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CONTROLLABILITY OF 3D LOW REYNOLDS NUMBER SWIMMERS
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1
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Abstract. In this article, we consider a swimmer (i.e. a self-deformable body) immersed in a fluid, the
flow of which is governed by the stationary Stokes equations. This model is relevant for studying the
locomotion of microorganisms or micro robots for which the inertia effects can be neglected. Our first
main contribution is to prove that any such microswimmer has the ability to track, by performing a
sequence of shape changes, any given trajectory in the fluid. We show that, in addition, this can be done
by means of arbitrarily small body deformations that can be superimposed to any preassigned sequence
of macro shape changes. Our second contribution is to prove that, when no macro deformations are
prescribed, tracking is generically possible by means of shape changes obtained as a suitable combination
of only four elementary deformations. Eventually, still considering finite dimensional deformations, we
state results about the existence of optimal swimming strategies on short time intervals, for a wide
class of cost functionals.
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1. Introduction

1.1. Context

Relevant models for the locomotion of microorganisms can be tracked back to the work of Taylor [18],
Lighthill [11, 12], and Childress [7]. Purcell explains in [14] that these sort of animals are of the order of a
micron in size and they move around with a typical speed of 30 micron/sec. These data lead the flow regime
to be characterized by a very small Reynolds number. For such swimmers, inertia effects play no role and the
motion is entirely determined by the friction forces.

In this article, the swimmer is modeled as a self deforming-body. By changing its shape, it sets the surrounding
fluid into motion and generates hydrodynamics forces used to propel and steer itself. We are interested in inves-
tigating whether the microswimmer is able to control its trajectory by means of appropriate shape deformations
(as real microorganisms do). This question has already be tackled in some specific cases. Let us mention [16]
(the authors study the motion of infinite cylinders with various cross sections and the swimming of spheres
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undergoing infinitesimal shape variations) and [2] (in which the 1D controllability of a swimmer made of three
spheres is investigated). The well-posedness of the dynamics has been investigated in [13].

Our contribution to this question is several folds. First, we give a definitive answer to the control problem in
the general case: the swimmer we consider has any shape at rest (obtained as the image by a C1 diffeomorphism
of the unit ball) and can undergo any kind of shape deformations (as long as they can also be obtained as images
of the unit ball by C1 diffeomorphisms). With these settings, we prove that the dynamical system governing
the swimmer’s motion in the fluid is controllable in the following sense: for any prescribed trajectory (i.e. given
positions and orientations of the swimmer at every moment) there exists a sequence of shape changes that make
it swim arbitrarily close to this trajectory. A somewhat surprising additional result is that this can be done by
means of arbitrarily small shape changes which can be superimposed to any preassigned macro deformations
(this is called the ability of synchronized swimming in the sequel). Second, when no macro deformations are
prescribed (this is called freestyle swimming in the paper), we prove that the ability of tracking any trajectory is
possible by means of shape changes obtained as an appropriate combination of only four elementary deformations
(satisfying some generic assumptions). Third, we state a result about the existence of optimal swimming on
short time intervals.

Notice that the paper follows the lines of [6] in which the authors study the controllability of a swimmer in
a perfect fluid.

1.2. Modeling

Kinematics

Two frames are required in the modeling: The first one E := (E1,E2,E3) is fixed and Galilean and the second
one e := (e1, e2, e3) is moving (see Fig. 1).

At any moment, there exist a rotation matrix R ∈ SO(3) and a vector r ∈ R3 such that, if X := (X1, X2, X3)∗

and x := (x1, x2, x3)∗ are the coordinates of a same vector in respectively E and e, then the following equality
holds:

X = Rx + r. (1.1)

In the sequel, we will refer to the X-coordinates and the x-coordinates, depending on whether the quantities
are expressed in the frame E or e.

The vector r is meant to give the position of the swimmer and the matrix R its orientation .
The rigid displacement of the swimmer, on a time interval [0, T ] (T > 0), is thoroughly described by the

functions
t ∈ [0, T ] �→ R(t) ∈ SO(3) and t ∈ [0, T ] �→ r(t) ∈ R3,

which are the unknowns of our problem. Denoting their time derivatives by Ṙ and ṙ, we can define the linear
velocity v := (v1, v2, v3)∗ ∈ R3 and angular velocity vector Ω := (Ω1, Ω2, Ω3)∗ ∈ R3 (both in e) by respectively
v := R∗ṙ and Ω̂ := R∗Ṙ, where for every vector u := (u1, u2, u3)∗ ∈ R3, û is the unique skew-symmetric matrix
satisfying

ûx := u × x, ∀x ∈ R3.

Shape changes

The shape changes are expressed in the coordinates system given by the body frame e (i.e. in x−coordinates).
In our modeling, the domains occupied by the swimmer are images of the closed unit ball B̄ by C1 diffeo-

morphisms, isotopic to the identity, and tending to the identity at infinity, i.e. belonging to to D1
0(R

3) (the
definitions of all of the function spaces are collected in Appendix A).

With these settings, the shape changes over a time interval [0, T ] can be simply prescribed by means of
functions

t ∈ [0, T ] �→ Θt ∈ D1
0(R

3)
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Figure 1. Kinematics of the model: The Galilean frame E := (Ej)1≤j≤3 and the body frame
e := (ej)1≤j≤3 with ej = REj (R ∈ SO(3)). Quantities are mostly expressed in the body
frame. The domain of the body is B̄t at the time t and Bt is the image of the unit ball B by a
diffeomorphism Θt. The open set Ft := R3 \ B̄t is the domain of the fluid. The position of the
swimmer is given by the vector r (in E) and its orientation by R ∈ SO(3). The vector v := R∗ṙ
is the translational velocity (in e).

lying in W 1,1([0, T ],D1
0(R3)). Then, the domain occupied by the swimmer at every time t ≥ 0 is the closed,

bounded, connected set B̄t := Θt(B̄) (keep in mind that we are working in the frame e). The swimmer’s Eulerian
velocity of deformation is

wt := ∂tΘ(Θ−1).

We shall denote Σ := ∂B the unit ball’s boundary while Σt := Θt(Σ) will stand for the body-fluid interface.
The unit normal vector to Σt directed toward the interior of Bt is nt and the fluid fills the exterior open set
Ft := R3 \ B̄t.

The flow

The flow is governed by the stationary Stokes equations. Let us denote by U the Eulerian velocity and by P
the pressure in X-coordinates, both defined in the fluid domain RFt + r. They read:

−μΔU + ∇P = 0, ∇ · U = 0 in RFt + r (t > 0), (1.2)

where μ is the viscosity. Introducing for all x ∈ Ft:

u(x) = R∗U(Rx + r) and p(x) = P (Rx + r),
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equation (1.2) can be rewritten in the x-coordinates as follows:

−μΔu + ∇p = 0, ∇ · u = 0 in Ft (t > 0). (1.3)

Remark 1.1. From now on and unless otherwise indicated, we will work exclusively in the x-coordinates.

The equations (1.3) have to be complemented with the no-slip boundary conditions:

u = Ω × x + v + wt on Σt,

ensuring the continuity of the velocity field across the swimmer’s boundary.
The linearity of these equations leads to introducing the elementary velocities and pressures

(ui, pi), (i = 1, . . . , 6) and (ud, pd),

defined as the solutions to the Stokes equations with the boundary conditions

ui =

{
ei × x, i = 1, 2, 3,

ei−3, i = 4, 5, 6,

and ud = wt on Σt.

Then, the velocity u and the pressure p can be decomposed as

u =
3∑

i=1

Ωiui +
6∑

i=4

vi−3ui + ud (1.4a)

and p =
3∑

i=1

Ωipi +
6∑

i=4

vi−3pi + pd in Ft. (1.4b)

Notice that the pairs (ui, pi) (i = 1, . . . , 6) and (ud, pd) are well-defined in the weighted Sobolev spaces
(W 1

0 (Ft))3 × L2(Ft) (see the Appendix A).

Dynamics

As already pointed out before, for microswimmers, the inertia effects are neglected in the modeling. Newton’s
laws reduce to ∫

Σt

x × T(u, p)nt dσ = 0 (balance of torque) (1.5a)∫
Σt

T(u, p)nt dσ = 0 (balance of force) (1.5b)

where
T(u, p) := 2μD(u) − pId

is the stress tensor of the fluid, with D(u) := (∇u + ∇u∗)/2.
The stress tensor is linear with respect to (u, p) so it can be decomposed into

T(u, p) =
3∑

i=1

ΩiT(ui, pi) +
6∑

i=4

vi−3T(ui, pi) + T(ud, pd).
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In order to rewrite Newton’s laws in a compact form, we introduce the 6 × 6 matrix M(t) whose entries are

Mij(t) :=

{∫
Σt

(x × ei) · T(uj , pj)ntdσ (1 ≤ i ≤ 3, 1 ≤ j ≤ 6);∫
Σt

ei−3 · T(uj , pj)ntdσ (4 ≤ i ≤ 6, 1 ≤ j ≤ 6);
(1.6a)

and N(t), the vector of R6 whose entries are

Ni(t) :=

{∫
Σt

(x × ei) · T(ud, pd)ntdσ (1 ≤ i ≤ 3);∫
Σt

ei−3 · T(ud, pd)ntdσ (4 ≤ i ≤ 6).
(1.6b)

For the statement of the optimal control result, we will also need the quantity:

A(t) :=
∫

Σt

wt · T(ud, pd)ntdσ. (1.6c)

With these settings, Newton’s laws (1.5) take the convenient form

M(t)(Ω,v)∗ + N(t) = 0.

Upon an integration by parts, the entries of the matrix M(t) can be rewritten as

Mij(s) := 2μ

∫
Ft

D(ui) : D(uj)dx,

whence we deduce that M(t) is symmetric and positive definite. We infer that the swimming motion is governed
by the equation: (

Ω
v

)
= −M(t)−1N(t), (0 ≤ t ≤ T ). (1.7a)

To determine the rigid motion in the fixed frame E, equation (1.7a) has to be supplemented with the ODE:

d
dt

(
R
r

)
=

(
R Ω̂
R v

)
, (0 < t < T ), (1.7b)

together with Cauchy data for R(0) and r(0). At this point, we can identify the control as being the function
t ∈ [0, T ] �→ Θt ∈ D1

0(R3).
Notice that the dependence of the dynamics in the control is strongly nonlinear. Indeed Θt describes the

shape of the body and hence also the domain of the fluid in which are set the PDEs of the elementary velocity
fields involved in the expressions of the matrices M(t) and N(t).

Considering (1.7), we deduce:

Proposition 1.2. The dynamics (1.7) of a microswimmer is independent of the viscosity of the fluid. Or, in
other words, the same shape changes produce the same rigid displacement, whatever the viscosity of the fluid is.

Proof. Let (uj , pj) be an elementary solution (as defined in the modeling above) to the Stokes equations cor-
responding to the viscosity μ > 0, then (uj , (μ̃/μ)pj) is the same elementary solution corresponding to the
viscosity μ̃ > 0. Since the Euler–Lagrange equation (1.7) depends only on the Eulerian velocities uj , the proof
is completed. �

As a consequence of this Proposition we will set μ = 1 in the sequel.
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Gauge fixing

As we will see later on in Proposition 1.6, system (1.7) is well-posed for any shape function

Θ ∈ W 1,1([0, T ],D1
0(R

3)).

It means that any Θ ∈ W 1,1([0, T ],D1
0(R3)) used as control in the dynamics (1.7) will produce a unique

absolutely continuous rigid motion t ∈ [0, T ] �→ (R(t), r(t)) ∈ SO(3) × R3.

Proposition 1.3. Let Θ, Θ† ∈ W 1,1([0, T ],D1
0(R

3)) be two control functions such that Θ|t=0 = Θ|†t=0 and
which differ up to a rigid displacement on the unit sphere for every t > 0, i.e. for every t ∈ [0, T ], there exists
(Q(t), s(t)) ∈ SO(3) × R3 such that

(Q(0), s(0)) = (Id,0) and Θ†
t |Σ = Q(t)Θt|Σ + s(t).

We denote respectively by

t ∈ [0, T ] �→ (R(t), r(t)) ∈ SO(3) × R3,

t ∈ [0, T ] �→ (R†(t), r†(t)) ∈ SO(3) × R3,

the solutions to system (1.7) with the same Cauchy data (R0, r0) ∈ SO(3)×R3 and with respectively the controls
Θ and Θ†. Then we get the identity:

(R†(t), r†(t)) := (R(t)Q(t)∗, r(t) − R(t)Q(t)∗s(t)), ∀t ∈ [0, T ].

In particular
R†(t)Θ†

t + r†(t) = R(t)Θt + r(t) ∀t ∈ [0, T ]

(i.e. the swimmer’s global motion is the same in both cases).

This proposition tells us that two shape changes whose restrictions on the unit sphere differ only up to a rigid
displacement will produce the exact same global motion of the swimmer.

It is worth remarking that if we apply the proposition with Θ constant in time (the boundary of the swimmer
is therefore Θ(Σ) at every time), we can deduce that any shape change which reduces to a rigid deformation
Q(t)x + s(t) on the swimmer’s boundary Θ(Σ) will produce a displacement (Q(t)∗,−Q(t)∗s(t)). The resulting
global motion obtained by composing the shape changes with the rigid motion is then

Q∗(t)(Q(t)Θ(x) + s(t)) − Q(t)∗s(t) = Θ(x) ∀x ∈ Σ, ∀t ∈ [0, T ]

which means that the swimmer is actually motionless (the rigid deformation of the swimmer’s boundary used
as control is exactly counterbalanced by its rigid displacement provided by the dynamics). In this case, at least
the exact controllability problem turns out to be trivial. Indeed, for the dynamics to produce the rigid motion
(Q(t), s(t)), it suffices to use a deformation whose restriction on Θ(Σ) is the rigid motion (Q(t)∗,−Q(t)∗s(t)).

These observations stress the fact that gauge conditions have to be added in order to single out a representative
among every class of equivalent controls (i.e. that differ up to a rigid displacement on the unit sphere and hence
produce the same global swimmer’s motion).

What happens inside the swimmer is irrelevant regarding its locomotion, so the gauge condition has to bear
upon the restriction of Θ on the unit sphere only.

Inspired by the so-called self-propelled constraints for weighted swimmers (as explained in [5]), we propose
that a shape function, to be an allowable control, satisfies the following identities:∫

Σ

Θt(x) dσ = 0 (for all t ∈ [0, T ]) (1.8a)∫
Σ

∂tΘt(x) × Θt(x) dσ = 0 (for a.e. t ∈ [0, T ]). (1.8b)
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Notice in particular that no shape function whose restriction on the unit sphere Σ is a rigid deformation (other
than the identity) satisfies these conditions.

About the existence of such deformations, we have in particular:

Proposition 1.4. For every function Θ in W 1,1([0, T ],D1
0(R

3)) such that∫
Σ

Θt=0(x) dσ = 0,

there exists a function Θ† in W 1,1([0, T ],D1
0(R

3)) satisfying (1.8) and an unique absolutely continuous rigid
displacement

t ∈ [0, T ] �→ (Q(t), s(t)) ∈ SO(3) × R3

such that Q(0) = Id, s(0) = 0 and Θ†
t |Σ = (Q(t)Θt + s(t))|Σ for every t ∈ [0, T ].

In other words, any function of W 1,1([0, T ],D1
0(R3)) satisfying the first equality of (1.8) at t = 0 is allowable

(in the sense that it satisfies (1.8)) up to a composition by a suitable rigid deformation.

Definition 1.5. We denote by A the non-empty closed subset of W 1,1([0, T ],D1
0(R3)) consisting of all of the

functions verifying (1.8).

1.3. Main results

The first result ensures the well posedness of system (1.7) and the second is about the continuity of the
input-output mapping:

Proposition 1.6. For any T > 0 and

• every function Θ ∈ W 1,1([0, T ],D1
0(R

3)) (respectively of class Cp, p = 1, . . . , +∞, ω);
• every initial data (R(0), r(0)) ∈ SO(3) × R3;

System (1.7) admits a unique solution t ∈ [0, T ] �→ (R(t), r(t)) ∈ SO(3) × R3 (in the sense of Carathéodory)
absolutely continuous on [0, T ] (respectively of class Cp).

Notice that this proposition improves the results of [13]. Indeed in [13], the shape function has to be (with our
notation) in Lip([0, T ],D1

0(R
3)) ∩ L∞([0, T ], C2(R3)3).

Proposition 1.7. • Let (Θj)j≥1 ⊂ W 1,1([0, T ],D1
0(R3)) be a sequence of controls converging to a function Θ̄.

• Let a pair (R0, r0) ∈ SO(3) × R3 be given;
and denote by

t ∈ [0, T ] �→ (R̄(t), r̄(t)) ∈ SO(3) × R3

the solution in AC([0, T ], SO(3)×R3) to system (1.7) with control Θ̄ and Cauchy data (R0, r0). Then, the unique
solution (Rj , rj) to system (1.7) with control Θj and Cauchy data (R0, r0) converges in AC([0, T ], SO(3)×R3)
to (R̄, r̄) as j → +∞.

We denote by M(3) the Banach space of the 3× 3 matrices endowed with any matrix norm. The main result
of this article addresses the controllability of system (1.7):

Theorem 1.8 (Synchronized Swimming). Assume that the following data are given:

1. A function Θ̄ ∈ A (the reference shape changes);
2. A continuous function t ∈ [0, T ] �→ (R̄(t), r̄(t)) ∈ SO(3) × R3 (the reference trajectory to be followed).

Then, for any ε > 0, there exists a function t ∈ [0, T ] �→ Θt ∈ D1
0(R

3) (the actual shape changes) in A, which
can be chosen analytic, such that
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1. Θ0 = Θ̄0, ΘT = Θ̄T ;
2. supt∈[0,T ]

(
‖Θ̄t − Θt‖C1

0(R3)3 + ‖R̄(t) − R(t)‖M(3) + ‖r̄(t) − r(t)‖R3

)
< ε;

where the function t ∈ [0, T ] �→ (R(t), r(t)) ∈ SO(3)×R3 is the unique solution to system (1.7) with initial data
(R(0), r(0)) = (R̄(0), r̄(0)) and control Θ.

This theorem tells us that any 3D microswimmer undergoing approximately any prescribed shape changes
can approximately track by swimming any given trajectory. It may seem surprising that the shape changes,
which are supposed to be the control of our problem, can also be somehow preassigned. Actually, the trick is
that they can only be approximately prescribed. We are going to show that arbitrarily small superimposed shape
changes suffice for controlling the swimming motion.

When no macro shape changes are preassigned we have:

Theorem 1.9 (Freestyle swimming). Assume that the following data are given:

1. A function Θ̄rst ∈ D1
0(R

3) such that
∫

Σ
Θ̄rst dσ = 0 (the reference shape at rest);

2. A continuous function t ∈ [0, T ] �→ (R̄(t), r̄(t)) ∈ SO(3) × R3 (the reference trajectory);

Then, for any ε > 0 there exists a function Θrst ∈ D1
0(R

3) (the actual shape at rest) enjoying the following
properties:

1.
∫

Σ Θrst dσ = 0;
2. ‖Θ̄rst − Θrst‖C1

0(R3)3 < ε;
3. for almost any 4-uplet (V1, . . . ,V4) ∈ (C1

0 (R3)3)4 satisfying
(a)

∫
Σ

Vi dx = 0;
(b)

∫
Σ

Θrst × Vi dσ = 0;
(c)

∫
Σ Vi × Vj dσ = 0 (i, j = 1, . . . , 4);

there exists a function
t ∈ [0, T ] �→ s(t) := (s1(t), . . . , s4(t))∗ ∈ R4

(which can be chosen analytic) such that, using

Θt := Θrst +
4∑

i=1

si(t)Vi ∈ D1
0(R

3)

as control in the dynamics (1.7), we get

sup
t∈[0,T ]

(‖R̄(t) − R(t)‖M(3) + ‖r̄(t) − r(t)‖R3

)
< ε

where the function t ∈ [0, T ] �→ (R(t), r(t)) ∈ SO(3) × R3 is the unique solution to ODEs (1.7) with initial
data (R(0), r(0)) = (R̄(0), r̄(0)).

We claim in this Theorem that any 3D microswimmer (maybe up to an arbitrarily small modification of its
initial shape) is able to swim by means of allowable deformations (i.e. satisfying the constraints (1.8)) obtained
as a suitable combination of almost any given four basic movements.

In order to state now the result about the existence of optimal control functions, we have to particularize
somehow the form of the control. So, for

• every T > 0;
• every compact, convex set K ⊂ Rn;
• every Θrst ∈ D1

0(R
3) such that

∫
Σ Θrst dx = 0;

• every family V := (V1, . . . ,Vn) ∈ (C1
0 (R3)3)n of n vector fields satisfying
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1.
∫

Σ Vi dx = 0;
2.

∫
Σ Θrst × Vi dx = 0;

3.
∫

Σ
Vi × Vj dx = 0 (i, j = 1, . . . , n).

We denote by U(T, K, Θrst,V) the set of all the control functions Θt ∈ W 1,1([0, T ],D1
0(R

3)) having the form

Θt = Θrst +
n∑

i=1

si(t)Vi, (1.9)

where

1. t ∈ [0, T ] �→ s(t) := (s1(t), . . . , sn(t))∗ ∈ Rn is in AC([0, T ],Rn);
2. ṡ(t) ∈ K for a.e. t ∈ [0, T ].

For every (R0, r0, Θ0) ∈ SO(3) × R3 × D1
0(R

3) and every T > 0, we define also χ(T, K, Θrst,V , R0, r0, Θ0) as
the set consisting of all the triplets (R̄, r̄, Θ̄) ∈ SO(3) × R3 × D1

0(R
3) for which there exists a control function

Θt ∈ U(T, K, Θrst,V), satisfying Θt=0 = Θ0, Θt=T = Θ̄ and steering the dynamics (1.7) from (R0, r0) (at t = 0)
to (R̄, r̄) (at t = T ).

The following result holds:

Theorem 1.10 (Existence of an optimal control for short time interval).

• For every continuous function f : SO(3) × R3 ×D1
0(R

3) × C1
0 (R3)3 → R, convex in the fourth variable;

• For every data K, Θrst,V , R0, r0, Θ0 as described above;

there exists a time T ∗ > 0 such that, for all 0 < T ≤ T ∗ and for all (R1, r1, Θ1) ∈ χ(T, K, Θrst,V , R0, r0, Θ0),
there exists a control function realizing the minimum of the cost∫ T

0

f(R(t), r(t), Θt, ∂tΘt) dt,

among the controls Θ in U(T, K, Θrst,V) satisfying Θt=0 = Θ0, Θt=T = Θ1 and steering the dynamics (1.7)
from (R0, r0) (at t = 0) to (R1, r1) (at t = T ).

The following observations are worth taking into account:

• The theorem applies only for control functions living in a finite dimensional space.
• The hypothesis ensuring that ṡ is valued in a compact set is quite natural. It means that the rate of shape

changes has to remain bounded.
• The short time hypothesis is natural too. It is necessary to prevent the swimmer from self-deforming “to

much”. For instance, one can imagine that to indefinitely improve its efficiency in swimming in one direction,
a swimmer could make its shape become more and more singular (for instance very elongated and thin or
very flat). These phenomena would prevent optimal deformations from existing.

• If we set Θ1 = Θ0, then the theorem ensures the existence of optimal strokes (i.e. periodic deformations).

An example of cost functional satisfying the assumptions of this Theorem is:

J :=
∫ T

0

(∫
Ft

D(u) : D(u)dx

)
dt,

in which (u, p) is defined in (1.4). It measures the viscous energy dissipated in the fluid. Upon an integration
by parts, J can be rewritten as:

J =
1
2

∫ T

0

u(t) ·
(∫

Σt

T(u, p)ntdσ

)
dt.



CONTROLLABILITY OF 3D LOW REYNOLDS NUMBER SWIMMERS 245

Notice that J can also be interpretable as the work of the hydrodynamical forces exerted on the swimmer over
the time interval [0, T ] and is similar to the cost function used in [2]. Using the matrices and vectors defined
in (1.6), and the dynamics (1.7a), we get:

J =
1
2

∫ T

0

(
A(t) − N(t)tM(t)−1N(t)

)
dt.

In this form and according to the regularity results that will be proved later on for the functions t ∈ [0, T ] �→ A(t),
t ∈ [0, T ] �→ M(t) and t ∈ [0, T ] �→ N(t), it can be verified that Theorem 1.10 applies.

The proofs of the results stated in this section rely on the following leading ideas:
First, we shall identify a set of parameters necessary to thoroughly characterize a swimmer and its way

of swimming (these parameters are its shape and a finite number of basic movements, satisfying the con-
straints (1.8)). Any set of such parameters will be termed a swimmer signature (denoted SS in short). Then,
the set of all of the SS will be shown to be an (infinite dimensional) analytic connected embedded submanifold
of a Banach space.

The second step of the reasoning will consist in proving that the swimmer’s ability to track any given
trajectory (while undergoing approximately any preassigned shape changes) is related to the vanishing of some
analytic functions depending on the SS. These functions are connected to the determinant of some vector fields
and their Lie brackets (we will invoke classical results of Geometric Control Theory). By direct calculation,
we will prove that at least one swimmer (corresponding to one particular SS) has this ability. An elementary
property of analytic functions will allow us to conclude that almost any SS (or equivalently any microswimmer)
has this property.

Eventually, the existence of an optimal control in Theorem 1.10 is a straightforward consequence of Filippov
Theorem (see [1], Chap. 10)

1.4. Outline of the paper

The next Section is dedicated to the notion of swimmer signature (definition and properties). In Section 3
we show that the matrix M(t) and the vector N(t) (in (1.7a)) are analytic functions in the SS (swimmer
signature, seen as a variable) and in Section 4 we will restate the control problem in order to fit with the general
framework of Geometric Control Theory. In the same Section, a particular case of swimmer will be shown to
be controllable. In Section 5 the proof of the main results will be carried out. Section 6 contains some words
of conclusion. Technical results and definitions are gathered in the appendix in order to make the paper more
readable.

2. Swimmer signature

A swimmer signature is a set of parameters characterizing swimmers whose deformations consist in a combi-
nation of a finite number of basic movements.

Definition 2.1. For any positive integer n, we denote by C(n) the subset of

D1
0(R

3) × (C1
0 (R3)3)n

consisting of all of the pairs c := (Θrst,V) such that, denoting V := (V1, . . . ,Vn), the following conditions hold

1. the set {Vi|Σ · ek, 1 ≤ i ≤ n, k = 1, 2, 3} is a free family in C1(Σ);
2. every pair (V,V′) of elements of {Θrst,V1, . . . ,Vn} satisfies

∫
Σ V dx = 0 and

∫
Σ V × V′ dx = 0.

We call swimmer signature (SS in short) any element c of C(n).
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By definition, D1
0(R3) is open in the affine space {Id}+ C1

0 (R3)3 (see Appendix A). We deduce that for any
c ∈ C(n), the set

{s := (s1, . . . , sn)∗ ∈ Rn : Θrst +
n∑

i=1

siVi ∈ D1
0(R

3)}

is open as well in Rn and we denote S(c) its connected component containing s = 0.

Definition 2.2. For any positive integer n, we call swimmer full signature (SFS in short) any pair c := (c, s)
such that c ∈ C(n) and s ∈ S(c). We denote CF (n) the set of all of these pairs.

Restatement of the problem in terms of swimmer signature (SS) and swimmer full signature (SFS)

Pick a SS, c = (Θrst,V) ∈ C(n) with V := (V1, . . . ,Vn) (for some integer n). Denote, for all s ∈ S(c),

Θs := Θrst +
n∑

i=1

siVi

(c := (c, s) ∈ C(n) is hence a SFS). The body of the swimmer occupies the domain B̄ := Θrst(B̄) at rest and
B̄c := Θs(B̄) (for any s ∈ S(c)) when swimming.

Notice that within this construction, the shape changes on a time interval [0, T ] (T > 0) are merely given
through an absolutely continuous function

t : [0, T ] �→ s(t) ∈ S(c).

If t ∈ [0, T ] �→ ṡ(t) ∈ Rn stands for its time derivative in L1([0, T ],Rn), the Lagrangian velocity at a point x of
B̄ is

n∑
i=1

ṡi(t)Vi(x)

while the Eulerian velocity at a point x ∈ B̄c is

n∑
i=1

ṡi(t)wi
s(x) with wi

s(x) := Vi(Θ−1
s (x)).

Due to assumption 2 of Definition 2.1, the constraints (1.8) are automatically satisfied.
The elementary fluid velocities and elementary pressure functions corresponding to the rigid motions depend

only on the SFS. Therefore, they will be denoted in the sequel ui(c) and pi(c) to emphasize this dependence.
The same remark holds for the matrix M(t) whose notation is turned into M(c). The elementary velocity and
pressure (ud, pd) connected to the shape changes can be decomposed into

ud =
n∑

i=1

ṡiwi(c)

pd =
n∑

i=1

ṡiπi(c).

In this sum, each pair (wi(c), πi(c)) solves the Stokes equations in Fc := R3 \ B̄c with boundary conditions
wi(c) = wi

s on Σc := ∂Bc.
Introducing the matrix N(c), whose elements are

Nij(c) :=

{∫
Σc

(x × ei) · T(wj(c), πj(c))ndσ (1 ≤ i ≤ 3, 1 ≤ j ≤ n);∫
Σc

ei−3 · T(wj(c), πj(c))ndσ (4 ≤ i ≤ 6, 1 ≤ j ≤ n);
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(recall that the viscosity μ can be chosen equal to 1), the dynamics (1.7a) can now be rewritten in the form:(
Ω
v

)
= −M(c)−1N(c)ṡ, (0 < t < T ). (2.1)

Let us focus on the properties of C(n) and CF (n).

Theorem 2.3. For any positive integer n, the set C(n) is an analytic connected embedded submanifold of
({Id} + C1

0 (R3)3) × (C1
0 (R3)3)n of codimension N := 3(n + 2)(n + 1)/2.

The definition and the main properties of analytic functions valued in Banach spaces are summarized in the
article [19].

Proof. For any c := (Θrst,V) ∈ D1
0(R

3) × (C1
0 (R3)3)n, denote V0 := Θrst and V := (V1, . . . ,Vn). Then, define

for k = 0, 1, . . . , n, the functions

Λk : C1
0 (R3)3 × (C1

0 (R3)3)n → R3(n+1−k)

by

Λk(c) :=
(∫

Σ

Vk dx,

∫
Σ

Vk × Vk+1 dx, . . . ,

∫
Σ

Vk × Vn dx

)∗
.

Every function Λk is analytic and so is

Λ := (Λ0, . . . , Λn)∗ : D1
0(R

3) × (C1
0 (R3)3)n → RN

(N := 3(n + 2)(n + 1)/2). In order to prove that Λ′(c) (the differential of Λ at the point c) is onto for any
c ∈ C(n), assume that there exist (n + 2)(n + 1)/2 vectors αj

i ∈ R3 (0 ≤ i ≤ j ≤ n) such that:

n∑
i=0

αi · 〈Λ′
i(c), c

h〉 = 0, ∀ ch ∈ C1
0 (R3)3 × (C1

0 (R3)3)n, (2.2)

where αi := (αi
i, α

i+1
i , . . . , αn

i )∗ ∈ R3(n+1−i) (i = 0, . . . , n) and ch := (Vh
0 ,Vh) ∈ C1

0 (R3)3 × (C1
0 (R3)3)n with

Vh := (Vh
1 , . . . ,Vh

n). Reorganizing the terms in (2.2), we obtain that:

n∑
k=0

∫
Σ

Vh
k ·

[ k−1∑
j=0

αk
j × Vj + αk

k −
n∑

j=k+1

αj
k × Vj

]
dx = 0.

Since this identity has to be satisfied for any (Vh
0 ,Vh) ∈ C1

0 (R3)3 × (C1
0 (R3)3)n, we deduce that, for every

k = 0, . . . , n:
k−1∑
j=0

αk
j × Vj |Σ + αk

k −
n∑

j=k+1

αj
k × Vj |Σ = 0. (2.3)

Integrating this equality over Σ, we get that αk
k = 0 (k = 0, . . . , n). Taking into account hypothesis 1 of

Definition 2.1, the identity (2.3) with k = 0 leads to αj
0 = 0 for every j = 1, . . . , n. There are no more terms

involving V0 in the other equations and invoking again hypothesis 1 we eventually get αj
i = 0 for 1 ≤ i < j ≤ n.

So, equality (2.2) entails that αi = 0 for all i = 0, . . . , n and the mapping Λ′(c) is indeed onto for all c ∈ C(n).
The linear space X = KerΛ′(c) is closed since Λ is analytic. Let Y be an algebraic supplement of X in

C1
0 (R3)3 × (C1

0 (R3)3)n, and denote by PY the linear projection onto Y along X . A crucial observation is that
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the linear space Y is isomorphic to RN and hence it is finite dimensional and closed in C1
0 (R3)3 × (C1

0 (R3)3)n.
Define the analytic mapping

f : X × Y → RN

(x, y) �→ Λ(c + x + y).

The mapping ∂yf(0, 0) = Λ′(c) ◦ PY being onto, the implicit function theorem (analytic version in Banach
spaces, see [19]) asserts that there exist an open neighborhood O1 of 0 in X , an open neighborhood O2 of 0
in Y , and an analytic mapping g : O1 → Y such that g(0) = 0 and, for every (x, y) in O1×O2, the two following
assertions are equivalent:

1. f(x, y) = 0 (or, in other words, c + x + y belongs to C(n));
2. y = g(x).

The analytic mapping g provides a local parameterization of C(n) in a neighborhood of c.
In order to prove that C(n) is path-connected, consider two elements c† := (Θ†

rst,V†) and c‡ := (Θ‡
rst,V‡) of

C(n) and denote V† := (V†
1, . . . ,V

†
n) and V‡ := (V‡

1, . . . ,V
‡
n).

According to Definition A.2 (in Appendix A), D1
0(R3) is open and connected. This entails that it is always

possible to find a continuous, piecewise linear path

t : [0, 1] �→ Θ̄t ∈ D1
0(R

3)

such that Θ̄t=0 = Θ†
rst and Θ̄t=1 = Θ‡

rst. We introduce

0 = t0 < t1 < . . . < tk = 1,

a subdivision of the interval [0, 1] such that t �→ Θ̄t is linear on every subinterval [tj , tj+1] (j = 0, . . . , k− 1) and
we denote Θ̄j := Θ̄t=tj (j = 0, . . . , k).

Since C1
0 (R3)3 is an infinite dimensional Banach space, it is always possible to find by induction

W1,W2, . . . ,Wn in C1
0 (R3)3 such that

1. both families
{W1|Σ · ej, . . . ,Wn|Σ · ej,V

†
1|Σ · ej, . . . ,V†

n|Σ · ej , j = 1, 2, 3}
and

{W1|Σ · ej, . . . ,Wn|Σ · ej,V
‡
1|Σ · ej, . . . ,V‡

n|Σ · ej , j = 1, 2, 3}
are free in C1

0 (R3);
2. for any pair of elements V, V′, both picked in the same family,

∫
Σ

Vdx = 0,
∫

Σ
Θ̄j × Vdx = 0 (for all

j = 1, . . . , k) and
∫

Σ
V × V′dx = 0.

Define now the function
t ∈ [0, 1] �→ Vi

t ∈ C1
0 (R3)3

by

Vi
t :=

{
(1 − 2t)V†

i + 2tWi if 0 ≤ t ≤ 1/2
(2 − 2t)Wi + (2t − 1)V‡ if 1/2 < t ≤ 1,

and denote Vt := (V1
t , . . . ,V

n
t ) ∈ (C1

0 (R3)3)n. Eventually, a continuous function linking c† to c‡ is given by
t ∈ [0, 1] �→ ct ∈ C(n) with

ct :=

⎧⎪⎨
⎪⎩

(Θ†
rst,V3t/2) if 0 ≤ t ≤ 1/3

(Θ̄3t−1,V1/2) if 1/3 < t ≤ 2/3
(Θ‡

rst,V3t/2−1/2) if 2/3 < t ≤ 1.

�

We omit the proof of the following corollary, similar to that of the theorem above:

Corollary 2.4. For any positive integer n, the set CF (n) is an analytic connected embedded submanifold of
C1

0 (R3)3 × (C1
0 (R3)3)n × Rn of codimension N := 3(n + 2)(n + 1)/2.
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We denote by Π the projection of C(n) onto D1
0(R3) defined by Π(c) = Θrst for all c := (Θrst,V) ∈ C(n).

The proof of the following corollary is a straightforward consequence of arguments already used in the proof of
Theorem 2.3:

Corollary 2.5. For any positive integer n and for any Θrst ∈ Π(C(n)), the section Π−1({Θrst}) is an embedded
connected analytic submanifold of {Θrst}×(C1

0(R3)3)n (identified with (C1
0 (R3)3)n) of codimension 3n(n+3)/2.

3. Sensitivity analysis of the matrices M(c) and N(c)

For any positive integers k and l, we denote M(k, l) the vector space of the matrices of size k × l (or simply
M(k) when l = k).

Theorem 3.1. For any positive integer n, the mappings

c ∈ CF (n) �→ M(c) ∈ M(6)

and
c ∈ CF (n) �→ N(c) ∈ M(6, n)

are analytic.

Let us begin with a preliminary lemma, the statement of which requires introducing some material.
Thus, we denote F := R3 \ B̄ (remember that B is the unit ball, Σ := ∂B and n is the unit normal to Σ

directed toward the interior of B). For all Ξ ∈ D1
0(R

3), we set BΞ := Ξ(B), FΞ := Ξ(F ) and ΣΞ := Ξ(Σ).
We denote q := (Ξ,W), with W := (W1,W2) ⊂ (C1

0 (R3)3)2, the elements of Q := D1
0(R

3) × (C1
0 (R3)3)2 and

wi
Ξ := Wi(Ξ−1) (i = 1, 2). Finally, for every q ∈ Q, we define:

Φ(q) :=
∫
FΞ

D(u1
q) : D(u2

q) dx, (3.1)

where, for every i = 1, 2, there exists a function pi
q ∈ L2(FΞ) such that the pair (ui

q, pi
q) ∈ (W 1

0 (FΞ))3×L2(FΞ)
solves the Stokes system:

−Δui
q + ∇pi

q = 0 in FΞ , (3.2a)

∇ · ui
q = 0 in FΞ , (3.2b)

ui
q = wi

Ξ on ΣΞ . (3.2c)

The first equation has to be understood in the weak sense, namely:∫
FΞ

∇ui
q : ∇v dx −

∫
ΣΞ

pi
q(∇ · v) dx = 0, ∀v ∈ (

◦
W 1

0 (FΞ))3. (3.3)

Recall that the function spaces are defined in the Appendix A.

Lemma 3.2. The mapping q ∈ Q �→ Φ(q) ∈ R is analytic.

Proof. We pull back equality (3.3) onto the domain F using the diffeomorphism Ξ. We get:
∫

F

∇Ui
qAΞ : ∇V dx −

∫
F

P i
qBΞ : ∇V dx = 0, ∀V ∈ (

◦
W 1

0 (F ))3, (3.4a)

where Ui
q := ui

q ◦ Ξ, P i
q := pi

q ◦ Ξ, JΞ := det(∇Ξ), AΞ := (∇Ξ∗∇Ξ)−1JΞ and BΞ := (∇Ξ∗)−1JΞ .
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Likewise, (3.2b−3.2c) can be turned into:

BΞ : ∇Ui
q = 0, in F, (3.4b)

Ui
q = Wi on Σ. (3.4c)

We now claim that the mapping
Ξ ∈ D1

0(R
3) �→ AΞ ∈ E0

0(R3, M(3))

is analytic. Indeed, the mappings

Ξ ∈ D1
0(R

3) �→ ∇Ξ∗∇Ξ ∈ E0
0(R3, M(3))

A ∈ E0
0(R3, M(3)) �→ A−1 ∈ E0

0(R3, M(3))
Ξ ∈ D1

0(R
3) �→ JΞ ∈ C0

0 (R3)

are analytic. Then, for i = 1, 2, we define the analytic functions

Γ i : Q× (W 1
0 (F ))3 × L2(F ) → (W−1

0 (F ))3 × L2(F ) × (H1/2(Σ))3

by:

Γ i(q,U, P ) :=

⎛
⎝〈AΞ ,U, ·〉 − 〈BΞ , P, ·〉

BΞ : ∇U
γΣ(U − Wi)

⎞
⎠ ,

where γΣ : (W 1(F ))3 → (H1/2(Σ))3 is the trace operator and

〈AΞ ,U,V〉 :=
∫
F
∇UAΞ : ∇V dx, (U ∈ (W 1(F ))3, V ∈ (W 1

0 (F ))3),

〈BΞ , P,V〉 :=
∫
F

PBΞ : ∇V dx, (P ∈ L2(F ), V ∈ (W 1
0 (F ))3).

We wish now to apply the implicit function theorem (analytic version in Banach spaces, as stated in [19])
to the analytic function Γ i. Observe however that we are only interested in the regularity result. Indeed,
according to Proposition D.5, we already know that for all i = 1, 2 and all q ∈ Q, there exists a unique pair
(U i

q, P i
q) ∈ (W 1

0 (F ))3 × L2(F ) such that Γ i(q,Ui
q, P i

q) = 0.
For every q ∈ Q, the partial derivative ∂(U,P )Γ

i(q, U i
q, P i

q) can be readily computed. Indeed, we have:

〈∂(U,P )Γ
i(q, U i

q, P i
q), (χ, π)〉 =

⎛
⎝〈AΞ , χ, ·〉 − 〈BΞ , π, ·〉

BΞ : ∇χ
γΣ(χ)

⎞
⎠ , ∀ (χ, π) ∈ (W 1

0 (F ))3 × L2(Σ). (3.5)

Let (f , η,g) be any element of (W−1
0 (F ))3 × L2(F ) × (H1/2(F ))3. The equation

〈∂(U,P )Γ
i(q, (U i

q, P i
q), (χ, π)〉 = (f , η,g),

is equivalent to:∫
F

∇χAΞ : ∇V dx −
∫

F

π BΞ : ∇V dx = 〈f ,V〉
(W−1

0 (F ))3×(
◦

W 1
0 (F ))3

, ∀V ∈ (
◦

W 1
0 (F ))3,

BΞ : ∇χ = η, in F,

χ = g on Σ.
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According to Proposition D.5, there exists a unique solution

(χ, π) ∈ (W 1
0 (F ))3 × L2(F )

such that
‖χ‖(W 1

0 (F ))3 + ‖π‖L2(F ) ≤ CΞ

[‖f‖(W−1
0 )3 + ‖η‖L2(F ) + ‖g‖(H1/2(Σ))3

]
where the constant CΞ > 0 depends on Ξ only. We infer that for every q ∈ Q, ∂(U,P )Γ

i(q, U i
q, P i

q) is a continuous
isomorphism from (W 1

0 (F ))3 × L2(F ) onto (W−1
0 (F ))3 × L2(F ) × (H1/2(Σ))3. The implicit function theorem

applies and asserts that the mapping

q ∈ Q �→ (Ui
q, P i

q) ∈ (W 1
0 (F ))3 × L2(F ) (i = 1, 2)

is analytic.
To conclude the proof, it remains only to observe that the function Φ(q) introduced in (3.1) can be rewritten,

upon a change of variables as

Φ(q) =
1
4

∫
F

(∇U1
q∇Ξ−1 + (∇U1

q∇Ξ−1)∗) : (∇U2
q∇Ξ−1 + (∇U2

q∇Ξ−1)∗)JΞ dx,

which is analytic as a composition of analytic functions. �

We can now give the proof of Theorem 3.1.

Proof. For any c := (c, s) ∈ CF (n), where c := (Θrst,V), we apply the lemma with

Ξ := Θrst +
n∑

i=1

siVi and W1,W2 ∈ {ei × Ξ, ei, i = 1, 2, 3}

to get that the mapping c ∈ CF (n) �→ M(c) ∈ M(6) is analytic.
To prove the analyticity of the elements of N(c), we apply the lemma again with

Ξ := Θrst +
n∑

i=1

siVi, W1 ∈ {ei × Ξ, ei, i = 1, 2, 3} and W2 ∈ {V1, . . . ,Vn}. �

4. Control problem

4.1. Controllable swimmer signature

Let us fix c ∈ C(n) (for some positive integer n) and recall that S(c) is the connected open subspace of Rn

such that (c, s) ∈ CF (n). Introducing (f1, . . . , fn) an ordered orthonormal basis of Rn, we can seek the function

t ∈ [0, T ] �→ s(t) ∈ S(c)

as the solution of the ODE

ṡ(t) =
n∑

i=1

λi(t)fi

where the functions
λi : t ∈ [0, T ] �→ λi(t) ∈ R

are the new controls, and rewrite once more the dynamics (2.1) as:⎛
⎝Ω

v
ṡ

⎞
⎠ =

n∑
i=1

λi(t)
(−M(c, s)−1N(c, s)fi

fi

)
, (0 < t < T ). (4.1)
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It is worth remarking that in this form, s is no more the control but a state variable and c ∈ C(n) is a parameter
of the dynamics. Considering (4.1), we are quite naturally led to introduce, for all c ∈ CF (n), the vector fields

Xi(c) := −M(c)−1N(c)fi ∈ R6

Yi(c) := (X̂1
i (c),X

2
i (c), fi)

∗ ∈ TIdSO(3) × R3 × Rn

(we have used here the notation Xi := (X1
i ,X

2
i )

∗ ∈ R3 × R3) and

Zi
c(R, s) := RRYi(c) ∈ TRSO(3) × R3 × Rn

where RR := diag(R, R, Id) ∈ SO(6+n) is a bloc diagonal matrix. The dynamics (4.1) and the ODE (1.7b) can
be gathered into a unique differential system:

d
dt

⎛
⎝R

r
s

⎞
⎠ =

n∑
i=1

λi(t)Zi
c(R, s), (0 < t < T ). (4.2)

For every i = 1, . . . , n, the function

(R, r, s) ∈ SO(3) × R3 × S(c) �→ Zi
c(R, s) ∈ TRSO(3) × R3 × Rn

can be seen as an analytic vector field (constant in r) on the analytic connected manifold

M(c) := SO(3) × R3 × S(c).

We denote ζ any element (R, r, s) ∈ M(c) and we define Z(c) as the family of vector fields (Zi
c)1≤i≤n on M(c).

Lemma 4.1. Let c be a SS fixed in C(n) (n a positive integer). If there exists ζ ∈ M(c) such that

dim LieζZ(c) = 6 + n,

then the orbit of Z(c) through any ζ ∈ M(c) is equal to the whole manifold M(c).

Proof. Rashevsky Chow Theorem (see [1]) applies: If LieζZ(c) = TζM(c) for all ζ ∈ M(c) (or more precisely,
for all (R, s) ∈ SO(3) × S(c) since Zi

c does not depend on r) then the orbit of Z(c) through any point of M(c)
is equal to the whole manifold.

Let us compute the Lie bracket [Zi
c(R, s), Zj

c(R, s)] for 1 ≤ i, j ≤ n and (R, s) ∈ SO(3) × S(c). We get:

[Zi
c(R, s), Zj

c(R, s)] = RR

⎛
⎜⎜⎝

̂(X1
i × X1

j )(c)

(X1
i × X2

j − X1
j × X2

i )(c)

0

⎞
⎟⎟⎠ + RR

⎛
⎜⎜⎝

̂(∂siX1
j − ∂sj X1

i )(c)

(∂siX
2
j − ∂sj X

2
i )(c)

0

⎞
⎟⎟⎠ . (4.3)

By induction, we can similarly prove that the Lie brackets of any order at any point ζ ∈ M(c) have the same
general form, namely the matrix RR multiplied by an element of T(Id,0,s)M(c). We deduce that the dimension
of the Lie algebra at any point of M(c) depends only on s. According to the Orbit Theorem (see [1]), the
dimension of the Lie algebra is constant along any orbit. But according to the particular form of the vector
fields Zi

c (whose last n components form a basis of Rn), the projection of any orbit on S(c) turns out to be the
whole set S(c) (or, in other words, for any s ∈ S(c) and for any orbit, there is a point of the orbit for which the
last component is s).

Assume now that dim Lieζ∗Z(c) = 6 +n at some particular point ζ∗ := (R∗, r∗, s∗) ∈ M(c). Then, according
to the Orbit Theorem, for any s ∈ S(c), there exists at least one point (Rs, rs, s) ∈ M(c) such that

dim Lie(Rs,rs,s)Z(c) = 6 + n.

But since the dimension of the Lie algebra does not depend on the variables R and r, we conclude that
dim LieζZ(c) = 6 + n for all ζ ∈ M(c). �
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Definition 4.2. We say that c, a SS in C(n) (for some integer n) is controllable if there exists ζ ∈ M(c) such
that dim LieζZ(c) = 6 + n.

It is obvious that for a SS to be controllable, the integer n has to be larger or equal to 2. The following result
is quite classical (a proof can be found in [5]):

Proposition 4.3. Let c ∈ C(n) (for some integer n) be controllable (with the usual notation c := (Θrst,V),
V := (V1, . . . ,Vn) and Θs := Θrst +

∑n
i=1 siVi for every s ∈ S(c)).

Then for any given continuous function

t ∈ [0, T ] �→ (R̄(t), r̄(t), s̄(t)) ∈ SO(3) × R3 × S(c)

and for any ε > 0, there exist n C1 functions λi : [0, T ] → R (i = 1, . . . , n) such that:

1. supt∈[0,T ]

(
‖R̄(t) − R(t)‖M(3) + ‖r̄(t) − r(t)‖R3 + ‖Θs̄(t) − Θs(t)‖C1

0(R3)3

)
< ε;

2. R(T ) = R̄(T ), r(T ) = r̄(T ) and s(T ) = s̄(T );

where t ∈ [0, T ] �→ (R(t), r(t), s(t)) ∈ M(c) is the unique solution to the ODE (4.2) with Cauchy data
R(0) = R̄(0) ∈ SO(3), r(0) = r̄(0) ∈ R3, s(0) = s̄(0) ∈ S(c).

Let us mention some other quite elementary properties that will be used later on:

Proposition 4.4.

1. If c := (Θrst,V) ∈ C(n) (n ≥ 2) is a controllable SS with V := (V1, . . . ,Vn) ∈ (C1
0 (R3)3)n then any

c+ := (Θrst,V+) ∈ C(n + 1) such that

V+ := (V1, . . . ,Vn,Vn+1) ∈ (C1
0 (R3)3)n+1

(for some Vn+1 ∈ Cm
0 (R3)3) is a controllable SS as well.

2. If c := (Θrst,V) ∈ C(n) (n ≥ 2) is a controllable SS, then for any

Θ�
rst ∈ {Θrst +

n∑
i=1

siVi, s ∈ S(c)}

the element c� := (Θ�
rst,V) belongs to C(n) and is a controllable SS as well.

3. If c := (Θrst,V) ∈ C(n) (n ≥ 2) is a controllable SS, then all of the controllable SS in the section Π−1({Θrst})
form an open dense subset of Π−1({Θrst}) (for the induced topology).

4. If there exists a SS in C(n) for some n ≥ 2 then, for any k ≥ n, all of the controllable SS in C(k) form an
open dense subset of C(k) (for the induced topology).

Proof. The two first assertions are obvious so let us address directly the third point.
Denote Ek (k positive integer) the set of all of the vectors fields on M(c) obtained as Lie brackets of order

lower or equal to k from elements of Z(c). Then, consider the determinants of all of the different families of
6 + n elements of Ek as analytic functions in the variable V (the other variables Θrst and s = 0 being fixed).
Since c is controllable, there exist at least one k and one family of 6 + n elements in Ek whose determinant is
nonzero. According to Corollary 2.5 and basic properties of analytic functions (see [19]), the determinant can
vanish only in a closed subset with empty interior of the section Π−1({Θrst}) (for the induced topology). The
proof of the last point is similar. �
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4.2. Building a controllable swimmer signature

In this subsection, we are interested in computing the Lie brackets of first order [Zi
c(R, s), Zj

c(R, s)] at
(R, s) = (Id, 0), for a particular SS c := (Id,V) ∈ C(4) (so the shape of the swimmer at rest is the unit ball).
We make use of the usual notation V := (V1, . . . ,V4) (to be specified later on), s = (s1, . . . , s4) ∈ S(c) and
c := (c, s).

To carry out the aforementioned task, we introduce the classical spherical coordinates (�, α, β) such that, for
all x := (x1, x2, x3)∗ ∈ R3, x �= 0, we have

x1 = � cos(α) sin(β),
x2 = � sin(α) sin(β),
x3 = � cos(β).

At each point (�, α, β) we define the related local frame (e�, eα, eβ). For any n ≥ 1, we call rigid spherical
harmonics of degree −(n + 1) any function having the form:

(�, α, β) �→ �−(n+1)
n∑

m=−n

γmYn,m(cosβ, α), (4.4)

where γ−n, . . . , γn ∈ R and Yn,m are the classical spherical harmonics of degree n ∈ N and order
m ∈ {−n, . . . , n}.

According to Lamb, [10] (one can also see the book of Happel and Brenner, [9], Chap. 3.2, p. 62), the solution
(u, p) of the Stokes equations around an immersed body of any shape can be decomposed as follows (in the
body frame):

u =
+∞∑
n=0

(
∇× (χ−(n+1)�e�) + ∇φ−(n+1) − n − 2

2n(2n − 1)
�2∇p−(n+1)

+
n + 1

n(2n− 1)
p−(n+1)�e�

)
, (4.5a)

p =
+∞∑
n=0

p−(n+1), (4.5b)

where p−(n+1), χ−(n+1) and φ−(n+1) are solid spherical harmonics of degree −(n + 1).
The functions p−(n+1), χ−(n+1) and φ−(n+1) (or more precisely the coefficients γk, k ∈ {−n, . . . , n} arising

in (4.4)) have to be determined in order to satisfy the boundary conditions on the surface on the body. This
can be done following a method given in [3].

Case of a spherical body

The first step consists in considering a spherical rigid body (of radius R > 0). So, we want to compute the
solution of the exterior Stokes problem in the form (4.5) satisfying the boundary condition u|�=R = v0, where
v0 is a smooth, given velocity field on the body’s boundary.

The leading idea is that, instead of trying to equalize the three components of the velocity on the body’s
boundary, it is more simple to equalize the normal component of the velocity, the tangential part of the divergence
and the normal component of the rotational.
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We recall the general expressions of the gradient, the divergence and the rotational in spherical coordinates:

∇ϕ = ∂�ϕ e� +
1
�
∂αϕ eα +

1
� sinα

∂βϕ eβ

div u =
1
�2

∂�(�2u�) +
1

� sinα
∂α(sin α uα) +

1
� sinα

∂βuβ ,

∇× u =
1

� sin α
(∂α(sin αuβ) − ∂βuα) e� +

1
�

(
1

sinα
∂βu� − ∂�(�uβ)

)
eα

+
1
�

(∂�(�uα) − ∂αu�) eβ.

We deduce that the expressions of the quantities to be equalized are (besides the normal component u · e� of
the velocity, which is obvious):

� (∇(u · e�) · e� − div u) = −2u� − 1
sin α

(∂α(sin αuα) + ∂βuβ);

�∇× u · e� =
1

sinα
(∂α(sin α uβ) − ∂βuα).

Sticking to the notation of [3], we decompose these quantities in spherical harmonics:

v0 · e� =
∞∑

n=0

Xn, (4.6a)

−2v0 · e� − 1
sinα

(∂α(sin α v0 · eα) + ∂β(v0 · eβ)) =
∞∑

n=0

Yn, (4.6b)

1
sinα

(∂α(sin α v0 · eβ) − ∂β(v0 · eα)) =
∞∑

n=0

Zn, (4.6c)

where Xn, Yn and Zn stand for spherical harmonics of degree n. Using (4.5), we end up with the following
system:

p−(n+1) =
2n − 1
n + 1

(
(n + 2)Xn + Yn

)
,

φ−(n+1) =
1

2(n + 1)
(
nXn + Yn

)
,

χ−(n+1) =

{
0 n = 0,

1
n(n+1)Zn n ≥ 1.

General case (body of any shape)

Consider now a body of any shape. The following Lemma tells us how to compute the quantities we are interested
in for our problem, namely the entries of the matrix M(c) and N(c).

Lemma 4.5. Let S be any smooth, simply connected, open bounded domain of R3 and denote F := R3 \ S.

• Let (u, p) ∈ (W 1
0 (F))3 × L2(F) be any solution to the Stokes equations given by (4.5) in which only a finite

number of terms are non zero (i.e. satisfying, for some n0 ∈ N, χ−(n+1) = φ−(n+1) = p−(n+1) = 0 for all
n > n0).

• Let (ui, pi) ∈ (W 1
0 (F))3 × L2(F) (i = 1, . . . , 6) be the solution to the Stokes equations corresponding to the

boundary condition

ui(x) =

{
x × ei if i ∈ {1, 2, 3}
ei−3 if i ∈ {4, 5, 6} on ∂S.
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Then we have,

2
(∫

F
D(u) : D(ui) dx

)
i=1,...,6

=
(−8π∇(�3χ−2)
−4π∇(�3p−2)

)
. (4.8)

The idea of the proof is to turn the integral in the left hand side of (4.8) into an integral on a sphere and then
to apply what has been done in the first part of this section (Spherical body case).

Proof. Let ũi be the rigid vector field defined by

ũi(x) =

{
x × ei if i ∈ {1, 2, 3}
ei−3 if i ∈ {4, 5, 6} .

Since u and ui are smooth, we can integrate par parts and get:

2
∫
F

D(u) : D(ui) dx =
∫

∂S
T(u, p)ui · n dσ

=
∫

∂S
T(u, p)ũi · n dσ,

where n is the normal to ∂S oriented towards the interior of S. Let B(0, R) ⊂ R3 be a ball centered at 0 of
radius R > 0 such that S ⊂ B(0, R) and denote FR := F ∩B(0, R). Using the Green formulae and the identity

D(ũi) :=
(∇ũi + ∇ũ∗

i

)
/2 = 0, ∀i = 1, . . . , 6,

we obtain ∫
∂S

T(u, p)ũi · n dσ = −
∫

∂B(0,R)

T(u, p)ũi · n dσ,

with n the normal to ∂FR oriented towards the exterior of FR. Invoking the L2 orthogonality of the spherical
harmonics, we get (4.8). �

Application to our problem

When the body is specialized to be the unit sphere and the boundary conditions for u are ei × x or ej

(i, j = 1, 2, 3), the entries of the vectors in (4.8) are the elements of the matrix M(c, 0) and we get

M(c, 0) = diag(8πId, 4πId).

Similarly, if u = Vi (i = 1, . . . , 4) on the surface of the body, the entries of the vectors in (4.8) turn out to be
the elements of the matrix N(c, 0).

Let now the vector fields Vi be defined by Vi(�, α, β) := Vi(�, α, β)e� for every i ∈ {1, . . . , 4} with

V1(�, α, β) =�−(3+1)� (Y3,1) (4.9a)

V2(�, α, β) =�−(3+1)� (Y3,1) (4.9b)

V3(�, α, β) =�−(3+1)� (Y3,2) (4.9c)

V4(�, α, β) =�−(4+1)� (Y4,2) . (4.9d)

In this case, we get merely N(c, 0) = 0 and hence Xi(c, 0) = 0 (i = 1, . . . , 4) in identity (4.3). Focusing now on
the second term in the right hand side of (4.3), it remains to compute, for all i, j = 1, . . . , 4 and c = (c, 0):

∂siXj(c) − ∂sj Xi(c) = M(c)−1
[
(∂sj M(c)Xi(c) − ∂siM(c)Xj(c)) + (∂sj N(c)fi − ∂siN(c)fj)

]
.

= M(c)−1
[
∂sj N(c)fi − ∂siN(c)fj

]
. (4.10)
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In particular, we need the expressions of the derivatives of the entries of the matrix N(c) with respect to s. We
use the following Lemma:

Lemma 4.6. Let V ∈ C1
0 (R3)3 ∩ C∞(R3)3 and w0 ∈ C∞(Σ)3 (recall that Σ is the boundary of the unit ball

B and F := R3 \ B̄). For every t small enough, we define Θt = Id + tV, Bt = Θt(B), Σt := ∂Bt, Ft = R3 \ Bt

and wt = w0 ◦ Θt
−1 ∈ C∞(Σt).

Let also (ut, pt) and (ui
t, p

i
t) ∈ (W 1

0 (Ft))3 × L2(Ft) (i = 1, . . . , 6) be the solutions to the Stokes problems in
Ft with boundary conditions ut = wt and

ui
t(x) =

{
x × ei if i ∈ {1, 2, 3}
ei−3 if i ∈ {4, 5, 6} on Σt.

Then we have

d
dt

(∫
Ft

D(ut) : D(ui
t) dx

) ∣∣∣
t=0

=
∫

F

D(u′
0) : D(ui

t=0) dx,

where u′
0 ∈ (W 1

0 (F ))3 is solution of the homogeneous Stokes problem in F with the boundary condition

u′
0 = −∇ut=0V on Σ. (4.11)

Proof. Since, for all t small, the solution ut is smooth, according to [17], Theorem 4, the derivative of t �→ ut

at t = 0 is solution of the homogeneous Stokes problem in F with boundary condition (4.11) (notice that the
boundary condition is merely obtained by differentiating the equation ut ◦ Θt = 0 with respect to t at t = 0).
Using the same argument as in the proof of Lemma 4.5, we have

2
∫
Ft

D(ut) : D(ui
t) dx = −

∫
∂B(0,R)

T(ut, pt)ũi · n dσ.

Differentiating with respect to t and invoking the linearity of T and the Green formulae, we get the conclu-
sion. �

This Lemma tells us that the derivatives of the entries of the matrix N(c) can be computed using the formula
of Lemma 4.5 with suitable boundary conditions.

The computations are carried out using Maxima, a free software for symbolic calculation (we refer to http://
maxima.sourceforge.net/ for details). The Maxima sheet we wrote can be downloaded at http://www.iecn.
u-nancy.fr/~munnier/Microswimmer/Maxima_sheet.wmx.

The main steps of the procedure are:

1. Computation of the functions p−(n+1), χ−(n+1) and φ−(n+1) arising in the formulae (4.5) for the solutions of
the Stokes problem around a unit sphere with the Dirichlet boundary conditions: u|Σ = ei×x, ei (i = 1, 2, 3)
and Vi (i = 1, . . . , 4), i.e. computation (in the form (4.5)) of the elementary Stokes flows corresponding to
a rigid motion of the sphere and to elementary deformations along the vector fields Vi.

2. Computation of the Jacobian matrices ∇u of the solutions obtained in step 1.
3. Computation of the shape derivatives, using formula (4.11) (similar to step 1).

http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
http://www.iecn.u-nancy.fr/~munnier/Microswimmer/Maxima_sheet.wmx
http://www.iecn.u-nancy.fr/~munnier/Microswimmer/Maxima_sheet.wmx
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These steps lead to the following results:

∂s1N(c, s)
∣∣∣
s=0

=

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 − 3
√

5

2
7
2

0

0 − 3
8 0 0

0 0 0 −
√

3
√

5√
2
√

7
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, ∂s2N(c, s)

∣∣∣
s=0

=

⎛
⎜⎜⎜⎝

0 0 − 3
√

5

2
7
2

0

0 0 0 0
3
8 0 0 0
0 0 0 0

0 0 0
√

3
√

5√
2
√

7
0 0 0 0

⎞
⎟⎟⎟⎠,

∂s3N(c, s)
∣∣∣
s=0

=

⎛
⎜⎜⎜⎜⎝

0 3
√

5

2
7
2

0 0

3
√

5

2
7
2

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 − 2
√

3√
7

⎞
⎟⎟⎟⎟⎠, ∂s4N(c, s)

∣∣∣
s=0

= 0.

One easily checks now, according to formula (4.10), that

dim
(
span

{
∂siN(c)fj − ∂sj N(c)fi, 1 ≤ i < j < 4

})
= 6

and then
dim

(
span

{
Zk

c (Id, 0), [Zi
c(Id, 0),Zj

c(Id, 0)], 1 ≤ k ≤ 4, 1 ≤ i < j < 4
})

= 10

which is the dimension of SO(3) × R3 × S(c). It entails, according to the forth point of Proposition 4.4:

Proposition 4.7. For any integer n ≥ 4, the set of all the controllable SS is an open dense subset in C(n).

5. Proofs of the main results

Proof of Proposition 1.6

Let a control function Θ be given in W 1,1([0, T ],D1
0(R

3)). With the notation of Lemma 3.2, at any time t the
entries of the matrix M(t) have the form Φ(q) with q := (Θt,W), W := (W1,W2), Wj ∈ {ei×Θt, ei, i = 1, 2, 3}
(j = 1, 2). We deduce that

t ∈ [0, T ] �→ M(t) ∈ M(3)

is absolutely continuous. To get the expression of the elements of the vector N(t) we only have to modify W2

which has to be equal to ∂tΘt. It entails that

t ∈ [0, T ] �→ N(t) ∈ R6

is in L1([0, T ],R6). Existence of solutions is now straightforward because

t ∈ [0, T ] �→ M(t)−1N(t) ∈ R6

is also in L1([0, T ],R6) and Carathéodory’s existence theorem applies to (1.7b). Uniqueness derives from classical
Grönwall’s inequality.

Proof of Proposition 1.7

Let us address the stability result. With the same notation as in the statement of Proposition 1.6, denote by
(Ωj ,vj)∗ the left hand side of identity (1.7a) when the control is Θj and (Ω̄, v̄)∗ when the control is Θ̄.

As j → +∞, it is clear that
(Ωj ,vj)∗ → (Ω̄, v̄)∗ in L1([0, T ],R6).

Then, integrating (1.7b) between 0 and t for any 0 ≤ t ≤ T , we get the estimate

‖R̄(t) − Rj(t)‖M(3) ≤
∫ T

0

‖R̄(s) − Rj(s)‖M(3)‖Ω̄(s)‖R3 + ‖Ωj(s) − Ω̄(s)‖R3ds.

Applying Grönwall’s inequality, we conclude that Rj → R̄ in C([0, T ], M(3)) as j → +∞ and we use again the
ODE to prove that Ṙj → ˙̄R in L1([0, T ], M(3)). Then, it is easy to obtain the convergence of rj to r̄ and to
conclude the proof.
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Proof of Theorems 1.8 and 1.9

We shall focus on the proof of Theorem 1.8 because it will contain the proof of Theorem 1.9.
For any integer n, we shall use the notation

d(c1, c2)C(n) := ‖Θ1
rst − Θ2

rst‖C1
0(R3)3 +

n∑
i=1

‖V1
i − V2

i ‖C1
0(R3)3

for all c1, c2 ∈ D1
0(R

3) × (C1
0 (R3)3)n with, as usual, ci := (Θi

rst,V i) i = 1, 2 and V i := (Vi
1, . . . ,V

i
n).

Let ε > 0 and the functions

t ∈ [0, T ] �→ Θ̄t ∈ D1
0(R

3)
and t ∈ [0, T ] �→ (R̄(t), r̄(t)) ∈ SO(3) × R3

be given as in the statement of the theorem. According to Proposition C.3, we can assume that
Θ̄ ∈ Cω([0, T ],D1

0(R3)) ∩ A because this space is a dense subspace of A.

Step 1 (small initial jerking of the swimmer). In this step, we prove that the swimmer is able to modify
slightly its shape in order to become controllable.

Set Θ̄1 := Θ̄t=0 and V̄1
1 := ∂tΘ̄t=0 ∈ C1

0 (R3)3. According to the self-propelled constraints (1.8), it is always
possible to find three elements V̄1

j (j = 2, 3, 4) in C1
0 (R3)3 such that the SS c̄1 := (Θ̄1, V̄1) belongs to C(4) (with

V̄1 := (V̄1
1, . . . , V̄

1
4)). Then, Proposition 4.7 guarantees that for any δ > 0 it is possible to find a controllable SS

in C(4), denoted by c1 := (Θ1,V1) where V1 := (V1
1, . . . ,V

1
4), such that

d(c1, c̄1)C(4) < δ/2

(δ > 0 is meant to be small an will be fixed later on). Moreover, we claim that c1 can be chosen in such a way
that there exists a smooth allowable function (i.e. satisfying (1.8))

t ∈ [−1, 0] �→ Θ0
t ∈ D1

0(R
3)

such that Θ0
t=−1 = Θ̄1 and Θ0

t=0 = Θ1 (i.e. the swimmer can modify its shape from Θ̄1 into Θ1 by self-deforming
on time interval [−1, 0]). Indeed, denote ĉ1 := (Θ̂1, V̂1) ∈ C(4) a controllable SS such that ‖c̄1− ĉ1‖C(4) be small.
Then define

Θ̄0
t := Θ̄1 + (1 + t)(Θ̂1 − Θ̄1)

for every t ∈ [−1, 0]. Since D1
0(R

3) is open, for ‖Θ̂1 − Θ̄1‖C1
0(R3)3 small enough, Θ̄0

t will remain in D1
0(R

3) for
all t ∈ [−1, 0]. Then, Proposition 1.4 asserts that there exists a function

Q0 ∈ AC([−1, 0], SO(3))

and an allowable shape function
Θ0

t ∈ W 1,1([−1, 0],D1
0(R

3))

such that Θ0
t links Θ̄1 (at t = −1) to some Θ1 (at t = 0) satisfying

Θ1|Σ = Q0(0)Θ̂1|Σ .

A careful reading of the proof of Proposition 1.4 allows noticing that

‖Q0 − Id‖C([−1,0],M(3)) and ‖Θ0
t − Θ̄1‖W 1,1([−1,0],D1

0(R3))

both go to 0 as ‖Θ̂1 − Θ̄1‖C1
0(R3)3 goes to 0.
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Set now V1
i := Q0(0)V̂1

i (i = 1, . . . , 4) and observe that the SS c1 = (Θ1,V1) satisfies the requirements.
Furthermore, according to Proposition 1.6, ‖Θ̂1 − Θ̄1‖C1

0(R3)3 can always be made small enough for the control
function Θ0

t to produce a rigid displacement

t ∈ [−1, 0] �→ (R0(t), r0(t)) ∈ SO(3) × R3

satisfying
sup

t∈[−1,0]

(‖R0(t) − R̄(0)‖M(3) + ‖r0(t) − r̄(0)‖R3 + ‖Θ0
t − Θ̄1‖C1

0(R3)3
)

< ε/2.

Eventually, remark that this step of initial jerking performed on the time interval [t0, t1] := [−1, 0] can actually
be carried out on a time interval arbitrarily short just by rescaling the time.

Step 2 (building a continuous piecewise C1 control function). Since the function ∂tΘ̄ is continuous on
the compact set [0, T ], it is uniformly continuous. For any ν > 0, there exists δν > 0 such that

‖∂tΘ̄t − ∂tΘ̄t′‖C1
0(R3)3 < ν

providing that |t − t′| ≤ δν . We divide the time interval [0, T ] into

0 = t1 < t2 < . . . < tk = T

such that |tj+1 − tj | < δν for j = 1, . . . , k − 1.
For any t ∈ [t1, t2], we have the estimate:

‖Θ̄t − (Θ1 + (t − t1)V1
1)‖C1

0(R3)3 ≤ ‖Θ̄t − (Θ̄1 + (t − t1)V̄1
1)‖C1

0(R3)3

+ ‖Θ̄1 − Θ1‖C1
0(R3)3 + (t − t1)‖V̄1

1 − V1
1‖C1

0(R3)3 .

On the one hand, we have, for all t ∈ [t1, t2],

‖Θ̄t − (Θ̄1 + (t − t1)V̄1
1)‖C1

0(R3)3 < ν|t − t1|.
On the other hand, still for t1 ≤ t ≤ t2 and if we assume that δν < 1, we get

‖Θ̄1 − Θ1‖C1
0(R3)3 + (t − t1)‖V̄1

1 − V1
1‖C1

0(R3)3 ≤ δ/2.

We denote Θ̄2 := Θ̄t=t2 . It is always possible to supplement V̄2
1 := ∂tΘ̄t2 with vector fields V̄2

j (j = 2, . . . , 4) in
such a way that c̄2 := (Θ̄2, V̄2) be in C(4) with the obvious notation V̄2 := (V̄2

1, . . . , V̄
2
4). We define

Θ2 := Θ1 + (t2 − t1)V1
1.

For any t1 ≤ t ≤ t2, Proposition 4.4 guarantees that the SS

c1
t := (Θ1 + (t − t1)V1

1,V1)

is controllable. In particular, for t = t2, there exists an integer k and a family of 10 vector fields3 in Ek (the set
of all the Lie brackets of order lower or equal to k) such that the determinant of the family is nonzero. But this
determinant can be thought of as an analytic function in V1. The set Π−1({Θ2}) being an analytic connected
submanifold of (C1

0 (R3)3)4 (see Cor. 2.5), the determinant is nonzero everywhere on this set but maybe in a
closed subset of empty interior (for the induced topology). Therefore, it is possible to find V2 ∈ (C1

0 (R3)3)4

such that the SS c2 := (Θ2,V2) is controllable and

d(c̄2, c2)C(4) < (δ/2 + ν(t2 − t1)) + δ/4.

310 is the dimension of SO(3) × R3 × S(c1t2).
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By induction, we can build c̄j and cj (j = 1, 2, . . . , k) such that

1. d(c̄j , cj)C(4) ≤ δ/2 +
∑k

i=2 δ/2i + ν(ti − ti−1) < δ + νT ;
2. every cj is controllable.

We choose δ and ν in such a way that
δ + νT < ε/4

and we define
t : [0, T ] �→ Θ̃t ∈ D1

0(R
3)

as continuous, piecewise affine functions by

Θ̃t := Θj + (t − tj)V
j
1 if t ∈ [tj , tj+1] (j = 1, . . . , k − 1).

Notice that for any t ∈ [0, T ],
‖Θ̄t − Θ̃t‖C1

0(R3)3 < ε/2.

Definition 4.2 and Proposition 4.3 ensure that, on every interval [tj , tj+1] (j = 1, . . . , k − 1), there exist four
C1 functions

λj
i : [tj , tj+1] �→ R (i = 1, . . . , 4)

such that the solution
(Rj , rj , s

j) : [tj , tj+1] → SO(3) × R3 × R4

to the ODE (4.2) with vector fields Zi
cj (Rj , s

j) and Cauchy data

R1(t1) = R0(0), r1(t1) = r0(0),
Rj(tj) = R̄(tj), rj(tj) = r̄(tj), (j = 2, . . . , k − 1)

and
sj(tj) = 0, (j = 1, . . . , k − 1)

satisfies:

1. supt∈[tj ,tj+1]

(
‖R̄(t)−Rj(t)‖M(3)+‖r̄(t)−rj(t)‖R3 +‖Θ̃t−Θj

t‖C1
0(R3)3

)
< ε/4 with Θj

t := Θj +
∑4

i=1 sj
i (t)V

j
i ;

2. Rj(tj+1) = R̄(tj+1), rj(tj+1) = r̄(tj+1) and sj(tj+1) = (tj+1 − tj , 0, 0, 0)∗.

With these settings, the functions

t ∈ [−1, T ] �→ Θ̆t ∈ D1
0(R

3)

R̆ : [−1, T ] → SO(3)
and r̆ : [−1, T ] → R3

defined by Θ̆t := Θj
t , R̆(t) := Rj(t) and r̆(t) := rj(t) if t ∈ [tj , tj+1] (j = 0, . . . , k − 1) are continuous,

piecewise C1.

Step 3 (smoothing the control function). We obtain a control function on [0, T ] (still denoted by Θ̆) by
merely shifting/rescaling the time, from [−1, T ] onto [0, T ].

Beforehand and as already mentioned, the first time interval [t0, t1] := [−1, 0] could have been shortened as
much as necessary for the estimate

sup
t∈[0,T ]

(
‖R̄(t) − R̆(t)‖M(3) + ‖r̄(t) − r̆(t)‖R3 + ‖Θ̄t − Θ̆t‖C1

0(R3)3

)
< ε/2,
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to be true after the shifting/rescaling process. Then, we invoke Proposition C.3 and Proposition 1.6 to conclude
that there exists

t ∈ [0, T ] �→ Θt ∈ D1
0(R

3)

analytic, satisfying (1.8) and such that

sup
t∈[0,T ]

(
‖R(t) − R̆(t)‖M(3) + ‖r(t) − r̆(t)‖R3 + ‖Θt − Θ̆t‖C1

0(R3)3

)
< ε/2,

where (R, r) : [0, T ] �→ SO(3) × R3 is the solution to system (1.7) with initial data (R(0), r(0)) = (R̄(0), r̄(0))
and control Θ. The proof is then complete.

Proof of Theorem 1.10

Under the assumptions of the Theorem, denote by:

j(t) =
∫ t

0

f(R(t), r(t), Θt, ∂tΘt)dt,

the cost functional. Since:

Θt = Θrst +
n∑

i=1

si(t)Vi and ṡ(t) =
n∑

i=1

λi(t)fi,

with Θrst and (V1, . . . ,Vn) given, we can rather consider f as a function of (R, r, s, λ) where s = (s1, . . . , sn)
and λ = (λ1, . . . , λn). Notice that f is still continuous, convex in the fourth variable. From the dynamics in the
form (4.2), we can define the extended control system:

d
dt

⎛
⎜⎝

R
r
s
j

⎞
⎟⎠ =

( ∑n
i=1 λi(t)Zi

c(R, s)
f(R(t), r(t), s(t), λ(t))

)
, (0 < t ≤ T ). (5.1)

By assumption ṡ is valued in some compact, convex set of Rn. It entails that λ is also valued in a compact,
convex set of Rn. We deduce that, for short time, the attainable triplets (R, r, s) ∈ SO(3)×R3×Rn are included
in a compact set. One can now verify that, by a slight modification of the proof, Theorem 10.3 of [1] applies to
system (5.1) and leads to the conclusion of Theorem 1.10.

6. Conclusion

In this paper, we have proved that every 3D microswimmer as the ability to swim (i.e. not only moving
but tracking any given trajectory). Moreover, this can be achieved by means of arbitrarily small shape changes
which can be superimposed to any preassigned macro deformation. When the shape changes are expressed as
a finite combination of elementary deformations (and no macro shape changes are prescribed), we have shown
that only four elementary deformations are needed for the swimmer to be able to track any trajectory. In this
case and when the rate of shape changes (i.e. the velocity of deformations) is valued in a compact set, an optimal
control exists for a wide variety of cost functionals.

Appendix A. Function spaces

Classical function spaces

• For any open set Ω ⊂ R3 (included Ω = R3), D(Ω) is the space of the smooth (C∞) functions, compactly
supported in Ω.
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• For any open set Ω ⊂ R3 (included Ω = R3), the set C1
0 (Ω) is the completion of D(Ω) for the norm

‖u‖C1
0(Ω) := sup

x∈Ω
|u(x)| + ‖∇u(x)‖R3 .

When Ω = R3, we get

C1
0 (R3) := {u ∈ C1(R3) : |u(x)| → 0 and ‖∇u(x)‖R3 → 0 as ‖x‖R3 → +∞}.

• The space C1
0 (R3)3 is the Banach space of all of the vector fields in R3 whose every component belongs to

C1
0 (R3).

• For any Banach space E and any T > 0, Cω([0, T ], E) is the space of analytic functions on [0, T ], valued
in E.

• Let now E be an open subset or an embedded submanifold of an Euclidean space and T > 0, then
AC([0, T ], E) consists in the absolutely continuous functions from [0, T ] into E. It is endowed with the
norm

‖u‖AC([0,T ],E) := ‖u‖C([0,T ],E) +
∫ T

0

‖u′(t)‖Edt.

• Cm
0 (Ω, M(k)) (m an integer) is the Banach space of the functions of class Cm in R3 valued in M(k) (M(k)

stands for the Banach space of the k × k matrices, k a positive integer) and compactly supported in Ω.
• Em

0 (Ω, M(k)) stands for the connected component containing the identity function of the open subset

{M ∈ Cm
0 (Ω, M(k)) : det(M(x)) �= 0 ∀x ∈ R3}.

Lemma A.1. The set

D̃1
0(R

3) := {ϑ ∈ C1
0 (R3)3 s.t. Id + ϑ is a C1 diffeomorphism of R3}

is open in C1
0 (R3)3.

Proof. If ϑ ∈ C1
0 (R3)3 is such that ‖ϑ‖C1

0(R3)3 < 1, the local inversion Theorem and a fixed point argument
ensure that Id + ϑ is a C1 diffeomorphism whence we deduce that D̃1

0(R3) contains the unit ball B(0, 1) of
C1

0 (R3)3.
For any ϑ0 ∈ D̃1

0(R
3) and any ϑ ∈ C1

0 (R3)3, we define:

Fϑ0(ϑ) := ϑ ◦ (Id + ϑ0) ∈ C1
0 (R3)3.

One easily verifies that Fϑ0 is (linear) continuous from C1
0 (R3)3 into C1

0 (R3)3.
Observe that:

Id + ϑ = (Id + (ϑ − ϑ0) ◦ (Id + ϑ0)−1) ◦ (Id + ϑ0),

and ϑ†
0 := (Id + ϑ0)−1 − Id is still in D̃1

0(R3). Therefore, ϑ0 + F−1

ϑ†
0

(B(0, 1)) in an open neighborhood of ϑ0 in

D̃1
0(R

3). �

Definition A.2. We denote D1
0(R

3) the connected component of D̃1
0(R

3) that contains the identically zero
function (recall that this set contains the unit ball of C1

0 (R3)3) and D1
0(R3) := D1

0(R3)+{Id} (an affine space).

Sobolev spaces

• We define the weight function θ(x) :=
√

1 + |x|2 (x ∈ R3) and the weighted Sobolev spaces:

W 1
0 (F) :=

{
u ∈ D′(F) : θ−1u ∈ L2(F)

}
, (A.1)

◦
W 1

0 (F) :=
{
u ∈ W 1

0 (F) : γΣ(u) = 0
}
, (A.2)

where γΣ : W 1
0 (F) �→ H1/2(Σ) is the classical trace operator. The dual space of

◦
W 1

0 (F) is W−1
0 (F).
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• For any Banach space E, W 1,1([0, T ], E) is the Bochner–Sobolev spaces (see for instance [15], Sect. 7.1,
p. 187) consisting in the functions

u : [0, T ] �→ E

measurable and such that u and u′ belong to L1([0, T ], E) (the derivative u′ as to be understood in the sense
of the distributions). It can be proved that W 1,1([0, T ], E) is continuously embedded in C([0, T ], E) and that

u(t) = u(0) +
∫ t

0

u′(s) ds

for all t ∈ [0, T ] and all u ∈ W 1,1([0, T ], E), where the integral is a Bochner integral (a generalization to
Banach space valued functions of the Lebesgue integral). The space W 1,1([0, T ], E) is endowed with the
norm

‖u‖W 1,1([0,T ],E) := ‖u‖C([0,T ],E) +
∫ T

0

‖u′(s)‖E ds.

Notice that, since E is not assumed to be reflexive (and actually is not for our purpose), we have
W 1,1([0, T ], E) ⊂ AC([0, T ], E) with strict inclusion. We refer to [4], Appendix for details about this tricky
question.

Appendix B. Technical proofs

Proof of Proposition 1.3.
If we denote by ui(t) (i = 1, . . . , 6) (respectively u†

i (t)) the elementary velocity fields obtained with the control
function Θ (respectively Θ†), it can be verified that

ui(t, x) = Q(t)∗u†
i (Q(t)x + s(t))

for every t ∈ [0, T ], every x ∈ Ft and every i = 1, . . . , 6. We deduce that

M(t) = Q(t)∗M†(t)Q(t)

where the elements of M(t) (respectively M†(t)) have been computed with the elementary velocity fields ui(t)
(respectively u†

i (t)) and Q(t) ∈ SO(6) is the bloc diagonal matrix diag(Q(t), Q(t)).
On the other hand, denoting respectively by

wt(x) = ∂tΘt(Θ−1
t (x)) and w†

t (x) = ∂tΘ
†
t (Θ

†−1
t (x))

the boundary velocity of the swimmer in both cases, we get the relation:

wt(x) + χ(t) × x + ζ(t) = Q(t)∗w†
t (Q(t)x + s(t)), ∀t ∈ [0, T ],

where χ̂(t) := Q(t)∗Q̇(t) and ζ(t) := Q(t)∗ṡ(t). With obvious notation, we deduce that

N(t) + M(t)(χ(t), ζ(t))∗ = Q(t)∗N†(t).

If we set now (Ω,v)∗ := −M(t)N(t) and (Ω†,v†)∗ := −M†(t)N†(t), we get the identity

(Ω†,v†)∗ = Q(t)(Ω − χ,v − ζ)∗.

It suffices to integrate this relation, taking into account that (Q(0), s(0)) = (Id,0), to obtain the conclusion of
the Proposition and to complete the proof. �
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Proof of Proposition 1.4.
Define s̄(t) := (1/4π)

∫
Σ Θt dσ (an absolutely continuous function on [0, T ]) and Θ̄t := Θt − s̄(t) for every

t ∈ [0, T ]. The matrix

J(t) :=
∫

Σ

‖Θ̄t‖2
R3Id − Θ̄t ⊗ Θ̄tdσ

is always definite positive since

(J(t)x) · x =
∫

Σ

‖Θ̄t × x‖2
R3dσ, ∀x ∈ R3 and ∀t ∈ [0, T ].

We can then define
χ(t) := J(t)−1

∫
Σ

∂tΘ̄t × Θ̄t dσ

as a function of L1([0, T ],R3). The absolutely continuous function t ∈ [0, T ] �→ Q(t) ∈ SO(3) is obtained by
solving the ODE:

∂tQ(t) = Q(t)χ̂(t)

with Cauchy data Q(0) = Id (we consider here a Carathéodory solution which is unique according to Grönwall’s
inequality). Then, we set

s(t) := −Q(t)s̄(t) and Θ̃t := Q(t)Θt + s(t) ∀t ∈ [0, T ].

The function Θ̃t is in W 1,1([0, T ], C1(R3)3), satisfies (1.8) but does not take its values in D1
0(R

3) because for
every t ∈ [0, T ]:

Θ̃t(x) = Q(t)x + s(t) + o(1) �= x as ‖x‖R3 → +∞.

Let Ω and Ω′ be large balls such that ⋃
t∈[0,T ]

Θ̃t(B̄) ⊂ Ω and Ω̄ ⊂ Ω′

and consider a cut-off function ξ valued in [0, 1] and such that ξ = 1 in Ω and ξ = 0 in R3 \ Ω̄′. To complete
the proof, define Θ†

t (x) = X(t, Θt=0(x)) where X is the flow associated with the Cauchy problem

Ẋ(t, x) = ξ(X(t, x))∂tΘ̃t ◦ Θ̃−1
t (X(t, x)) (t > 0),

X(0, x) = x. �

Appendix C. Control functions smoothing

Proposition C.3. For every ε > 0 and every Θ ∈ A, there exists

Θ̄ ∈ Cω([0, T ],D1
0(R

3)) ∩ A

such that
‖Θ̄ − Θ‖W 1,1([0,T ],C1

0(R3)3) < ε

and Θ̄t=0 = Θt=0. In particular Cω([0, T ],D1
0(R

3)) ∩ A is dense in A.

Proof. Let Θ be in A. Since Cω([0, T ], C1
0(R3)3) is dense in L1([0, T ], C1

0(R3)3), we can always pick an element
ζ ∈ Cω([0, T ], C1

0(R3)3) which makes the quantity

‖ζ − ∂tΘ‖L1([0,T ],C1
0(R3)3)
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as small as required. Define for every t ∈ [0, T ] the analytic function

Θ̃t(x) = Θt=0(x) +
∫ t

0

ζ(x, s) ds, x ∈ R3.

The quantity ‖Θ̃−Θ‖W 1,1([0,T ],C1
0(R3)3) can hence be made arbitrarily small. Following the lines of the proof of

Proposition 1.4, we define

s̃(t) := (1/4π)
∫

Σ

Θ̃t dσ, Θ̃†
t := Θ̃t − s̃(t),

and
J̃(t) :=

∫
Σ

‖Θ̃†
t‖2

R3Id − Θ̃†
t ⊗ Θ̃†

t dσ,

(a matrix positive definite for every t ∈ [0, T ]). The function

t ∈ [0, T ] �→ χ̃(t) := J̃(t)−1

∫
Σ

∂tΘ̃
†
t × Θ̃†

t dσ ∈ R3,

is well defined and analytic. Let us introduce as well

J(t) :=
∫

Σ

‖Θt‖2
R3Id − Θt ⊗ Θtdσ.

Observing again that the quantity ‖Θ̃ − Θ‖W 1,1([0,T ],C1
0(R3)3) can be arbitrarily small, we draw the same con-

clusion for ‖s̃‖W 1,1([0,T ],R3), then for

‖J̃(t)−1 − J(t)−1‖C0([0,T ],M(3))

and finally for ‖χ̃‖L1([0,T ],R3). We infer that ‖Q − Id‖W 1,1([0,T ],M(3)), where Q is the solution to the Cauchy
problem in SO(3):

∂tQt = Qtχ̃(t)

Qt=0 = Id

is arbitrarily small as well and that t ∈ [0, T ] �→ Q(t) ∈ SO(3) is analytic.
Then we set Θ�

t = Q(t)Θ̃†
t . At this point, t ∈ [0, T ] �→ Θ�

t is analytic, satisfies (1.8) but is unlikely in D1
0(R

3),
because for every t ∈ [0, T ]:

Θ�
t (x) → Q(t)(x − s̃(t)) �= x as ‖x‖R3 → +∞.

Notice however that for every smooth compactly supported function

ξ : R3 → R,

the quantity
‖ξ(Θ� − Θ)‖W 1,1([0,T ],C1

0(R3)3)

can be made small. Let Ω and Ω′ be large balls such that⋃
t∈[0,T ]

Θ�
t (B̄) ⊂ Ω

and Ω̄ ⊂ Ω′ and define ξ as a cut-off function valued in [0, 1] and such that ξ = 1 in Ω and ξ = 0 in R3 \ Ω̄′.
To complete the proof, define Θ̄t(x) = X(t, Θt=0(x)) where X is the flow associated with the Cauchy problem

Ẋ(t, x) = ξ(X(t, x))∂tΘ
�
t ◦ Θ�−1

t (X(t, x)), (t > 0),
X(0, x) = x.

Indeed, ‖Θ − Θ̄‖W 1,1([0,T ],C1
0(R3)3) is small providing that Ω is big enough and ‖ξ̃(∂tΘ

�
t − ∂tΘ)‖L1([0,T ],C1

0(R3)3)

small enough with ξ̃ a cut off function equal to 1 on Θ−1
t=0(Ω). �
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Appendix D. Stokes problem and change of variables

D.1. Well-posedness of the Stokes problem in an exterior domain

The following results that can be found in [8]:

Theorem D.4. Let Σ be connected an Lipschitz continuous. Then, for any (f , g,h) ∈ (W−1
0 (F))3 × L2(F) ×

(H1/2(Σ))3, there exists a unique pair (u, p) ∈ (W 1
0 (F))3 × L2(F) such that:

−Δu + ∇p = f in F , (D.3a)
∇ · u = g in F , (D.3b)

u = h on Σ. (D.3c)

The solution has to be understood in the weak sense, namely:∫
F
∇u : ∇v dx −

∫
F
p∇ · v) dx = 〈f ,v〉

(W−1
0 )3×(

◦
W 1

0 )3
, ∀v ∈ (

◦
W 1

0 (F))3, (D.4a)

∇ · u = g in F , (D.4b)

γΣ(u) = h on Σ. (D.4c)

Besides, there exists a constant CF > 0 (depending on F only) such that:

‖u‖(W 1
0 (F))3 + ‖p‖L2(F) ≤ CF [‖f‖(W−1

0 (F))3 + ‖g‖L2(F) + ‖h‖(H1/2(Σ))3 ].

D.2. Change of variables

We denote, for all Υ ∈ D1
0(B̄,R3), JΥ := det(∇Υ ) and we define the matrices AΥ := (∇Υ ∗∇Υ )−1JΥ and

BΥ := (∇Υ ∗)−1JΥ .

Proposition D.5. If Σ is Lipschitz continuous, for all Υ ∈ D1
0(B̄,R3) and for all (f , g,h) ∈ (W−1

0 (F))3 ×
L2(F) × (H1/2(F))3 the following problem:

∫
F
∇UΥ AΥ : ∇V dx −

∫
F
PΥ BΥ : ∇V dx = 〈f ,V〉

(W−1
0 )3×(

◦
W 1

0 )3
, ∀V ∈ (

◦
W 1

0 (F))3, (D.5a)

BΥ : ∇UΥ = g in F , (D.5b)
γΣ(UΥ ) = h on Σ, (D.5c)

admits a unique solution (UΥ , PΥ ) ∈ (W 1
0 (F))3×L2(F). Moreover, there exists a constant CΥ (F) > 0 depending

on F and Υ only such that:

‖UΥ ‖(W 1
0 (F))3 + ‖PΥ ‖L2(F) ≤ CΥ (F)[‖f‖(W−1

0 (F))3 + ‖g‖L2(F) + ‖h‖(H1/2(Σ))3 ].

Proof. Let us introduce FΥ := Υ (F), ΣΥ := Υ (Σ), gΥ := g ◦ Υ−1/(JΥ ◦Υ−1) and hΥ := h ◦ Υ−1. We denote by
fΥ the distribution in (W−1

0 (FΥ ))−1 defined by

〈fΥ , ϕ〉
(W−1

0 (FΥ ))3×(
◦

W 1
0 (FΥ ))3

:= 〈f , ϕ ◦ Υ 〉
(W−1

0 (F))3×(
◦

W 1
0 (F))3

, ∀ϕ ∈
◦

W 1
0 (F))3.

This definition makes sense because there exist two constants αi(Υ ) > 0 (i = 1, 2) such that

α1(Υ )‖ϕ‖(W 1
0 (FΥ ))3 ≤ ‖ϕ ◦ Υ‖(W 1

0 (F))3 ≤ α2(Υ )‖ϕ‖(W 1
0 (FΥ ))3
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for all ϕ ∈ (W 1
0 (FΥ ))3. Notice that when f is regular enough (i.e. can be identified with a function of (L1

loc(F))3)
then we get merely fΥ := f ◦ Υ−1/(JΥ ◦ Υ−1). It is easy to check that, according to the properties of Υ , the
following mapping is a bicontinuous isomorphism:

RΥ : (W−1
0 (F))3 × L2(F) × (H1/2(F))3 → (W−1

0 (FΥ ))3 × L2(FΥ ) × (H1/2(FΥ ))3
(f , g,h) �→ (fΥ , gΥ ,hΥ ), .

Denote (uΥ , pΥ ) = SΥ (fΥ , gΥ ,hΥ ) the unique solution to the Stokes problem (D.4) in FΥ . The operator SΥ is
hence a bicontinuous isomorphism mapping (W−1

0 (F))3 ×L2(F)× (H1/2(F))3 onto (W 1
0 (FΥ ))3 ×L2(FΥ ). The

following operator is a bicontinuous isomorphism as well:

HΥ : (W 1
0 (FΥ ))3 × L2(FΥ ) → (W 1

0 (F))3 × L2(F)
(v, q) �→ (V, Q) = (v ◦ Υ, q ◦ Υ ).

The solution to problem (D.5) is provided by the operator TΥ := HΥ ◦ SΥ ◦ RΥ and the following diagram
commutes:

(f , g,h)
TΥ ��

RΥ

��

(UΥ , PΥ )

(fΥ , gΥ ,hΥ )
SΥ �� (uΥ , pΥ )

HΥ

��

The proof is then completed. �

References

[1] A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, vol. 87 of Encyclopaedia Math. Sci. Springer-
Verlag, Berlin (2004).

[2] F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci.
18 (2008) 277–302.

[3] H. Brenner. The stokes resistance of a slightly deformed sphere. Chem. Engrg. Sci. 19 (1964) 519–539.
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