ESAIM: COCV 19 (2013) 1225-1235 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2013054 WWW.esallm-cocv.org

EIGENVALUES OF POLYHARMONIC OPERATORS ON VARIABLE DOMAINS
DaviDE Buoso! AND PIER DOMENICO LAMBERTI!

Abstract. We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet
and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the sym-
metric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas
for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the
corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that
balls are critical domains.
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1. INTRODUCTION

Let n,m € Ny with 0 < m < n and 2 be a bounded open set in R with smooth boundary. We consider the
following eigenvalue problem

ou oy (1.1)

(—A)"u = N(—A)"u, in (2,
an :
u=94=... =94 =0,on 0,

where v denotes the unit outer normal to 9f2. The case m = 0 corresponds to the well-known eigenvalue problem
for the polyharmonic operator (—A)™ subject to Dirichlet boundary conditions, while the case m > 0 represents
a buckling-type problem. These cases include important problems in linear elasticity. For instance, for N = 2,
P1o arises in the study of a vibrating membrane stretched in a fixed frame, Pyy corresponds to the case of a
vibrating clamped plate and Po; is related to plate buckling. We are mainly interested in the Dirichlet problem
Pro and the buckling problem Ps;. However, we prefer to present a unified approach involving all cases. Problem
Pum admits a divergent sequence of positive eigenvalues of finite multiplicity represented as follows

As usual, we agree to repeat each eigenvalue as many times as its multiplicity.
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In this paper we are interested in the dependence of \;[{2] on {2. There is a vast literature devoted to domain
perturbation problems for elliptic operators. In particular, the cases n = 1,2 which correspond to the Laplace
operator and the biharmonic operator respectively, have been intensively studied by many authors. We refer to
Bucur and Buttazzo [4], Daners [10], Hale [13], Henry [15], Henrot [14], Kesavan [18] for updated information on
this topic. The case n > 2 has been much less investigated. However, a renewed general interest in higher order
operators has been growing in the last decades as it appears in the extensive monograph by Gazzola, Grunau and
Sweers [11] devoted to recent developments in the theory of polyharmonic operators. As for domain perturbation
problems, we refer to the papers [5,6] where spectral stability estimates for elliptic operators of arbitrary order
are proved. See also the survey paper [7].

Our work is inspired by classical problems in spectral optimization, in particular by the celebrated Rayleigh
conjecture (see e.g., [14]). Recall that the Rayleigh-Faber—Krahn inequality states that the first eigenvalue of
the Laplace operator with Dirichlet boundary conditions (problem Pjg) is minimized by the ball in the class of
all bounded domains with a fixed measure. In symbols,

AL[27] < M [92, (1.2)

where 2* is a ball with the same measure of 2. As for the biharmonic operator with Dirichlet boundary
conditions (problem Pag), inequality (1.2) was proved by Nadirashvili [23] for N = 2 and by Ashbaugh and
Benguria [2] for N = 3. See also Mohr [22]. Regarding the buckling of a plate (problem Pa), Szegd [26, 27]
proved inequality (1.2) under the restrictive assumption that the first eigenfunction has constant sign. Such
assumption was not used by Willms and Weinberger who proved inequality (1.2) for N = 2 by assuming
existence and regularity of the minimizing domain. That proof was presented by Willms in [28] and is described
in Kawohl [17]. Note that the existence of the minimizer in the class of simply connected open sets in the plane
was later proved by Ashbaugh and Bucur [3], whilst the regularity of such minimizer seems to be an open
problem.

It should be noted that not much is known for higher eigenvalues A;[{2] for j > 2. As a corollary of a general
result by Buttazzo and Dal Maso [8], it is known that each eigenvalue of the Dirichlet Laplacian admits a
minimizer in the class of all quasi-open sets with fixed measure, contained in a prescribed bounded region.
However, that result says little about the shape of such minimizer. It is proved in Wolf and Keller [29] that the
minimizers of higher eigenvalues in general are not balls and not even unions of balls. Moreover, by looking at
the interesting numerical results presented in Oudet [25], one may get the idea that balls are not much relevant
in the analysis of higher eigenvalues.

Our main aim is to point out that, despite the above mentioned negative results, balls play a relevant role
in the study of isovolumetric perturbations of (2 for all eigenvalues \;[f2] of all problems Pnm. To do so we
shall consider problems Py, on families of open sets ¢({2) described by suitable diffeomorphisms ¢ defined on
a fixed open set {2 and we shall study the dependence of A\;[¢(£2)] on ¢. As is known, this allows to talk about
differentiability and apply calculus in order to find critical eigenvalues with respect to perturbations of ¢. One
of the main difficulties in the analysis of higher eigenvalues is related to the variation of their multiplicity. This
leads to bifurcation phenomena which complicate things. For instance, if a fixed open set gZ)(()) is subject to a
perturbation ¢ of ¢ then a multiple eigenvalue Aj [6(£2)] of multiplicity » may split into r simple eigenvalues
Nilo(02)], ..., Ajrr—1[0(£2)] in such a way that A;[0(£2)],..., Nj1r—1[¢(£2)] are not differentiable in the variable
¢. As for the Laplace operator with Dirichlet or Neumann boundary conditions, it was pointed out in [19] that
in the case of multiple eigenvalues it is natural to consider the elementary symmetric functions of the eigenvalues
Nilo(02)], ..., Ajrr—1[0(£2)]. In this paper, we generalize the results of [19,20] to all problems Py,. Namely, we
prove that the elementary symmetric functions of the eigenvalues A;[¢(£2)],..., Xj1r—1[@(£2)] of Pum depend
real analytically on ¢ (Thm. 3.1) and we prove that if gZ)(()) is a ball then ¢ is a critical point for such functions
under volume constraint (Thm. 4.2). In fact, all critical points gZ) for the symmetric functions of the eigenvalues
splitting from an eigenvalue A of multiplicity r, can be characterized as those open sets for which the following



EIGENVALUES OF POLYHARMONIC OPERATORS ON VARIABLE DOMAINS 1227

overdetermined system has a nontrivial solution (ui,...,u,)
(=A)"u; = AN(—A)"u;, in¢(Q2), Vi=1,...,r
wp= % — =0 on 9G(R),Vi=1,...,r, (1.3)

(8002 4.+ (Z22)2 = const, on 93(%2).

Since (1.3) is satisfied if ¢(£2) is a ball, it would be interesting to clarify whether the existence of nontrivial
solutions to (1.3) on a bounded connected open set ¢(£2) implies that ¢(£2) is a ball. For r =1, n = 1,m = 0 or
n = 2, m = 0 this can be proved by using the celebrated moving plane method under the assumption that the
solution does not change sign (see e.g., Henry [16] for the Laplace operator and Dalmasso [9] for the biharmonic
operator); for r = 1, n = 2,m = 1 the method by Willms and Weinberger leads to the same conclusion (see
e.g., [14,17]).

2. NOTATION AND PRELIMINARIES

Let n € N and £2 be a bounded open set in RY. By W™2(£2) we denote the Sobolev space of all functions
in L2(£2) which admit weak derivatives in L2(£2) up to order n. By W/"*(£2) we denote the closure in W™2(£2)
of the space of C*—functions with compact support in 2. We consider the weak formulation of problem (1.1).
To do so, for any m € Ny with 0 < m < n, we consider the polyharmonic operator A™ as the operator from
W"2(£2) to its dual (W (£2))" which takes any u € W{"?(£2) to the functional A™[u] defined by

A%y / A ulipdr, Yo e Wi (02), (2.1)

if m = 2s and
A5y / V(A%u Ap)dx, Yo e WihE(102), (2.2)

if m = 2s + 1, where s € Ny. Thus, the weak formulation of the classic problem (1.1) reads
(=2)"[ulle] = A(=A)"[ulle], Ve € W52 (£2). (2.3)

By the Poincaré inequality, it follows that the quadratic form defined by (—A)"[u][u] for all u € Wy"?(£2) is
coercive in W{"?(£2), hence the operator (—A)™ is a linear homeomorphism from W;"?(£2) onto (Wy"*(£2))".
Thus the equation (2.3) is equivalent to the equation (—A)~" o (—=A)™[u] = A~ u, where (—A)~™ denotes the
inverse of (—A)™. It is convenient to endow the space Wg?(£2) with the scalar product defined by

(U1, ug)n = (—=A)"[u1]fuz], (2.4)

for all uy,uy € Wy' 2((2) The norm induced by this scalar product is equivalent to the standard Sobolev norm.
In the sequel, unless otherwise indicated, we shall think of W' ’2(9) as a Hilbert space equipped with the scalar
product (2.4). This allows to give a straightforward proof of the following.

Lemma 2.1. Let 2 be a bounded open set in RN and m,n € Ny with 0 < m < n. The operator So =
(=A) ™o (=A)™ is a non-negative self-adjoint compact operator in the Hilbert space ng’z(()), The spectrum
of Sq is discrete and consists of a decreasing sequence of positive eigenvalues of finite multiplicity converging to
zero. Moreover, the equation Squ = pu is satisfied for some u € Wém(()), w >0 if and only if equation (2.3)
is satisfied with A\ = p~1.

Proof. The equality (Squi,ug)n = (—A)™[u1][ug], for all uy,us € W("(£2) and the symmetry of the operator
(—A)™ implies that Sy, is a self—adjomt operator. Since §2 is bounded and m < n, the space Wg*(£2) is
compactly embedded into W™ (()) This implies that the operator (—A)™ is a compact operator from the
space Wg" (Q) to its dual. The rest of the proof is trivial. O

By Lemma 2.1 and standard spectral theory we deduce the following.
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Corollary 2.2. Let 2 be a bounded open set in RN and m,n € Ny with 0 < m < n. The eigenvalues of
problem (2.3) are positive, have finite multiplicity and can be represented as a non-decreasing divergent sequence
Ai192], j € N where each eigenvalue is repeated according to its multiplicity. Moreover,

Ai[02] = /\?’m[()] = min max Rymlul, (2.5)
ECW?(02) ueE
dimE=; u70
for all j € N, where Ryy[u] is the Rayleigh quotient defined by

Jo |A"u|?dz

W’ if’fLZQT, m:257
g T, 2
%, if n=2r, m=2s+1,
Rom[u] = ¢
nm[ ] fQ\VArur‘)dz .
W, 1fn:2r+1,m:2$,
o2
JalVarular = ip p—9r+1, m =25+ 1.

| VAsu|2da?
2

Clearly, the eigenvalues )\;-L’m[ﬁ] depend on n,m. However, for the sake of simplicity, we shall write A;[{2]
instead of A7 [2)].

3. ANALYTICITY RESULTS

Let £2 be a bounded open set in RY of class C*. In the sequel, we shall consider problem (2.3) in a family of
open sets parameterized by suitable diffeomorphisms ¢ defined on (2. Namely, we set

no— {¢E CZL(Q;RN): inf |¢(-T1) — ¢(x2)] > 0}7

T1,T2€82 |£L’1 —$2|
T1FT2

where CJ'(£2;RY) denotes the space of all functions from 2 to RY of class C™, with bounded derivatives up to
order n. Note that if ¢ € AP, then ¢ is injective, Lipschitz continuous and infy, |detV¢| > 0. Moreover, ¢({2) is
a bounded open set and the inverse map ¢(~1) belongs to Ag( o) Thus it is natural to consider problem (2.3) on
#(£2) and study the dependence of \;[¢(£2)] on ¢ € A7%. To do so, we endow the space C*(2; RY) with its usual
norm || fllcr (@ my) = SUP|g|<n, zeo [P f(2)|. Note that Af, is an open set in Cr(£2;RY), see [20], Lemma 3.11.
Thus, it makes sense to study differentiability and analyticity properties of the maps ¢ — A;[¢(§2)] defined for
¢ € A}, For simplicity, we write A;[¢] instead of A;[¢(£2)]. As in [20], we fix a finite set of indeces F' C N and
we consider those maps ¢ € AY, for which the eigenvalues with indeces in F' do not coincide with eigenvalues
with indeces not in F'; namely we set

o ={¢eAb: Mgl #Nlgl, VjeF leN\F}.

It is also convenient to consider those maps ¢ € ?73 such that all the eigenvalues with index in F' coincide
and set

Op = {0 € A N lol = \ldl, Vinjz e Fl.
For ¢ € AZ’,’};, the elementary symmetric functions of the eigenvalues with index in F' are defined by

AF,h[¢] = Z )\jl [¢] o '/\jh [¢]7 h=1,..., ‘F‘ (31)

Jise-Jn€F
1<-<Jn

The main result of this section is the following generalization to polyharmonic operators on smooth domains of
the results in [20], Section 3 concerning the Dirichlet Laplacian on rough domains.
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Theorem 3.1. Let Q be a bounded open set in RN of class C', n,m € Ny with 0 < m < n, and F be a finite
set in N. The set FQ is open in CP(2;RYN) and the real-valued maps which take ¢ € AW’y to Apyl¢] are

real-analytic on AR, ro forallh=1,.. + |F|. Moreover, if e o Tg is such that the ezgem}alues Aj [gﬂ assume
the common value A\p [gZ)] for all j € F, and ng( ) is of class C?™ then the Frechét differential of the map A,
at the point ¢ is delivered by the formula

|F| n 2 ~
L (i a2

for all ¢ € CP%RY), where {v}ier is an orthonormal basis in W2 (6(02)) (with respect to the scalar
product (2.4)) of the eigenspace associated with /\F[gb], and v denotes the unit outer normal to Op({2).

dlysmntel = -p101( '_‘f)

Note that formula (3.2) is a generalization of the celebrated Hadamard formula, see Grinfeld [12] for a recent
paper on this topic; see also Ortega and Zuazua [24] for the analysis of associated bifurcation phenomena
concerning multiple eigenvalues of the biharmonic operator subject to Dirichlet boundary conditions.

In order to prove Theorem 3.1 we consider equation (2.3) on ¢(£2) and pull it back to §2. Namely, we consider
the equation

(—A)" ][] = AM=2)" ][], ¥ v € W5 (6(12)), (3.3)

in the unknowns v € W"?(¢(£2)), A €]0, oo Recall that the pull-back to {2 of the classic Laplace operator on
() is defined by
Agu=(A(wog™))og (34)

for all u € Wlicl (£2), ¢ € A%. The operator Ay is in fact the Laplace-Beltrami operator associated with the
change of variables defined by ¢. Note that

Aju = (A%(uo¢Y)) oo (3.5)

for all u € Wi‘i’l(()), ¢ € A%. For any 0 < m < n, the operator AZ' can be considered as the operator acting
from W}"?(£2) to its dual, which takes any u € W;"*(£2) to the functional Aflu] defined by

AR [u]lp] = A™uo ¢ V][p o ¢ V),
for all p € WO"’Z(Q). More precisely, if m = 2s, s € Ny then
AZ[u / AjuldpldetVeldr, (3.6)
for all p € W"*(£2). It m = 2s + 1, s € Ny then
—AZ M u / v( Vo) 1 (V) 'V (ALp)|detVe|da, (3.7)

for all ¢ € W("?(£2), where (V¢)~! denotes the inverse of the Jacobian matrix of ¢ and (V)" the transpose
of (V¢)~!. Note that the map from WJ"*(£2) to Wy"?(4(£2)) which maps u to uo ¢(~1 for all u € Wi (£2) is
a linear homeomorphism. Hence, equation (3.3) is equivalent to

(—2A0)"[ulle] = A(=2¢)"[ulle], V@ € W5 (R2) (3.8)
where u = v o ¢. It is also natural to pull-back the scalar product of Wg’2(¢(())) to {2 by setting

(ur,u2)n,g = (u1 o ¢V ug 0 ¢(71)>n (3.9)
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for all uy,uy € Wi?(2), where (-,-),, is the scalar product in Wg"*(4(£2)) defined by (2.4). By W;" " ’(2) we
denote the Hilbert space W2 (£2) endowed with the scalar product (-, “)n,¢- It turns out that the operator Sy ()

defined in Lemma 2.1 is unitarily equivalent to the operator T defined on W' ;(Q) by
Ty = (=Ag) " o (=4g)™. (3.10)

Thus we can prove the following lemma where £(W' ’2(9)) denotes the space of linear bounded operators
from WJ"?(2) to itself and and B,(Wg"*(£2)) denotes the space of bilinear forms on W;"*(§2) (both spaces are
equipped with their usual norms).

Lemma 3.2. Let 2 be a bounded open set in R of class C*, n,m € Ng, 0 < m < n. The operator Ty defined
in (8.10) is non-negative self-adjoint and compact on the Hzlbert space WSL¢ (£2). The equation (3.3) is satisfied

for some v € W 2(gzb( ) if and only if the equation Tyu = pu is satisfied with u = vo¢p and p = A\~*. Moreover,
the map from A% to LIW"?(02)) x Bs(Wy"*(£2)) which takes ¢ € A% to (T, (-, -)n.p) is real-analytic.

Proof. Since the operator Ty is unitarily equivalent to the operator Sy ), the first part of the lemma immediately
follows by Lemma 2.1. In order to prove the real-analytic dependence of T, upon ¢, we note that by standard
calculus

N
32u ou 80”-
Apu = = 0ri0si + 57— si A1
g T;:ZI <8J;r8x30 7 +8.Tr 89030 > (3.11)

for all u € W22(£2), where o = (V¢) ™! (see also [20], Prop. 3.1). By formula (3.11), it follows that the map from
A x W2(82) to Wn=22(§2) which takes (¢, u) to Apu is real-analytic. Thus also the maps from AP, x W™2(2)
to L2(£2) which take (¢, u) to Aju for all s € Ng with 0 < s < n/2, are real-analytic since they are compositions
of real-analytic maps. This, combined with formulas (3.6) and (3.7), implies the real-analytic dependence of Ty
and (-, ), upon ¢. O

Proof of Theorem 3.1. We denote by p;[¢], j € N, the eigenvalues of Ty,. By Lemma 3.2, u;[¢] = A;l[gb] for all
j € N, hence the set A}, coincides with the set {¢ € A% @ p;[d] # pul¢], Vj € F, 1 € N\ F}. By Lemma 3.2,
Ty is self-adjoint with respect to the scalar product (-, )n, ¢ and both Ty and (-, -),, 4 depend real-analytically on
¢. Thus, by applying [20], Theorem 2.30, it follows that A%, is an open set in CP(£2;RY) and the functions
which take ¢ € AR’ to

Tealdl = D pildl - wilo] (312)
j}v“‘vj}LelF
J1<-<Jn
are real-analytic for all h = 1,... |F|. Since
I'p 4]
Applg) = ————7—, 3.13
Fl¢] T 1) (3.13)
for all b = 1,...,|F|, where I'ro[¢] = 1, it follows that A [¢] depends real-analytically on ¢ € A",

It remains to prove formula (3.2). Let ¢ € o0 Ar[¢] and {v;}1er be as in the statement. We set u; = v 0 ¢

for all [ € F and we note that {u; };er is an orthonormal basis in W: ;(Q) for the eigenspace corresponding to

the eigenvalue A\;'[@] of the operator T. By [20], Theorem 2.30, it follows that
1ng g (1F1 =1
AlymgTeate] = X (T 70 Sl Lyt (3.14)
leF

for all b € OF(£2; RY). Note that by standard regularity theory (see e.g., Agmon [1], Thm. 9.8) v; € W2™2(5(£2))
foralll € F.
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By standard calculus, equalities (2.4), (3.9), Theorem 5.2, by observing that %'fo = 0 on 8@5(()) and
(—A)"o; = Ap[§)(=A)™v;, we have

(dlg=gTo[V][w], w),,
= (dy— g (= Ap)™ WD) [ ] = AR DAl = g (= A) ™[] [uad] [

m 2
= _/ (a g) ¢ vdo — 2/ (—=2A)" vV, - (do
od(2) \ O 23(2)
- 9\ 2 .
+ /\;1[¢]/ (8 1:) ¢ -vdo + 2/\;1[@ /~ (=A) "y V, - (do
ag(52) \ OV 9h(12)

T 0"\
— ) /M " <ayn> ¢ vdo, (3.15)

where we have set ¢ = 1 0 ¢(~1. Formula (3.2) easily follows by combining formulas (3.13)(3.15). O

4. ISOVOLUMETRIC PERTURBATIONS

Consider the following extremum problems for the symmetric functions of the eigenvalues

min A or ma, A , 4.1
V[¢]=const F’h[¢] V[¢>]=c><§nst F,h[@ﬂ ( )
where V[¢] denotes the N-dimensional Lebesgue measure of ¢(£2).
Note that if ¢ € A7}, is a minimizer or maximizer in (4.1) then ¢ is a critical domain transformation for the
map ¢ — App[¢] subject to volume constraint, i.e.,

Ker d|¢=¢;V C Ker d‘¢=4§AF7h, (42)

where V' is the real valued function defined on AP, which takes ¢ € A7, to V[¢)].
The following theorem provides a characterization of all critical domain transformations ¢. See [19] for the
case of the Dirichlet and Neumann Laplacians.

Theorem 4.1. Let 2 be a bounded open set in RN of class C', n,m € Ny with 0 < m < n, and F be a
finite subset of N. Assume that ¢ € 97}73 is such that ¢(£2) is of class C*™ and that the eigenvalues \;[@] have

the common value \p (9] for all j € F. Let {vi}1er be an orthornormal basis in W"2(6(£2)) of the eigenspace
corresponding to Ap[@]. Then ¢ is a critical domain transformation for any of the functions Apyp, h =1,...,|F|,
with volume constraint if and only if there exists C € R such that

>

leF

2
8”11[
ovn

=C, on dp(R). (4.3)

Proof. Note that V[¢] = [, |detV¢|dz. Moreover, by standard calculus
{(d|¢=¢; (detVo) [w}) o &-”} detVé(—V = div (1/) o &-”) : (4.4)

for all ¢ € C*(£2;RY). Thus by formula (4.4) it follows that

ooVl = [ 05 e (45)
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for all ¢» € CP(£2;RY). The proof of (4.3) follows immediately by formulas (3.2) and (4.5), and by observing
that condition (4.2) is satisfied if and only if there exists ¢ € R (a Lagrange multiplier) such that

dlygArn = cd|,_5V. (4.6)
|

Finally, we can prove the following.
Theorem 4.2. Let the same assumptions of Theorem, 4.1 hold. If $(£2) is a ball then condition (4.3) is satisfied.

Proof. Without any loss of generality, we assume that gZ)(()) is a ball with radius R centered at zero. By the
rotation invariance of the Laplace operator, {v; 0 A};cF is an orthonormal basis of the eigenspace corresponding
to Ar[¢] for all A € On(R) where On(R) denotes the group of orthogonal linear transformations in RY. Since
both {v; }ier and {v; o A}lep are orthonormal bases of the same space, it follows that Z‘Fl vioA= Z‘Fl v7,

for all A € O, (R). Thus Zl | v# is a radial function. By differentiating with respect to the radial coordinate 7,
by the Leibniz formula and by recalling that all derivatives up to order n — 1 of the eigenfunctions vanish at
the boundary of ¢(2), we obtain that

0%} _ i 2n Ok, 927k, _ 2n o™y 2 @7)

o™ | _p = \k ork orn=k )| _ o n orn —R ’
Since Y, p % is a radial function, then by formula (4.7) we conclude that the ZleF(%)z is constant on
H(92). O

It would be interesting to clarify whether balls are local minimizers or maximizers for the eigenvalues or their
symmetric functions. With regard to this, we mention that it is proved in Wolf and Keller [29], Theorem 8.3
that the disk in the plane is a local minimizer for the third eigenvalue of the Dirichlet Laplacian.

5. A FORMULA FOR THE FRECHET DIFFERENTIAL OF THE “POLY-LAPLACE-BELTRAMI”
OPERATOR

In this section we prove Theorem 5.2 which has its own interest since it provides an explicit formula for the
Frechét differential with respect to ¢ of the weak “poly-Laplace-Beltrami” operator A defined by (3.6), (3.7).
That formula has been used in the proof of (3.2).

Lemma 5.1. Let 2 be a bounded open set in RN of class C*, s € N, uy € L*(£2), ug € WZ52(0). Let ¢ € A%
and v; = u; 0 ¢V, i =1,2. Assume that ¢(£2) is of class C' and that v, € W?2* 2(gb(Q)) vy € W2stL 2(gb(Q))
Then
/ wrd],_; A3 [zl det V| dz
Q
= /~ (1 VA% vy — A% Vug) - (dy — /~ vy A%v9( - vdo, (5.1)
#(£2) 09(02)

for all 1 € CZ5(2;RN), where ( =1 o -1

Proof. First, we recall the following formula from [21], Lemma 3.42 which holds for any u € W22(£2):

2 Uu o N u o ( 1)
(s Aoty 030 — 2 3° LWedT I §mdod™) (5.2)

= 9vidy; Oy = Oy;
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We observe that

g il = 30 Ao (dl,_gauu)o 4L (5.3)
k=0
h+k=s—1

By formulas (5.2) and (5.3), by changing variables in integrals and integrating by parts, we obtain

/Q urd],_ 3 A3 []us|det V| da

s—1
8 A V2 8< 8A V2
—_ — Ahvl J AC
h,%;o $(%2) ( Z Iyi9y; Oy ; ay;
h+k=s—1
= Zi / {Mm 4%, (8@ + %)]
h,k=0 *(2) i,j=1 ayl ayj ay’ ayj
h+k=s—1
—(AhulAk“vz + VA",V ARvg)dive dy, (5.4)

see also [21], Formula (3.45). Moreover, integrating by parts yields

h k , )
/ aA V1 aA V2 (aCJ n 8C2> dy _ _/ Ahlek-‘rl,Uzc .vdo
sy Ovi  Oy; \Oyi Oy 05(%2)

+ [ Ay VAR, ¢y + [ APy AMT uadividy
#(£2) #(£2)

+ [ VA", - VAFudividy — / ALy VAR, - Cdy. (5.5)
3(22) 3(92)

By observing that the first summand in the right—hand side of (5.5) vanishes if k¥ < s—1, and by combining (5.4)
and (5.5), we obtain a telescopic sum and we deduce the validity of (5.1). O

Theorem 5.2. Let {2 be a bounded open set in RN of class C', n € N, ui,us GNWOn’Q(Q), Let ¢ € Al and
v; = u; 0 9LV i =1,2. Assume that $(£2) is of class C* and that vi,vy € W2"2((£2)). Then

(d]y_3(— )" [¥)ur] 2] = — /8 AT Y

&(02) ovn ovn

_ / (= A)"0, Vo + (— A0y Voy) - Cdy, (5.6)
d($2)

for all ¢y € CZL(Q;RN), where ( =1 o &(—1) )

Proof. First, we consider the case where n is an even number of the form n = 2s with s € Ny. By formula (3.6)
and standard calculus we have

(dl,_p A2 [ 0r)) () = /Q dl,_ s s [1] A%z det DY|da
+/(2A3U1d|¢=¢;A‘;UQ[’(/JH det Dqﬂdl‘

+ /Q ASur ASud) 5| det Do|[¢))dx. (5.7)
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By formula (4.4)
/Q ASurAfuzd| ;5| det Do|[¢]da = . A5y A*Badiv(dy. (5.8)
Formula (5.6) easily follows by combining formulas (5.1), (5.7), (5.8), by integrating by parts and by observing
that Afv; = %2:2”; on 8¢(£2) since v; € Wi (4(12)).
Now, we consider the case where n is an odd number of the form n = 2s + 1 with s € Ny. By formula (3.7)
and standard calculus we have

(d| . (;;Ais-&-l[(b](ul)) (up) = /¢ ” VA% 0, (V¢ + V)V ASuady

- VA%, VA vadividy — / VA3V ((d|¢:¢;A2u2 [¥]) o é(*”) dy
#(92) ()

— V ((d],_;A%5u1[1h]) 0 ¢V ) VA% uydy. (5.9)
/&(Q) ( p=¢ "¢ )
Moreover, integrating by parts yields

[ VA3 (V¢ + VI VEASvady
&(£2)

@ / (% DA% 9wy | G, DA M%) w
W o) \Oyx Oyn Oyr  Oyn Oyn  Oyk
:2/ 3Av18AvQC.VdU
a&(n) 81/ 81/
a A0, 9 A%, DA%, amm
- Z 00 D n+ 3 Ch
k=1 A(02) YnOYr  OYk Yn
N
82A5v1 aASUQ 8A51)1 aQASUQ )
— + d
hzk; /¢(Q) ( Oy Oy S yn  Oyndyr o)y
ASuy A
_ / 041 042 o s [ VA%,V A uydivedy
o) Ov v 5(2)
— [ (AT VA vy + AT VA Y, - Cdy. (5.10)
3(2)

By integrating by parts, changing variables in integrals and using formula (5.1), we obtain

VA0,V ((d] 43 A%5u,[¢]) 0 ¢V ) d
ooy YA (g 5516 060 ) dy

=- /Q A3+1uid|¢=¢;AZ5Uj [1)]|detV ¢|da
= — /Q;(Q) (As+1UiVASUj _ A28+1UZ‘V’UJ') . Cdy (511)

for all 4,5 € {1,2}. Finally, formula (5.6) easily follows by combining formulas (5.9)—(5.11) and by observing
that 2970 = %i;H on 8¢ (£2) since v; € Wi*T12(5(12)). O
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