR3

ηRM(‖un‖2
ε)

[|∇un|2 + V (εx)u2
n

]
= J ′

ε(un)(unηR) +
∫

IR3
g(εx, un)unηR

−
∫

IR3
M(‖un‖2

ε)un∇un∇ηR.
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Choosing R > 0 such that Ωε ⊂ BR(0) and by using (M1) and (g3)(ii), we have

m0

∫
IR3

ηR

[|∇un|2 + V (εx)u2
n

] ≤ J ′
ε(un)(unηR)

+
∫

IR3

1
K

V (εx)u2
nηR −

∫
IR3

M(‖un‖2
ε)un∇un∇ηR.

Therefore,(
m0 − 1

K

) ∫
IR3

ηR

[|∇un|2 + V (εx)u2
n

] ≤ |J ′
ε(un)(unηR)| +

∫
IR3

M(‖un‖2
ε)un|∇un(∇ηR)|.

By using Cauchy–Schwarz inequality in IR3, definition of ηR, Holder’s inequality and the boundedness of {un}
in Hε, we conclude that ∫

IR3\BR

[|∇un|2 + V (εx)u2
n

] ≤ C|J ′
ε(un)(unηR)| + C

R
·

Since {unηR} is bounded in Hε and {un} is a (PS)d sequence for Jε, passing to the upper limit of n → ∞, we
obtain

lim sup
n→∞

∫
IR3\BR

[|∇un|2 + V (εx)u2
n

] ≤ C

R
< ξ,

whenever R = R(ξ) > C/ξ. �

The next result does not appear in [12], however, since we are working with the Kirchhoff problem type, it
is required here.

Lemma 2.7. Let {un} be a (PS)d sequence for Jε such that un ⇀ u, then

lim
n→∞

∫
BR

[|∇un|2 + V (εx)u2
n

]
=

∫
BR

[|∇u|2 + V (εx)u2
]
,

for all R > 0.

Proof. We can assume that ‖un‖ε → t0, thus, we have ‖u‖ε ≤ t0. Let ηρ ∈ C∞(IR3) such that

ηρ(x) =

⎧⎨⎩1 se x ∈ Bρ(0)

0 se x 
∈ B2ρ(0).

with 0 ≤ ηρ(x) ≤ 1. Let,

Pn(x) = M(‖un‖2
ε)

[|∇un −∇u|2 + V (εx)(un − u)2
]
.

For each R > 0 fixed, choosing ρ > R we obtain∫
BR

Pn =
∫

BR

Pnηρ ≤ M(‖un‖2
ε)

∫
IR3

[|∇un −∇u|2 + V (εx)(un − u)2
]
ηρ.

By expanding the inner product in IR3,∫
BR

Pn ≤ M(‖un‖2
ε)

∫
IR3

[|∇un|2 + V (εx)(un)2
]
ηρ

− 2M(‖un‖2
ε)

∫
IR3

[∇un∇u + V (εx)unu] ηρ

+ M(‖un‖2
ε)

∫
IR3

[|∇u|2 + V (εx)u2
]
ηρ.
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Setting

I1
n,ρ = M(‖un‖2

ε)
∫

IR3

[|∇un|2 + V (εx)(un)2
]
ηρ −

∫
IR3

g(εx, un)unηρ,

I2
n,ρ = M(‖un‖2

ε)
∫

IR3
[∇un∇u + V (εx)unu] ηρ −

∫
IR3

g(εx, un)uηρ,

I3
n,ρ = −M(‖un‖2

ε)
∫

IR3
[∇un∇u + V (εx)unu] ηρ + M(‖un‖2

ε)
∫

IR3

[|∇u|2 + V (εx)u2
]
ηρ

and

I4
n,ρ =

∫
IR3

g(εx, un)unηρ −
∫

IR3
g(εx, un)uηρ.

We have that,

0 ≤
∫

BR

Pn ≤ |I1
n,ρ| + |I2

n,ρ| + |I3
n,ρ| + |I4

n,ρ|. (2.8)

Observe that

I1
n,ρ = J ′

ε(un)(unηρ) − M(‖un‖2
ε)

∫
IR3

un∇un∇ηρ.

Since {unηρ} is bounded in Hε, we have J ′
ε(un)(unηρ) = on(1). Moreover, from a straightforward computation

lim
ρ→∞

[
lim sup

n→∞

∣∣∣∣M(‖un‖2
ε)

∫
IR3

un∇un∇ηρ

∣∣∣∣] = 0.

Then,

lim
ρ→∞

[
lim sup

n→∞
|I1

n,ρ|
]

= 0. (2.9)

We see also that

I2
n,ρ = J ′

ε(un)(uηρ) − M(‖un‖2
ε)

∫
IR3

u∇un∇ηρ.

By arguing in the same way as in the previous case,

J ′
ε(un)(uηρ) = on(1)

and

lim
ρ→∞

[
lim sup

n→∞

∣∣∣∣M(‖un‖2
ε)

∫
IR3

u∇un∇ηρ

∣∣∣∣] = 0.

Therefore,

lim
ρ→∞

[
lim sup

n→∞
|I2

n,ρ|
]

= 0. (2.10)

On the other hand, from the weak convergence

lim
n→∞ |I3

n,ρ| = 0, ∀ ρ > R. (2.11)

Finally, from
un → u, in Ls

loc(IR
3), 1 ≤ s < 6,

we conclude that
lim

n→∞ |I4
n,ρ| = 0, ∀ ρ > R. (2.12)
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From (2.8), (2.9), (2.10), (2.11) and (2.12), we obtain

0 ≤ lim sup
n→∞

∫
BR

Pn ≤ 0.

Hence, lim
n→∞

∫
BR

Pn = 0 and consequently

lim
n→∞

∫
BR

[|∇un|2 + V (εx)u2
n

]
=

∫
BR

[|∇u|2 + V (εx)u2
]
. �

Proposition 2.8. The functional Jε verifies the (PS)d condition in Hε.

Proof. Let {un} be a (PS)d sequence for Jε. From Lemma 2.5 we know that {un} is bounded in Hε. Passing
to a subsequence, we obtain

un ⇀ u, in Hε.

From Lemma 2.6, it follows that for each ξ > 0 given there is R = R(ξ) > C/ξ with C > 0 independent on ξ
such that

lim sup
n→∞

∫
IR3\BR

[|∇un|2 + V (εx)u2
n

]
< ξ.

Therefore, from Lemma 2.7,

‖u‖2
ε ≤ lim inf

n→∞ ‖un‖2
ε ≤ lim sup

n→∞
‖un‖2

ε

= lim sup
n→∞

{∫
BR

[|∇un|2 + V (εx)u2
n

]
+

∫
IR3\BR

[|∇un|2 + V (εx)u2
n

]}

=
∫

BR

[|∇u|2 + V (εx)u2
]
+ lim sup

n→∞

∫
IR3\BR

[|∇un|2 + V (εx)u2
n

]
<

∫
BR

[|∇u|2 + V (εx)u2
]
+ ξ,

where R = R(ξ) > C/ξ. Passing to the limit of ξ → 0 we have R → ∞, which implies

‖u‖2
ε ≤ lim inf

n→∞ ‖un‖2
ε ≤ lim sup

n→∞
‖un‖2

ε ≤ ‖u‖2
ε,

and so ‖un‖ε → ‖u‖ε and consequently un → u in Hε. �

Since f is only continuous and V has geometry of the Del Pino and Felmer type [12], in the next result (which
is required for the multiplicity result) we use arguments that don’t appear in [12] and [27].

Corollary 2.9. The functional Ψε verifies the (PS)d condition on S+
ε .

Proof. Let {un} ⊂ S+
ε be a (PS)d sequence for Ψε. Thus,

Ψε(un) → d

and
‖Ψ ′

ε(un)‖∗ → 0,
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where ‖.‖∗ is the norm in the dual space (TunS+
ε )′. It follows from Proposition 2.4(c) that {mε(un)} is a (PS)d

sequence for Jε in Hε. From Proposition 2.8 we conclude there is u ∈ S+
ε such that, passing to a subsequence,

mε(un) → mε(u) in Hε.

From Lemma 2.3 (A3), it follows that
un → u in S+

ε . �

Theorem 2.10. Suppose that the function M satisfies (M1)–(M3), the potential V satisfies (V1)–(V2) and the
function f satisfies (f1)–(f4). Then, the auxiliary problem (Pε,A) has a positive ground-state solution for all
ε > 0.

Proof. This result follows from Lemma 2.2, Proposition 2.8 and maximum principle. �

3. Multiplicity of solutions of auxiliary problem

3.1. The autonomous problem

Since we are interested in giving a multiplicity result for the auxiliary problem, we start by considering the
limit problem associated to (P̃ε), namely, the problem

(P0)

⎧⎪⎨⎪⎩
L0u = f(u), IR3

u > 0, IR3

u ∈ H1(IR3)

where

L0u = M

(∫
IR3

|∇u|2 +
∫

IR3
V0u

2

)
[−Δu + V0u] ,

which has the following associated functional

I0(u) =
1
2
M̂

(∫
IR3

|∇u|2 +
∫

IR3
V0u

2

)
−

∫
IR3

F (u).

This functional is well defined on the Hilbert space H0 = H1(IR3) with the inner product

(u, v)0 =
∫

IR3
∇u∇v +

∫
IR3

V0uv

and norm
‖u‖2

0 =
∫

IR3
|∇u|2 +

∫
IR3

V0u
2

fixed. We denote the Nehari manifold associated to I0 by

N0 = {u ∈ H0\{0} : I ′0(u)u = 0}.
We denote by H+

0 the open subset of H0 given by

H+
0 = {u ∈ H0 : |supp (u+)| > 0},

and S+
0 = S0 ∩ H+

0 , where S0 is the unit sphere of H0.
As in the section 2, S+

0 is a incomplete C1,1-manifold of codimension 1, modeled on H0 and contained in the
open H+

0 . Thus, H0 = TuS+
0 ⊕ IR u for each u ∈ S+

0 , where TuS+
0 = {v ∈ H0 : (u, v)0 = 0}.

Next we enunciate without proof one Lemma and one Proposition, which allow us to prove the Lemma 3.7.
The proofs follow from a similar argument to that used in the proofs of Lemma 2.3 and Proposition 2.4.
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Lemma 3.1. Suppose that the function M satisfies (M1)–(M3) and the function f satisfies (f1)–(f4). So:

(A1) For each u ∈ H+
0 , let h : IR+ → IR be defined by hu(t) = I0(tu). Then, there is a unique tu > 0 such that

h′
u(t) > 0 in (0, tu) and h′

u(t) < 0 in (tu,∞).
(A2) there is τ > 0 independent on u such that tu ≥ τ for all u ∈ S+

0 . Moreover, for each compact set W ⊂ S+
0

there is CW > 0 such that tu ≤ CW , for all u ∈ W.
(A3) The map m̂ : H+

0 → N0 given by m̂(u) = tuu is continuous and m := m̂∣∣S+
0

is a homeomorphism between

S+
0 and N0. Moreover, m−1(u) = u

‖u‖0
.

(A4) If there is a sequence (un) ⊂ S+
0 such that dist(un, ∂S+

0 ) → 0, then ‖m(un)‖0 → ∞ and I0(m(un)) → ∞.

We set the applications
Ψ̂0 : H+

0 → IR and Ψ0 : S+
0 → IR,

by Ψ̂0(u) = I0(m̂(u)) and Ψ0 := (Ψ̂0)|
S
+
0

.

Proposition 3.2. Suppose that the function M satisfies (M1)–(M3) and the function f satisfies (f1)–(f4). So:

(a) Ψ̂0 ∈ C1(H+
0 , IR) and

Ψ̂ ′
0(u)v =

‖m̂(u)‖0

‖u‖0
I ′0(m̂(u))v, ∀u ∈ H+

0 and ∀v ∈ H0.

(b) Ψ0 ∈ C1(S+
0 , IR) and

Ψ ′
0(u)v = ‖m(u)‖0I

′
0(m(u))v, ∀v ∈ TuS+

0 .

(c) If {un} is a (PS)d sequence for Ψ0 then {m(un)} is a (PS)d sequence for I0. If {un} ⊂ N0 is a bounded
(PS)d sequence for I0 then {m−1(un)} is a (PS)d sequence for Ψ0.

(d) u is a critical point of Ψ0 if, and only if, m(u) is a nontrivial critical point of I0. Moreover, corresponding
critical values coincide and

inf
S+

0

Ψ0 = inf
N0

I0.

Remark 3.3. As in the section 2, there holds

c0 = inf
u∈N0

I0(u) = inf
u∈H+

0

max
t>0

I0(tu) = inf
u∈S+

0

max
t>0

I0(tu). (3.1)

The next Lemma allows us to assume that the weak limit of a (PS)d sequence is non-trivial.

Lemma 3.4. Let {un} ⊂ H0 be a (PS)d sequence for I0 with un ⇀ 0. Then, only one of the alternatives below
holds:

a) un → 0 in H0

b) there is a sequence (yn) ⊂ IR3 and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
n ≥ β > 0.

Proof. Suppose that b) doesn’t hold. It follows that for all R > 0 we have

lim
n→∞ sup

y∈IR3

∫
BR(y)

u2
n = 0.

Since {un} is bounded in H0, we conclude from ([28], Lem. 1.21) that

un → 0 in Ls(IR3), 2 < s < 6.
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From (M1), (f1) and (f2),

0 ≤ m0‖un‖0 ≤
∫

IR3
f(un)un + on(1) = on(1).

Therefore the item a) is true. �

Remark 3.5. As it has been mentioned, if u is the weak limit of a (PS)c0 sequence {un} for the functional I0,
then we can assume u 
= 0, otherwise we would have un ⇀ 0 and, once it doesn’t occur un → 0, we conclude
from the Lemma 3.4 that there are {yn} ⊂ IR3 and R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
n ≥ β > 0.

Set vn(x) = un(x + yn), making a change of variable, we can prove that {vn} is a (PS)c0 sequence for the
functional I0, it is bounded in H0 and there is v ∈ H0 with vn ⇀ v in H0 with v 
= 0.

In the next Proposition we obtain a positive ground-state solution for the autonomous problem (P0).

Theorem 3.6. Let {un} ⊂ H0 be a (PS)c0 sequence for I0. Then there is u ∈ H0\{0} with u ≥ 0 such
that, passing a subsequence, we have un → u in H0. Moreover, u is a positive ground-state solution for the
problem (P0).

Proof. Arguing as Lemma 2.5, we have that {un} is bounded in H0. Thus, passing a subsequence if necessary,
we obtain

un ⇀ u em H0, (3.2)

un → u em Ls
loc(IR

3), 1 ≤ s < 6 (3.3)

and
‖un‖0 → t0. (3.4)

So, from (3.2) we conclude that
(un, v)0 → (u, v)0, ∀v ∈ H0. (3.5)

On the other hand, due to density of C∞
0 (IR3) in H0 and from convergence in (3.3), it results that∫
IR3

f(un)v →
∫

IR3
f(u)v, ∀v ∈ H0. (3.6)

Now, from convergence in (3.2) and (3.4), occurs

‖u‖2
0 ≤ lim inf

n→∞ ‖un‖2
0 = t20,

and from (M2) it follows that M(‖u‖2
0) ≤ M(t20).

Since (M3) implies that the function t �→ 1
2M̂(t) − 1

4M(t)t is non-decreasing, we can argue as in [4] and to
prove that M(t20) = M(‖u‖2

0) and the theorem now follows from fact that functional I0 has the mountain pass
geometry and from ([28], Thm. 1.15). �

The next lemma is a compactness result on the autonomous problem which we will use later.

Lemma 3.7. Let {un} be a sequence in H1(IR3) such that I0(un) → c0 and {un} ⊂ N0. Then, {un} has a
convergent subsequence in H1(IR3).
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Proof. Since {un} ⊂ N0, it follows from Lemma 3.1 (A3), Proposition 3.2(d) and Remark 3.1 that

vn = m−1(un) =
un

‖un‖0
∈ S+

0 , ∀n ∈ IN (3.7)

and
Ψ0(vn) = I0(un) → c0 = inf

S+
0

Ψ0.

Although S+
0 is incomplete, due to Lemma 3.1 (A4), we can still apply the Ekeland’s variational principle ([13],

Thm. 1.1) to the functional ξ0 : V → IR∪ {∞} defined by ξ0(u) = Ψ0(u) if u ∈ S+
0 and ξ0(u) = ∞ if u ∈ ∂S+

0 ,
where V = S+

0 is a complete metric space equipped with the metric d(u, v) = ‖u− v‖0. In fact, from Lemma 3.1
(A4), ξ0 ∈ C(V, IR∪{∞}) and, from Proposition 3.2(d), ξ0 is bounded from below. Thus, we can conclude there
is a sequence {v̂n} ⊂ S+

0 such that {v̂n} is a (PS)c0 sequence for Ψ0 on S+
0 and

‖v̂n − vn‖0 = on(1). (3.8)

The remainder of the proof follows by using Proposition 3.2, Theorem 3.6 and arguing as in the proof of
Corollary 2.9. �

In the next subsection we will relate the number of positive solutions of (Pε,A) to topology of Π, for this we
need some preliminary results.

3.2. Technical results

Let δ > 0 fixed and Πδ ⊂ Ω. Let η ∈ C∞
0 ([0,∞)) be such that 0 ≤ η(t) ≤ 1, η(t) = 1 if 0 ≤ t ≤ δ/2 and

η(t) = 0 if t ≥ δ. We denote by w a positive ground-state solution of the problem (P0) (see Thm. 3.6).
For each y ∈ Π = {x ∈ Ω : V (x) = V0}, we define the function

Υ̃ε,y(x) = η(|εx − y|)w
(

εx − y

ε

)
·

Let tε > 0 be the unique positive number such that

max
t≥0

Jε(tΥ̃ε,y) = Jε(tεΥ̃ε,y).

By noticing that tεΥ̃ε,y ∈ Nε, we can now define the continuous function

Υε : Π −→ Nε

y �−→ Υε(y) = tεΥ̃ε,y.

Lemma 3.8. Let Π ⊂ Ω. Then,

lim
ε→0

Jε(Υε(y)) = c0 uniformly in y ∈ Π.

Proof. Arguing by contradiction, we suppose that there exist δ0 > 0 and a sequence {yn} ⊂ Π verifying

| Jεn(Υεn(yn)) − c0 |≥ δ0 where εn → 0 when n → ∞. (3.9)

From definition of Υεn(yn), we have

Jεn(Υεn(yn)) =
1
2
M̂

(
t2εn

‖Υ̃εn,yn‖2
εn

)
−

∫
IR3

G
(
εnx, tεn Υ̃εn,yn

)
(3.10)
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and
J ′

εn
(Υεn(yn))Υεn(yn) = 0. (3.11)

Using definition of Υεn(yn) again and making the change of variable z = εnx−yn

εn
, we have

Jεn(Υεn(yn)) =
1
2
M̂

(
t2εn

(∫
IR3

|∇ (η(|εnz|)w(z))|2 +
∫

IR3
V (εnz + yn) (η(|εnz|)w(z))2

))
−

∫
IR3

G (εnz + yn, tεnη(|εnz|)w(z)) .

Moreover, putting

Λ2
n =

∫
IR3

|∇ (η(|εnz|)w(z))|2 +
∫

IR3
V (εnz + yn) (η(|εnz|)w(z))2 ,

the equality in (3.11) yields

M(t2εn
Λ2

n)
t2εn

Λ2
n

=
1

Λ4
n

∫
IR3

[
g(εnz + yn, tεnη(|εnz|)w(z))

(tεnη(|εnz|)w(z))3

]
(η(|εnz|)w(z))4.

For each n ∈ IN and for all z ∈ B δ
εn

(0), we have εnz ∈ Bδ(0). So,

εnz + yn ∈ Bδ(yn) ⊂ Πδ ⊂ Ω.

Since G = F in Ω, it follows from (3.10) that

Jεn(Υεn(yn)) =
1
2
M̂(t2εn

Λ2
n) −

∫
IR3

F (tεnη(|εnz|)w(z)) (3.12)

and
M(t2εn

Λ2
n)

t2εn
Λ2

n

=
1

Λ4
n

∫
IR3

[
f(tεnη(|εnz|)w(z))
(tεnη(|εnz|)w(z))3

]
(η(|εnz|)w(z))4. (3.13)

From the Lebesgue’s theorem, when n → ∞
‖Υ̃εn,yn‖2

εn
= Λ2

n → ‖w‖2
0, (3.14)∫

IR3
f(η(|εnz|)w(z))η(|εnz|)w(z) →

∫
IR3

f(w)w

and ∫
IR3

F (η(|εnz|)w(z)) →
∫

IR3
F (w). (3.15)

We see that there is a subsequence, still denoted by {tεn}, with tεn → 1. In fact, since η = 1 in B δ
2
(0) and

B δ
2
(0) ⊂ B δ

2εn
(0) for n large enough, it follows from (3.13) that

M(t2εn
Λ2

n)
t2εn

Λ2
n

≥ 1
Λ4

n

∫
B δ

2
(0)

[
f(tεnw(z))
(tεnw(z))3

]
w(z)4.

From continuity of w (which follows from standard regularity theory), there is ẑ ∈ IR3 such that w(ẑ) =
min

B δ
2
(0)

w(z). So, from (f4)

1
Λ4

n

f(tεnw(ẑ))

(tεnw(ẑ))3

∫
B δ

2
(0)

w(z)4 ≤ M(t2εn
Λ2

n)
t2εn

Λ2
n

· (3.16)
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Suppose by contradiction that there is a subsequence {tεn} with tεn → ∞. Thus, passing to the limit as n → ∞
in (3.16), we conclude, from (M3) and (f3), that the left side converges to infinity and the right side is bounded,
which is a contradiction. Therefore, {tεn} is bounded and passing to a subsequence we have tεn → t0 with
t0 ≥ 0.

From (3.13), (3.14), (M1) and (f4) we have that t0 > 0. Thus, passing to the limit as n → ∞ in (3.13), we
have

M(t20‖w‖2
0)‖w‖2

0t0 =
∫

IR3
f(t0w)w. (3.17)

Since w ∈ N0, we obtain t0 = 1. So, passing to the limit of n → ∞ in (3.12) and using (3.14) and (3.15) we
obtain

lim
n→∞Jεn(Υεn(yn)) = I0(w) = c0,

which is a contradiction with (3.9). �

Let’s consider the specific subset of the Nehari manifold

Ñε = {u ∈ Nε : Jε(u) ≤ c0 + h1(ε)},
where h1 : IR+ → IR+ is a function such that Υε(Π) ⊂ Ñε and lim

ε→0
h1(ε) = 0. Observe that h1 exists due to the

Lemma 3.8. In particular, Ñε 
= ∅ for all small ε > 0.
Now we consider ρ > 0 such that Πδ ⊂ Bρ(0) and χ : IR3 −→ IR3 defined by

χ(x) =

⎧⎪⎨⎪⎩
x se |x| ≤ ρ

ρx

|x| se |x| ≥ ρ.

We also consider the barycenter map βε : Nε −→ IR3 given by

βε(u) =

∫
IR3

χ(εx)u(x)2∫
IR3

u(x)2
·

Since Π ⊂ Bρ(0), the definition of χ and Lebesgue’s theorem imply that

lim
ε→0

βε(Υε(y)) = y uniformly in y ∈ Π. (3.18)

The next result is fundamental to show that the solutions of the auxiliary problem are solutions of the original
problem. Moreover, it allows us to show the behavior of such solutions in the norm |.|L∞(IR3\Ωε).

Proposition 3.9. Let {un} be a sequence in H1(IR3) such that

Jεn(un) → c0Ω

and

J ′
εn

(un)(un) = 0, ∀n ∈ IN

with εn → 0 when n → ∞. Then, there is a subsequence {ỹn} ⊂ IR3 such that the sequence vn(x) = un(x + ỹn)
has a convergent subsequence in H1(IR3). Moreover, passing to a subsequence,

yn → ỹ with y ∈ Π,

where yn = εnỹn.



410 G.M. FIGUEIREDO AND J.R.S. JÚNIOR

Proof. We can always consider un ≥ 0 and un 
= 0. As in Lemma 2.5 and arguing as Remark 3.5 we have
that {un} is bounded in H1(IR3) and there are (ỹn) ⊂ IR3 and positive constants R and α such that

lim inf
n→∞

∫
BR(ỹn)

u2
n ≥ α > 0. (3.19)

Considering vn(x) = un(x + ỹn) we conclude that {vn} is bounded in H1(IR3) and therefore, passing to a
subsequence, we get

vn ⇀ v, in H1(IR3)

with v 
= 0. For each n ∈ IN, let tn > 0 such that ṽn = tnvn ∈ N0 (see Lem. 3.1 (A1)). We have that

c0 ≤ I0(ṽn) =
1
2
M̂(t2n‖un‖2

0) −
∫

IR3
F (tnun)

≤ 1
2
M̂(t2n‖un‖2

εn
) −

∫
IR3

G(εnx, tnun).

Hence,

c0 ≤ I0(ṽn) ≤ Jε(tnun) ≤ Jε(un) = c0 + on(1), (3.20)

which implies,
I0(ṽn) → c0 and {ṽn} ⊂ N0. (3.21)

Thus, {ṽn} is bounded in H1(IR3) and ṽn ⇀ ṽ. From well-known arguments we can assume that tn → t0 with
t0 > 0. So, from uniqueness of the weak limit we have ṽ = t0v, v 
= 0. From Lemma 3.7 we obtain,

ṽn → ṽ in H1(IR3). (3.22)

This convergence implies

vn → ṽ

t0
= v in H1(IR3)

and
I0(ṽ) = c0 and I ′0(ṽ)ṽ = 0. (3.23)

Now, we will show that {yn} is bounded, where yn = εnỹn. In fact, otherwise, there exists a subsequence {yn}
with |yn| → ∞. Observe that

m0‖vn‖2
0 ≤

∫
IR3

g(εnz + yn, vn)vn.

Let R > 0 such that Ω ⊂ BR(0). Since we may suppose that |yn| ≥ 2R, for each z ∈ B R
εn

(0) we have

|εnz + yn| ≥ |yn| − |εnz| ≥ 2R − R = R.

Thus,

m0‖vn‖2
0 ≤

∫
B R

εn

(0)

f̃(vn)vn +
∫

IR3\B R
εn

(0)

f(vn)vn.

Since vn → v in H1(IR3), it follows from Lebesgue’s theorem that∫
IR3\B R

εn

(0)

f(vn)vn = on(1).
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On the other hand, since f̃(vn) ≤ V0
K vn, we obtain

m0‖vn‖2
0 ≤ 1

K

∫
B R

εn

(0)

V0v
2
n + on(1),

and therefore, (
m0 − 1

K

)
‖vn‖0 ≤ on(1),

which is a contradiction. Hence, {yn} is bounded and we can assume yn → y in IR3. We see that y ∈ Ω because
if y /∈ Ω, we can proceed as above and conclude that ‖vn‖0 ≤ on(1).

In order to prove that V (y) = V0, we suppose by contradiction that V0 < V (y). Consequently, from (3.22),
Fatou’s Lemma and the invariance of R

3 by translations, we obtain

c0 < lim inf
n→∞

[
1
2
M̂

(∫
IR3

|∇ṽn|2 +
∫

IR3
V (εnz + yn)ṽ2

n

)
−

∫
IR3

F (ṽn)
]

≤ lim inf
n→∞ Jεn(tnun)

≤ lim inf
n→∞ Jεn(un) = c0,

which is a contradiction and the proof is finished. �

Corollary 3.10. Assume the same hypotheses of Proposition 3.9. Then, for any given γ2 > 0, there exists
R > 0 and n0 ∈ N such that ∫

BR(ỹn)c

(|∇un|2 + |un|2
)

< γ2, for all n ≥ n0.

Proof. By using the same notation of the proof of Proposition 3.9, we have for any R > 0∫
BR(ỹn)c

(|∇un|2 + |un|2
)

=
∫

BR(0)c

(|∇vn|2 + |vn|2
)
.

Since (vn) strongly converges in H1(RN ) the result follows. �

Lemma 3.11. Let δ > 0 and Πδ = {x ∈ IR3 : dist(x, M) ≤ δ}. Then,

lim
ε→0

sup
u∈Ñε

inf
y∈Πδ

|βε(u) − y| = lim
ε→0

sup
u∈Ñε

dist(βε(u), Πδ) = 0.

Proof. The proof of this Lemma follows from well-known arguments and can be found in [5], Lemma 3.7. �

3.3. Multiplicity of solutions for (Pε,A)

Next we prove our multiplicity result for the problem (Pε,A), by using arguments slightly different to those
in [27], in fact, since S+

ε is a incomplete metric space, we cannot use (directly) an abstract result as in ([11],
Thm. 2.1), instead, we invoke the category abstract result in [26].

Theorem 3.12. Suppose that the function M satisfies (M1)–(M3), the potential V satisfies (V1)–(V2) and the
function f satisfies (f1)–(f4). Then, given δ > 0 there is ε = ε(δ) > 0 such that the auxiliary problem (Pε,A)
has at least CatΠδ

(Π) positive solutions, for all ε ∈ (0, ε).
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Proof. For each ε > 0, we define the function ζε : Π → S+
ε by

ζε(y) = m−1
ε (Υε(y)), ∀y ∈ Π.

From the Lemma 3.8, we have

lim
ε→0

Ψε(ζε(y)) = lim
ε→0

Jε(Υε(y)) = c0, uniformly in y ∈ Π.

Thus, the set
S̃+

ε = {u ∈ S+
ε : Ψε(u) ≤ c0 + h1(ε)},

is nonempty, for all ε ∈ (0, ε), because ζε(Π) ⊂ S̃+
ε , where the function h1 was already introduced in the

definition of the set Ñε.
From up above considerations, together with Lemma 3.8, Lemma 2.3 (A3), equality (3.18) and Lemma 3.11,

there is ε = ε(δ) > 0, such that the diagram of continuous applications bellow is well defined for ε ∈ (0, ε)

Π Υε−→ Υε(Π)
m−1

ε−→ ζε(Π) mε−→ Υε(Π)
βε−→ Πδ.

We conclude from (3.18) that there is a function λ(ε, y) with |λ(ε, y)| < δ
2 uniformly in y ∈ Π, for all ε ∈ (0, ε),

such that βε(Υε(y)) = y + λ(ε, y) for all y ∈ Π. Hence, the application H : [0, 1] × Π → Πδ defined by
H(t, y) = y + (1 − t)λ(ε, y) is a homotopy between αε ◦ ζε = βε ◦ Υε and the inclusion i : Π → Πδ, where
αε = βε ◦ mε. Therefore,

catζε(Π)ζε(Π) ≥ catΠδ
(Π). (3.24)

It follows from Corollary 2.9 and from category abstract theorem in [26], with c = cε ≤ c0 + h1(ε) = d and
K = ζε(Π), that Ψε has at least catζε(Π)ζε(Π) critical points on S̃+

ε . So, from item (d) of the Proposition 2.4
and from (3.24), we conclude that Jε has at least catΠδ

(Π) critical points in Ñε. �

4. Proof of Theorem 1.1

In this section we prove our main theorem. The idea is to show that the solutions obtained in Theorem 3.12
verify the following estimate uε(x) ≤ a ∀x ∈ Ωc

ε for ε small enough. This fact implies that these solutions are
in fact solutions of the original problem (P̃ε). The key ingredient is the following result, whose proof uses an
adaptation of the arguments found in [19], which are related to the Moser iteration method [22].

Lemma 4.1. Let εn → 0+ and un ∈ Ñεn be a solution of (Pεn,A). Then Jεn(un) → c0 and un ∈ L∞(R3).
Moreover, for any given γ > 0, there exists R > 0 and n0 ∈ N such that

|un|L∞(BR(ỹn)c) < γ, for all n ≥ n0, (4.1)

where ỹn is given by Proposition 3.9.

Proof. Since Jεn(un) ≤ c0 + h1(εn) with lim
n→∞h1(εn) = 0, we can argue as in the proof of the inequality (3.20)

to conclude that Jεn(un) → c0. Thus, we may invoke Proposition 3.9 to obtain a sequence (ỹn) ⊂ R
3 satisfying

the conclusions of that proposition.
Fix R > 1 and consider ηR ∈ C∞(R3) such that 0 ≤ ηR ≤ 1, ηR ≡ 0 in BR/2(0), ηR ≡ 1 in BR(0)c and

|∇ηR| ≤ C/R. For each n ∈ N and L > 0, we define ηn(x) := ηR(x − ỹn), uL,n ∈ H1(R3) and zL,n ∈ Hε by

uL,n(x) := min{un(x), L}, zL,n := η2
nu

2(β−1)
L,n un,

with β > 1 to be determined later.
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From definition of zL,n and J ′
εn

(un)zL,n = 0, we have

m0

[∫
R3

η2
nu

2(β−1)
L,n |∇un|2 + 2

∫
R3

ηnunu
2(β−1)
L,n ∇ηn · ∇un

]
≤

∫
R3

(g(εnx, un) − m0V (εnx)un) η2
nunu

2(β−1)
L,n .

Now, the result follows by arguing as in [6], Lemma 4.1. �

We are now ready to prove the main result of the paper.

4.1. Proof of Theorem 1.1

Suppose that δ > 0 is such that Πδ ⊂ Ω. We first claim that there exists ε̃δ > 0 such that, for any 0 < ε < ε̃δ

and any solution u ∈ Ñε of the problem (Pε,A), there holds

|u|L∞(R3\Ωε) < a. (4.2)

In order to prove the claim we argue by contradiction. So, suppose that for some sequence εn → 0+ we can
obtain un ∈ Ñεn such that J ′

εn
(un) = 0 and

|un|L∞(R3\Ωεn ) ≥ a. (4.3)

As in Lemma 4.1, we have that Jεn(un) → c0 and therefore we can use Proposition 3.9 to obtain a sequence
(ỹn) ⊂ R

3 such that εnỹn → y0 ∈ Π.
If we take r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Ω we have that

Br/εn
(y0/εn) = (1/εn)Br(y0) ⊂ Ωεn .

Moreover, for any z ∈ Br/εn
(ỹn), there holds∣∣∣∣z − y0

εn

∣∣∣∣ ≤ |z − ỹn| +
∣∣∣∣ỹn − y0

εn

∣∣∣∣ <
1
εn

(r + on(1)) <
2r

εn
,

for n large. For these values of n we have that Br/εn
(ỹn) ⊂ Ωεn or, equivalently, R

3 \Ωεn ⊂ R
3 \Br/εn

(ỹn). On
the other hand, it follows from Lemma 4.1 with γ = a that, for any n ≥ n0 such that r/εn > R, there holds

|un|L∞(R3\Ωεn ) ≤ |un|L∞(R3\Br/εn (ỹn)) ≤ |un|L∞(R3\BR(ỹn)) < a,

which contradicts (4.3) and proves the claim.
Let ε̂δ > 0 given by Theorem 3.12 and set εδ := min{ε̂δ, ε̃δ}. We shall prove the theorem for this choice

of εδ. Let 0 < ε < εδ be fixed. By applying Theorem 3.12 we obtain catΠδ
(Π) nontrivial solutions of the

problem (Pε,A). If u ∈ Hε is one of these solutions we have that u ∈ Ñε, and therefore we can use (4.2) and
the definition of g to conclude that gε(·, u) ≡ f(u). Hence, u is also a solution of the problem (P̃ε). An easy
calculation shows that û(x) := u(x/ε) is a solution of the original problem (Pε). Then, (Pε) has at least catΠδ

(Π)
nontrivial solutions.

We now consider εn → 0+ and take a sequence un ∈ Hεn of solutions of the problem (P̃εn) as above. In order
to study the behavior of the maximum points of un, we first notice that, by (g1), there exists γ > 0 such that

g(εx, s)s ≤ V0

K
s2, for all x ∈ R

3, s ≤ γ. (4.4)

By applying Lemma 4.1 we obtain R > 0 and (ỹn) ⊂ R
3 such that

|un|L∞(BR(ỹn))c < γ, (4.5)
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Up to a subsequence, we may also assume that

|un|L∞(BR(ỹn)) ≥ γ. (4.6)

Indeed, if this is not the case, we have |un|L∞(R3) < γ, and therefore it follows from J ′
εn

(un) = 0 and (4.4) that

m0‖un‖2
εn

≤
∫

R3

g(εnx, un)un ≤ V0

K

∫
R3

u2
n.

The above expression implies that ‖un‖εn = 0, which does not make sense. Thus, (4.6) holds.
By using (4.5) and (4.6) we conclude that the maximum point pn ∈ R

3 of un belongs to BR(ỹn). Hence
pn = ỹn + qn, for some qn ∈ BR(0). Recalling that the associated solution of (Pεn) is of the form ûn(x) =
un(x/εn), we conclude that the maximum point ηn of ûn is ηn := εnỹn + εnqn. Since (qn) ⊂ BR(0) is bounded
and εnỹn → y0 ∈ Π (according to Proposition 3.9), we obtain

lim
n→∞ V (ηεn) = V (y0) = V0,

which concludes the proof of the theorem.
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