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VARIATIONAL APPROXIMATION OF A FUNCTIONAL OF MUMFORD–SHAH
TYPE IN CODIMENSION HIGHER THAN ONE

Francesco Ghiraldin1

Abstract. In this paper we consider a new kind of Mumford–Shah functional E(u, Ω) for maps
u : R

m → R
n with m ≥ n. The most important novelty is that the energy features a singular

set Su of codimension greater than one, defined through the theory of distributional jacobians.
After recalling the basic definitions and some well established results, we prove an approximation
property for the energy E(u, Ω) via Γ−convergence, in the same spirit of the work by Ambrosio and
Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990) 999–1036].

Résumé. Dans cet article on considère une nouvelle fonctionnelle du type de Mumford–Shah E(u, Ω)
pour des applications u : R

m → R
n avec m ≥ n. La nouveauté principale est que l’énergie présente

un ensemble singulier Su de codimension supérieure à un, défini par la théorie des déterminant au
sense de distributions. Après avoir rappelé les définitions de base et certains résultats classiques, nous
prouvons une propriété d’approximation pour l’énergie E(u, Ω) par Γ -convergence, dans le même esprit
de Ambrosio et Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990)
999–1036].
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1. Introduction

The objects and the results of this paper belong to a larger research project on the fundamental properties
of distributional jacobians. In this work we continue the study of a new functional in the calculus of variations
of Mumford–Shah type [6, 19, 38] started in [10], where the minimization involves an unknown function as well
as a set:

A(u,K;Ω) =
∫

Ω\K

f(x, u,M∇u) dx +
∫

Ω∩K

g dH m−n.

Here Ω ⊂ R
m is a bounded open set of class C1, u ∈ C1(Ω \K,Rn), M∇u is the vector of minors of ∇u of every

rank, H m−n is the (m−n)-dimensional Hausdorff measure and K is a sufficiently regular closed set. The main
novelty in this type of energies with respect to the classical Mumford–Shah energies [8,18,38] is the presence of
a “free discontinuity” set of codimension higher than one.
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In this paper we are concerned with the model case

E(u,Ω) =
∫

Ω

|∇u|p + |Mn∇u|γdx + σH m−n(Ω ∩ Su) (1.1)

which we present already in the weak formulation: this energy features a new class of vector valued maps called
GSBnV (Ω), whose definition is related to the concept of distributional jacobian Ju. Here u is a Sobolev map,
Su is the singular set of its distributional jacobian Ju, see Section 2 for the precise definitions. The simplified
idea, in the special case m = n, is that u is a vector-valued map regular outside a finite number of points where
the map covers a set of positive measure, thus imposing a singularity to its jacobian. The functional penalizes
maps with an excessively large area factor Mn∇u = det∇u as well as the creation of too large singular sets Su.
Note that the pth power of the gradient helps smoothing possible wild oscillations of u, however if p < n the map
might still have a singular jacobian. Moreover like in [38] a lower semicontinuous fidelity term

∫
Ω |u − g|r dx,

forcing u to be close to a given map g, can be added to (1.1).
The class GSBnV can be interpreted as a generalization of the well known function spaces SBV and BnV

(see [8,31]), where the differential Du is replaced by Ju and where the jacobian is allowed to have infinite mass.
Its definition takes deeply advantage of the slicing procedure available for flat currents, as it is well documented
in [9,11,20,22,24,42]. GSBnV consists of Sobolev functions u whose jacobian can be written as a sum of a finite
mass flat current Ru whose total variation is absolutely continuous with respect to Lebesgue measure, and a
flat current Tu of finite size. We devote part of Section 2 to describe this construction and compare it with the
finite mass space BnV .

Note that similarly to the codimension one case [8, 18] the finiteness of the energy does not imply any
boundedness of the multiplicity density Θm−n(‖Ju‖, ·) with respect to the Hausdorff measure H m−n Su:
therefore E(·, Ω) demands an adapted compactness and lower semicontinuity Theorem to show the existence
of minimizers of suitable Dirichlet and Neumann problems. This result was obtained in [10], along with several
examples and phenomenologies.

Recall the centrality of the distributional jacobian in the literature of Ginzburg–Landau problems, where
the defects of constrained Sobolev maps are detected via the appearance of a singularity in Ju, and where
approximation results similar to ours have been obtained, see [3,4,15,23,28,39]. Another research field revolving
around weak notions of area deformation is nonlinear elasticity, where the deformation u of a material is driven
by the energy minimization of a functional depending on the minors of ∇u. The groundbreaking work [14] has
been followed by a rich literature, where several theories treating possible formation of fractures and cavitations
are described, see [1, 27, 28, 37, 40].

In this paper we discuss a variational approximation of E via Γ -convergence by (degenerate) elliptic func-
tionals Eε, in the spirit of [12, 13]. These densities, being absolutely continuous, are easier to handle from the
numerical viewpoint. Similarly to the scalar Mumford–Shah functional, we are able to approximate the defect
measure, which is singular, via a family of bulk functionals (although not uniformly elliptic), a phenomenon
already outlined in the pioneering papers by Modica and Mortola [33, 34].

We want to approximate the maps u ∈ GSBnV with functions uε possessing “better regularity”, namely
having absolutely continuous jacobian. Our choice of approximating functionals is

Eε(u, v,Ω) =
∫

Ω

|∇u|p + (v + kε)|Mn∇u|γdx +
∫

Ω

εq−n|∇v|q +
W (1 − v)

εn
dx, (1.2)

and the limit takes place for ε → 0. In (1.2) v is a control function for the pointwise determinant Mn∇u,
ranging in the interval [0, 1], and depends on the singular set Su; kε is an infinitesimal number apt to guarantee
coercivity of Eε. The second integral, referred to as the Modica–Mortola term because of the similarity with
the phase transition energies contained in [12], contains a nonnegative convex potential W vanishing in 0.

After a brief analysis on the existence of minimizers for Eε we proceed to show the main convergence result.
The approximation of E via Eε takes place in the sense of Γ -convergence, whose main properties are summarized
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at the beginning of Section 3. In particular the fundamental Theorem for such convergence yields:

(uε, vε) minimizes Eε, (uε, vε) → (u, v) ⇒ (u, v) minimizes E.

As ε goes to 0, the potential term W (1 − v) forces vε to converge to 1 in measure; on the contrary vε becomes
closer to 0 where the jacobian of the functions uε tends to form a singularity, and compensates the loss of energy
due to this damping with the Modica–Mortola term. Because of the scaling property of the Modica–Mortola
part the transition from vε ∼ 0 to vε ∼ 1 happens in a set of width of order ε, and up to a rescaling vε converges
to a precise profile w0 analysed in Section 4. In particular this transition energy concentrates around the singular
set Su proportionally to its H m−n-measure.

The proof of the approximation will be carried out in two steps: first we show

lim inf
ε→0

Eε(uε, vε, Ω) ≥ E(u,Ω)

whenever (uε, vε) → (u, 1). This step is achieved first in codimension m − n = 0, where Su is a discrete set,
and then generalized to every codimension with the help of the slicing Theorem. The second part of the proof
concerns the upper limit: here we construct (uε) truncating the function u around the singularity Su and we
use the optimal profile w0 to build functions vε such that (uε, vε) → (u, 1) and

lim sup
ε→0

Eε(uε, vε, Ω) ≤ E(u,Ω).

In order to make this construction we will assume a mild regularity assumption on the singular set, namely

lim sup
r↓0

L m({x ∈ Ω : dist(x, Su) ≤ r})
L n(Bn

1 )rn
= H m−n(Su). (1.3)

In order to conclude the proof of the Γ -convergence of Eε to E we would need to know the density in energy of
the set of GSBnV maps satisfying (1.3). In the codimension 1 case this property was deduced by the regularity
of minimizers of the Mumford–Shah energy, for which a lower bound on the (m− 1)-dimensional density of the
singular set is available. The analogous density property as well as a regularity result for minimizers of E will
be subject to further investigation.

In Section 7 we prove an analog approximation result where we impose a fixed boundary condition to both
u and the approximating sequence (uε). In the case Su ∩ ∂Ω �= ∅ then the transition made by v takes place
partially outside the domain Ω, which translates in a loss of mass in the limit energy.

Finally in the last section we discuss a possible generalization to general Lagrangians, featuring a polyconvex
integrand for the bulk part and where the size term is weighted by a continuous density. Growth and convexity
assumptions will be crucial to extend the results of the previous sections to this broader class of energies.

2. Distributional jacobians

We begin by fixing some basic notions and recalling some properties of distributional jacobians: we will
assume, if not otherwise specified, that Ω is a bounded open subset of R

m with boundary of class C1, that
m ≥ n are positive integers and that p and s are positive exponents satisfying

1
s

+
n− 1
p

≤ 1, s < ∞ : (2.1)

observe that this limitation allows p to be smaller than the critical exponent n.
As customary the symbol ΛkR

m will denote the space of k-vectors of R
m. We will let

Ok = {L : R
m → R

m : L = Lt, L2 = L, rk(L) = k}
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be the space of orthogonal projections of rank k, for 1 ≤ k ≤ m. Given a linear map L : R
m → R

n we adopt for
the collection MkL of determinants of k × k minors of L the following sign convention:

MkL :=
(
e1 ∧ . . . ∧ em Li1 ∧ . . . ∧ Lik

)
{i1<...<ik}⊂{1,...,n}.

In this way we group the minors with the same rows in a single element of Λm−kR
m. We let ML =

(M1L, . . . ,MnL) be the vector minors of every rank; κ :=
∑n

k=1

(
m
k

)(
n
k

)
will be its dimension. Given w ∈ R

κ

we let wk be the variables relative to k × k minors. For our purposes we will need to measure the length of
ν ∈ ΛkR

m so that
|ν| = sup

π∈Ok

|ν dπ| = sup
π∈Ok

|〈dπ, ν〉| : (2.2)

it can be proved that the Euclidean norm satisfies this property, see [10, 24].
Weak convergence in the Lp spaces will be customarily denoted with the symbol ⇀: in particular in the

non-reflexive case p = 1 this is the convergence against fixed L∞ functions. Sobolev maps u : Ω ⊂ R
m → R

n

are known to possess an approximate differential ∇u(x) ∈ R
n×m at almost every point x ∈ Ω, see [43],

Theorem 3.4.2.
We will denote by Fk(Ω) and Mk(Ω) the spaces respectively of flat and finite mass k-dimensional currents

in an open subset Ω ⊂ R
m (see [9, 24, 26]). The action of a current T on a differential form ψ will be denoted

by 〈T, ψ〉, and weak* convergence (that is: pointwise convergence of the functionals 〈Th, ψ〉 → 〈T, ψ〉 for every
fixed compactly supported smooth differential form ψ) will be denoted by ∗

⇀. The same notation is adopted for
weak* convergence of measures. The top dimensional m-current representing the Lebesgue integration with the
standard orientation on R

m will be denoted by Em:

Em(ϕdx1 ∧ . . . ∧ dxm) =
∫

Rm

ϕ(x)dL m(x).

To our knowledge the notions of distributional jacobian and BnV function were defined first in [31]: the basic
necessary assumption on u to give this definition is membership to Ẇ 1,p ∩ Ls = {u ∈ Ls,∇u ∈ Lp}.
Definition 2.1 (distributional jacobian and BnV functions). Let u ∈ Ẇ 1,p ∩ Ls(Ω,Rn). We denote by j(u)
the (m− n + 1)-current

〈j(u), ω〉 := (−1)n

∫
Ω

u1du2 ∧ . . . ∧ dun ∧ ω, (2.3)

where ω is a smooth (m− n+ 1)-form with compact support in Ω; we define the distributional jacobian of u as
the (m− n)-dimensional flat current

Ju := ∂j(u) ∈ Fm−n(Ω).

We say that a map u ∈ Ẇ 1,p ∩ Ls belongs to BnV if its distributional jacobian Ju has finite mass (and hence
it can be represented by a Radon measure).

Few observation are in order: first of all the integrability assumption u ∈ Ẇ 1,p ∩Ls ensures that (2.3) is well-
defined; observe that for p ≥ mn

m+1 Ju is defined for u ∈ W 1,p, since in this case W 1,p ⊂ Ls for some sufficiently
large exponent s satisfying (2.1), by Sobolev embedding. Notice also that this constraint allows the case p < n.
Since j(u) is explicitly represented as the integration against a Λm−n-valued L1 function, Ju belongs to the
space of flat currents Fm−n(Ω) (see [24], 4.1.18 and [10] for a proof of this fact). Regarding the convergence
properties of jacobians, we consider the following flat norm on k-currents

F(T ) := sup
{〈T, ψ〉 : ψ ∈ C∞

c (Ω,Λk
R

m), max{‖ψ‖∞, ‖dψ‖∞} ≤ 1
}

:

given uh, u ∈ Ẇ 1,p ∩ Ls(Ω,Rn) we have

uh → u in Ls(Ω,Rn), ∇uh ⇀ ∇u in Lp(Ω,Rn×m) ⇒ F(Juh − Ju) → 0, (2.4)
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hence weakly* in the sense of currents, compare [10]. If moreover (uh) ⊂ BnV and M(Juh) = ‖Juh‖(Ω) ≤
C < ∞ then u ∈ BnV and the convergence takes place in the sense of measures. In particular if p ≥ n, by
convolution every function u ∈ Ẇ 1,p ∩ Ls has a sequence (uh) ⊂ C∞ approximating u strongly in the Sobolev
space W 1,n

loc : since ω has compact support passing to the limit in the integration by parts formula

〈Juh, ψ〉 = (−1)n

∫
Ω

u1
hdu2

h ∧ . . . ∧ dun
h ∧ dψ =

∫
Ω

du1
h ∧ du2

h ∧ . . . ∧ dun
h ∧ ψ

we obtain that Ju = Em (−1)n(m−n)du1 ∧ . . . ∧ dun. In particular if the gradient ∇u has a sufficiently high
summability, then Ju is an absolutely continuous measure. On the other hand when p < n there are several
examples of functions whose jacobian is not in L1: for instance the “monopole” function u(x) := x

|x| satisfies
Ju = L n(B1)�0�, where �0� is the Dirac mass in the origin. More complicated examples, including maps such
that Ju has infinite mass or such that Ju is not even a Radon measure, are presented in [3,10,31,37]. We finally
remark that in our paper membership to BnV , or to any other space whose definition involves Ju, implicitly
assumes u ∈ Ẇ 1,p ∩ Ls, for p, s as in (2.1).

Distributional jacobians of BnV functions, being Λm−n-valued measures, satisfy a decomposition in three
mutually singular parts (see [8, 20, 31]):

Ju = ν · L m + Jcu + θ · H m−n Su

where

• ν = dJu
dL m ∈ L1(Ω,Λm−n(Rm)) is the Radon Nikodym derivative of Ju with respect to L m;

• θ ∈ L1(Ω,Λm−n(Rm),H m−n) is a measurable function and Su is a H m−n σ-finite subset of Ω;
• ‖Jcu‖(F ) = 0 whenever H m−n(F ) < ∞.

It can be proved that

ν(x) = Mn∇u(x) = e1 ∧ . . . ∧ em du1 ∧ . . . ∧ dun ∈ Λm−n(Rm)

at L m-almost every point x ∈ Ω (see [21,36]). The set Su is unique up to H m−n-negligible sets, by intersecting
it with {|θ| > 0}; moreover Su is H m−n-countably rectifiable (see [20]). In analogy with the codimension one
case we denote SBnV (Ω) the subset of BnV (Ω) of functions such that Jcu = 0. This space enjoys a closure
property proved in [20]:

Theorem 2.2 (closure theorem for SBnV ). Let us consider u, uk ∈ BnV (Ω,Rn) with Ω ⊂ R
m and suppose

that

(a) uh → u strongly in Ls(Ω,Rn) and ∇uh ⇀ ∇u weakly in Lp(Ω,Rn×m),
(b) if we write

Juh = νh · L m + θh · H m−n Suh

then |νh| are equiintegrable in Ω and H m−n(Suh
) ≤ C < ∞.

Then u ∈ SBnV (Ω,Rn) and

νh ⇀ ν weakly in L1(Ω,Λm−n(Rm)), H m−n(Su) ≤ lim inf
h

H m−n(Suh
).

As explained in [24], 4.2 and [9], every flat current T ∈ Fk(Ω) can be sliced via a Lipschitz map π ∈
Lip(Ω,R�), � ≤ k: the result is a collection of currents

〈T, π, x〉 ∈ Fk−�(Ω) defined for L �-a.e. x ∈ R
�
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satisfying several properties. Amongst them we recall

T dπ =
∫

R�

〈T, π, x〉dL �(x),

〈T, π, x〉 is concentrated on π−1(x) for L �-a.e. x ∈ R
�,∫

R�

F(〈T, π, x〉) dL �(x) ≤ Lip(π)�F(T ),

and we refer to [24], 4.2.1 and to [11] for a general account in the Euclidean and general metric setting. We aim
to apply this operation to Ju ∈ Fm−n(Ω) in the special case � = m−n, thus reducing it to 0-dimensional slices;
moreover we want to relate those slices to the jacobian of the restriction J(u|π−1(x)). Let therefore π ∈ Om−n:
for each x ∈ π(Rm) we let ix : R

n → R
m be the orthogonal injection of R

n onto π−1(x). In [20], the author
proved the following slicing Theorem for jacobians:

Theorem 2.3 (Slicing). Let u ∈ Ẇ 1,p∩Ls(Ω,Rn) and let π ∈ Om−n. Then for L m−n-almost every x ∈ R
m−n

〈Ju, π, x〉 = (−1)(m−n)nix#(Jux), (2.5)

where ux = u ◦ ix. Moreover u ∈ BnV (Ω,Rn) if and only if for every π ∈ Om−n the following two conditions
hold:

(i) ux ∈ BnV (Ωx,Rn) for L m−n-almost every x ∈ R
m−n,

(ii)
∫

π(Ω)

‖〈Ju, π, x〉‖(Ωx) dL m−n(x) < ∞,

where Ωx = Ω ∩ π−1(x). If u ∈ BnV (Ω,Rn) the slicing property (2.5) holds separately for the absolutely
continuous part, the Cantor part and the jump part of Ju, namely:

• 〈Jau, π, x〉 = (−1)(m−n)nix#(Jaux),
• 〈Jcu, π, x〉 = (−1)(m−n)nix#(Jcux),
• 〈Jju, π, x〉 = (−1)(m−n)nix#(Jjux).

Since we will work with functions whose jacobian does not have a Cantor part, it is useful to notice that in
order to check that some function u belongs to SBnV it is sufficient to check that, along with the integrability
assumption (ii), for almost every slice Jux has no Cantor part. Moreover in the general theory of current in
metric spaces the bound (ii) would be required uniform in π, see [7, 10]; in the Euclidean space it is of course
enough to check such property for

(
m
n

)
linearly independent projections.

2.1. A new class of maps related to size

In order to study a minimization problem it is necessary to consider, along with the topology, the natural
domain of the functional, and to understand the potential limit points of energy-bounded sequences. As an-
ticipated in the introduction our functional E penalizes the size of the singular set of Ju, regardless of the
multiplicity function θ. This lack of control on the mass of Ju, which already appears in Theorem 2.2 when we
require u ∈ BnV , forces us to extend the notion of admissible maps beyond BnV , through the concept of size.
In general it is possible to define a measure-theoretic quantity S(T ), called size of T , for flat currents T ∈ Fk(Ω)
with possibly infinite mass. This quantity was introduced in [9], borrowing some ideas already used by Hardt
and Rivière in [30] and Almgren [5] and agrees with the classical notion of size for finite mass currents, namely

S(T ) = H m−n
({Θm−n(‖T ‖, ·) > 0}), T ∈ Mk(Ω) ∩ Fk(Ω)

as in [25]. The main idea behind this to detect the support of the 0-dimensional slices of T and then to optimize
the choice of projection π.
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Definition 2.4 (size of a flat current). We say that T ∈ Fk(E) has finite size if there exists a positive Borel
measure μ such that

H 0 spt(T ) ≤ μ for k = 0,

μT,π :=
∫

Rk

H 0 spt〈T, π, x〉dL k(x) ≤ μ ∀π ∈ Ok for k ≥ 1.

The choice of μ can be optimized by choosing the least upper bound of the family {μT,π} in the lattice of
nonnegative measures:

μT :=
∨

π∈Ok

μT,π =
∨

π∈Ok

∫
Rk

H 0 spt〈T, π, x〉dL k(x).

We set S(T ) := μT (Ω).

It can be proved (see [9]) that every flat k-current with finite size has a unique (up to null sets) countably
H k-rectifiable set called set(T ) where μT is concentrated, which satisfies H k(set(T )) = S(T ). The reader can
find an example of flat current having finite size but infinite mass in [10, 35].

The natural space for our problem is the set of Sobolev functions u with the integrability expressed in (2.1),
whose jacobian can be split in the sum of two parts:

• one is an m-dimensional current R of finite mass, such that the measure ‖R‖ is absolutely continuous with
respect to L m;

• the other one is an (m− n)-dimensional flat chain T of finite size.

Definition 2.5 (functions of special jacobian). The space of function of special jacobian is

GSBnV (Ω) =
{
u ∈ Ẇ 1,p ∩ Ls(Ω,Rn) : Ju = R + T, M(R) + S(T ) < ∞, ‖R‖ � L m

}
.

This space is clearly meant to mimic the aforementioned SBnV class. Thanks to the relation between the
slices of Ju and the jacobian of the restrictions expressed by (2.5), if u ∈ GSBnV (Ω) and π ∈ Om−n we can
observe that for almost every x the slice 〈Ru, π, x〉 has finite mass and is absolutely continuous with respect to
H n π−1(x), while by Definition 2.4 S(〈Tu, π, x〉) < ∞. Therefore ux ∈ GSBnV (Ωx) for L m−n-almost every
x ∈ R

m−n. In the following propositions we describe some useful properties of the class GSBnV (Ω).

Proposition 2.6 ([10], Lem. 3.0.5). If m = n then GSBnV (Ω) = SBnV (Ω).

The last Proposition shows that the difference between the spaces GSBnV (Ω) and SBnV (Ω) relies on the
failure of the integrability condition (ii) in Theorem 2.3. Moreover, since the Radon–Nikodym decomposition
of a measure into the sum of an absolutely continuous and a singular part is unique, by slicing also R and T
are uniquely determined in the decomposition. Therefore we can write Ju = Ru + Tu, so that set(Tu) is a well
defined countably H m−n-rectifiable set. In agreement with the scalar case n = 1 we let

Su := set(Tu)

be the singular set of the map u. Moreover the pointwise characterization of Ru also holds for GSBnV maps.

Proposition 2.7 (Det = det in the GSBnV class, [10], Prop. 3.2.1). Let u ∈ GSBnV (Ω) and write Ju =
Ru + Tu as in Definition 2.5. Then L m-almost everywhere

dRu

dL m
= Mn∇u.
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The fundamental Theorem on the space GSBnV is the following compactness result:

Theorem 2.8 (compactness for the class GSBnV , [10], Thm. 4.0.3). Let Ψ : [0,∞) → [0,∞) be a convex
increasing function satisfying lim

t→∞Ψ(t)/t = ∞. Let (uh) ⊂ GSBnV (Ω) satisfy uh → u in Ls(Ω,Rn) and

∇uh ⇀ ∇u weakly in Lp(Ω,Rn×m). Assume that the jacobians Juh = Ruh
+ Tuh

satisfy

sup
h

∫
Ω

Ψ

(∣∣∣∣dRuh

dL m

∣∣∣∣
)

dL m + S(Tuh
) < ∞.

Then u ∈ GSBnV (Ω) and, writing Ju = Ru + Tu,

dRuh

dL m
⇀

dRu

dL m
weakly in L1(Ω,Λm−nR

m), (2.6)

S(Tu) ≤ lim inf
h

S(Tuh
).

In the sequel it will be handier to have a name for the space of function of bounded n-variation with absolutely
continuous jacobian:

Definition 2.9 (regular maps). We let

Rn(Ω) := {u ∈ BnV (Ω) : ‖Ju‖ � L m}

be the space of regular maps.

We have now all the elements to define our Mumford–Shah energy of codimension higher than one.

Definition 2.10. Let γ > 1 and σ > 0. For every u ∈ GSBnV (Ω) we set

E(u,Ω) =
∫

Ω

|∇u|p + |Mn∇u|γdx + σH m−n(Ω ∩ Su).

It has been proved in [10] the following existence theorem, even for a broader class of Lagrangians, and for
several notions of boundary conditions. Here we report the version most suitable to the scope of this paper.

Theorem 2.11 (existence of minimizers for the Dirichlet and Neumann problems). Let Ω be a regular open
and bounded subset of R

m and let U be an open neighborhood of Ω. Let φ ∈ GSBnV (U) be a given function and
suppose p∗ = mp

m−p > s. Then the minimum problem

inf
{
E(u,Ω) : u ∈ GSBnV (U), u = φ in U \ Ω

}
(2.7)

has a solution. Similarly for the Neumann problem if r > s and g ∈ Lr(Ω,Rn) is given, then

inf
{
E(u,Ω) +

∫
Ω

|u− g|r dx : u ∈ GSBnV (Ω)
}

(2.8)

has a solution.

2.2. Minkowski content

As Theorem 3.7 below involves the concept of Minkowski content, we here briefly review its definition and
main properties.
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Definition 2.12. Let S ⊂ R
m and let k ∈ [0,m] be and integer. The lower and upper Minkowski contents of

S in Ω are defined respectively as

Mk
∗Ω(S) = lim inf

r↓0
L m({x ∈ Ω : dist(x, S) ≤ r})

L m−k(B1)rm−k
, (2.9)

M∗k
Ω (S) = lim sup

r↓0

L m({x ∈ Ω : dist(x, S) ≤ r})
L m−k(B1)rm−k

, (2.10)

where L m−k(B1) is the measure of the unit ball in R
m−k. We omit the subscript when Ω = R

m. If Mk
∗(S) =

M∗k(S) we define the Minkowski content of S as this common value.

We must observe that neither Mk∗ nor M∗k is a measure, and that they both give the same value to a set and
its closure. It is natural to compare the upper and lower Minkowski contents with the k-dimensional Hausdorff
measure: it can be proved (see [24], 3.2.37-39, [8], 2.101) that for every countably H k-rectifiable and closed
set S

Mk
∗(S) ≥ H k(S).

By inner regularity of the Hausdorff measure the last inequality holds also relative to Ω. Various assumptions
on S besides rectifiability are possible in order to have that Mk(S) = H k(S). One of the most general is the
following:

Proposition 2.13 ([8], Prop. 2.104). Let S be a countably H k-rectifiable set such that

ν(Bρ(x)) ≥ cρk ∀x ∈ S ∀ρ ∈ (0, ρ0) (2.11)

for a suitable Radon measure ν � H k and c, ρ0 > 0. Then

Mk(S) = H k(S).

Note that the equality implies that H k(S) = H k(S). To ease the notation we will denote Sr = {x ∈ Ω : 0 <
dist(x, S) ≤ r} and V (r) = L m(Sr). Let S ⊂ R

m be a closed set, and consider the distance function from it.
Then (see [24], 3.2.34)

|∇dist(·, S)| = 1 L m-a.e. in {dist(·, S) > 0}. (2.12)

Moreover the following property holds:

Lemma 2.14. The function V (t) = L m({0 < dist(·, S) ≤ t}) is absolutely continuous and

V ′(t) = H m−1({x ∈ Ω : dist(x, S) = t})
for L 1-almost every t > 0.

Proof. Recall the Coarea formula [24], 3.2.11-12: if f : Ω → R is a Lipschitz function and g : Ω → R is a
non-negative Borel function, then∫

Ω

g(x)|∇f(x)| dx =
∫ +∞

0

∫
{f=t}

g dH m−1 dt. (2.13)

In particular taking f(x) = dist(x, S) and g the characteristic function of the set {dist(·, S) ≤ t} we obtain that
for every t > 0

V (t) =
∫ t

0

H m−1(Ω ∩ {dist(·, S) = s})ds.

Therefore V (t) is an absolutely continuous function with

V ′(t) = H m−1({x ∈ Ω : dist(x, S) = t})
L 1-almost everywhere. �
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3. Variational approximation

In this section we state our main approximation theorem. We start by recalling the fundamental features of
the variational convergence we will use, the Γ -convergence, and we refer to [16,17] for a thorough presentation.
Let X be a separable metric space and let a sequence of functions Fh : X → [0,∞] be given. We define the
upper and the lower Γ -limits as follows:

F (x) = (Γ − lim inf
h→∞

Fh)(x) = inf{lim inf
h→∞

Fh(xh) : xh → x}, (3.1)

F (x) = (Γ − lim sup
h→∞

Fh)(x) = inf{lim sup
h→∞

Fh(xh) : xh → x}. (3.2)

Both F and F are lower semicontinuous by construction, and we say that Fh Γ -converges to F if F = F . The
statement Γ − limh Fh = F is equivalent to the fulfillment of the following two conditions: for every x ∈ X

∀xh → x we have lim inf
h

Fh(xh) ≥ F (x), (3.3)

∃xh → x such that lim sup
h

Fh(xh) ≤ F (x).

The following Theorem describes the fundamental properties of this type of convergence, in particular the
behaviour of sequences of minima:

Theorem 3.1. Assume Fh Γ -converges to F .

(a) Let th ↓ 0. Then any cluster point of the sequence of sets

{x ∈ X : Fh(x) ≤ inf
X

Fh + th}

minimizes F .
(b) Assume also that Fh are lower semicontinuous, and that for every t ≥ 0 there exists a compact set Kt ⊂ X

such that
{Fh ≤ t} ⊂ Kt.

Then every function Fh has a minimizer, and any sequence of minimizers admits a subsequence converging
to some minimizer of F .

(c) Given a continuous function G : X → [0,∞] we have

Γ − lim inf
h

(Fh + G) = (Γ − lim inf
h

Fh) + G,

Γ − lim sup
h

(Fh + G) = (Γ − lim sup
h

Fh) + G.

The following remark recalls a useful tool in proving Γ -convergence results.

Remark 3.2. Let X ′ ⊂ X and F, Fh : X → R as above: we say that X ′ is dense in energy in X if for every
x ∈ X there exists a sequence (x′

h) ⊂ X ′ such that x′
h → x and F (x′

h) → F (x). A simple diagonal argument
shows that in order to prove Γ − limFh = F , whilst already knowing the Γ − lim inf inequality F ≤ F (namely
the validity of (3.3)), it is enough to prove that for every δ > 0 and x ∈ X ′ there exists xh → x such that
lim suph Fh(xh) ≤ F (x) + δ.

3.1. Main theorem

We introduce now the function spaces involved in our approximation Theorem. Given an open set U ⊂ R
n

we let B(U) be the space of Borel functions ranging in [0, 1]:

B(U) = {v : U → [0, 1] : v is a Borel function} ,
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endowed with a distance that induces the convergence in measure, namely:

d(v, v′) =
∫

Ω

|v − v′|
1 + |v − v′|dx.

We want to approach the energy E(u,Ω) by a sequence Eh(uh, vh, Ω) where the functions uh belong to Rn(Ω),
namely Juh = Ruh

= Mn∇uhL m. Our function spaces will be the following:

Definition 3.3. We define the space X(Ω) := Ls(Ω,Rn) ×B(Ω) with the following convergence notion:

(uh, vh) → (u, v) ⇐⇒ uh → u in Ls(Ω,Rn), vh → v in measure. (3.4)

The subspace Y (Ω) will be:
Y (Ω) := Rn(Ω) ×B(Ω) ⊂ X(Ω),

endowed with the same topology.

The convergence (3.4) is clearly metrizable. We also introduce two subspaces of X(Ω) and Y (Ω) where the
trace is fixed in a strong sense:

Definition 3.4. Given U � Ω open and φ ∈ Ls(U) we let

Xφ = {(u, v) ∈ X(U) : u = φ in U \Ω},
Y φ = {(u, v) ∈ Y (U) : u = φ in U \Ω}.

Following [12, 13, 33], we introduce a Modica–Mortola type energy to approximate the size term S(Tu) =
H m−n(Su ∩ Ω). Observe that the parameter ε is present with suitable exponents in order for the energy to
concentrate on (m− n)-dimensional sets: in particular it concentrates on points if m = n.

Definition 3.5. Let W ∈ C1(R) be a nonnegative convex potential vanishing only at 0 and let q > n be a
given exponent. If v ∈ B(Ω) we set

MMε(v,Ω) =
∫

Ω

εq−n|∇v|q +
W (1 − v)

εn
dx.

Note in particular that W is increasing in the positive real axis. We are now ready to introduce our family of
energies:

Definition 3.6. Let γ > 1 and q > n be fixed exponents. We set, for (u, v) ∈ X(Ω):

E(u, v,Ω) =

⎧⎪⎨
⎪⎩
∫

Ω

|∇u|p + |Mn∇u|γdx + σH m−n(Su ∩Ω) if u ∈ GSBnV (Ω) and v = 1,

+∞ otherwise,

and

Eε(u, v,Ω) =

⎧⎪⎨
⎪⎩
∫

Ω

|∇u|p + (v + kε)|Mn∇u|γdx + MMε(v,Ω) for (u, v) ∈ Y (Ω),

+∞ otherwise,

where the constant σ is defined by the minimum problem 4.1 and kε is an infinitesimal faster than εγ .
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The first functional E(u, v,Ω) is clearly a trivial extension to X(Ω) of Definition 2.10, as E(u, 1, Ω) = E(u,Ω).
We fix once and for all a sequence εh of positive numbers converging to zero and to simplify the notation we
write Eh instead of Eεh

. We will also write

F (u, 1, Ω) = F (u,Ω) =
∫

Ω

|∇u|p + |Mn∇u|γ dx,

Fε(u, v,Ω) =
∫

Ω

|∇u|p + (v + kε)|Mn∇u|γ dx

for the part of the energy explicitly depending on u.
We can now state our main Theorem: we prefer to present separately the lower and upper limit part of the

Γ -convergence, since it is more clear where the hypotheses are used.

Theorem 3.7. Let Ω be a bounded open subset of class C1 of R
m and suppose (2.1) and

s ≥ np

n− p
, 1 < γ ≤ 1

n−1
p + 1

s

, q > n.

(a) For every sequence
(
(uh, vh)

) ⊂ Y (Ω) such that (uh, vh) → (u, v) in X(Ω) we have

lim inf
h→∞

Eh(uh, vh, Ω) ≥ E(u, v,Ω);

moreover
lim inf
h→∞

Eh(uh, vh, Ω) < ∞ ⇒ u ∈ GSBnV (Ω) and v = 1.

(b) For every u ∈ GSBnV (Ω) such that E(u, 1, Ω) < ∞ and M∗m−n(Su) = H m−n(Su), there exists a sequence(
(uh, vh)

) ⊂ Y (Ω) such that (uh, vh) → (u, 1) in X(Ω) and

lim sup
h→∞

Eh(uh, vh, Ω) ≤ E(u, 1, Ω).

Note that in particular the restrictions of Eh and E to the subspace

Z(Ω) = {u ∈ GSBnV (Ω) : M∗m−n
Ω (Su) = H m−n(Su)} ×B(Ω)

satisfy (with the convergence (3.4))
Γ − lim

h
Eh

Z(Ω)
= E

Z(Ω)
.

We start the analysis on the whole family of energies (Eh) by proving that at a fixed positive scale εh the
functional Eh has a minimizer in Y (Ω), once we assign suitable Dirichlet or Neumann boundary conditions.

Theorem 3.8. Let C ≥ 0 and h ∈ N be fixed. The sets
{
(u, v) ∈ Y (U) : u = φ in U \Ω, Eh(u, v, U) ≤ C

}
; (3.5)

with U a neighborhood of Ω, p∗ > s and φ ∈ GSBnV (Ω); and

{
(u, v) ∈ Y (Ω) : Eh(u, v,Ω) +

∫
Ω

|u− g|r dx ≤ C
}

(3.6)

with g ∈ Lr(Ω,Rn) and r > s, are compact subsets of X(Ω).
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Proof. Recall that it is sufficient to check sequential compactness, since (3.5) and (3.6) are subsets of the metric
space X(Ω). As the product of two precompact spaces is precompact, we can examine separately the bounds
on u and v: ∫

U

|∇u|p dx ≤ C, MMh(v,Ω) ≤ C.

Concerning u the gradients ∇u are bounded in Lp, and since

‖∇u−∇φ‖Lp(U,Rn×m) and ‖u− φ‖W 1,p(U,Rn)

are equivalent, by Sobolev embedding the set of u−φ’s is precompact in Ls, and so is the set of u’s since φ ∈ Ls.
Similarly in the Neumann problem the Lp gradient bound and the Lr bound on u give precompactness in every
Lebesgue space of exponent strictly smaller than max{r, p∗}, in particular in Ls. Clearly the constraint u = φ

outside Ω in (3.5) is preserved. To get compactness for v we can apply Young’s inequality ab ≤ as

s + bt

t with
s = q

n and t = q
q−n to the two integrand addenda:

MMh(v,Ω) =
∫

Ω

εq−n
h |∇v|q +

W (1 − v)
εn

h

dx ≥

≥
∫

Ω

( q
n
εq−n

h |∇v|q
)n

q

(
q

q − n
ε−n

h W (1 − v)
) q−n

q

dx

= cn,q

∫
Ω

|∇v|nW (1 − v)
q−n

q dx = c′n,q

∫
Ω

∣∣∇[F (1 − v)]
∣∣n dx, (3.7)

with F (t) =
∫ t

0 W
q−n
qn (s)ds. Since Ω is bounded and 0 ≤ v ≤ 1 we can use the compact embedding W 1,n(Ω) ↪→

Ln(Ω) to deduce that the set of F (1 − vh)’s is precompact in Ln, hence the set of v’s is precompact for
the convergence in measure topology since F has a continuous inverse. It remains to prove the closedness
of (3.5) and (3.6): this is equivalent to show the respective energies being lower semicontinuous. Suppose
then

(
(ui, vi)

) ⊂ X(Ω) a convergent sequence and h fixed. The phase transition term MMh is clearly lower
semicontinuous (see the proof of Prop. 4.1); so are also

∫
Ω |∇u|p and

∫
Ω |u− g|r. Moreover since kh > 0

∫
Ω

|Mn∇ui|γ dx ≤ C

kh
< ∞,

therefore up to subsequences we have Jui
∗
⇀ Ju, and by Theorem 2.8 Ju � L m, thus u ∈ Rn(Ω). Furthermore

Mn∇ui ⇀ Mn∇u weakly in L1: we claim that∫
Ω

(v(x) + kh)|Mn∇u(x)|γ dx ≤ lim inf
i

∫
Ω

(vi(x) + kh)|Mn∇ui(x)|γ dx.

In fact following [29], Theorem 4.4, since vi → v in measure for every δ > 0 there exists G � Ω compact such that
vi → v uniformly in G, v and Mn∇u are continuous in G and

∫
G

(v+kh)|Mn∇u|γdx ≥ ∫
Ω

(v+kh)|Mn∇u|γdx−δ.
Therefore

lim inf
i

∫
Ω

(vi(x) + kh)|Mn∇ui(x)|γdx ≥ lim inf
i

∫
G

(vi + kh)|Mn∇u|γdx

+ lim inf
i

∫
G

γ(v + kh)|Mn∇u|γ−2〈Mn∇u,Mn∇uh −Mn∇u〉dx

+ lim inf
i

∫
G

γ(vi − v)|Mn∇u|γ−2〈Mn∇u,Mn∇uh −Mn∇u〉dx :
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The first integral tends to
∫

G(v + kh)|Mn∇u|γdx by uniform convergence; the second integral is infinitesimal
by weak convergence, the term γ(v + kh)|Mn∇u|γ−2Mn∇u being bounded; finally the last addendum can be
bounded by

γ‖Mn∇uh −Mn∇u‖L1(Ω)‖Mn∇u‖γ−1
L∞(G) sup

G
|vi − v|

which is infinitesimal by uniform convergence. Therefore we can bound below the lower limit with
∫

Ω(v +
kh)|Mn∇u|γdx− δ: letting δ ↓ 0 we obtain the claimed property. �

In particular the previous Theorem guarantees that the energies (Eh) are equicoercive, because by (3.7) the
compactness of the set of v’s is obtained independently of h. As a consequence the functionals satisfy condition
(b) of Proposition 3.1, validating the choice of the topology 3.3 in the Γ -limit.

4. Optimal profile

In order to investigate the asymptotic behaviour of the functionals Eε it is useful to understand the behaviour
of the Modica–Mortola term, to single out the optimal profile and to study its properties. We consider the fixed
scale ε = 1.

Proposition 4.1. We define, for f ∈ W 1,q
loc (Rn),

I(f) =
∫

Rn

|∇f |q + W (f) dx.

The infimum
σ = inf

{
I(f)

∣∣ I(f) < ∞, f(0) = 1
}

(4.1)

is meaningful, positive and attained by a unique radial function w0 ∈ B(Rn) ∩ C0,α(Rn), with α = 1 − n
q ,

satisfying:
lim

x→∞w0(x) = 0. (4.2)

Proof. First of all it is important to specify that we implicitly set I(f) = ∞ whenever f does not possess weak
derivatives in L1

loc; moreover since q > n the constraint requirement f(0) = 1 in the minimization problem is
meaningful, because the Sobolev embedding Theorem (see [2], 4.12) ensures that a function f with I(f) < ∞ has
a pointwise continuous representative. We will always consider the continuous representative, without specifying
it anymore. Observe furthermore that since W is increasing in R

+ and nonnegative, by truncation we can reduce
to minimize the energy among functions in B(Rn) which are ranging in the interval [0, 1]. Take a minimizing
sequence (fh): again by Sobolev embedding Theorem the functions (fh) are uniformly Hölder continuous, and
equibounded on every compact subset thanks to the constraint fh(0) = 1. Hence by the Ascoli–Arzelà Theorem
the sequence is precompact in the topology of the local uniform convergence, and we can extract a subsequence
converging to w0 ∈ C0,α locally uniformly. Hence w0(0) = 1, W (fh) → W (w0) locally uniformly and it is not
difficult to check that ∇fh ⇀ ∇w0 in Lq

loc. By lower semicontinuity w0 achieves the infimum. Moreover a radial
monotone rearrangement decreases the energy (see [32, 41]) and by the strict convexity of the gradient part
there is only one minimizer, w0, and it is radial. Hölder continuity forces w0 to be positive on a small ball
around 0 implying that the minimum energy σ is strictly positive; for the same reason, since

∫
W (w0) < ∞,

equation (4.2) must be satisfied. �

Observe that I(f) = MM1(1 − f,Rn) for f ∈ B(Rn). As our optimal function w0 is radial it is worth
investigating its one dimensional profile. Setting w : [0,∞) → R, w(|x|) = w0(x) we have:

σ =
∫

Rn

|∇w0|q + W (w0) dx = H n−1(Sn−1)
∫ ∞

0

tn−1 [|w′(t)|q + W (w(t))] dt, (4.3)
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and the Euler–Lagrange equation in R
n \ {0} is

−qΔqw0 + W ′(w0) := −q div(|∇w0|q−2∇w0) + W ′(w0) = 0.

In radial coordinates it becomes

− q

tn−1

(
tn−1|w′(t)|q−2w′(t)

)′
+ W ′(w) = 0 (4.4)

outside the origin. We have the following Lemma:

Lemma 4.2. Let w : [0,∞) → R be the profile of the minimizer of (4.1). Then w is convex, belongs to
C1(0,+∞) ∩ C2({0 < w < 1}) and the following two properties hold:

lim
t→0

tn|w′(t)|q = 0, (4.5)

lim
t→+∞ tn[|w′(t)|q + W (w(t))] = 0. (4.6)

Proof. Since w is nonnegative and decreasing, and W ′ ≥ 0 by convexity, the Euler equation implies that

0 ≤ tn−1W ′(w) = q
(
tn−1|w′(t)|q−2w′(t)

)′
= −q(tn−1|w′(t)|q−1)′.

Both the functions tn−1|w′(t)|q−1 and 1
tn−1 are positive and decreasing. Hence multiplying them we get that

|w′| decreases, and since w′ is negative we obtain that w is convex. By monotonicity of |w′| and the finiteness
of the energy (4.3),

lim sup
t→0

tn|w′(t)|q ≤ lim sup
t→0

n

∫ t

0

sn−1|w′(s)|qds = 0.

Furthermore, since Z(t) := |w′(t)|q + W (w(t)) is decreasing, we have

lim sup
t→∞

1
n

(
1 − 1

2n

)
tnZ(t) ≤ lim sup

t→∞

∫ t

t
2

sn−1Z(s) ds ≤ lim sup
t→∞

∫ ∞

t
2

sn−1Z(s) ds = 0

by the finiteness of the energy (4.3), which proves (4.6). Finally in every interval (a, b) � {0 < w < 1} we have
that −∞ < w′ < w′(b) < 0, otherwise w would be a positive constant in the half line (b,+∞). Hence we can
extract the (q − 1)-st root without loosing any smoothness and bootstrap (4.4):

w ∈ C0,α(a, b) ⇒ W ′(w) ∈ C0(a, b) ⇒ w ∈ C2(a, b).

The same argument shows that w ∈ C1(0,+∞), since | · | 1
q−1 is continuous. �

In general if W ∈ Ck and w ∈ Cm(a, b) then W ′(w) ∈ Cm∧(k−1)(a, b), which gives w ∈ C(m∧(k−1))+2(a, b):
therefore starting from m = 1 we obtain w ∈ Ck+1({0 < w < 1}).

5. Γ -lower limit

In this section we aim to prove the first part of Theorem 3.7, regarding the Γ -lower limit of the sequence
(Eh):

Theorem 5.1. Let Ω be an open subset of R
m. For every sequence

(
(uh, vh)

) ⊂ Y (Ω) such that (uh, vh) → (u, v)
we have

lim inf
h→∞

Eh(uh, vh, Ω) ≥ E(u, v,Ω);

moreover
lim inf
h→∞

Eh(uh, vh, Ω) < ∞ ⇒ u ∈ GSBnV (Ω) and v = 1.

The proof will be achieved through a slicing argument, by first proving that in codimension m − n = 0 the
jacobians Juh concentrate around a finite number of points. Our definition of size outlined in the introduction
is well-suited to this slicing procedure, and a final localization result yields the proof.
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5.1. Proof in R
n

Let A be an open subset of R
n: to ease the exposition for any (u, v) ∈ Y (A) we let

Gh(u, v, A) =
∫

A

(v + kh)| det∇u|γdx +
∫

A

εq−n
h |∇v|q +

W (1 − v)
εn

h

dx

be the part of energy depending explicitly on v.

Theorem 5.2. Let A be an open subset of R
n and let ((uh, vh)) ⊂ Y (A), (u, v) ∈ X(Ω) satisfy (uh, vh) → (u, v)

and ‖∇uh‖p ≤ C. Assume also
lim inf
h→∞

Gh(uh, vh, A) < ∞. (5.1)

Then u ∈ GSBnV (A,Rn), v = 1 and

lim inf
h→∞

Gh(uh, vh, A) ≥
∫

A

| det∇u|γdx + σH 0(A ∩ Su).

First of all we extract a subsequence, not relabeled, that achieves the lower limit in (5.1) and such that ∇uh ⇀
∇u weakly in Lp. We notice right away that u ∈ W 1,p and v = 1; also by (2.4) we know that F(Juh − Ju) → 0,
hence Juh

∗
⇀ Ju as currents. We begin with the regular part, disregarding the positive infinitesimal kh:

Lemma 5.3. Assume that A is a bounded open subset of R
n with Lipschitz boundary. Then

lim inf
h→∞

∫
A

vh| det∇uh|γdx ≥
∫

A

| det∇u|γdx. (5.2)

Proof. Since A is regular and bounded, q > n and the norms ‖∇vh‖q are equibounded by Sobolev embedding
Theorem

[vh]Cα(A) ≤ C(A)ε−α
h ,

where α = 1− n
q and C(A) depends on the energy and on the regularity of A. We also fix a threshold t ∈ (0, 1):

by Hölder continuity there exists c0 = c0(C, t) > 0 independent of h such that for every x ∈ A ∩ {vh < t}

A ∩B(x, c0εh) ⊂ A ∩
{
vh <

1 + t

2

}
. (5.3)

We can then cover A ∩ {vh < t} with balls centered at every point having radius c0εh

5 : by Vitali’s covering
Lemma there is a countable disjoint subfamily F =

{
B(xi,

c0εh

5 )
}

such that⋃
i

B(xi, c0εh) ⊃ A ∩ {vh < t}.

Thanks to (5.3) we can estimate from below MMεh
of every such small ball:∫

A∩B(xi,
c0εh

5 )
εq−n

h |∇vh|q +
W (1 − vh)

εn
h

dx ≥ W

(
1 − t

2

)
L n

(
A ∩B

(
xi,

c0εh

5

))
εn

h

·

The latter quantity is bounded below independently of h because the Lipschitz boundary condition on A ensures
that L n

(
A ∩B

(
xi,

c0εh

5

)) ≥ cεn
h. The family F being disjoint, by the finiteness of the energy we argue that

there can be only a finite number N , independent of h, of such balls. Let us then extract a subsequence, not
relabeled, along which the balls are in constant number N and the centers {xh

i }, i = 1, . . . , N converge to points
x∞

i ∈ A. For every open set
A′ � A \

⋃
i

{x∞
i }
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we have that for h sufficiently large:

A′ ∩
⋃
i

B(xh
i , c0εh) = ∅ and vh

A′
≥ t.

The energy bound (5.1) allows to bound a superlinear power of the jacobians in A′

∫
A′

| det∇uh|γ dx ≤ C

t + 1

hence Theorem 2.8 gives
det∇uh ⇀ det∇u weakly in L1(A′). (5.4)

By lower semicontinuity

lim inf
h→∞

∫
A

vh| det∇uh|γdx ≥ lim inf
h→∞

∫
A′

vh| det∇uh|γdx ≥

≥ lim inf
h→∞

t

∫
A′

| det∇uh|γdx ≥ t

∫
A′

| det∇u|γdx. (5.5)

Finally letting A′ ↑ A \⋃i{x∞
i } and then t ↑ 1 we obtain the result. �

Remark 5.4. The same result of Lemma 5.3 holds without the regularity hypothesis on A. In fact it is sufficient
to consider a sequence of nested regular open subsets Aj ⊂ A invading A, apply the Lemma to Aj and then
let Aj ↑ A: the left hand side of (5.2) clearly decreases when restricted to each Aj , and the right hand side by
Monotone convergence Theorem increases to

∫
A
| det∇u|γdx.

Now we analyze the MMε term, and prove that around the potentially singular points of the limit function u
this energy concentrates. Observe that we still do not know that u ∈ GSBnV : Ju so far is only a flat current,
nevertheless chosen a fixed point x0 for almost every radius ρ the restriction Ju Bρ(x0) is meaningful and
furthermore F(Juh Bρ(x0)− Ju Bρ(x0)) → 0 (see [9], Sect. 2.2). With a slight abuse of notation we indicate
by Ju Bρ � L n the fact that M(Ju Bρ) < ∞ and ‖Ju Bρ‖ � L n: by definition this is satisfied if u ∈ Rn.

Lemma 5.5. Let ((uh, vh)), u and A as in Theorem 5.2, and fix x0 ∈ A. Suppose Ju Bρ(x0) �� L n for every
ρ > 0 such that Bρ(x0) ⊂ A. Then

lim inf
h→∞

MMh(vh, Bρ(x0)) ≥ σ ∀ρ > 0, (5.6)

where σ is defined as in (4.1).

Proof. Fix an arbitrary ρ as in the hypotheses and let us suppose for simplicity that x0 = 0: since Ju Bρ �� L n

we must have
lim

h→∞
inf
Bρ

vh = 0 ∀ρ > 0.

In fact if there were a radius ρ̄ and a subsequence (vh̄) bounded below by some δ > 0 in Bρ̄, we would have the
uniform bound suph̄

∫
Bρ̄

| det∇uh̄|γ dx ≤ Cδ−1. Therefore we could apply Theorem 2.8 with Ψ(t) = |t|γ : since
Juh̄ = det∇uh̄E

m � L m by the weak L1 convergence (2.6) the limit Ju Bρ̄ would otherwise be a current in
M0(Bρ̄) with absolutely continuous mass. The finiteness of the energy (5.1) guarantees that vh → 1 in measure
in Bρ. In order to show (5.6) we modify in Bρ the asymptotic profiles vh and we relate them to problem (4.1).
Let us perform the following radial monotone rearrangement of vh, denoted v∗h, which preserve the measure of
sublevels:

v∗h(x) := inf
{
t : |{vh < t} ∩Bρ| > L n(B1)|x|n

} ∀x ∈ Bρ.
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This rearrangement preserves the integral
∫

Bρ
W (1− v) by the Coarea formula (2.13), while the Lq norm of the

gradient decreases, see [32, 41]. We immediately have that

MMh(vh, Bρ) ≥ MMh(v∗h, Bρ) and v∗h → 1 in measure in Bρ.

In particular λh := v∗h
∣∣
∂Bρ

→ 1, and μh := infBρ v
∗
h = v∗h(0) → 0, hence we can extend v∗h equal to λh for

|x| ≥ ρ. The functions fh : R
n → R,

fh(y) :=
1

λh − μh

(
v∗h(εhy) − μh

)
(5.7)

satisfy

(a) fh(0) = 0,
(b) spt (1 − fh) ⊂ Bρ,
(c) 1 − v∗h(x) ≥ λh − v∗h(x) = (λh − μh)

(
1 − fh( x

εh
)
)
.

Let us now evaluate the MMh energy (recall W is monotone increasing):

MMh(vh, Bρ) ≥ MMh(v∗h, Bρ) =
∫

Bρ

εq−n
h |∇v∗h(x)|q +

W (1 − v∗h(x))
εn

h

dx (5.8)

(c)

≥
∫

Bρ

εq−n
h |∇v∗h(x)|q +

W (λh − v∗h(x))
εn

h

dx

≥
∫

Rn

(λh − μh)q|∇fh|q + W ((λh − μh)(1 − fh))dx.

By properties (a) and (b) the functions 1 − fh are competitors for problem (4.1) and λh − μh → 1, hence the
last integral is asymptotically greater or equal than the infimum σ. �

Proof of Theorem 5.2. Let Σ = {x ∈ A : Ju Bρ(x) �� L n for all Bρ(x) ⊂ A}. Then the superadditivity of
the lim inf together with (5.1) and Lemma 5.5 gives

H 0(Σ) ≤ 1
σ

lim inf
h

Gh(uh, vh, A).

Moreover Lemma 5.3 showed the existence of another finite set Υ such that Ju (A\Υ ) � L n. Hence necessarily
Σ ⊂ Υ and the flat defect current

T := (Ju− det∇uEm) A

is supported in Υ . By the general theory of flat currents (see [9], Thm. 3.4, [24], 4.1.18) M(T ) < ∞ and
T =

∑
xi∈Σ ai�xi�. In particular u ∈ GSBnV (A) and Su ⊂ Σ, so

H 0(Su ∩A) ≤ H 0(Σ).

Taking B � A\Σ open, and applying the superadditivity of the lower limit on open disjoint sets, as well as (5.2)
to B we obtain for some ρ sufficiently small (so that B ∩⋃x∈Σ Bρ(x) = ∅)

lim inf
h

Gh(uh, vh, A) ≥ lim inf
h

∫
B

vh| det∇uh|γdx

+
∑

x∈Su∩A

lim inf
h

∫
Bρ(x)∩A

εq−2
h |∇vh|q +

W (1 − vh)
ε2

h

dx

≥
∫

B

| det∇u|γdx + σH 0(Su ∩A).

Letting B ↑ A concludes the proof. �
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5.2. Reduction argument and proof of Theorem 5.1 for general m, n

In this paragraph we prove Theorem 5.1 from the results obtained in the previous paragraph in dimension
n. We will first use the slicing properties of the jacobians to reduce to the n-dimensional case discussed above,
and then we will optimize the choices of the slicing directions to conclude.

Proof. As a preliminary step let us extract a subsequence out of ((uh, vh)) such that the lower limit
lim infh Eh(uh, vh, Ω) is attained and such that (uh, vh) → (u, 1) rapidly in X(Ω):∑

h

‖uh − u‖Ls + d(vh, 1) < ∞.

This implies that given an orthogonal projection π ∈ Om−n, for L m−n-almost every x ∈ π(Ω)

uh(x, ·) → u(x, ·) in Ls(Ωx,Rn) and vh(x, ·) → 1 in measure in Ωx,

where we put Ωx := Ω ∩ π−1(x). Let us consider an arbitrary open subset A ⊂ Ω and let us fix a projection π
as above. Observe that the energy Eh is bounded along (uh, vh): using Fatou’s Lemma we obtain

lim
h→∞

Eh(uh, vh, Ω) ≥ lim inf
h→∞

Eh(uh, vh, A) ≥

≥
∫

π(A)

lim inf
h→∞

{∫
Ax

|∇yuh|p + vh| det∇yuh|γ + εq−n
h |∇yvh|q +

W (1 − vh)
εn

h

dy
}

dx.

In particular for L m−n-almost every x ∈ π(A)

lim inf
h

∫
Ax

|∇yuh(x, y)|p dy + Gh(uh, vh, A
x) ≤ C(x) < ∞.

For these x we can extract a subsequence (uh(k)), a priori depending on the point x, along which both the Lp

norm of ∇uh(k) and the n-dimensional energy Gh are bounded:

sup
k

∫
Ax

|∇yuh(k)|p dy + Gh(uh(k), vh(k), A
x) < ∞. (5.9)

This implies that
∇yuh(k)(x, ·) ⇀ ∇yu(x, ·) in Lp(Ax). (5.10)

Finally observe that the slicing Theorem 2.3 immediately gives that (uh(x, ·), vh(x, ·)) ∈ Y (Ax) almost every-
where. Theorem 5.2 implies that u(x, ·) ∈ GSBnV (Ax) and that

lim inf
h

Gh(uh, vh, A
x) ≥

∫
Ax

| det∇yu(x, ·)|γdy + σH 0(Ax ∩ Su(x,·));

integrating and applying Fatou’s Lemma on the left hand side we have

lim inf
h

Eh(uh, vh, A) ≥
∫

A

|∇u|p +
∫

π(A)

lim inf
h

Gh(uh(x, ·), vh(x, ·), Ax) dx ≥

≥
∫

A

|∇u|p +
∫

A

| det∇yu(x, ·)|γdydx + σ

∫
π(A)

H 0(Ax ∩ Su(x,·))dx.

Let us call
τπ(A) :=

∫
A

| det∇yu(x, y)|γdydx + σ

∫
π(A)

H 0(Ax ∩ Su(x,·))dx.
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the right hand side and E(A) = lim infh Eh(uh, vh, A). E(·) is a superadditive set function on open sets such that
E(A) ≤ E(Ω) < ∞ and each single τπ is a finite Borel measure; therefore taking disjoint open sets A1, . . . , Ak

and orthogonal projections π1, . . . , πk we have that∑
i

τπi(Ai) ≤
∑

i

E(Ai) ≤ E(Ω). (5.11)

By inner and outer regularity of τπi inequality (5.11) holds for generic disjoint Borel sets Bi instead of Ai, hence
the supremum

τ :=
∨
π

τπ (5.12)

is a finite Borel measure. In particular Mn∇u ∈ Lγ and since for every projection π slice and jacobian commute
according to Theorem 2.3, we have that the current T = (Ju −Mn∇uEm) Ω satisfies spt(〈T, π, x〉) ⊂ Su(x,·)
almost everywhere, so its size is finite. Hence u ∈ GSBnV (Ω). Finally since by Definition 2.4 the measures
μT and |Mn∇u|γL m are mutually singular and |MnL| = supπ |MnL dπ|, it is not difficult to prove that the
supremum τ equals

τ = |Mn∇u|γL m + σH m−n Su,

which concludes the proof. �

6. Γ -upper limit

This section is devoted to the proof of the upper limit inequality: our construction of the recovery sequence
will mimic the truncation argument presented in [12, 13]. Note that we only assume a mild geometric property
on the singular set Su expressed in terms of its Minkowski content. We provide an interior statement as well
as boundary statement, where differently from [12] we need to take care of any possible accumulation of the
singular set at the boundary. The limit energy must account for the possible loss of mass in the Modica–Mortola
term, due to the transition of v happening partially outside the domain. We finally generalize the form of the
functional in which the size term is weighted by a continuous density.

Theorem 6.1. Suppose Ω ⊂ R
m is a bounded set of class C1 and u ∈ GSBnV (Ω) with constraints

s ≥ np

n− p
, 1 < γ ≤ 1

n−1
p + 1

s

·

Let also (kh) be a positive sequence such that kh = o(εγ
h). If

E(u, 1, Ω) < ∞, M∗m−n
Ω (Su) = H m−n(Su) (6.1)

then there exists a sequence
(
(uh, vh)

) ⊂ Y (Ω) such that

(uh, vh) → (u, 1) and lim sup
h→∞

Eh(uh, vh, Ω) ≤ E(u, 1, Ω).

6.1. Proof of Theorem 6.1

We start by setting the approximating sequence (vh) for a generic L m-null set S ⊂ Ω satisfying

M∗m−n
Ω (S) = H m−n(S) < ∞. (6.2)

Let w(t) be the optimal profile of problem 4.1 and choose δh ↓ 0 such that kh(εhδh)−γ → 0. Let

wh(t) := min
{

w(t)
w(δh)

, 1
}
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so that wh(|x|) = 1 in Bδh
(0). Clearly w′

h(δh) is finite and I(wh) → I(w) as h → ∞. Moreover by the proof of
Lemma 4.2

|w′(t)|q + W (w(t))

is C1 and decreases to 0 for t → ∞: these properties hold true in (δh + ∞) for wh. Set

vh(x) = 1 − wh

(
d(x, S)

εh

)
, (6.3)

where d(x, S) = dist(x, S): note that vh → 1 in measure and that by equation (2.12)

|∇vh(x)| =
1
εh

∣∣∣∣w′
h

(
d(x, S)

εh

)∣∣∣∣
at almost every point x. Recall the notation Sr = {x ∈ Ω : 0 < dist(x, S) ≤ r} and V (r) = L m(Sr).

Proposition 6.2. The functions (vh) satisfy

vh = 0 on Sεhδh

and
lim sup

h→∞
MMh(vh, Ω) ≤ σM∗m−n

Ω (S).

Proof. The first statement is true by the definition (6.3). Looking at the energy

MMh(vh, Ω) =
∫

Ω

εq−n
h |∇vh|q +

W (1 − vh)
εn

h

dx

we observe right away that the integration on the set Sεhδh
in infinitesimal, since there vh is identically 0 and

so ∫
Sεhδh

εq−n
h |∇vh|q +

W (1 − vh)
εn

h

dx = W (1)
V (εhδh)

εn
h

→ 0.

Applying the Coarea formula (2.13) on the level sets of the distance function d(·, S) we can write

MMh(vh, Ω) = o(1) +
∫

Ω\Sεhδh

εq−n
h |∇vh|q +

W (1 − vh)
εn

h

dx

= o(1) +
∫ +∞

εhδh

[∣∣∣w′
h

(
t

εh

)∣∣∣q + W
(
wh

(
t

εh

))] V ′(t)
εn

h

dt

= o(1) +
∫ +∞

δh

[|w′
h(s)|q + W (wh(s))]

[V (εhs)]′

εn
h

ds.

Since Zh(s) := |w′
h(s)|q + W (wh(s)) is C1 we can integrate by parts∫ +∞

δh

Zh(s)
[V (εhs)]′

εn
h

ds = −
∫ +∞

δh

Z ′
h(s)

V (εhs)
εn

h

ds +
Zh(+∞)V (+∞) − Zh(δh)V (εhδh)

εn
h

.

As previously outlined Zh(+∞) = 0 and V (+∞) = L m(Ω), hence the second addendum is null; moreover
V (εhδh)

εn
h

≤ (M∗m−n
Ω (S)+ 1)L n(B1)δn

h and Zh(δh) = |w′
h(δh)|q +W (wh(δh)), so also the third term goes to 0 by

Lemma 4.2. The basic Assumption (6.2) on the Minkowski content of S implies that there exist infinitesimal
numbers ξh such that

V (s) ≤ L n(B1)M∗m−n
Ω (S)sn + ξhs

n ∀s ∈ [0, εhdiam(Ω)]. (6.4)
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Recall that Z ′
h(s) ≤ 0 in [δh,∞) and I(wh) → I(w) = σ. Then, integrating by parts

MMh(vh, Ω) = o(1) −
∫ +∞

δh

Z ′
h(s)

V (εhs)
εn

h

ds

≤ o(1) −
∫ +∞

δh

Z ′
h(s)(L n(B1)M∗m−n

Ω (S) + ξh)snds (6.5)

(4.5)(4.6)
= o(1) + n(L n(B1)M∗m−n

Ω (S) + ξh)
∫ +∞

δh

sn−1Zh(s)ds

= o(1) + (H n−1(Sn−1)M∗m−n
Ω (S) + nξh)

∫ +∞

δh

sn−1Zh(s)ds

= o(1) + M∗m−n
Ω (S) · I(wh) = o(1) + σM∗m−n

Ω (S). �

Remark 6.3. Observe that the same Proposition proves something more general, that will be useful in the
sequel: if w̄ is a radial profile such that Z̄(t) := |w̄′(t)|q + W (w̄(t)) is decreasing, then the sequence (vh)
constructed from w̄ as in (6.3) satisfies:

lim sup
h

MMh(vh, Ω) ≤ I(w̄(|x|))M∗m−n
Ω (S).

We now show how to construct the sequence (uh). Outside Sεhδh
the jacobian Ju is absolutely continuous, hence

there is no need to modify u there. We will only change u inside Sεhδh
with the scope of keeping∫

Ω

|∇(u− uh)|p dx

infinitesimal, and letting ∫
Sεhδh

|Mn∇uh|γ dx

diverge at a controlled rate, independently of the function u. Note that this is equivalent to show

Eh(uh, vh, Sεhδh
) =

∫
Sεhδh

|∇uh|p + kh|Mn∇uh|γ dx + W (1)
L m(Sεhδh

)
εn

h

→ 0

for suitable kh, because the last term is infinitesimal by (6.1). Suppose φ1 is a smooth function. If we multiply
only the first coordinate by φ1 and compute the jacobian determinant we obtain

∇(φ1u1, u2, . . . , un) = (φ1∇u1,∇u2, . . . ,∇un) + (u1∇φ1,∇u2, . . . ,∇un),

hence
J(φ1u1, u2, . . . , un) = φ1Ju + u1J(φ1, u2, . . . , un) (6.6)

in the sense of currents; also the following pointwise estimate holds for 1 ≤ k ≤ n:

|Mk∇(φ1u1, u2, . . . , un)|

≤
∣∣∣∣
(
n− 1
k

)
|Mk∇u|2 +

(
n− 1
k − 1

)
(‖φ1‖L∞ |Mk∇u| + ‖∇φ1‖L∞ |u1||Mk−1∇u|)2

∣∣∣∣
1
2

≤ cn,k

(
(1 + ‖φ1‖L∞)|Mk∇u| + ‖∇φ1‖L∞ |u1||Mk−1∇u|).
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Therefore if we truncate u by multiplying each component ui by smooth functions φi which satisfy spt(∇φi)∩
spt(∇φj) = ∅ for i �= j, we obtain that

φ � u := (φ1u1, φ2u2, . . . , φnun) = 0 in {φ = 0} =
⋂
i

{φi = 0},

|Mk∇(φ � u)| ≤ cn,k

(
(1 + ‖φ‖L∞)|Mk∇u| + ‖∇φ‖L∞ |u||Mk−1∇u|) (6.7)

because at each point for only one index j the gradient row ∇(φjuj) will present the non zero extra term uj∇φj .
Observe also that (6.6) implies that

if Su � {φ = 0} then J(φ1u1, . . . , φnun) � L m.

Finally note that if the supports of the gradients spt(∇φj) overlap then the jacobian of u � φ will in general
be bounded by the full vector of minors M∇u; however the particular choice where all φi’s are equal restores
the dependence of the bound only on the precedent order minor, since the choice of ∇φ in two rows annihilates
the minor.

Choose functions φh = (φ1
h, . . . , φ

n
h) such that

• 0 ≤ φi
h ≤ 1;

• φi
h = 1 outside S(2−1+2−i)εhδh

;
• φi

h = 0 inside S(2−1+2−i−1)εhδh
;

• |∇φi
h| ≤ 2i+2(εhδh)−1

and set uh := φh � u. Then clearly (uh, vh) ∈ Y (Ω); note also that uh → u in Ls by dominated convergence.
Moreover by the conditions on (φi

h), estimate (6.7) applied to k = 1 (with the convention M0∇u = 1) reduces
to |∇uh| ≤ cn(|∇u| + (εhδh)−1|u|) and yields∫

Ω

|∇(uh − u)|pdx ≤ cn,p

∫
Sεhδh

|∇u|pdx + cn,p(εhδh)−p

∫
Sεhδh

|u|pdx ≤

≤ cn,p

∫
Sεhδh

|∇u|pdx + cn,p(εhδh)−p

(∫
Sεhδh

|u| np
n−p dx

)n−p
n

L m(Sεhδh
)

p
n

≤ cn,p

∫
Sεhδh

|∇u|pdx + cn,p‖u‖p

L
np

n−p (Sεhδh
)
(1 + M∗m−n(Su))

p
n . (6.8)

Therefore uh is close to u in W 1,p. Regarding the jacobian term, we have:

Proposition 6.4. If kh(εhδh)−γ → 0 then

lim sup
h→∞

∫
Ω

(vh + kh)|Mn∇uh|γ dx =
∫

Ω

|Mn∇u|γ dx. (6.9)

Proof. By construction uh = u outside Sεhδh
and by Lebesgue dominated convergence Theorem∫

Ω\Sεhδh

vh|Mn∇uh|γ dx →
∫

Ω

|Mn∇u|γ dx.

On the other hand inside Sεhδh
vh is identically zero, hence we are left with the estimate of kh

∫
Sεhδh

|Mn∇uh|γdx.
Thanks to (6.7) we know that∫

Sεhδh

|Mn∇uh|γdx ≤ cm,n,γ(1 + ‖φh‖L∞)γ

∫
Sεhδh

|Mn∇u|γ dx + cm,n,γ‖∇φh‖γ
L∞

∫
Sεhδh

|u|γ |Mn−1∇u|γ dx.
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The first term is infinitesimal by the absolute continuity of the integral. The second one can be estimated
applying Hölder’s inequality with exponents s

γ and p
γ(n−1) : this can be done because

γ(n− 1)
p

+
γ

s
≤ 1.

Recalling Hadamard’s inequality |Mk∇u| ≤ ck|∇u|k we get∫
Sεhδh

|u|γ |Mn−1∇u|γ dx ≤ ck‖u‖γ
Ls(Sεhδh

)‖∇u‖γ(n−1)
Lp(Sεhδh

).

Since ‖∇φh‖γ
L∞ ≤ c(εhδh)−γ our assumption on kh allows to conclude. �

Putting Propositions 6.2, 6.4 and (6.8) together we conclude the proof of Theorem 6.1.

Remark 6.5. From the proof of Theorem 3.7 we deduce that

lim inf
h

Fh(uh, vh, A) ≥ F (u,A)

for every open set A ⊂ Ω, and
lim sup

h
Fh(uh, vh, Ω) ≤ F (u,Ω).

This entails that Fh(uh, vh, A) → F (u,A) whenever F (u, ∂A) = 0 and (uh, vh) → (u, 1) with equibounded
energies. Note that A �→ F (u,A) is the restriction to open sets of an absolutely continuous measure, hence it
does not charge the boundary of any regular open set.

6.2. Further observations

It is interesting to notice that the exponent γ is bounded above by p
n−1 , in order for Theorem 6.1 to hold.

There is however a trick allowing to overcome this bound, if we assume the Lagrangian to contain a nonlinear
power of the full vector of minors M∇u:

|M∇u| =

(
n∑

k=1

|Mk∇u|2
) 1

2

.

Retaining the structure of the size and phase transition terms as in Definition 3.6, the bulk energy

F̃ (u,Ω) =
∫

Ω

|∇u|p + |M∇u|γ dx (6.10)

can be approximated by

F̃ε(u, v,Ω) =
∫

Ω

|∇u|p +

∣∣∣∣∣
n−1∑
k=1

|Mk∇u|2 + (v + kε)|Mn∇u|2
∣∣∣∣∣

γ
2

dx. (6.11)

Although p > n − 1 guarantees that the same approximation holds, we can observe the following: applying
Minkowski’s inequality to (6.11) we have

k
γ
2
h

∫
Sεhδh

|Mn∇uh|γ ≤ Cγk
γ
2
h

∫
Sεhδh

|Mn∇u|γ + |∇φh|γ |u|γ |Mn−1∇u|γ dx

≤ Cγ(1 + k
γ
2
h ‖∇φh‖γ

∞‖u‖γ
∞)F̃ (u, Sεhδh

).
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Again if kh goes to 0 sufficiently fast then k
γ
2
h ‖∇φh‖γ

∞ → 0 and we get the Γ -upper limit statement, at least
when u ∈ L∞. More generally the Lagrangian can feature different summability exponents on every order of
the minors considered. In the model case

˜̃F (u,Ω) :=
∫

Ω

|∇u|p +
n∑

k=2

|Mk∇u|pk dx

Theorem 3.7 can be proved if we assume pn > 1 and (here p1 = p)

1
s

+
n− 1
p

≤ 1,
1
s

+
1

pk−1
≤ 1

pk
·

In particular if we impose p < n to retain the possibility of Ju having a singular part, for the price of a very
large s we can take the pk’s arbitrarily close to the threshold n.

7. Boundary constraints

In this section we analyse the behaviour of the previous Γ -convergence Theorems first when we compute the
energy on subsets of the domain and then when we impose a boundary condition for u at ∂Ω to be preserved
by the approximating sequence. We start by applying the “free” version of the Theorem and combine it with
Remark 3.2. If we want to prescribe a fixed trace at ∂Ω as observed in [10] the Sobolev trace constraint is not
sufficient to properly set our problem, due to possible dependence of Ju on the exterior extension. We therefore
set U � Ω open and fix φ ∈ W 1,n(U,Rn) such that φ

∂Ω
∈ W 1,p(∂Ω,Rn): our approximating sequences will

enjoy uh = φ in U \ Ω. Recall the previous result establishes the variational approximation of the energy on
open sets: potential losses of mass due to presence of singular set at the boundary are disregarded in the lower
limit, and a priori excluded in the upper limit by the hypothesis M∗m−n

Ω (Su) = H m−n(Su).
The following proposition is an easy consequence of Theorem 3.7.

Proposition 7.1. Suppose
(
(uh, vh)

) ⊂ Y φ such that (uh, vh) → (u, v) and
lim infh→∞ Eh(uh, vh, U) < ∞. Then v = 1 and

lim inf
h→∞

Fh(uh, vh, Ω) + MMh(vh, U) ≥ E(u, 1, Ω) = F (u, 1, Ω) + σH m−n(Su ∩Ω). (7.1)

Proof. The statement follows straightforward from Theorem 3.7 applied to the domain U , since Su ⊂ Ω � U ,
hence H m−n(Su ∩ U) = H m−n(Su ∩Ω). Moreover Remark 6.5 entails that

lim inf
h

Fh(uh, vh, Ω) ≥ F (u, 1, Ω),

thus the proof is complete. �

Similarly we can prove the upper limit analog:

Proposition 7.2. Suppose that Ω is of class C2, E(u, 1, U) < ∞ and M∗m−n(Su) = H m−n(Su). Then there
exists

(
(uh, vh)

) ⊂ Y φ such that
lim sup

h
Eh(uh, vh, Ω) ≤ E(u, 1, Ω).

Proof. Denote Ωs = {x ∈ U : sgndist(x, ∂Ω) ≤ s}, where sgndist is the signed distance from ∂Ω, positive
outside Ω and negative inside. The C2 regularity of Ω ensures the existence of a tubular neighborhood of ∂Ω,
namely there exists s0 (depending on the C2 norm of ∂Ω) and a C1 diffeomorphism

∂Ω × (−s0, s0) � (y, t) �→ x = y + tν(y) ∈ (∂Ω)s0
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built up via the normal map ν to ∂Ω. With the help of this map one can construct, for any given s ∈ (−s0, s0),
Lipschitz diffeomorphisms Ts : U → U deforming Ωs to Ω and satisfying T0 = id and

‖Ts − Ts′‖W 1,∞(U,U) + ‖T−1
s − T−1

s′ ‖W 1,∞(U,U) ≤ C|s− s′| (7.2)

for every s, s′. We also point out that the existence of the tubular neighborhood gives a reflection map

Πs0 : (∂Ω)s0 � (y, t) �→ (y,−t) ∈ (∂Ω)s0

of class C1 such that lims0→0 ‖Πs0 − id‖C1 = 0. Since the energy is finite u ∈ GSBnV (U): given η > 0 we let

uη =

⎧⎨
⎩

u ◦ T−η in Ω−η,
u ◦ Ts on ∂Ωs, −η < s < 0,
φ in U \Ω.

(7.3)

Notice that uη = φ outside Ω and uη ∈ W 1,n(U \ Ω−η,R
n), hence uη ∈ Xφ and Suη ⊂ Ω−η � Ω. Moreover it

is not difficult to use (7.2) to show E(uη, 1, U) → E(u, 1, U) for η ↓ 0: in fact the energy in U \ Ω is fixed, the
one in Ω−η after a change of variables equals to∫

Ω

{
|∇u · (DT−η ◦ T−1

−η )|p +
∣∣ ∑
|I|=|J|=n

|
∑

|K|=n

det(∇u)I
K det(DT−η ◦ T−1

−η )K
J |2∣∣ γ

2
}
| detDT−1

−η | dx

+
∫

Ω∩Su

|〈Λm−nDT−1
−η , τSu〉|dH m−n, (7.4)

which is asymptotically equal to E(u,Ω) thanks to (7.2); finally in the annulus Ω \ Ω−η, uη being a constant
extension along the trajectories s �→ Ts(x), enjoys∫

Ω\Ω−η

|∇uη|p dx ≤ C(∂Ω)η
∫

∂Ω

|∇τφ|p dx

and Mn∇uη = 0, hence E(u, 1, Ω \Ω−η) → 0. Thanks to Remark 3.2 and Proposition 7.1 it is sufficient to prove
the Γ − lim sup for uη. Theorem 6.1 ensures the existence of (uh, vh) ∈ Y φ satisfying

lim sup
h

Eh(uh, vh, U) ≤ E(u, 1, U) :

subtracting the constant term F (φ, 1, U \Ω) we have the thesis. �

Propositions 7.1 and 7.2 are only in part satisfactory, since in (7.1) we took into account some energy outside
Ω. We want to refine these results assessing the quantitative loss of energy due to exterior phase transition in
MMh.

Proposition 7.3. With the same hypotheses of Proposition 7.1 it holds:

lim inf
h

MMh(vh, Ω) ≥ σH m−n(Su ∩Ω) +
1
2
σH m−n(Su ∩ ∂Ω).

Proof. Let us start from the codimension zero case m = n. The proof stems from Lemma 5.5, applied to the
larger domain U , whose argument we here retrace. Since we are evaluating the energy MMh(vh, Ω ∩ B2ρ(x0))
we can suppose x0 = 0 ∈ Su ∩ ∂Ω, as the interior case is already contained in Lemma 5.5. Recall the proof
showed that in every ball Bρ(0) ⊂ U the sequence satisfies limh infBρ vh = 0. We actually know that

lim
h

inf
Bρ∩Ω

vh = 0,
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because every uh equals φ in U \Ω and Jφ � L n. Let (xh) be one of the minimum points of vh in Bρ: we have
two cases.

Case 1. (lim infh
|xh|
εh

) < ∞. In this case scaling back vh by a factor εh we obtain

MMh(vh, Ω ∩B2ρ) = MM1

(
vh(εhx), Ω∩B2ρ

εh

)
.

Using a diagonal argument and reasoning as in Proposition 4.1 we produce a limit f∞ such that

vh(εhx) → 1 − f∞(x) locally uniformly in R
n

and
min
Rn

{1 − f∞} = 0.

Fix a compact K � H := {〈x, ν(0)〉 < 0}: by C1 regularity Ω
εh

→ H locally in the Hausdorff metric and
K ⊂ 1

εh
(Ω ∩B2ρ) for h large enough. By lower semicontinuity

lim inf
h

MM1(vh(εhx), Ω∩B2ρ

εh
) ≥ lim inf

h
MM1(vh(εhx),K) ≥ MM1(1 − f∞,K) = I(f∞,K)

and letting K ↑ H we entail
lim inf

h
MMh(vh, Ω ∩B2ρ) ≥ I(f∞, H).

Therefore if we redefine f∞ in R
n\H by reflection with respect to ∂H we obtain I(f∞, H) = 1

2I(f∞,Rn). A radial
rearrangement f∗∞ of f∞ decreases the energy and gives f∗∞(0) = 1, hence by Proposition 4.1 I(f∞, H) ≥ 1

2σ.

Case 2. limh
|xh|
εh

= ∞. In this situation we blow-up around xh and obtain that

Ω ∩B2ρ(0) − xh

εh
⊃ B ρ

εh
(0) → R

n

in the same sense as before. The limit f∞ of the translated sequence (vh(xh + εhy)) will now satisfy f∞(0) = 0,
hence by lower semicontinuity

lim inf
h

MM1(vh(xh + εhy),
Ω∩B2ρ(0)−xh

εh
) ≥ I(f∞,Rn) ≥ σ.

The case m > n can be treated as in (5.12), where now the projection measures τπ contain the extra term
1
2σH m−n (Su ∩ ∂Ω). �

Similarly we have a statement for the upper limit:

Proposition 7.4. For every u ∈ Xφ such that E(u, 1, Ω) < ∞, M∗(Su) = H m−n(Su) and H m−n(Su ∩Ω ∩
∂Ω) = 0 there exists a sequence

(
(uh, vh)

) ⊂ Y φ such that (uh, vh) → (u, 1) and

lim sup
h→∞

Eh(uh, vh, Ω) ≤ E(u, 1, Ω) +
1
2
σH m−n(Su ∩ ∂Ω).

In order to prove this result we begin with a Lemma:

Lemma 7.5. Let τ > 0 be a given positive number: there exists a profile w̄ : [0,∞) → [0, 1] such that

1. |I(w̄(|x|)) − σ| < τ ;
2. Z̄(t) := |w̄′(t)|q + W (w̄(t)) is decreasing;
3. w̄ ∈ Lip([0,∞)) and w̄ = 0 in [R,∞) for some R;
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Proof. Using the optimal profile w given by Proposition 4.1, it is sufficient to take into account the continuity
of I along the family of profiles

w(t + λ)
w(λ)

, λ ≥ 0 (7.5)

and choose a λ > 0 satisfying |I(w(|x|+λ)
w(λ) ) − σ| < τ . We name w̄ the profile (7.5) relative to such choice: w̄

is clearly Lipschitz by Lemma 4.2. The second property follows from the fact that both w(t) and |w′(t)| are
decreasing. The third one can be obtained again by dilating the new profile around 1 and truncate it to 0
changing the energy I only of a small amount. �

We will also use the following fact, whose proof we leave to the reader:

Lemma 7.6. If S ⊂ Ω is countably H k-rectifiable and satisfies M∗k
Ω (S) = H k(S) then the same is true for

every S′ ⊂ S such that H k(S ∩ (S′ \ S′)) = 0.

We can now prove Proposition 7.4.

Proof. By the finiteness of the energy u ∈ GSBnV (U) and Su ⊂ Ω. Let ηh ↓ 0 to be chosen later. We can
consider the tilted sequence uηh

described in (7.3): we have

lim
h

F (uηh
, 1, Ω) = F (u, 1, Ω).

For an arbitrary τ let w̄ be a function as in Lemma 7.5: by Proposition 6.2 and Remark 6.3 we can construct a
sequence (vh) of approximating functions such that

lim sup
h

MMh(vh, Ω) = I(w̄(|x|))M∗m−n
Ω (Su) < (σ + τ)M∗m−n

Ω (Su).

Denote vηh,h = vh ◦ T−ηh
: recall that vh = 0 in Sεhδh

and because of (7.2) we have that

||T−1
−ηh

(x) − T−1
−ηh

(y)| − |x− y|| ≤ Lip(T−1
−ηh

− id)|x− y| ≤ Cηh|x− y|,

therefore vηh,h = 0 on (T−1
−ηh

(Su))εhδh(1−Cηh), thus eventually in (T−1
−ηh

(Su))εhδh/2.
Let us analyse the bulk part first. Since the null set of vηh,h has width at least εhδh/2 we can apply Theorem 6.1

relative to the limit uηh
in the domain U and define uηh,h such that

• (uηh,h, vηh,h) ∈ Y (U),
• |uηh,h| ≤ |uηh

| pointwise almost everywhere,
• uηh,h = uηh

outside (T−1
−ηh

(Su))εhδh/2 ⊂ {vηh,h = 0}.
In particular uηh,h → u in Ls. Moreover the construction guarantees that

∣∣∣∣Fh(uηh,h, vh, U) −
∫

U

|∇uηh
|p + vh|Mn∇uηh

|γ dx
∣∣∣∣

≤
∫

U

kh|Mn∇uηh,h|γ dx +
∫

(T−1
−ηh

(Su))εhδh/2

|∇uηh,h|p + |∇uηh
|p dx.

The same estimates yielding (6.8) and (6.9) show that the right hand side is infinitesimal. Furthermore the
constraint (uηh,h, vηh,h) ∈ Y φ is satisfied once we choose ηh = εhδh. Observing that∫

U

|∇uηh
|p + vh|Mn∇uηh

|γ dx ≤ F (uηh
, 1, U) → F (u, 1, U)
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the previous two equations entail

lim sup
h

Fh(uηh,h, vh, U) ≤ F (u, 1, U).

Subtracting the constant term F (u, 1, U \Ω) we remain with

F (u, 1, Ω) ≥ lim sup
h

Fh(uηh,h, vh, U) − F (u, 1, U \Ω)

= lim sup
h

Fh(uηh,h, vh, Ω) + Fh(uηh,h, vh, U \Ω) − F (u, 1, U \Ω)

= lim sup
h

Fh(uηh,h, vh, Ω) + Fh(u, vh, U \Ω) − F (u, 1, U \Ω)

= lim sup
h

Fh(uηh,h, vh, Ω) +
∫

U\Ω

(vh + kh − 1)|Mn∇u|γ dx

= lim sup
h

Fh(uηh,h, vh, Ω).

It remains to evaluate the asymptotic of MMh(vηh,h, Ω). First of all changing back variables we have that

MMh(vηh,h, Ω) =
∫

Tηh
(Ω)

{
εq−n

h |(DT−ηh
◦ T−1

−ηh
)∇vh|q +

W (1 − vh)
εn

h

dx
}
| detDT−1

−ηh
| dx

and by (7.2) and Lemma 7.5 this is asymptotic to MMh(vh, Tηh
(Ω)): we now show that if ηh

εh
= δh → 0

sufficiently fast then the last energy is asymptotically equal to MMh(vh, Ω), namely MMh(vh, Tηh
(Ω)\Ω) → 0.

Fix a radius R such that spt(w̄) ⊂ Bn
R and L m(B2εhR ∩ (Tηh

(Ω) \Ω)) ≤ C(εhR)m−1ηh. We can cover SεhR

with (closed) balls of radius εhR centered at x0 ∈ Su:

SεhR ⊂
⋃

x0∈Su

BεhR(x0).

By Besicovitch’s covering Lemma there are N disjoint subfamilies Fi that still cover the set of old centers,
namely Su: by triangle inequality

SεhR ⊂
N⋃

i=1

⋃
Fi

B2εhR,

and the assumption of M∗m−n(Su) implies that #Fi ≤ C(εhR)n−m; as a consequence the family of double balls
{B2εhR} has bounded overlap. Without loss of generality we can also assume that M∗m−n(Su ∩ B2εhR(x0)) =
H m−n(Su ∩B2εhR(x0)), recalling that this is true at almost every radius. For any of such double ball

MMh(vh, B2εhR(x0) ∩ (Tηh
(Ω) \Ω))

εm−n
h

=
∫

B2R(0)∩ (Tηh
(Ω)\Ω)−x0

εh

|∇ψh|q + W (ψh) dy (7.6)

with

ψh(y) = w̄h

(
d
(
y,

Su − x0

εh

)) ·

The integral can be simply bounded by

(Lip(w̄h)q + ‖W‖∞)L m

(
B2R(0) ∩ (Tηh

(Ω) \Ω) − x0

εh

)
≤ C(Lip(w̄h)q + ‖W‖∞)Rm−1 ηh

εh
·

Recall the construction of w̄h from w̄ in (6.3) gives that Lip(w̄h) ≤ CLip(w̄). Summing on the number of balls
we have

MMh(vh, Ωηh
\Ω) ≤ Cεm−n

h (εhR)n−m(Lip(w̄h)q + ‖W‖∞)Rm−1 ηh

εh
= C(Lip(w̄)q + ‖W‖∞)Rn−1 ηh

εh
→ 0.
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Suppose now that H m−n(Su ∩Ω ∩ ∂Ω) = 0: then M∗m−n
U (Su ∩Ω) = H m−n(Su ∩Ω) by Lemma 7.6 (applied

to S′ = Su ∩Ω). Moreover:

M∗m−n
Ω (Su) ≤ M∗m−n

U (Su ∩Ω) + M∗m−n
Ω (Su ∩ ∂Ω) = H m−n(Su ∩Ω) + M∗m−n

Ω (Su ∩ ∂Ω).

Regarding the last term, by (7.2) the reflection map Πs0 that swaps Ω and U \Ω has a jacobian uniformly close
to 1 as we move close to ∂Ω and therefore

M∗m−n
Ω (Su ∩ ∂Ω) =

1
2
M∗m−n

U (Su ∩ ∂Ω) =
1
2
H m−n(Su ∩ ∂Ω).

In conclusion
lim sup

h
MMh(vh, Ω) ≤ (σ + τ)(H m−n(Su ∩Ω) +

1
2
H m−n(Su ∩ ∂Ω))

and the assertion follows by letting τ → 0. �

8. General Lagrangians

The Γ -convergence Theorem 3.7 proved in the previous sections can be extended, always in the setting of
higher codimension singular sets, to polyconvex Lagrangians of more general form than Definition 2.10.

Indeed the key ingredients for the Γ − lim inf are again the compactness Theorem 2.8, which is at the heart of
Theorem 2.11, as well as the lower semicontinuity of the energy for the convergence provided by it. Regarding
the Γ − lim sup in order to approximate the size term we rely on the same Modica–Mortola approximation of
before. The recovery sequence is obtained via an approximation in measure of the limit function u, with regular
functions uε ∈ Rn coinciding with u outside the narrow sets Sε. The proof of Proposition 6.4 amounts to show
that the contribution to the bulk energy in Sε is infinitesimal.

Both these arguments can be adapted to a broader class of Lagrangians that we now present (see [10] for the
study of the relative Dirichlet and Neumann problems). We denote Lm the σ-algebra of Lebesgue measurable
subsets of R

m and B(Rn+κ) the σ-algebra of Borel subsets of R
n+κ. Assume the following hypotheses on the

functions f : Ω × R
n × R

κ → [0,+∞) and g : Ω → [0,∞) are satisfied:

(a) f is Lm × B(Rn+κ)-measurable;
(b) for L m-a.e. x ∈ Ω, (u,w) �→ f(x, u, w) is lower semicontinuous;
(c) for L m-a.e. x ∈ Ω and for every u ∈ R

n the map w �→ f(x, u, w) is convex in R
κ;

(d) c
(|w1|p + Ψ(|wn|)

) ≤ f(x, u, w) ≤ C
(
1 + |u|s + |w1|p + |wn|γ

)
for Ψ convex and superlinear at infinity and

for some constants γ > 1, c, C > 0;

and g ∈ C0(Ω), g ≥ c > 0. Our energy is:

E(u,Ω) =
∫

Ω

f(x, u,M∇u) dx + σ

∫
Ω∩Su

g dH m−n. (8.1)

Thanks to the Theorem 2.8 the energy (8.1) is lower semicontinuous along sequences converging strongly in
Ls and with equibounded energies. The upper bound on f on the other side allows to prove the upper limit
statement. The approximating energies will be

Eε(u, v,Ω) :=
∫

Ω

f(x, u,∇u, . . . ,Mn−1∇u, (v + kε)Mn∇u) dx +
∫

Ω

g(x)
(
εq−n|∇v|q +

W (1 − v)
εn

)
dx.

We therefore have:

Theorem 8.1. Let Ω be a bounded open subset of class C1 of R
m and suppose

s ≥ np

n− p
, 1 < γ ≤ 1

n−1
p + 1

s

, q > n, kε = o(ε).
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Suppose the integrands f, g satisfy the assumptions above. Then:

(a) For every sequence
(
(uh, vh)

) ⊂ Y (Ω) such that lim infh→∞ Eh(uh, vh, Ω) < ∞ and (uh, vh) → (u, v) in
X(Ω) we have

u ∈ GSBnV (Ω), v = 1 and lim inf
h→∞

Eh(uh, vh, Ω) ≥ E(u,Ω).

(b) For every u ∈ GSBnV (Ω) such that E(u, 1, Ω) < ∞ and M∗m−n
Ω (Su) = H m−n(Su) there exists a sequence(

(uh, vh)
) ⊂ Y (Ω) such that (uh, vh) → (u, 1) in X(Ω) and

lim sup
h→∞

Eh(uh, vh, Ω) ≤ E(u,Ω).
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Verlag, Basel (2005).

[19] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational
Mech. Anal. 108 (1989) 195–218.

[20] C. De Lellis, Some fine properties of currents and applications to distributional Jacobians. Proc. Roy. Soc. Edinburgh Sect. A
132 (2002) 815–842.

[21] C. De Lellis and F. Ghiraldin, An extension of the identity Det = det. C. R. Acad. Sci. Paris Sér. I Math. (2010).

[22] T. De Pauw and R. Hardt. Rectifiable and flat G chains in a metric space. Amer. J. Math. 134 (2012) 1–69.
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