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UNIFORM STABILIZATION OF SOME DAMPED SECOND ORDER
EVOLUTION EQUATIONS WITH VANISHING SHORT MEMORY

Lours TEBou!

Abstract. We consider a damped abstract second order evolution equation with an additional van-
ishing damping of Kelvin—Voigt type. Unlike the earlier work by Zuazua and Ervedoza, we do not
assume the operator defining the main damping to be bounded. First, using a constructive frequency
domain method coupled with a decomposition of frequencies and the introduction of a new variable, we
show that if the limit system is exponentially stable, then this evolutionary system is uniformly — with
respect to the calibration parameter — exponentially stable. Afterwards, we prove uniform polynomial
and logarithmic decay estimates of the underlying semigroup provided such decay estimates hold for
the limit system. Finally, we discuss some applications of our results; in particular, the case of boundary
damping mechanisms is accounted for, which was not possible in the earlier work mentioned above.
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1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

Let H be a Hilbert space, and let A be an unbounded coercive operator on H with A = A*. Denote (.,.),
the scalar product on H, and |.|, the corresponding norm on H. Set V = D(A%), and for every v € V, set
||v|| = |Azv]|. Denote by V' the topological dual space of V, and let B : V — V' be a nonnegative operator, viz.
(Bu,v) >0 for all v in V, where (,) denotes the duality product between V' and V'. Throughout the paper, it
is assumed that H is the pivot space, and that the embeddings D(A) C V C H C V'’ are compact and dense.

For each ¢ > 0, consider the following abstract second order evolution equation

Ye,tt + Aye + Bys,t + €Ays,t =0, tekR,

y=(0) =47, Yet(0) = yt. (1.1)

The associated limit system is
yu+Ay+By, =0, tckR,

y(0) =4  5:(0) =y". (1.2)
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If y° € V, and y' € H, the energy of (1.1) is given for every t > 0 by

Bo(t) = 5 (=00 + | A1), (13)

and it is a nonincreasing function of the time variable as

Ec(t) = Ex(s) —/ {(BYes(r), yer () + | A%y, ()2} dr, WO < s <t < +oo, (1.4)

System (1.1) is motivated by the study of the uniform stabilization of the finite differences or traditional finite
element space discretization of the wave equation. Indeed, for such approximation schemes, the energy of the
damped wave equation does not decay uniformly with respect to the mesh size; for that to happen, a suitably
calibrated vanishing viscosity has to be introduced into the system, e.g. [15,56,57].

The main question that will be dealt with in this paper is the following: Given that the decay of the energy
of the limit system (1.2) is exponential, polynomial, or logarithmic, is the exponential /polynomial/logarithmic
decay of the energy E., as t — oo, uniform with respect to €7 In other words, given ¢y > 0, do there exist
positive constants M and A such that

E.(t) < Me™™ME_(0), Vt>0, V0o<e<ey, VY°y')eV xH, (1.5)
" M) B L
E.(t) < TR , Vi>0, Vo<e<ey, V(y,y)eDA), (1.6)
&€ f— [10g(2 + t)]2 I - ) € — 50? y 7y € )9 .

where D(A;) is defined below.

This work was motivated by one of the questions tackled in [14]; indeed the authors of [14] consider, among
other things, (1.1) with B = C*C, where C is a bounded operator, viz. C € L(H). Assuming that the limit
system (1.2) is exponentially stable, using an appropriate decomposition of the solution along high and low
frequencies, and the fact that C' is bounded, they prove (1.5). One may argue that the additional viscoelastic
damping makes the stabilization problem much easier, which is true for ¢ fixed, but then the decay rate is
not uniform with respect to €, and overdamping may occur as shown in [14]. What makes the study of this
stabilization problem interesting is the requirement that the decay rate be uniform with respect to € as € goes
to zero. It is to be noted that in [14], the uniform energy decay estimate (1.5) critically relies on the following
two facts:

i) the limit system is exponentially stable;

ii) the damping operator C' is bounded.

Consequently if one of those two facts fails, then the method developed in [14], and which is based on Proposi-
tion 1 in [19] that establishes an equivalence between observability and stabilization for second order evolution
equations with bounded damping operators, becomes inoperative; in particular, the case where the damping
operator B is unbounded is left as an open problem therein. It is the intent of the author of the present paper to
propose a solution to that open problem; the method that will be developed below to address that problem and
which is based on the resolvent estimates will enable us to deal not only with the case where the limit system
is exponentially stable, as in [14], but also to deal with situations where the limit system is polynomially or
logarithmically stable only; this may happen even for some bounded operators B, e.g. [16,31,37,39,42,49, 54].
At this stage, it is worth mentioning that the present work as well as [14] are closely related to the earlier
works [56,57] where the uniform stabilization of the finite differences space semi-discretization of the wave
equation is discussed; in those two papers, the addition of a well-calibrated viscoelastic damping is the key ele-
ment for the uniform exponential decay of the energy. Indeed, it is shown in [56,57] that without that additional
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damping, the discrete system fails to be uniformly exponentially stable. But as will be seen below, and as it was
already observed in [14], the presence of the viscoelastic damping in (1.1) makes the study of the stabilization
problem at hand more intricate; in fact, the authors of [14] had to rely on a judicious decomposition of the
solution along high and low frequencies in order to prove that the perturbed system is uniformly exponentially
stable. In the present work, where the decay estimates will be established through estimates of the resolvent
along the imaginary axis, we will decompose the axis into two portions; for the unbounded portion, the extra
viscoelastic damping will be enough to get the necessary estimates, while for the bounded portion, we will rely
on the introduction of a new variable and the fact that the limit resolvent satisfies the corresponding estimate.

Before stating our main results, we will recast (1.1) as a first-order system. To this end, introduce the Hilbert
space on the field C of complex numbers H = V' x H, equipped with the norm

1w, )2 = [[(u, )13, = [AZul? + Jo]2. (1.8)

Let A. be the unbounded operator given by

Ae = (—OA e 5A> (1.9)

with:
D(A.) = {(U’U) eV xV;A(u+ev)+ Bve H}

System (1.1) may now be recast as

s AEZEO (1.10)
Z.(0) = (zl) .

We denote by Ay the unbounded limit operator with domain
D(Ap) = {(u,v) eV xV;Au+ Bv € H}
It will be assumed in the sequel that

o >0 |u| < AolAZul, Vuev, (1.11)

and

3po > 0 : (Bu,u) < pd||ul|?, Yu e V. (1.12)
We can now state our main results:

Theorem 1.1. Let the operators A and B be given as above. Assume that the limit operator Ay generates a
Co semigroup of contractions (So(t))e>0 on the Hilbert space H which is exponentially stable. Let g > 0 be an
arbitrary constant. There exist positive constants M and X, that eventually depend on Xy, po, and €y only, such
that the energy decay estimate (1.5) holds for every solution of (1.1).

Theorem 1.2. Let the operators A and B be given as above. Assume that the limit operator Ag satisfies

1R C p(Ap), where p(A) denotes the resolvent of A. Suppose that Ay generates a Cy semigroup of contractions

(So(t))i>0 on the Hilbert space H, which is polynomially stable, viz., there are positive constants My and o

such

Mol|Z°|| p(ay)
(L )

Set €9 = 1. There exist positive constants M and X, that eventually depend on Ao and po only, such that the
energy decay estimate (1.6) holds for every solution of (1.1).

|[So(t)Z°) |3 < , Vt>0, Z°%€ D(A). (1.13)
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Theorem 1.3. Let the operators A and B be given as above. Assume that Ay generates a Cy semigroup of

contractions (So(t))t>0 on the Hilbert space H. Suppose that there exists a positive constant Cy such that for
o—Col3A|

every A € C with RA € [—%—5—,0] and [SA[ > 1, one has the resolvent estimate

AT — Ao) |22y < CoeISA, (1.14)

Set eg = 1. There exists a positive constant M, that eventually depends on Ao and po only, such that the energy
decay estimate (1.7) holds for every solution of (1.1).

Remark 1.4. It is known that when the resolvent estimate (1.14) holds, then the semigroup (So(t))¢>0 is
logarithmically stable [16,17,31]; there exists a positive constant My such that for every positive integer k,

Mo||Z°|p(apy

1S0(t) Z°|% < Tog + O

vt >0, Z°ec D(Af). (1.15)
The rest of this paper is organized as follows: in Section 2, we recall some important preliminary results relating
the energy decay estimates to resolvent estimates. Section 3 deals with the proofs of Theorems 1.1—1.3, while
in Section 4 we discuss several applications of our results and some final remarks.

2. SOME TECHNICAL LEMMAS

Lemma 2.1 [20,44]. Let A be the generator of a bounded Cy semigroup (S(t))t>0 on a Hilbert space H. Then
(S(t)i>0 is exponentially stable if and only if:

i) iR C p(A), and

i1) sup{||(ib — A)7||; b € R} < oo, where p(A) denotes the resolvent of A.

Lemma 2.2 [7]. Let A be the generator of a bounded Cy semigroup (S(t))i>0 on a Hilbert space H such that
iR C p(A), where p(A) denotes the resolvent of A. Then (S(t))t>0 is polynomially stable, viz., there are positive
constants M and « that are independent of the initial data such

M||Z°|p(ay

0
IS0l <

, Vt>0, Z°c D(A). (2.1)
if and only if
3Co > 0:[|(ib — A) | £y < Colb|™, Vb € R with [b] > 1.

Weaker versions of Lemma 2.2 may be found in [5, 6, 35].

3. PROOFS OF THEOREMS 1.1, 1.2, AND 1.3

As indicated in the introduction, the energy decay estimates will be derived from resolvent estimates. For that
derivation, we will rely on Lemma 2.1 for the case of Theorem 1.1 and Lemma 2.2 for the case of Theorem 1.2.
First, we shall prove that A. generates a Cj semigroup of contractions (S:(¢)):>0, then we shall show that
iR C p(Ag).

We have:
e the operator A, is dissipative as:

R(A.Z,Z) = —e|A%v]> — (Bu,v) <0, VZ = (u,v) € D(A.).

e 7 — A, is onto, by Lax—Milgram Lemma, (Z denotes the identity operator).
Consequently, the operator A, generates a Cy semigroup of contractions on H by Lumer—Phillips theorem [41];
note that D(A.) = H, by [41], Theorem 4.6, page 16.
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We now observe that the operator 4. does not have a compact resolvent even though Ay might have one
as we will see in the examples that are discussed later on. This is due to the fact that the extra viscoelastic
damping has the same order as the principal operator A, thereby precluding the embedding of D(A.) into H
to be compact. Next, we note that 0 € p(A.). Let b € R with b # 0, the assertion about the resolvent will be
established once we prove: i) Ker(ib — A.) ={0} and ii) R(ib — A.) = H, where Ker(B) stands for the kernel
of the operator B and R(B) stands for the range of B.

Proof of i). Let b be a nonzero real number and let Z = (u,v) € D(A.) with A.Z = ibZ, we shall prove that
Z = 0. The equation A.Z = ibZ easily yields R (A Z,Z) = —e\A%v\z — (Bv,v) = 0; from which one derives
v =0, thanks to (1.11), and then v = 0. Hence Z = 0.

Proof of ii). For this proof, we borrow some ideas from [36]. Let b be a nonzero real number, and let U = (f,g) €
‘H. We shall show that there exists Z = (u,v) € D(A.) such that ibZ — A.Z = U, which may be recast as:

ibu—v=f

3.1
v+ A(u +ev) + Bv = g. (8-1)

We may use the first equation in (3.1) to eliminate v in the second one, thereby getting
—b?u + (1 4 ibe)Au + ibBu = g +ibf +cAf + Bf € V'. (3.2)

If we set Ape = (1 +ibe)A+ ibB : V. — V', then Lax-Milgram theorem shows that Ay is an isomorphism.
Further, one checks that Ab_g1 is compact as Ab_sl(V’ ) = V, and the embedding V' C H is compact. We may
rewrite (3.2) as

u—b*A = A (g +ibf + cAf + Bf). (3.3)

Thanks to the Fredholm alternative e.g. [8], Theorem VI.6, page 92, solving (3.3) in H amounts to showing
that the equation u — bzAb_Elu = 0 has the unique solution u = 0, or equivalently that v = 0 is the unique
solution of the equation —b*u + (1 + ibe)Au + ibBu = 0. Taking the duality product V' — V of v and both
sides of the latter equation, we get: —b2|u|? 4 (1 + ibe)|Azul? + ib (Bu,u) = 0, so that taking the imaginary
parts, and keeping in mind that b # 0, one finds: 5|A%u\2 + (Bu,u) = 0; from which one derives u = 0, thanks
to (1.11). Hence ii) holds. Therefore, combining i), ii) and the closed graph theorem, one derives iR C p(A;).
One may now invoke the stability theorem in [3] to conclude that the semigroup (S¢(¢)):>0 is strongly stable.
The Proofs of Theorems 1.1—1.3 that follow now will quantify that strong stability according to the stability
property satisfied by the limit system.

3.1. Proof of Theorem 1.1
According to Lemma 2.1, it remains to show that one has:
sup{H(ib—.As)*lHﬁ(H); beR} <oo, V0<e<ep. (3.4)

To this end, let U = (f,g) € H. We shall prove that there exists a constant C' > 0 such that for every b € R,

and every € with 0 < e < ep, if Z = <Z> € D(A.) satisfies

(ib—A) Z =1, (3.5)

then
1Z]|# < Cl|U||3. (3.6)

Normally Z should depend on ¢ and b, but for simplicity sake, that dependence is omitted. Here and in the
sequel, C' is a generic constant that may eventually depend on Ay, pg, and ¢ only.
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Denoting by (.,.)1, the inner product in H, and by ||.||1, the corresponding norm, as introduced in 3.59, we
derive from (3.5):
((ib—Ac) Z, Z)1 = (U, Z)p

so that taking the real parts, we get
e[ A% o + (Bu,v) < [|U[11]|Z] - (3.7)
Now (3.5) is equivalent to:
ibu—v=f
ibv + A(u+ev) + Bv = g.
It follows from the first equation in (3.8), and (3.7):
eb’|Abul? < 2{e|Abof® +e| A2 £} < 2(|UI1]1Z]1 + eollUI1D)- (3.9)
At this stage, we note that if £b?> > 1, then one derives from (3.9):
[A%uf? < 2(|[U111]|Z]1 + ol U] 7). (3.10)
Taking the inner product in H of v with both sides of the first equation in (3.8), it follows
[0]? < [(ibu, v)| + |(f,0)] < |(ibu, v)] + ClIU[[1]|Z]]1- (3.11)

Taking the duality product V' — V of u with both sides of the second equation in (3.8), we derive, thanks
to (3.10), (3.7), Cauchy—Schwarz inequality, and (1.12):

|(ibv, )] < |AZuf? + | A2u||AZ0| + | (Bu,u) |+ |(g,u)]
< c{IvlLZIl +11D1E + 1011711211 + ¢<Bv,v>¢<Bu,u>} (3.12)

2 3 1 1 3
< C’{I\UIh\IZIh + Ul + U1 [1211F + I\UI\fI\Z\If}~

Reporting (3.12) in (3.11), we find
5 ) 3 1 1 3
[o]” < C{HUHlHZHl + Ul + U210 + HUHfHZHf} - (3.13)
Combining (3.10) and (3.13), we derive

3 1 1 3
121 < C{HUIMIZIM +IUIE + U117 12117 + I\UI\fHZHf}, (3.14)

so that using Young inequality, (3.6) easily follows from (3.14), provided that £b®> > 1. We now turn to the case
where £b? < 1. This case is a little bit trickier; first, we will have to make appropriate change of variables, then

use the resolvent assumption on the limit system to derive (3.6). To this end, set w = u + ev, Z = (w)’ and

U= (f —&-g@bev). We note that Z lies in the domain of the limit operator D(Ap), and U € 'H; the energy space

is the same for the perturbed and limit systems. With those notations, (3.8) becomes

ibw —v = f + ibev

3.15
ibv+ Aw + Bv = g, ( )
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or equivalently
(ib—Ag)Z =U. (3.16)

Thanks to the exponential stability assumption on the limit system, and Lemma 2.1, we know that there exists
a positive constant C such that for every real number b, one has |[[(ib — Ao) ||z < C. Consequently, it
follows from (3.16):

2]l < Cl|U]l1- (3.17)

Now, one checks that
1

O[3 = A2 (f +icbv)|* + 9|
< 20432+ A0 + Jgf?
< 2||UJ|? + 2¢|A%v[?, since eb® < 1
< C(IU11F + 1U11]121]1),

(3.18)

and )
1ZI[F = |[Azul® + [v]?

< 2| A7 w|? 4 22| Az 0|2 + |v]? (3.19)
< 2/| 2|17 + 2¢0|U1111Z] -
The combination of (3.17), (3.18) and (3.19) yields
121F < CU; + NUIR11Z]]1), (3.20)

from which, one derives (3.6) with the help of Cauchy—Schwarz inequality. This completes the proof of (3.6),
and that of Theorem 1.1.

3.2. Proof of Theorem 1.2

First, we note that the assumptions on the limit operator Ap, and Lemma 2.2 show that there are two positive
constants Cp and « = 1/ag such that:

1(ib — Ao) | £y < Colb|*, Vb € R with [b| > 1. (3.21)

To prove Theorem 1.1, we distinguished two cases: the case eb? > 1, and the case ¢b? < 1. One might be tempted
to use exactly the same two cases in the proof of Theorem 1.2, but then the decay rate would be much weaker
than that of the limit system. If one wants to get the same decay rate as in the limit system, then the threshold
must involve the exponent « found in (3.21). Let b € R with |b] > 1. Let U € H and Z € D(A.) satisfy (3.5).
We shall prove that there exists a positive constant C' such that

I1Z||1 < Clb|*||U|]1,¥b € R with [b] >1, Y0<e<1. (3.22)
Case ¢|b|2t= > 1. It follows from (3.9)
elbTe|ATul? < 20b|*{e| AZvf? + | A= f2} < 20 (||U][1]|Z]]1 + |U]3), (3.23)

from which one derives
1
|Azul> < CPI*([JUILIZ]11 + |UT]D). (3.24)

Proceeding as in the proof of Theorem 1.1, one gets

1 3
[0 < CRI* (V1111211 + ([U117) + Cliu]; 1121 - (3.25)
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The combination of (3.24) and (3.25) yields
1 3
12113 < Clel* (U111 2]l + 1V + ClIU T 12113 - (3.26)

Case €|b|>t* < 1. Let U and Z be given as in the proof of Theorem 1.1. Then U and Z satisfy (3.16), so that
using (3.21), we find
1Z]]1 < Colp|*(|U]]1.- (3.27)

Thanks to (3.18) and (3.7), one has

D11} < 2147 £ + 267 Az 0] + |gl?
< 2||U|IF + 2¢[o?||UL[12]]x (3.28)
< 2(||U|IF + [oI=*[|U1]1Z]|1) since e[b]*** < 1.
Proceeding as in the proof of Theorem 1.1, and using (3.27) and (3.28), we get the estimate (keeping in mind
that [b| > 1)
1211} < 2012117 + 211U 11121
< 2656*||U|13 + 21U 1| Z]h (3:29)
< ACEH*||U[F + (4Co + 2)[b|*[|U]]1]1Z]]1-

Combining (3.26) and (3.29), then applying the Cauchy—Schwarz inequality, one derives (3.22). Using
Lemma 2.2, we obtain the claimed energy estimate, which completes the proof of Theorem 1.2.

3.3. Proof of Theorem 1.3

Thanks to our resolvent hypothesis, we already know that there exists a positive constant Cy such that for
—Co|SA|

every A € C with R\ € [-¢——,0] and [IA| > 1, one has the resolvent estimate

AT = Ao) Ml zry < Coe®ISA. (3.30)

We shall find a positive constant Ky such that for every A € C with R\ € [— efiglm‘ ,0] and |SA| > 1, one has
the resolvent estimate

IAZ — A2) "l o) < KoefoFMN w0 <e < 1. (3.31)

Once (3.31) is established, the claimed decay estimate follows as in the proof of Theorem 3 in [9]. So it remains
to prove (3.31). To this end, let U = (f,g) € H, and let Ly > Cp, with Cp as in (3.30). Let A € C with

e~ LolSA|

R\ € [-=———0] and [3A| > 1. (3.32)
0

As in the proof of Theorem 1.1 above, introduce Z = (u,v) € D(A.) such that
N —AZ=U, (3.33)

which is equivalent to
Au—v=f
A+ A(u+ev) + Bv = g.

The inner product of Z with both sides of (3.33) yields

(3.34)

MZ||F = (A:Z,2)1 = (U, 2)s,
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so that taking the real parts, we derive
e[A20? + (Bv,v) < [|U[11]|Z]1 + [RA/]|Z]13. (3.35)
Applying the operator A% to both sides of the first equation in (3.34), and using (3.35), we obtain
NP ARul? < 2{el ARl + e A% £} < 2(|UI1l1Z1] + RN 211+ UIR). (3.36)
As in the proof of Theorem 1.1, we note that if £|A|> > 1, then one derives from (3.36):
A2 uf? < 2(|[U]1]| 211 + IR Z]3 + [[U]13). (3.37)
Taking the inner product in H of v with both sides of the first equation in (3.34), it follows
0] < [, )] +[(f,0)] < |, 0)| + ClUN 1 Z] 1 (3.38)

Taking the duality product V' — V of u with both sides of the second equation in (3.34), we derive, thanks
to (3.37), (3.35), Cauchy—Schwarz inequality, and (1.12):

|, w)| < |A%u|? + e|A2u||AZ 0| + | (Bu,u) | + |(g,u)]
< 2[A%uf? + e A20[? + /(Bo, v)/(Bu,u) + C||U|L ]| Z]): (3.39)
< C{IUILNZII + WUIRY + U 11Z113 + (BIRA] + [RA[2)]]1Z]13.

Reporting (3.39) in (3.38), we find
1 3 1
o> < C{IUIRNZI + U1 + U1F 12117 + GIRAl + [RAIZ)]1Z]3. (3.40)
Combining (3.37) and (3.40), we derive
12117 < C{IUIRLIZ][ + NUIEY + U7 2117 + (5IRA] + [RAIZ)]1Z][3- (3.41)

Choosing Lo large enough in (3.32), it follows that 5/RA| 4 |RA|2 < 1/4; combining that with Young inequality,
one finds
1213 < CllU]|. (3.42)

We got (3.42) by assuming 6‘)1|2 > 1. We now investigate the case e\]2 < 1. Let w = u+¢ev, and f=f+el,
and set Z = (w,v) and U = (f, g). One easily checks that Z € D(Ap), and U € H satisfy the equation
AN—AnZ =T,
so that using (3.30), one gets i} }
12111 < Coe®!SM||T])s. (3.59)
Now on the one hand, one has the estimate
111} < 2A%f1° + 2 AP AR o] + |gf?
< 2U| + 2eAP|IUIRLIZ I + 2¢[APIRA] 2] 13 (3.60)
<2([|UI[F + [UIL[| 2]l + [RA[[|Z]]3), since e[A[* < 1.
On the other hand, one has, thanks to 3.59, the estimate
12117 < 2112113 +2¢%| Az of?

A (3.61)
< 205N} + 2([UIL 1 Z] 1 + 21RN[ 2113
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Accounting for (3.60) in (3.61), we find

1211} < 4G5 BNUNE + UL NZIL + [RA|Z13)

9 (3.62)
+ 2|11 Z][x + 2[RI Z][3-
Thanks to Young inequality, one derives the estimates
S 1 S
4CEECIN U1 2]) < 21215+ 16C5e* @SN U |3 (3.63)
and
2||U|11[|Z]]1 < e2HoISNU3 + e 2EelSN 2] 3. (3.64)
We also note that for large enough L, one has the estimates
4e2C0ISA IR < Lo emamn o Ly 2IRA| < L. (3.65)
- 16’ - 16’ — 16
Reporting (3.63)—(3.65) in (3.62), we obtain, with some algebra
16 S S
121 < 5 (20C3C0IN 42012 7 . (3.66)

At this stage, we note that Cy is a large constant (cf. e.g. [9,31]); this explains replacing C2e?“0ISAl with
CaetColSAl to get 20C3e*C0ISA | Therefore, choosing Lo > 8/10C3 /3, it holds

1ZI1} < Lget SN U3, (3.67)

Hence, it suffices to choose Ko = Lyg.

4. APPLICATIONS

In this section we shall discuss some examples of application of our theorems. Throughout this section,
2 denotes a bounded domain in RY with smooth enough boundary, subscripts following a comma stand for
differentiation, and we use the Einstein summation convention on repeated indices. Further, 9; stands for 9/0x;,
|ul, denotes ||u|[zr(g) for 1 < r < 4-00. We assume that the boundary I" of §2 satisfies: I' = I'. U I',, with
I'.N I, =0, where I'. stands for the controlled portion of I and meas(I;) > 0, while I, corresponds to the
uncontrolled portion, and meas(I",) > 0, for simplification purposes.

4.1. The wave equation with boundary damping
Consider the damped wave equation:
U tt — 8z(b23 (a:)ﬁju) =0in 2 x (07 OO)
bij(z)0juv; +uy =0on X, u=0on X, =02 x(0,T) (4.1)
u(0) = u’;  w(0) =u'in 2,
where here and in the sequel, v denotes the unit vector pointing into the exterior of {2, the coefficients (b;;); ;,

satisfy:
bij € CHQ); bij=bj, Yi, j=1,2,....N, (4.2)

and
Jag > 0: bij(v)zi25 > agzizi, Y(x,2) € 2 x RY. (4.3)
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If one sets V = {v € HY(£2); v = 0 on I}, then one can show that for (u®,u') € V x L2?({2), one has
u € C([0,00); V) N C([0, 00); L2(£2)).
For every t € [0,T], set

E(t) = %/ﬂﬂut(w,t)\Q + (bij(x)0ju(x, t)Osu(zx, t) } da.

The energy F is a nonincreasing function of the time variable, as we have the dissipation law:

E(s):E(t)-ﬁ-/st/Fc

It is now well known that if the boundary of £2 is C>°, the coefficients b;; € C°°({2), and I, satisfies the geometric
control condition of Bardos—Lebeau—Rauch [4]: there exists a time T > 0 such that every ray of geometric optics
meets I, x (0,T), then the energy F satisfies the exponential decay estimate:

wi(y, 1)) dydr, Y0<s<t<oo. (4.4)

E(t) < Me  ME(0), Vt>0. (4.5)

Many other authors proved the exponential decay estimates under various conditions on the boundary of 2,
the coefficients b;; and the feedback control support I, e.g. [10,13,21,22,24,25,27,29, 30,37, 38,45-48,59-61].
Now, consider the perturbed problem, with all parameters as above:

Uept — O0i(bij (x)0jue) — €0 (bij(x)0jus 1) = 0 in 2 x (0, 00)
bij(2)0;(ue + ue )V +uey =0 on X = I x (0,00),

ue =0on X, = I, x (0,00)

u-(0) = u®  u.4(0) =u' in £2.

We are going to apply Theorem 1.1 to System (4.6) to prove that its energy given by

E.(t)= % /Q{|u€,t(x,t)|2 + (bij(x)0juc(z, t)Osuc (2, t) } da,

and which satisfies, for all 0 < s < t < 0o, the dissipation law

t t
E.(s) = E.(t) —|—/ /F \ug,t('y,t)\z dydr + 6/ /Q bij(2)0;uc ¢ (x,t)Oiucs(x, t) dads, (4.7)

decays exponentially, uniformly with respect to the perturbation parameter . To this end, set H = L?(2),
V={ve H(2);v=0o0n I}, Au= —09;(b;j0;u) with D(A) = {u € V; Au € H}, (Bu,v) = Jp, uvdy, for all
u, v € V. Then according to the hypotheses on the coefficients, the operator A is coercive with A* = A. The
operator B is nonnegative, well-defined on V with values in the dual space V' thanks to Riesz representation
theorem. If we also set y. = u., then (4.6) may be recast as the abstract equation (1.1). Further, it can be
shown that the operators A and B satisfy (1.11) and (1.12) respectively. Therefore, if I'. satisfies the Bardos—
Lebeau-Rauch geometric control condition (GCC), then the semigroup generated by the limit operator Ag is
exponentially stable thanks to (4.5) and Lemma 2.1; applying Theorem 1.1, one derives that the perturbed
energy E. decays exponentially, uniformly with respect to the perturbation parameter €, as the time variable ¢
goes to infinity. On a different note, it can be shown that Ay has a compact resolvent, e.g. [22], Lemmas 7.7,
7.8, but the perturbed operator A. does not.

Now, if I'. does not satisfy (GCC), then the exponential decay (4.5) for the energy FE fails. In this case, it
is known that for smoother initial data, and under certain conditions on I, polynomial decay estimates for
the energy F hold when Au = —Au, [43], while logarithmic decay estimates for the energy E hold for any I
with a nonzero measure, e.g. [16,32]. In the former case, applying Theorem 1.2, one derives uniform polynomial
decay estimates for the energy FE., and in the latter case, the application of Theorem 1.3 provides a uniform
logarithmic decay for the energy E..
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4.2. The elasticity equations with boundary damping
Consider the damped elasticity system
Yitt — Oij,5 = 0in 2 x (0,00)
0ijV; + yir =0on I. x (0,00) y; =0 on I, x (0,00) (4.8)
yz(o):yga yz,t(o):yzlv 221, 2a7N7
where the elasticity stress tensor (o;;) is given by
045 = Uij(y) = Qi5kIEkI
with (g1;) defined by
1
e = er(y) = 5 Ykt + Y1)

2
is the strain tensor. The a;jr; are the elasticity coefficients. They satisfy the symmetry properties

Qijkl = Gjitk = Qklij, V1,7, kL

Throughout the paper we assume that the a;;j; depend on the space variable z but not on time, and that they
are continuously differentiable, and satisfy the ellipticity condition

dag > 0: Wikl Wi Ukl > Ao Ukl (49)

for all second order symmetric tensors (u;;).
Under the above assumptions on the coefficients, and for all i, (y?,y}) € V x L?(2), it is well-known that
System (4.8) has a unique weak solution y € C([0,00); V™) N C([0, 00); [L2(§2)]V).

Introduce the energy
1
E(t) ==
-3 [

The energy F is a nonincreasing function of the time variable ¢ and its derivative satisfies

yi(z,t)|? + (oijei)(z, 1)y da, Wt > 0. (4.10)

Emz—/\wmw&m Vit > 0. (4.11)
I

It is well-known that if I, is an appropriate portion of the boundary, and some structural constraints are
imposed on the coefficients a;;r;, then the energy E satisfies an exponential decay estimate of type (4.5),
e.g. [2,23,26,37,40,48]. We shall now show that the perturbed system

Yeiit — Tig,j (ye) — €0ij,5 (ys,t) =01in §2 x (0, 00)
0ij(Ye + €Ye,t)Vj + Yeir = 0 on I x (0,00) ye =0 on I, x (0,00) (4.12)
ysz(o):y?7 yei,t(o):yz‘la 7':17 27 ey N7

where the elasticity stress tensor (o;;) is now given by

0ij(Ys) = @ijricn(ye),

is uniformly exponentially stable. To this end, set H = [L?(£2)]Y and V = {u € [H*(2)]V;u =0 on I},}. If we
set Au = —o0y; ;(u), with D(A) = {u € V; Au € H}. Define the operator B by (Bu,v) = pr w-vdl’, then B is
nonnegative, well-defined according to Riesz representation theorem, and one can check that A and B satisfy
(1.11) and (1.12) respectively. Moreover (4.12) may be recast as (1.1). On the other hand, knowing that for an
appropriate portion of the boundary, the limit system is exponentially stable, it follows from Theorem 1.1 that
the perturbed system is uniformly, with respect to the perturbation parameter, exponentially stable.
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4.3. The Euler—Bernoulli equation with unbounded locally distributed damping

Let a € L*°(£2), be a nonnegative function satisfying:
Jdag > 0:a(z) > ap, ae z€w, (4.13)

where w is an appropriate open set contained in (2.
Consider the following damped Euler—Bernoulli equation

w4 + A?w — div(aVw,) = 0 in £2 x (0, 00)
w:g—zj:()onfx(o,oo)

w(0) = y° in 2

w(0) = y' in 2.

(4.14)

System (4.14) corresponds to the clamped plate equation with structural damping when a =1, and N = 2, [12].
Condition (4.13) ensures that the damping term —div(aVw ) is effective on the set w.

Let {3°,y'} € Hg((?) x L%(§2). System (4.14) is then well-posed in the space Hg(()) x L*(92).
Introduce the energy

1
E(t) = E(w;t) = 5 / {Jw(z, t)* + |Aw(z, t)|* Y dz, V> 0. (4.15)
[0
The energy E is a nonincreasing function of the time variable ¢t and we have for almost every ¢ > 0,
E'(t) = —/ a(x)|Vw (2, 1)) de. (4.16)
0

The decay estimates of the energy of plate equations with a locally distributed frictional damping of the
form ay; or ag(y:), for an appropriate nonlinear function g, are well-known, e.g. [1,11,18,19,34, 50,52, 58,62].
Concerning the system (4.14) with a locally distributed structural damping, it was recently shown in [55] that,
if w satisfies the geometric constraint described in [22,33] or [34], then its energy, given by (4.15), satisfies an
exponential decay estimate of type (4.5).

Introduce the perturbed system

We tt + A, — div(aVwe ;) + eAQwEVt =0in 2 x (0,00)
Oow,
~ o
w.(0) = 4% in 2
we +(0) = y* in 0.

=0on I' x (0,00)

We

(4.17)

If we set H = L?(12), V = H§(2), A = A? with clamped boundary conditions, (Bu,v) = [, a(z)Vu - Vo dz,
for all u, v € V. Then, the operator A is coercive with A* = A, and the operator B is nonnegative, well-defined
on V with values in the dual space V'. If we also set y. = we, then (4.17) may be recast as the abstract
equation (1.1). Further, it can be shown that the operators A and B satisfy (1.11) and (1.12) respectively. On
the other hand, we also know that the unbounded operator Ay associated with (4.14) generates an exponentially
stable semigroup [55]. The application of Theorem 1.1 shows that the perturbed energy E. = E(w.;.) decays
exponentially, uniformly with respect to €.
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4.4. Final remarks

1) Although the perturbation € Ay, ; is more relevant physically, given its viscoelastic character, one could have,

from a purely mathematical viewpoint, used a more general operator A having properties similar to those
of the operator A. But the operator A should further be required that V = D(A%) be densely embedded in
D(/Al%), so that A=*Au lies in V for all u in D(/lé); in particular that requirement is fulfilled by A = A®
for any a < 1. If one were to use the perturbation e A% instead, the interesting values of o would be those in
the interval (0, 1]. Indeed, for o < 0 the perturbation is either compact (o < 0), or it can be easily absorbed
by the energy.

2) It was noted in the introduction that overdamping may occur, meaning that the exponential decay does not

hold uniformly with respect to € as € goes to infinity. This fact was demonstrated in the case of a bounded
damping operator B in [14]. It can also be established in the case of an unbounded damping operator B.
For instance, if we choose B = A, which corresponds to the Kelvin—Voigt damping, then the operator A is
known to generate an analytic semigroup; so, it can be shown that the semigroup generated by the operator
Ac is also analytic; the proof of this fact just follows the same algorithm devised above in the proof of
the exponential decay of the semigroup. Now, we are going to show that a branch of the eigenvalues of
the operator Ae behaves so badly as ¢ — oo that exponential decay of the energy fails to be uniform as
€ — o00. To this end, remember that the operator A is elliptic, self-adjoint, and has a compact resolvent;
therefore the spectrum of the operator A is discrete and we assume that it is given by the increasing sequence
{u?; p; >0, j>1}. The j' eigenvalue A;c of the operator A. (keep in mind that we have chosen B = A
here) satisfies the quadratic equation: A2 + (1 + e)u?)\ + M? = 0. Consequently, one has:

1+e)u?
+ _( J
= 5 -1+ )
so that )
AL~ “Tio ® (14 ¢e)u; — .

Therefore this branch of the spectrum of A. approaches zero as ¢ — oo, thereby precluding the uniform
exponential decay of the energy.
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