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DIFFERENTIAL GAMES OF PARTIAL INFORMATION
FORWARD-BACKWARD DOUBLY SDE AND APPLICATIONS ∗

Eddie C.M. Hui1 and Hua Xiao2

Abstract. This paper addresses a new differential game problem with forward-backward doubly
stochastic differential equations. There are two distinguishing features. One is that our game systems
are initial coupled, rather than terminal coupled. The other is that the admissible control is required to
be adapted to a subset of the information generated by the underlying Brownian motions. We establish
a necessary condition and a sufficient condition for an equilibrium point of nonzero-sum games and a
saddle point of zero-sum games. To illustrate some possible applications, an example of linear-quadratic
nonzero-sum differential games is worked out. Applying stochastic filtering techniques, we obtain an
explicit expression of the equilibrium point.
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1. Introduction

Game theory is a useful tool which helps us understand economic, social, political, and biological phenomena.
Stochastic differential game problems have increasingly attracted more research attentions, and the related
games approached solutions are widely used in social and behavioral sciences. Herein, we are primarily interested
in stochastic differential games of forward-backward doubly stochastic differential equations (FBDSDEs, for
short). This research is inspired by finding an equilibrium point of a linear-quadratic (LQ, for short) nonzero-
sum differential game of backward doubly stochastic differential equations (BDSDEs, for short). Now we explain
this in more detail.

Let T be a constant and
(
Ω, F , P

)
be a complete probability space, on which two mutually independent

standard Brownian motions B(·) ∈ Rl and W (·) ∈ Rd are defined. Let N denote the class of P -null sets of F .
For each t ∈ [0, T ], we define

Ft
.= FW

t ∨ FB
t,T , (1.1)
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where FW
t = N ∨ σ{W (r) − W (0) : 0 ≤ r ≤ t} and FB

t,T = N ∨ σ{B(T ) − B(r) : t ≤ r ≤ T }. Note that the
set Ft, t ∈ [0, T ] is neither increasing nor decreasing, so it does not constitute a filtration. Let Lp

T (Ω;S) denote
all classes of FT -measurable random variables {ξ : Ω → S} satisfying E|ξ|p < ∞, and Lp

Ft
(0, T ;S) denote all

classes of Ft-adapted stochastic processes {x(t) : [0, T ]× Ω → S} satisfying E
[ ∫ T

0
|x(t)|pdt

]
< +∞.

There exists an interesting financial phenomenon in the market that two players work together to achieve a
given goal at certain future time. Inspired by this financial phenomenon, Wang and Yu [15] studied a kind of
nonzero-sum differential game in which the game system is governed by{

−dY v1,v2(t) = g
(
t, Y v1,v2(t), Zv1,v2(t), v1(t), v2(t)

)
dt − Zv1,v2(t)dW (t),

Y v1,v2(T ) = ξ.
(1.2)

Here ξ is a given random variable denoting the future goal at the terminal time T , and v1(·) and v2(·) are
FW

t -adapted control processes of Player 1 and Player 2, respectively. Note that (1.2) is a nonlinear backward
stochastic differential equation (BSDE, for short) which was originally introduced by Pardoux and Peng [11].

It is well known that there may exist so called informal trading such as “insider trading” in the market (for
more argumentations about this, see e.g. [1,3] and references therein). That is, the players at the current time t
possess extra information of the future developing of the market from t to T that is represented by FB

t,T , as well
as the accumulated information FW

t from 0 to t. Clearly, Wang and Yu’s model cannot capture this case. In
order to make up the above-mentioned limitation of system (1.2), we introduce the following BDSDE originally
discussed by Pardoux and Peng [12], whose dynamics are described by⎧⎪⎨

⎪⎩
−dY v1,v2(t) = g

(
t, Y v1,v2(t), Zv1,v2(t), v1(t), v2(t)

)
dt

+ ḡ
(
t, Y v1,v2(t), Zv1,v2(t), v1(t), v2(t)

)
d̂B(t) − Zv1,v2(t)dW (t),

Y v1,v2(T ) = ξ.

Here the integral with respect to d̂B(t) is a “backward Itô integral” and the integral with respect to dW (t) is a
standard forward Itô integral, which are two types of particular cases of the Itô–Skorohod integral. The extra
noise B(·) generates FB

t,T which represents the information concerning the future market development. It is very
natural that we require the control processes v1(·) and v2(·) to be Ft-adapted, rather than only FW

t -adapted
or FB

t,T -adapted.
We introduce an LQ nonzero-sum differential game of BDSDEs, which inspires us to study the differential

game theory of FBDSDEs. In detail, we consider the following 1-dimensional linear BDSDE:⎧⎪⎨
⎪⎩

−dY (t) = [A1Y (t) + B1Z(t) + C1v1(t) + D1v2(t)]dt

+ [A2Y (t) + B2Z(t) + C2v1(t) + D2v2(t)]d̂B(t) − Z(t)dW (t),
Y (T ) = ξ,

(1.3)

and the performance criterion, for i = 1, 2,

Ji(v1(·), v2(·)) = − 1
2

E

{
〈Fi1Y (0), Y (0)〉 +

∫ T

0

[
〈Fi2Y (t), Y (t)〉

+ 〈Fi3Z(t), Z(t)〉 + 〈Fi4v1(t), v1(t)〉 + 〈Fi5v2(t), v2(t)〉
]
dt

}
. (1.4)

For simplicity, we assume that ξ is a real-valued random variable, all the coefficients in (1.3) and (1.4) are
1-dimensional, l = d = 1, Fi1, Fi2, Fi3 ≥ 0, Fi4, Fi5 > 0.

We are to seek a (u1(·), u2(·)) ∈ U1 × U2, for all (v1(·), v2(·)) ∈ U1 × U2, such that{
J(u1(·), u2(·)) ≥ J(v1(·), u2(·)),
J(u1(·), u2(·)) ≥ J(u1(·), v2(·)).
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Here U1 ×U2 is a certain admissible control set for Player 1 and Player 2. If such a (u1(·), u2(·)) exists, we call
it an equilibrium point. For simplicity, we denote this problem by Problem (LQNZB).

Applying Theorem 4.1 in [5], we conclude that if the equilibrium point exists, then it is necessary to satisfy
the following form: {

u1(t) = −F−1
14

(
C1y1(t) + C2z1(t)

)
,

u2(t) = −F−1
25

(
D1y2(t) + D2z2(t)

)
,

where (yi, zi) (i = 1, 2) is the solution of the FBDSDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dY (t) =
[
A1Y (t) + B1Z(t) − C1F

−1
14

(
C1y1(t) + C2z1(t)

)
− D1F

−1
25

(
D1y2(t) + D2z2(t)

)]
dt

+
[
A2Y (t) + B2Z(t) − C2F

−1
14

(
C1y1(t) + C2z1(t)

)
− D2F

−1
25

(
D1y2(t) + D2z2(t)

)
d̂B(t) − Z(t)dW (t),

dyi(t) =
(
A1yi(t) + A2zi(t) + Fi2Y (t)

)
dt +

(
B1yi(t) + B2zi(t) + Fi3Z(t)

)
dW (t)

− zi(t)d̂B(t),

Y (T ) = ξ, yi(0) = Fi1Y (0).

(1.5)

We note that equation (1.5) is exactly the type of time-symmetric forward-backward stochastic differential
equation (FBSDE, for short) (see [13]), but with an initial coupled constraint. This kind of equations possesses
fine dynamics and contains BSDEs, BDSDEs and initial coupled FBSDEs as a special case. Then, it is natural
to investigate some differential game theory derived by them.

Recall that Ft represents the full information arising from the market, which may contain the past, present
and future information. Due to this, in principle, it is not completely available to the players. However, it is
possible that the players possess a subset of Ft which is denoted by Et. In order to distinguish Et from Ft, we
call Et a sub-information or partial information of Ft. Note that Et could be the δ-delayed information defined
by F(t−δ)+ , where δ is a given positive constant delay. Here we require the control processes v1(·) and v2(·) to
be Et-adapted. This implies that the players will only depend on Et to choose their control strategies. Based on
the above-mentioned arguments, we are interested in initiating a study of differential games of initial coupled
FBDSDEs with partial information.

Up till now, to our best knowledge, there are only two papers about optimal control of BDSDEs and ini-
tial coupled FBSDEs (see [5, 17]), and a few studies about differential games of BSDEs (see [15, 16]). For
the topics about the optimal control and differential games of terminal coupled FBSDEs or FBDSDEs, refer
to [2, 4, 7, 10, 14, 19, 20, 22, 23], specially the monographs [9, 21], etc. However, little or none has been done on
differential games of BDSDEs, initial coupled FBSDEs and FBDSDEs, and our research can just right make up
this scarcity. Also, some comparisons between our results and the existing literature are specified in conclusion
section.

The rest is organized as follows. Section 2 formulates a nonzero-sum game of initial-coupled FBDSDEs with
partial information. Applying classical convex variation and adjoint techniques, a maximum principle, also called
a necessary condition, is established for an equilibrium point (refer to Thm. 2.1). By virtue of the concavity
assumptions of certain functions, we derive a verification theorem, also called a sufficient condition, which is the
main result in this paper (refer to Thm. 2.3). To illustrate the theoretical results, we work out an LQ nonzero-
sum differential game. Applying Theorem 2.1, Theorem 2.3 and the stochastic filtering techniques of FBSDEs,
an explicit expression of the equilibrium point is obtained. Likewise, Section 3 gives a maximum principle and a
verification theorem for a saddle point of zero-sum differential games. Finally, Section 4 gives some concluding
remarks.
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2. Nonzero-sum differential games

2.1. Problem formulation

Let Ui be a nonempty convex subset of Rki (i = 1, 2). The processes v1(t) = v1(t, ω) and v2(t) = v2(t, ω) are
the control processes of Player 1 and Player 2, respectively. We always use the subscript 1 (resp. the subscript 2)
to characterize the variable corresponding to Player 1 (resp. Player 2). We denote the set of all open-loop controls
for Player i (i = 1, 2) by

Ui =

{
vi(·) : [0, T ]× Ω −→ Ui

∣∣vi(·) is Et-adapted and satisfies E

∫ T

0

|vi(t)|2dt < ∞
}

,

where Et is a sub-information of Ft available to the players, i.e.

Et ⊆ Ft, for all t.

Each element of Ui is called an admissible control for Player i on [0, T] (i = 1, 2). U1 × U2 is called the set of
open-loop admissible controls for the players.

We introduce the mappings

f : [0, T ]× Rn × Rn×l × Rm × Rm×d × U1 × U2 → Rn,

f̄ : [0, T ]× Rn × Rn×l × Rm × Rm×d × U1 × U2 → Rn×d,

g : [0, T ]× Rm × Rm×d × U1 × U2 → Rm,

ḡ : [0, T ]× Rm × Rm×d × U1 × U2 → Rm×l,

φ : Rm → Rn, ϕ, ϕi : Rm → R1, γ, γi : Rn → R1,

l, li : [0, T ]× Rn × Rn×l × Rm × Rm×d × U1 × U2 → R1 (i = 1, 2).

Assumption (H1): For any (y, z, Y, Z, v1, v2) ∈ Rn × Rn×l × Rm × Rm×d × U1 × U2, we assume that
f(·, y, z, Y, Z, v1, v2), f̄(·, y, z, Y, Z, v1, v2), g(·, Y, Z, v1, v2) and ḡ(·, Y, Z, v1, v2) are continuous with respect to t.
Also, we assume that f, f̄ , g and ḡ are continuously differentiable with respect to (y, z, Y, Z, v1, v2), and their
derivatives with respect to (y, z, Y, Z, v1, v2) are uniformly bounded. l, l1, l2, ϕ, ϕ1, ϕ2, γ, γ1 and γ2 are contin-
uously differential with respect to (y, z, Y, Z, v1, v2) and their derivatives with respect to (y, z, Y, Z, v1, v2)
are continuous and bounded by K(1 + |y| + |z| + |Y | + |Z| + |v1| + |v2|). For any (y1, z1, Y1, Z1, u1, u2),
(y2, z2, Y2, Z2, v1, v2) ∈ Rn × Rn×l × Rm × Rm×d × U1 × U2, there exist constants k > 0 and 0 < c < 1
such that

|f̄(t, y1, z1, Y1, Z1, u1, u2) − f̄(t, y2, z2, Y2, Z2, v1, v2)|2 + |ḡ(t, Y1, Z1, u1, u2) − ḡ(t, Y2, Z2, v1, v2)|2
≤ k(|y1 − y2|2 + |Y1 − Y2|2 + |Z1 − Z2|2 + |u1 − v1|2 + |u2 − v2|2) + c|z1 − z2|2.

In the following, we specify the nonzero-sum differential game of forward-backward doubly stochastic systems.
Given ξ ∈ L2

T (Ω; Rm) and φ ∈ L2
T (Ω; Rn), we consider an FBDSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dY v1,v2(t) = g(t, Y v1,v2(t), Zv1,v2(t), v1(t), v2(t))dt

+ ḡ(t, Y v1,v2(t), Zv1,v2(t), v1(t), v2(t))d̂B(t) − Zv1,v2(t)dW (t),
dyv1,v2(t) = f(t, yv1,v2(t), zv1,v2(t), Y v1,v2(t), Zv1,v2(t), v1(t), v2(t))dt

+ f̄(t, yv1,v2(t), zv1,v2(t), Y v1,v2(t), Zv1,v2(t), v1(t), v2(t))dW (t)

− zv1,v2(t)d̂B(t),
Y v1,v2(T ) = ξ, yv1,v2(0) = φ(Y v1,v2(0)), 0 ≤ t ≤ T.

(2.1)
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Under the assumption (H1), for any (v1(·), v2(·)) ∈ U1 × U2, there exists a unique solution
(
yv1,v2(·), zv1,v2(·),

Y v1,v2(·), Zv1,v2(·)) ∈ L2
Ft

(0, T ; Rn) × L2
Ft

(0, T ; Rn×l) × L2
Ft

(0, T ; Rm) × L2
Ft

(0, T ; Rm×d) to equation (2.1)
(see [12]).

Consider a performance criterion

Ji(v1(·), v2(·)) = E

[ ∫ T

0

li
(
t, yv1,v2(t), zv1,v2(t), Y v1,v2(t), Zv1,v2(t), v1(t), v2(t)

)
dt

+ ϕi(Y v1,v2(0))

]
+ γi(yv1,v2(T )).

For any (v1(·), v2(·)) ∈ U1 × U2, we assume that li(·, yv1,v2(·), zv1,v2(·), Y v1,v2(·), Zv1,v2(·), v1(·), v2(·)) ∈
L1
Ft

(0, T ; R) and γi ∈ L1
T (Ω; R) (i = 1, 2).

Problem (NZSG): Find (u1(·), u2(·)) ∈ U1 × U2 such that{
J1(u1(·), u2(·)) ≥ J1(v1(·), u2(·)),
J2(u1(·), u2(·)) ≥ J2(u1(·), v2(·)),

for all (v1(·), v2(·)) ∈ U1 × U2. We call (u1(·), u2(·)) an open-loop equilibrium point of Problem (NZSG) (if it
does exist). It is easy to see that the existence of an open-loop equilibrium point implies that⎧⎪⎨

⎪⎩
J1(u1(·), u2(·)) = sup

v1(·)∈U1

J1(v1(·), u2(·)),

J2(u1(·), u2(·)) = sup
v2(·)∈U2

J2(u1(·), v2(·)).

2.2. Necessary condition

Suppose that (u1(·), u2(·)) is an equilibrium point of Problem (NZSG) with the trajectory
(
y(·),

z(·), Y (·), Z(·)
)

of (2.1). For all t ∈ [0, T ], let vi(t) ∈ Ui be such that ui(·) + vi(·) ∈ Ui (i = 1, 2). Notice
that Ui is convex, then for 0 ≤ ε, ρ ≤ 1, i = 1, 2,

u1ε(t) = u1(t) + εv1(t) ∈ U1, u2ρ(t) = u2(t) + ρv2(t) ∈ U2, 0 ≤ t ≤ T.

For simplicity, we denote

f(t) = f
(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t)

)
,

g(t) = g
(
t, Y (t), Z(t), u1(t), u2(t)

)
,

Y u1ε(t) = Y (u1+εv1,u2)(t), Y u2ρ(t) = Y (u1,u2+ρv2)(t),
hi(ε, ρ) = Ji(u1 + εv1, u2 + ρv2),

define the processes

Ŷ 1(t) =
d
dε

Y u1ε(t)|ε=0, Ŷ 2(t) =
d
dρ

Y u2ρ(t)|ρ=0,

and make the similar notations for f̄ , ḡ, li, ŷ
i, ẑi, Ẑi, i = 1, 2. For i = 1, 2, we have the following variational

equations: ⎧⎪⎪⎨
⎪⎪⎩

−dŶ i(t) = ĝi(t)dt + ˆ̄gi(t)d̂B(t) − Ẑi(t)dW (t),

dŷi(t) = f̂ i(t)dt + ˆ̄f i(t)dW (t) − ẑi(t)d̂B(t),

Ŷ i(T ) = 0, ŷi(0) = φY (Y (0))Ŷ i(0)
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where

ĝi(t) = gY (t)Ŷ i(t) + gZ(t)Ẑi(t) + gvi(t)vi(t),

ˆ̄gi(t) = ḡY (t)Ŷ i(t) + ḡZ(t)Ẑi(t) + ḡvi(t)vi(t),

f̂ i(t) = fy(t)ŷi(t) + fz(t)ẑi(t) + fY (t)Ŷ i(t) + fZ(t)Ẑi(t) + fvi(t)vi(t),
ˆ̄f i(t) = f̄y(t)ŷi(t) + f̄z(t)ẑi(t) + f̄Y (t)Ŷ i(t) + f̄Z(t)Ẑi(t) + f̄vi(t)vi(t),

l̂i(t) = liy(t)ŷi(t) + liz(t)ẑi(t) + liY (t)Ŷ i(t) + liZ(t)Ẑi(t) + livi(t)vi(t).

Next, we define the generalized Hamiltonian function Hi : [0, T ]× Rn × Rn×l × Rm × Rm×d × U1 × U2 × Rn ×
Rn×l × Rm × Rm×d as follows:

Hi(t, y, z,Y, Z, v1, v2, pi, p̄i, qi, q̄i) � 〈qi, f(y, z, Y, Z, v1, v2)〉 + 〈q̄i, f̄(y, z, Y, Z, v1, v2)〉
− 〈pi, g(Y, Z, v1, v2)〉 − 〈p̄i, ḡ(Y, Z, v1, v2)〉 + li(y, z, Y, Z, v1, v2).

Let (u1, u2) ∈ U1 × U2 with the solution
(
y(·), z(·), Y (·), Z(·)) of equation (2.1). We shall use the abbreviated

notation Hi(t) defined by

Hi(t) ≡ Hi

(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), pi(t), p̄i(t), qi(t), q̄i(t)

)
.

The adjoint equations are described by the following generalized stochastic Hamiltonian systems:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dpi(t) = − H∗
iY (t)dt − H∗

iZ(t)dW (t) − p̄i(t)d̂B(t),

−dqi(t) = H∗
iy(t)dt + H∗

iz(t)d̂B(t) − q̄i(t)dW (t),

pi(0) = − ϕ∗
iY (Y (0)) − φ∗

Y

(
Y (0)

)
qi(0),

qi(T ) =γ∗
iy

(
y(T )

)
.

(2.2)

Then we have the following maximum principle for equilibrium points of Problem (NZSG).

Theorem 2.1. Let (H1) hold and
(
u1(·), u2(·)

)
be an equilibrium point of Problem (NZSG). Furthermore,(

y(·), z(·), Y (·), Z(·)
)

and
(
pi(·), p̄i(·), qi(·), q̄i(·)

)
are the solutions of (2.1) and (2.2) corresponding to the

control
(
u1(·), u2(·)

)
, respectively. Then it follows that〈

E[H∗
1v1

(t)|Et], v1(t) − u1(t)
〉
≤ 0 (2.3)

and 〈
E[H∗

2v2
(t)|Et], v2(t) − u2(t)

〉
≤ 0 (2.4)

are true for any (v1(·), v2(·)) ∈ U1 × U2, a.e. a.s.

Proof: Since (u1(·), u2(·)) is an equilibrium point, we have

∂h1

∂ε
(0, 0) = lim

ε→0

J1(u1 + εv1, u2) − J1(u1, u2)
ε

≤ 0.

Then

0 ≥ ∂

∂ε
h1(ε, 0)|ε=0

= E

∫ T

0

(
l1y(t)ŷ1(t) + l1z(t)ẑ1(t) + l1Y (t)Ŷ 1(t) + l1Z(t)Ẑ1(t) + l1v1(t)v1(t)

)
dt

+ E
(
ϕ1Y

(
Y (0)

)
Ŷ 1(0) + γ1y

(
y(T )

)
ŷ1(T )

)
. (2.5)
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Applying Itô’s formula to 〈p1(t), Ŷ 1(t)〉 and 〈q1(t), ŷ1(t)〉, and integrating from 0 to T , we have

E
(
ϕ1Y

(
Y (0)

)
Ŷ 1(0)

)
= − E〈p1(0) + φ∗

Y (Y (0))q1(0), Ŷ 1(0)〉 = −〈φ∗
Y (Y (0))q1(0), Ŷ 1(0)〉

− E

∫ T

0

(
p∗1(t)gv1(t)v1(t) + q∗1(t)fY (t)Ŷ 1(t) + q̄∗1(t)f̄Y (t)Ŷ 1(t) − l1Y (t)Ŷ 1(t)

+ p̄∗1(t)ḡv1(t)v1(t) + q∗1(t)fZ(t)Ẑ1(t) + q̄∗1(t)f̄Z(t)Ẑ1(t) − l1Z(t)Ẑ1(t)
)
dt, (2.6)

and

E
(
γ1y

(
y(T )

)
ŷ1(T )

)
= 〈φ∗

Y (Y (0))q1(0), Ŷ 1(0)〉

+ E

∫ T

0

(
q∗1(t)fY (t)Ŷ 1(t) + q∗1(t)fZ(t)Ẑ1(t) + q∗1(t)fv1(t)v1(t) − l1y(t)ŷ1(t)

− l1z(t)ẑ1(t) + q̄∗1(t)f̄Y (t)Ŷ 1(t) + q̄∗1(t)f̄Z(t)Ẑ1(t) + q̄∗1(t)f̄v1(t)v1(t)
)
dt. (2.7)

Substituting (2.6) and (2.7) into (2.5), for all v1 ∈ U1 such that u1(·) + v1(·) ∈ U1, we get

0 ≥ ∂

∂ε
h1(ε, 0)|ε=0

=E

∫ T

0

(
q∗1(t)fv1(t) + q̄∗1(t)f̄v1(t) + p∗1(t)gv1(t) + p̄∗1(t)ḡv1(t) + l1v1(t)

)
v1(t)dt

=E

∫ T

0

〈
H∗

1v1
(t), v1(t)

〉
dt = E

∫ T

0

E
[〈

H∗
1v1

(t), v1(t)
〉∣∣∣Et

]
dt,

which implies that (2.3) is true. (2.4) can be proved by the same method as shown in proving (2.3). �
If
(
v1(·), v2(·)

)
is adapted to Ft, we have the following corollary.

Corollary 2.2. Suppose that Et = Ft for all t. Let (H1) hold, and
(
u1(·), u2(·)

)
be an equilibrium point

of Problem (NZSG). Moreover,
(
y(·), z(·), Y (·), Z(·)

)
and

(
pi(·), p̄i(·), qi(·), q̄i(·)

)
are the solutions of (2.1)

and (2.2) corresponding to the control
(
u1(·), u2(·)

)
, respectively. Then it follows that

〈
H∗

1v1
(t), v1(t) − u1(t)

〉
≤ 0

and 〈
H∗

2v2
(t), v2(t) − u2(t)

〉
≤ 0

are true for any (v1(·), v2(·)) ∈ U1 × U2, a.e. a.s.

2.3. Sufficient condition

In what follows, we aim to establish a verification theorem, also called a sufficient condition, for an equilibrium
point. For this, we introduce an additional condition as follows.

Assumption (H2): φ(Y ) = MY , where M is a non-zero constant matrix with order n × m.
Note that this is a standard assumption in the optimal control theory of forward-backward stochastic systems

(see [10], etc.).
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Theorem 2.3. Let (H1) and (H2) hold. Let (y, z, Y, Z) and (pi, p̄i, qi, q̄i) be the solutions of equations (2.1)
and (2.2) corresponding to the admissible control

(
u1(·), u2(·)

)
, respectively. Suppose that ϕi and γi are concave

in Y and y (i = 1, 2) respectively, and that for all (t, y, z, Y, Z, ) ∈ [0, T ]× Rn × Rn×l × Rm × Rm×d,

(y, z, Y, Z, v1) −→ H1

(
t, y, z, Y, Z, v1, u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)
, (2.8)

(y, z, Y, Z, v2) −→ H2

(
t, y, z, Y, Z, u1(t), v2, p2(t), p̄2(t), q2(t), q̄2(t)

)
(2.9)

are concave. Moreover,

E

[
H1

(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)∣∣Et

]

= sup
v1∈ U1

E

[
H1

(
t, y(t), z(t), Y (t), Z(t), v1, u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)∣∣Et

]
, (2.10)

E

[
H2

(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p2(t), p̄2(t), q2(t), q̄2(t)

)∣∣Et

]

= sup
v2∈ U2

E

[
H2

(
t, y(t), z(t), Y (t), Z(t), u1(t), v2, p2(t), p̄2(t), q2(t), q̄2(t)

)∣∣Et

]
. (2.11)

Then
(
u1(·), u2(·)

)
is an equilibrium point of Problem (NZSG).

Proof : Let (v1(·), u2(·)) and (u1(·), v2(·)) ∈ U1 × U2 with the corresponding solutions (yv1 , zv1 , Y v1 , Zv1) and
(yv2 , zv2 , Y v2 , Zv2) to equation (2.1). We define the following terms

H1(t) = H1(t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p1(t), p̄1(t), q1(t), q̄1(t)),

Hv1
1 (t) = H1(t, yv1(t), zv1(t), Y v1(t), Zv1(t), v1(t), u2(t), p1(t), p̄1(t), q1(t), q̄1(t)),

Hv2
1 (t) = H1(t, yv2(t), zv2(t), Y v2(t), Zv2(t), u1(t), v2(t), p1(t), p̄1(t), q1(t), q̄1(t)),

fv1(t) = f(t, yv1(t), zv1(t), Y v1(t), Zv1(t), v1(t), u2(t)),

fv2(t) = f(t, yv2 , zv2 , Y v2 , Zv2 , u1(t), v2(t)),

and similar notations are made for f̄v1 , f̄v2 , . . .

By virtue of the concavity property of ϕ1 and γ1, we have for ∀ v1(·) ∈ U1

J1(v1(·), u2(·)) − J1(u1(·), u2(·)) ≤ I1 + I2 + I3 (2.12)

with

I1 = E [γ1y(y(T ))(yv1(T ) − y(T ))] ,

I2 = E [ϕ1Y (Y (0))(Y v1(0) − Y (0))] ,

I3 = E

∫ T

0

(
lv1
1 (t) − l1(t)

)
dt.



86 E.C.M. HUI AND H. XIAO

Applying Itô’s formula to 〈q1(t), yv1(t) − y(t)〉 and 〈p1(t), Y v1(t) − Y (t)〉,

I1 = E[〈q1(0), M(Y v1(0) − Y (0))〉]

+ E

∫ T

0

(
〈q1(t), fv1(t) − f(t)〉 − 〈H∗

1y(t), yv1(t) − y(t)〉

+ 〈q̄1(t), f̄v1(t) − f̄(t)〉 − 〈H∗
1z(t), z

v1(t) − z(t)〉
)
dt, (2.13)

I2 = − E[〈q1(0), M(Y v1(0) − Y (0))〉]

− E

∫ T

0

(
〈p1(t), gv1(t) − g(t)〉 + 〈H∗

1Y (t), Y v1(t) − Y (t)〉

+ 〈p̄1(t), ḡv1(t) − ḡ(t)〉 + 〈H∗
1Z(t), Zv1(t) − Z(t)〉

)
dt, (2.14)

I3 = E

∫ T

0

(
Hv1

1 (t) − H1(t) − 〈q1(t), fv1(t) − f(t)〉 − 〈q̄1(t), f̄v1(t) − f̄(t)〉

+ 〈p̄1(t), ḡv1(t) − ḡ(t)〉 + 〈p1(t), gv1(t) − g(t)〉
)

dt. (2.15)

Substituting (2.13)–(2.15) into (2.12), it follows immediately that

J1(v1(·), u2(·)) − J1(u1(·), u2(·))

≤ E

∫ T

0

(
Hv1

1 (t) − H1(t) − 〈H∗
1Y (t), Y v1(t) − Y (t)〉 − 〈H∗

1Z(t), Zv1(t) − Z(t)〉

− 〈H∗
1y(t), yv1(t) − y(t)〉 − 〈H∗

1z(t), z
v1(t) − z(t)〉

)
dt. (2.16)

Since v1 → E

[
H1

(
t, y(t), z(t), Y (t), Z(t), v1, u2(t), p1(t), q1(t), q̄1(t)

)∣∣Et

]
is maximum for v1 = u1 and since v1(t)

and u1(t) are Et-measurable, we get

E

[
∂

∂v1
H1

(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)(
v1(t) − u1(t)

)∣∣Et

]

= E

[
∂

∂v1
H1

(
t, y(t), z(t), Y (t), Z(t), v1(t), u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)∣∣Et

]
v1=u1

(
v1(t) − u1(t)

)
≤ 0. (2.17)

Combining (2.8), (2.16) with (2.17), we conclude that

J1(v1(·), u2(·)) − J1(u1(·), u2(·)) ≤ 0, (2.18)

for all v1(·) ∈ U1. Repeating the similar proceeding as shown in deriving (2.18), we can prove that

J2(u1(·), v2(·)) − J2(u1(·), u2(·)) ≤ 0.

Based on the arguments above, (u1(·), u2(·)) is an equilibrium point of Problem (NZSG). �

Corollary 2.4. Suppose that Et = Ft for all t and that (H1), (H2), (2.8) and (2.9) hold. Suppose that ϕi and γi

are concave in Y and y (i = 1, 2), respectively. Let (y, z, Y, Z) and (pi, p̄i, qi, q̄i) be the solutions of equations (2.1)
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and (2.2) corresponding to the admissible control
(
u1(·), u2(·)

)
, respectively. Moreover,

H1

(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)
= sup

v1∈ U1

H1

(
t, y(t), z(t), Y (t), Z(t), v1, u2(t), p1(t), p̄1(t), q1(t), q̄1(t)

)

H2

(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p2(t), p̄2(t), q2(t), q̄2(t)

)
= sup

v2∈ U2

H2

(
t, y(t), z(t), Y (t), Z(t), u1(t), v2, p2(t), p̄2(t), q2(t), q̄2(t)

)
.

Then (u1(·), u2(·)) is an equilibrium point of nonzero-sum differential games.

2.4. An example

In this section, we first work out an LQ nonzero-sum differential game, and then specify how to apply the
foregoing theoretical results to find an explicit expression of the equilibrium point.

Consider the linear FBDSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dY v1,v2(t) =
[
a0(t) + a1(t)Y v1,v2(t) + a2(t)Zv1,v2(t) + a3(t)v1(t) + a4(t)v2(t)

]
dt

+ b0(t)d̂B(t) − Zv1,v2(t)dW (t),

dyv1,v2(t) =
[
c0(t) + c1(t)yv1,v2(t) + c2(t)Y v1,v2(t) + c3(t)Zv1,v2(t)

]
dt

+ d0(t)dW (t) − zv1,v2(t)d̂B(t),

Y v1,v2(T ) = ξ, yv1,v2(0) = MY v1,v2(0),

(2.19)

and the performance criterion, for i = 1, 2,

Ji

(
v1(·), v2(·)

)
= −1

2
E

[ ∫ T

0

(
〈ei1(t)yv1,v2(t), yv1,v2(t)〉 + 〈ei2(t)zv1,v2(t), zv1,v2(t)〉

+ 〈ei3(t)Y v1,v2(t), Y v1,v2(t)〉 + 〈ei4(t)Zv1,v2(t), Zv1,v2(t)〉 + 〈ei7(t)vi(t), vi(t)〉
)
dt

+ 〈ei5(T )yv1,v2(T ), yv1,v2(T )〉 + 〈ei6(0)Y v1,v2(0), Y v1,v2(0)〉
]
. (2.20)

Here, we assume that all the coefficients in (2.19) and (2.20) are bounded and deterministic functions of t;
ei1, . . . , ei6 are symmetric nonnegative definite; and ei7 is symmetric uniformly positive definite. The set of
admissible controls is defined by

Ui = {vi(·) | vi(·) is an Rki -valued Et-adapted process

and satisfies E

∫ T

0

v2
i (t)dt < ∞}, i = 1, 2.

Here
Et = N ∨ σ

{
W (r) : 0 ≤ r ≤ t

}
.
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For simplicity, we only deal with the case of 1-dimensional coefficients. Our task is to find (u1(·), u2(·)) ∈ U1×U2,
such that ⎧⎪⎨

⎪⎩
J1(u1(·), u2(·)) = sup

v1(·)∈U1

J1(v1(·), u2(·)),

J2(u1(·), u2(·)) = sup
v2(·)∈U2

J2(u1(·), v2(·)).

Solving: we find the equilibrium point by three steps.
(i) Seek candidate equilibrium points.
Let q̃i(t) denote the filtering of qi(·) with respect to Et, i.e. q̃i(t) = E

(
qi(t)

∣∣Et

)
. The similar notations are

made for ˜̄qi(t), p̃i(t), ˜̄pi(t), . . . , i = 1, 2. We write down the concrete Hamiltonian function:

Hi(t, y, z,Y, Z, v1, v2, pi, p̄i, qi, q̄i) � 〈qi, c0(t) + c1y + c2(t)Y + c3(t)Z〉 + 〈q̄i, d0(t)〉
− 〈pi, a0(t) + a1(t)Y + a2(t)Z + a3(t)v1 + a4(t)v2〉 − 〈p̄i, b0(t)〉
− 1

2

(
〈ei1(t)y, y〉 + 〈ei2(t)z, z〉+ 〈ei3(t)Y, Y 〉 + 〈ei4(t)Z, Z〉 + 〈ei7(t)vi, vi〉

)
. (2.21)

According to Theorem 2.1, we confirm that the candidate equilibrium points must satisfy the following form:

{
u1(t) = −e−1

17 (t)a3(t)p̃1(t),

u2(t) = −e−1
27 (t)a4(t)p̃2(t),

(2.22)

where
(
pi(·), p̄i(·), qi(·), q̄i(·)

)
, for i = 1, 2, is the solution of the following adjoint equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpi(t) =
(
ei3(t)Y (t) + a1pi(t) − c2(t)qi(t)

)
dt

+
(
ei4(t)Z(t) + a2(t)pi(t) − c3(t)qi(t)

)
dW (t) − p̄i(t)d̂B(t),

−dqi(t) =
(
− ei1(t)y(t) + c1(t)qi(t)

)
dt −

(
ei2(t)z(t)

)
d̂B(t) − q̄i(t)dW (t),

pi(0) =ei6Y (0) − Mqi(0), qi(T ) = −ei5(T )y(T ),

(2.23)

and
(
y(·), z(·), Y (·), Z(·)) is the solution of the following state equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dY (t) =
[
a0(t) + a1(t)Y (t) + a2(t)Z(t) − a3(t)2e−1

17 (t)p̃1(t)

− a4(t)2e−1
27 (t)p̃2(t)

]
dt + b0(t)d̂B(t) − Z(t)dW (t),

dy(t) =
[
c0(t) + c1(t)y(t) + c2(t)Y (t) + c3(t)Z(t)

]
dt + d0(t)dW (t) − z(t)d̂B(t),

Y (T ) = ξ, y(o) = MY (0).

(2.24)

(ii) Optimal filtering with Et = N ∨ σ
{
W (r); 0 ≤ r ≤ t

}
.

Equation (2.23) together with (2.24) constitutes a triple dimensional FBDSDE. In order to find the explicit
expression of the candidate equilibrium point, we need to compute the optimal filters p̃1(·) and p̃2(·) of p1(·)
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and p2(·), respectively. Applying Lemma 5.4 in [18] to (2.23) and (2.24), we conclude that p̃1(·) and p̃2(·) satisfy
the following triple dimensional FBSDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

⎛
⎝ ỹ(t)

p̃1(t)
p̃2(t)

⎞
⎠ =

⎧⎨
⎩
⎛
⎝ c2(t) 0 0

e13(t) −c2(t) 0
e23(t) 0 −c2(t)

⎞
⎠
⎛
⎝ Ỹ (t)

q̃1(t)
q̃2(t)

⎞
⎠ +

⎛
⎝ c1(t) 0 0

0 a1(t) 0
0 0 a1(t)

⎞
⎠
⎛
⎝ ỹ(t)

p̃1(t)
p̃2(t)

⎞
⎠

+

⎛
⎝ c3(t) 0 0

0 0 0
0 0 0

⎞
⎠
⎛
⎝ Z̃(t)

˜̄q1(t)
˜̄q2(t)

⎞
⎠+

⎛
⎝ c0(t)

0
0

⎞
⎠
⎫⎬
⎭dt

+

⎧⎨
⎩
⎛
⎝0 0 0

0 −c3(t) 0
0 0 −c3(t)

⎞
⎠
⎛
⎝ Ỹ (t)

q̃1(t)
q̃2(t)

⎞
⎠+

⎛
⎝ 0 0 0

e14(t) 0 0
e24(t) 0 0

⎞
⎠
⎛
⎝ Z̃(t)

˜̄q1(t)
˜̄q2(t)

⎞
⎠

+

⎛
⎝0 0 0

0 a2(t) 0
0 0 a2(t)

⎞
⎠
⎛
⎝ ỹ(t)

p̃1(t)
p̃2(t)

⎞
⎠+

⎛
⎝d0(t)

0
0

⎞
⎠
⎫⎬
⎭dW (t),

⎛
⎝ ỹ(0)

p̃1(0)
p̃2(0)

⎞
⎠ =

⎛
⎝ M 0 0

e16(t) −M 0
e26(t) 0 −M

⎞
⎠
⎛
⎝ Ỹ (0)

q̃1(0)
q̃2(0)

⎞
⎠ ,

(2.25a)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d

⎛
⎝ Ỹ (t)

q̃1(t)
q̃2(t)

⎞
⎠ =

⎧⎨
⎩
⎛
⎝a1(t) 0 0

0 c1(t) 0
0 0 c1(t)

⎞
⎠
⎛
⎝ Ỹ (t)

q̃1(t)
q̃2(t)

⎞
⎠

+

⎛
⎝ 0 −a3(t)2e−1

17 (t) −a4(t)2e−1
28 (t)

−e11(t) 0 0
−e21(t) 0 0

⎞
⎠
⎛
⎝ ỹ(t)

p̃1(t)
p̃2(t)

⎞
⎠

+

⎛
⎝a2(t) 0 0

0 0 0
0 0 0

⎞
⎠
⎛
⎝ Z̃(t)

˜̄q1(t)
˜̄q2(t)

⎞
⎠+

⎛
⎝a0(t)

0
0

⎞
⎠
⎫⎬
⎭dt −

⎛
⎝ Z̃(t)

˜̄q1(t)
˜̄q2(t)

⎞
⎠ dW (t),

⎛
⎝ Ỹ (T )

q̃1(T )
q̃2(T )

⎞
⎠ =

⎛
⎝ E[ξ|ET ]

−e15(T )ỹ(T )
−e25(T )ỹ(T )

⎞
⎠ .

(2.25b)

Note that (2.25a) is a forward stochastic differential filtering equation, while (2.25b) is a backward stochastic
differential filtering equation (2.25a) together with (2.25b) constitutes a coupled forward-backward stochastic
differential filtering equation denoted by (2.25), which is distinguished from the classical filtering literature (see
e.g. [8]). Now, we obtain an explicit candidate equilibrium point for the foregoing LQ nonzero-sum differential
game.

(iii) Verify that
(
u1(·), u2(·)

)
denoted by (2.22) is indeed an equilibrium point.

We can check that the system (2.19) and the performance criterion (2.20) satisfy the assumptions (H1) and
(H2), that γi(y) = −ei5y

2 and ϕi(Y ) = −ei6Y
2 are concave with respect to y and Y respectively, and that the

Hamiltonian Hi (i = 1, 2) denoted by (2.21) satisfies the conditions (2.8)–(2.11). Then, from Theorem 2.3, we
conclude that

(
u1(·), u2(·)

)
denoted by (2.22) is indeed an equilibrium point.

3. Zero-sum differential games

In this section, we study a zero-sum version of Problem (NZSG).
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We introduce the performance criterion

J(v1(·), v2(·)) = E

[∫ T

0

l
(
t, yv1,v2(t), zv1,v2(t), Y v1,v2(t), Zv1,v2(t), v1(t), v2(t)

)
dt

+ ϕ(yv1,v2(T ))

]
+ γ(Y v1,v2(0)).

For any
(
v1(·), v2(·)

) ∈ U1 × U2, we assume that l(·, yv1,v2(·), Y v1,v2(·), Zv1,v2(·), v1(·), v2(·)) ∈ L1
Ft

(0, T ; R) and
γ ∈ L1

T (Ω; R).
Problem (ZSG): Find (u1(·), u2(·)) ∈ U1 × U2 such that

J(u1(·), v2(·)) ≤ J(u1(·), u2(·)) ≤ J(v1(·), u2(·)),
for all (v1(·), v2(·)) ∈ U1 × U2. We call (u1(·), u2(·)) an open-loop saddle point of Problem (ZSG) (if it exists).

It is well known that the zero-sum game can be regarded as a special case of the foregoing nonzero-sum game.
In fact, we let

−J1 = J2 = J.

If (u1(·), u2(·)) is an equilibrium point of Problem (NZSG), we have{
J1(u1(·), u2(·)) ≥ J1(v1(·), u2(·)),
J2(u1(·), u2(·)) ≥ J2(u1(·), v2(·)),

which implies that
J(u1(·), v2(·)) ≤ J(u1(·), u2(·)) ≤ J(v1(·), u2(·)).

We define a new Hamiltonian function H : [0, T ]×Rn×Rn×l×Rm×Rm×d×U1×U2×Rn×Rn×l×Rm×Rm×d

as follows:

H(t, y, z,Y, Z, v1, v2, p, p̄, q, q̄) � 〈q, f(y, z, Y, Z, v1, v2)〉 + 〈q̄, f̄(y, z, Y, Z, v1, v2)〉
− 〈p, g(Y, Z, v1, v2)〉 − 〈p̄, ḡ(Y, Z, v1, v2)〉 + l(y, z, Y, Z, v1, v2).

Let (u1, u2) ∈ U1 × U2 with the solution
(
y(·), z(·), Y (·), Z(·)) of equation (2.1). We shall use the abbreviated

notation H(t) defined by

H(t) ≡ H
(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p(t), p̄(t), q(t), q̄(t)

)
.

The adjoint equations are described by the following generalized stochastic Hamiltonian systems:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dp(t) = − H∗
Y (t)dt − H∗

Z(t)dW (t) − p̄(t)d̂B(t),

−dq(t) = H∗
y (t)dt + H∗

z (t)d̂B(t) − q̄(t)dW (t),

p(0) = − ϕ∗
Y (Y (0)) − φ∗

Y

(
Y (0)

)
q(0),

q(T ) =γ∗
y

(
y(T )

)
.

(3.1)

Based on the above arguments, we can derive the following maximum principle of Problem (ZSG). Since some
mathematical deductions are parallel to those of Section 2, then we will omit the detailed proof.

Theorem 3.1. Let (H1) hold and (u1(·), u2(·)) be a saddle point of Problem (ZSG). Let
(
y(·), z(·), Y (·), Z(·)

)
and

(
p(·), p̄(·), q(·), q̄(·)

)
be the solutions of (2.1) and (3.1) corresponding to the control (u1(·), u2(·)), respec-

tively. Then it follows that 〈
E[H∗

v1
(t)|Et], v1(t) − u1(t)

〉
≥ 0
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and 〈
E[H∗

v2
(t)|Et], v2(t) − u2(t)

〉
≤ 0

are true for any (v1(·), v2(·)) ∈ U1 × U2, a.e. a.s.

Remark 3.2. If
(
u1(·), u2(·)

)
is an equilibrium point (resp. a saddle point) of nonzero-sum (resp. zero-sum)

differential games and
(
u1(t), u2(t)

)
is an interior point of U1 ×U2 a.s. for all t ∈ [0, T ], then the inequalities in

Theorem 2.2 (resp. Thm. 3.1) are equivalent to the following equations

E[H∗
ivi

(t)|Et] = 0, i = 1, 2
(
resp. E[H∗

vj
(t)|Et] = 0, j = 1, 2

)
.

In the sequel, we give a verification theorem for a saddle point of zero-sum games.

Theorem 3.3. Let (H1) hold and φ(Y ) = MY , where M is a non-zero constant matrix with order n × m.
Let (y, z, Y, Z) and (p, p̄, q, q̄) be the solutions of equations (2.1) and (3.1) corresponding to the admissible
control

(
u1(·), u2(·)

)
, respectively. Suppose that the Hamiltonian function H satisfies the following conditional

mini-maximum principle:

E
[
H
(
t, y(t), z(t), Y (t), Z(t), u1(t), u2(t), p(t), p̄(t), q(t), q̄(t)

)∣∣Et

]
= inf

v1(·)∈U1

E
[
H(t, y(t), z(t), Y (t), Z(t), v1(t), u2(t), p(t), p̄(t), q(t), q̄(t)

)∣∣Et

]
= sup

v2(·)∈U2

E
[
H(t, y(t), z(t), Y (t), Z(t), u1(t), v2(t), p(t), p̄(t), q(t), q̄(t)

)∣∣Et

]
.

(a) Suppose that both ϕ and γ are concave, and

(t, y, z, Y, Z, v2) −→ H
(
t, y, z, Y, Z, u1(t), v2, p(t), p̄(t), q(t), q̄(t)

)
is concave, for all (t, y, z, Y, Z, v2) ∈ [0, T ]× Rn × Rn×l × Rm × Rm×d × U2. Then we have

J(u1(·), v2(·)) ≤ J(u1(·), u2(·)), for all v2(·) ∈ U2,

and
J(u1(·), u2(·)) = sup

v2(·)∈U2

J(u1(·), v2(·)).

(b) Suppose that both ϕ and γ are convex, and

(t, y, z, Y, Z, v1) −→ H
(
t, y, z, Y, Z, v1, u2(t), p(t), p̄(t), q(t), q̄(t)

)
is convex, for all (t, y, z, Y, Z, v1) ∈ [0, T ]× Rn × Rn×l × Rm × Rm×d × U1. Then we have

J(u1(·), u2(·)) ≤ J(v1(·), u2(·)), for all v1(·) ∈ U1,

and
J(u1(·), u2(·)) = inf

v1(·)∈U1

J(v1(·), u2(·)).

(c) If both (a) and (b) are true, then (u1(·), u2(·)) is a saddle point which implies

sup
v2(·)∈U2

(
inf

v1(·)∈U1

J
(
v1(·), v2(·)

))
= J(u1(·), u2(·)) = inf

v1(·)∈U1

(
sup

v2(·)∈U2

J
(
v1(·), v2(·)

))
.



92 E.C.M. HUI AND H. XIAO

Proof.
(a) Using the similar proceeding shown in proving Theorem 2.3, we can obtain the following:

J(u1(·), v2(·)) ≤ J(u1(·), u2(·)), for all v2(·) ∈ U2.

Furthermore,
sup

v2(·)∈U2

J(u1(·), v2(·)) ≤ J(u1(·), u2(·)).

Since u2(·) ∈ U2, we have
sup

v2(·)∈U2

J(u1(·), v2(·)) = J(u1(·), u2(·)).

(b) This proof is a counterpart of (a), and consequently we omit the proof for simplicity.
(c) If both (a) and (b) are true, then

J(u1(·), v2(·)) ≤ J(u1(·), u2(·)) ≤ J(v1(·), u2(·)),

for all (v1(·), v2(·)) ∈ U1 × U2, i.e. (u1(·), u2(·)) is a saddle point.
In the following, we have

J(u1(·), u2(·)) ≤ inf
v1(·)∈U1

J(v1(·), u2(·)) ≤ inf
v1(·)∈U1

(
sup

v2(·)∈U2

J
(
v1(·)v2(·)

))
,

and
J(u1(·), u2(·)) ≥ sup

v2(·)∈U2

J(u1(·), v2(·)) ≥ sup
v2(·)∈U2

(
inf

v1(·)∈U1

J
(
v1(·), v2(·)

))
,

which imply that

sup
v2(·)∈U2

(
inf

v1(·)∈U1

J
(
v1(·), v2(·)

)) ≤ J(u1(·), u2(·)) ≤ inf
v1(·)∈U1

(
sup

v2(·)∈U2

J
(
v1(·), v2(·)

))
. (3.2)

On the other hand, we derive

J(u1(·), u2(·)) ≤ inf
v1(·)∈U1

J(v1(·), u2(·)) ≤ sup
v2(·)∈U2

(
inf

v1(·)∈U1

J
(
v1(·), v2(·)

))

and
J(u1(·), u2(·)) ≥ sup

v2(·)∈U2

J(u1(·), v2(·)) ≥ inf
v1(·)∈U1

(
sup

v2(·)∈U2

J
(
v1(·), v2(·)

))
,

which show that

sup
v2(·)∈U2

(
inf

v1(·)∈U1

J
(
v1(·), v2(·)

)) ≥ J(u1(·), u2(·)) ≥ inf
v1(·)∈U1

(
sup

v2(·)∈U2

J
(
v1(·), v2(·)

))
. (3.3)

Combining (3.2) and (3.3), we obtain

sup
v2(·)∈U2

(
inf

v1(·)∈U1

J
(
v1(·), v2(·)

))
= J(u1(·), u2(·)) = inf

v1(·)∈U1

(
sup

v2(·)∈U2

J
(
v1(·), v2(·)

))
. �

Remark 3.4. Similar to the results in Section 2, we can also give the corresponding corollaries for maxi-
mum principle and verification theorem for a saddle point of full information zero-sum differential games. For
simplicity, we omit them here.
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4. Conclusion

We investigate a new stochastic differential game problem of FBDSDEs. Compared with the previous litera-
ture, our game systems are initial coupled FBDSDEs and are under the framework of partial information. We
established a maximum principle and a verification theorem for an equilibrium point of nonzero-sum differential
games and a saddle point of zero-sum differential games. We also gave an LQ nonzero-sum game to specify how
to apply the theoretical results to find an explicit expression of the equilibrium point.

The subject issue studied in this paper possesses fine generality. Firstly, the FBDSDE game system covers
many systems as its particular case. For example, if we drop the terms on backward Itô’s integral or forward
equation or both them, then the FBDSDE can be reduced to FBSDE or BDSDE or BSDE. Secondly, if we
suppose that Et = Ft for all t ∈ [0, T ], all the results are reduced to the case of full information. Finally, if the
present zero-sum stochastic differential game has only one player, the game problem is reduced to some related
optimal control. Particularly, our results are a partial extension to optimal control of partial information FBS-
DEs [17], BSDEs [6] and full information BDSDEs [5], and to differential games of full information BSDEs [15]
and partial information BSDEs [16]. In our game systems, the forward equations are coupled with the backward
equations at initial time, rather than terminal time. In this regard, this paper offers new results on the initial
time’ issue, which previous terminal time’ studies had not addressed.

Finally, since many optimization and game problems in finance and economics can be associated with forward-
backward stochastic systems, the outcomes of this paper bear much relevance in these areas.

References

[1] F. Biagini and B. Øksendal, Minimal variance hedging for insider trading. Int. J. Theor. Appl. Finance 9 (2006) 1351–1375.

[2] R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations.
SIAM J. Control Optim. 47 (2008) 444–475.

[3] L. Campi, Some results on quadratic hedging with insider trading. Stochastics 77 (2005) 327–348.

[4] M. Fuhrman and G. Tessitore, Existence of optimal stochastic controls and global solutions of forward-backward stochastic
differential equations. SIAM J. Control Optim. 43 (2004) 813–830.

[5] Y. Han, S. Peng and Z. Wu, Maximum principle for backward doubly stochastic control systems with applications. SIAM J.
Control Optim. 48 (2010) 4224–4241.

[6] J. Huang, G. Wang and J. Xiong, A maximum principle for partial information backward stochastic control problems with
applications. SIAM J. Control Optim. 40 (2009) 2106–2117.

[7] E. Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications. J.
Math. Anal. Appl. 386 (2012) 412–427.

[8] S. Liptser and N. Shiryaev, Statistics of Random Processes. Springer-verlag (1977).

[9] J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications, in vol. 1702 of Lect. Notes Math.,
Springer-Verlag (1999).

[10] B. Øksendal and A. Sulem, Maximum principles for optimal control of forward-backward stochastic differential equations with
jumps. SIAM J. Control Optim. 48 (2010) 2945–2976.

[11] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990)
55–61.

[12] E. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear parabolic SPDE’s.
Probab. Theory Relat. Fields 98 (1994) 209–227.

[13] S. Peng and Y. Shi, A type of time-symmetric forward-backward stochastic differential equations, in vol. 336 of C. R. Acadamic
Science Paris, Series I (2003) 773-778.

[14] G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive
optimal control problems. J. Math. Anal. Appl. 342 (2008) 1280–1296.

[15] G. Wang and Z. Yu, A Pontryagin’s maximum principle for nonzero-sum differential games of BSDEs with applications. IEEE
Trans. Automat. Contr. 55 (2010) 1742–1747.

[16] G. Wang and Z. Yu, A partial information non-zero sum differential games of backward stochastic differential equations with
applications. Automatica 48 (2012) 342–352.

[17] H. Xiao and G. Wang, A necessary condition of optimal control for initial coupled forward-backward stochastic differential
equations with partial information. J. Appl. Math. Comput. 37 (2011) 347–359.

[18] J. Xiong, An introduction to stochastic filtering theory. Oxford University Press (2008).



94 E.C.M. HUI AND H. XIAO

[19] J. Yong, A stochastic linear quadratic optimal control problem with generalized expectation. Stoch. Anal. Appl. 26 (2008)
1136–1160.

[20] J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-
terminal conditions. SIAM J. Control Optim. 48 (2010) 4119–4156.

[21] J. Yong and X. Zhou, Stochastic control: Hamiltonian systems and HJB equations. Springer-Verlag, New York (1999).

[22] Z. Yu, Linear quadratic optimal control and nonzero-sum differential game of forward-backward stochastic system. Asian J.
Control 14 (2012) 173–185.

[23] L. Zhang and Y. Shi, Maximum principle for forward-backward doubly stochastic control systems and applications. ESAIM:
COCV 17 (2011) 1174–1197.


	Introduction
	Nonzero-sum differential games
	Problem formulation
	Necessary condition
	Sufficient condition
	An example

	Zero-sum differential games 
	Conclusion
	References

