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ON THE COST OF NULL-CONTROL OF AN ARTIFICIAL
ADVECTION-DIFFUSION PROBLEM

Pierre Cornilleau1 and Sergio Guerrero2

Abstract. In this paper we study the null-controllability of an artificial advection-diffusion system
in dimension n. Using a spectral method, we prove that the control cost goes to zero exponentially
when the viscosity vanishes and the control time is large enough. On the other hand, we prove that the
control cost tends to infinity exponentially when the viscosity vanishes and the control time is small
enough.
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1. Introduction

The following paper continues [2] and deals with an advection-diffusion problem with small viscosity truncated
in one space direction. This problem was first considered in [11], where the Cauchy problem has been studied
when the viscosity tends to zero.

1.1. Artificial advection-diffusion problem

In this paper, we consider an advection-diffusion system in a strip Ω := {(x′, xn) ∈ R
n−1×(−L, 0)} (n ≥ 1 and

L a positive constant) with particular artificial boundary conditions on both sides of the domain. As indicated
above, this system was considered in [11] (see Sect. 6 in that reference):

⎧⎪⎨
⎪⎩
ut + ∂xnu− εΔu = 0
ε(ut + ∂νu) = 0

ε(ut + ∂νu) + u = 0
u(0, .) = u0

in (0, T )×Ω,
on (0, T )× Γ0,
on (0, T )× Γ1,
in Ω,

(1.1)

where T > 0, Γ0 := R
n−1×{0}, Γ1 := R

n−1×{−L} and we have denoted ∂xn the partial derivative with respect
to xn and ∂ν the normal derivative.
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We are here interested in the uniform boundary controllability of (1.1):

(Sv)

⎧⎨
⎩

ut + ∂xnu− εΔu = 0
ε(ut + ∂νu) + u1Γ1 = v1Γ0

u(0, .) = u0

in (0, T )×Ω,
on (0, T ) × ∂Ω,
in Ω.

We recall that, if X is defined as the closure of C∞(Ω̄) for the norm

‖u‖X :=
(
‖u‖2

L2(Ω) + ε‖u‖2
L2(∂Ω)

) 1
2
,

the system (Sv) is well-posed in this space (see Sect. 1 in [2]).
In this present paper, we study the so-called null controllability of this system on Γ0

for givenu0 ∈ X, find v ∈ L2((0, T ), Γ0) such that the solution of(Sv) satisfiesu(T ) ≡ 0.

Furthermore, we will be interested in the continuous dependence of these controls on the initial data, that is to
say, the existence of C > 0 such that

‖v‖L2((0,T ),Γ0) ≤ C‖u0‖X , ∀u0 ∈ X. (1.2)

We will denote by C(ε) the cost of the null-control, which is the smallest constant C fulfilling estimate (1.2).
We remark that C(ε) equals +∞ when the null controllability does not hold.

We have proved in [2] that (Sv) is null-controllable in dimension n = 1 for any T, ε > 0. However, the
argument of Miller [12] cannot be directly applied in this situation (for more details see the appendix in [2]).

In the present paper, we first obtain a precise upper bound on the null-control cost using a spectral approach
combined with a Carleman estimate in dimension one. In a second part, we use a more classical method to
prove that for T small enough, the cost C(ε) exponentially tends to infinity when ε→ 0.

In the context of degeneration of a parabolic-to-hyperbolic type systems, similar results have been obtained
by many authors in dimension one (see, for instance, [1, 7] (one dimensional heat equation) and [8] (linear
Korteweg de Vries equation)) but also in dimension n (see [10]). However, our results seem to be new in the
context of a system which lacks of regularizing effect. A reasonable conjecture seems to be that the system is
not null controllable for small T, ε > 0.

1.2. Main results

Our main results are the following:

Theorem 1.1. If T/L is large enough, the cost of the null-control C(ε) tends to zero exponentially as ε→ 0:

∃C, k > 0 such that C(ε) ≤ Ce−k/ε ∀ε ∈ (0, 1).

Remark 1.2.

• One can in fact obtain the same controllability result when the control acts on Γ1 (see also Rem. 2.6).
• The fact that the control cost tends to zero tells intuitively that the state almost vanishes for T/L big

enough. This is to be connected with the fact that, for ε = 0, the system is purely advective and then that,
for T > L, its state vanishes.

Theorem 1.3. If T < L, the cost of the null-control C(ε) exponentially tends to infinity when ε→ 0:

∀T < L, ∃ε0 > 0, ∃C, k > 0 such that ∀ε ∈ (0, ε0), C(ε) ≥ Cek/ε.
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Remark 1.4. This result is analogous to other results already obtained in the context of vanishing viscosity
(see for instance [1] Thms. 2, [10] Thm. 1). Observe that in these papers, the null controllability for small ε and
T was known while in the present situation this question is open.

As usual in the context of linear controllability problems, we introduce the following adjoint system:

(S′)

⎧⎪⎨
⎪⎩
ϕt + ∂xnϕ+ εΔϕ = 0
ε(ϕt − ∂νϕ) − ϕ = 0

ϕt − ∂νϕ = 0
ϕ(T, .) = ϕT

in (0, T )×Ω,
on (0, T )× Γ0,
on (0, T )× Γ1,
in Ω,

where ϕT ∈ X . It is classical to prove that the controllability of system (Sv) and the observability of system
(S′) are equivalent (see, for instance, [4]):

Proposition 1.5. The following properties are equivalent:

• ∃C1 > 0, ∀ϕT ∈ X; ‖ϕ(0, .)‖X ≤ C1‖ϕ‖L2((0,T ),Γ0) where ϕ is the solution of problem (S′),
• ∃C2 > 0, ∀u0 ∈ X, ∃v ∈ L2((0, T ), Γ0) such that ‖v‖L2((0,T ),Γ0) � C2‖u0‖X and the solution u of (Sv)

satisfies u(T ) = 0.

Moreover, C1 = C2.

The rest of the article is organized as follows: in the second section, we introduce a one-dimensional problem
with parameter and study its well-posedness and its observability. For the latter, we show a Carleman inequality
for the associated adjoint system (see Prop. 2.5 below). We consequently deduce Theorems 1.1 and 1.3 in
Section 3. In the appendix, we furthermore give a proof of Proposition 2.5.

Moreover, we note that the substitution (t, xn) → (Lt, Lxn) allows us to assume that L = 1. This hypothesis
will be imposed until the end of the paper.

Notations.
A � B means that, for some universal constant c > 0, A ≤ cB.
A ∼ B means that, for some universal constant c > 1, c−1B ≤ A ≤ cB.

2. A one-dimensional problem with parameter

In all this section, we assume that n = 1. We also denote X1 the space X . We shall prove the following
null-controllability result:

Proposition 2.1. If T is sufficiently large, there exists ε0 > 0 such that, for any a ≥ 0 and ε ∈ (0, ε0), the
system

(Sa
v )

⎧⎪⎨
⎪⎩
ut + ux − εuxx + au = 0

ε(ut + ∂νu) = v
ε(ut + ∂νu) + u = 0

u(0, .) = u0

in (0, T ) × (−1, 0),
on (0, T )× {0},
on (0, T )× {−1},
in (−1, 0),

is null-controllable. That is to say, for any u0 ∈ X1 there exists v ∈ L2(0, T ) such that the solution u of (Sa
v )

satisfies
u(T ) ≡ 0 and ‖v‖L2(0,T ) ≤ C(ε, a)‖u0‖X1 .

Moreover, the cost C(ε, a) is bounded by

C exp
(
−k
ε

)
where C and k are some positive constants independent from a and ε.
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2.1. Cauchy problem and duality

First, we briefly show that problem (Sa
v ) is well-posed.

Indeed, we consider the bilinear form defined by

∀u1, u2 ∈ H1(−1, 0), b(u1, u2) = ε

∫ 0

−1

∂xu1.∂xu2 +
∫ 0

−1

u2∂xu1 + u1(−1)u2(−1).

With the help of this bilinear form, one may now consider the space

D :=

{
u1 ∈ X1; sup

u2∈C∞([−1,0]); ||u2||X1≤1

|b(u1, u2)| < +∞
}

equipped with the natural norm

‖u1‖D = ‖u1‖X1 + sup
u2∈C∞([−1,0]); ||u2||X1≤1

|b(u1, u2)|.

Note that, using an integration by parts, one shows that b(u1, u2) is well-defined for u1 ∈ X1 and u2 ∈
C∞([−1, 0]) and that the map

u2 ∈ X �→ b(u1, u2) ∈ R

is well-defined and continuous for any u1 ∈ D. Using the Riesz representation theorem, we can define a maximal
monotone operator A with domain D(A) = D and such that

∀u1 ∈ D(A), ∀u2 ∈ X1, < −Au1, u2 >X1= b(u1, u2).

The Riesz representation theorem also provides the existence of a dissipative bounded operator B on X1 such
that

∀u1, u2 ∈ X1, < B(u1), u2 >X1= −
∫ 0

−1

u1u2.

Using Rellich theorem, one easily sees that B is A-compact (according to Def. 2.15 of [5], Chapter III) i.e. that

B : D(A) → X1 is compact

and, using Corollary 2.17 of [5], Chapter III, we get that the operator A+aB generates a contraction semi-group
on X1 for any a ≥ 0. Since (Sa

0 ) can be written in the following abstract way{
ut = (A + aB)u,
u(0, .) = u0,

we have shown that the homogeneous problem (Sa
0 ) possesses, for any u0 ∈ X1, a unique solution u ∈

C([0, T ], X1). We will call these solutions weak solutions opposed to strong solutions i.e. such that u0 ∈ D(A)
and which fulfill u ∈ C(R+,D(A)) ∩ C1(R+, X1).

We now conclude as in Proposition 5 of [2] to the existence and uniqueness of solution to the nonhomogeneous
problem (Sa

v ). More precisely, one has the following:

Definition - Proposition 2.2.

• For f ∈ L2((0, T ) × (−1, 0)), g0 ∈ L2((0, T )) and g1 ∈ L2((0, T )), we put

(Sa
f,g0,g1

)

⎧⎪⎨
⎪⎩
ut + ux − εuxx + au = f

ε(ut + ∂νu) = g0
ε(ut + ∂νu) + u = g1

u(0, .) = u0

in (0, T ) × (−1, 0),
on (0, T )× {0},
on (0, T )× {−1},
in (−1, 0),
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and we say that u ∈ C([0, T ] , X1) is a solution of (Sa
f,g0,g1

) if, for every function ψ ∈ C([0, T ],D(A∗)) ∩
C1([0, T ], X1), the following identity holds:∫ τ

0

(< u,ψt >X1 + < u, (A + aB)∗ψ >X1 + < F,ψ >X1) = [< u(t), ψ(t) >X1 ]t=τ
t=0 ∀τ ∈ [0, T ],

where we have defined, using the Riesz representation theorem, F (t) ∈ X1 such that

< F (t), φ >X1=
∫ 0

−1

f(t)φ+
∫
{−1,0}

g(t)φ, ∀φ ∈ X1.

and g is a function on (0, T ) × {−1, 0} such that g = g0 on (0, T ) × {0}, g = g1 on (0, T ) × {−1}.
• Let T > 0, u0 ∈ X, f ∈ L2((0, T ) × (−1, 0)), g0 ∈ L2((0, T )) and g1 ∈ L2((0, T )). Then (Sa

f,g0,g1
) possesses

a unique solution u.

Proof. This proof being very similar to the one of Proposition 5 of [2], we think that a sketch will suffice.
First, if u belongs to u ∈ C([0, T ],D(A)) ∩ C1([0, T ], X1) then, using Duhamel formula and the density of

D(A∗) in X1, one obtains that u is a solution of (Sa
f,g0,g1

) if and only if

u(t) = et(A+aB)u0 +
∫ t

0

e(t−s)(A+aB)F (s)ds, ∀t ∈ [0, T ].

The general case now follow by a standard approximation argument. �

In order to study the null-controllability of system (Sa
v ), we shall focus on its adjoint problem, namely:

(S′a)

⎧⎪⎨
⎪⎩
ϕt + ϕx + εϕxx − aϕ = 0
ε(ϕt − ∂νϕ) − ϕ = 0

ϕt − ∂νϕ = 0
ϕ(T, .) = ϕT

in (0, T ) × (−1, 0),
on (0, T ) × {0},
on (0, T )× {−1},
in (−1, 0).

An analogous semigroup method as presented above show that the adjoint problem (S′a) possesses, for any
ϕT ∈ X1, a unique solution ϕ ∈ C([0, T ], X1) such that

∀t ∈ [0, T ], ‖ϕ(t)‖X1 ≤ ‖ϕT ‖X1 . (2.1)

Remark 2.3. This estimate also holds for solutions to system (S′). Indeed, the associated operator generates
a contraction semigroup on X (see [2], Sect. 1.1).

In the following proposition, we also recall without proof the classical equivalence between observability and
controllability.

Proposition 2.4. The following properties are equivalent:

• ∃C1 > 0, ∀ϕT ∈ X1; ‖ϕ(0)‖X1 ≤ C1‖ϕ(., 0)‖L2(0,T ) where ϕ is the solution of problem (S′a),
• ∃C2 > 0, ∀u0 ∈ X1, ∃v ∈ L2(0, T ) such that ‖v‖L2(0,T ) � C2‖u0‖X1 and the solution u of problem

(Sa
v )satisfies u(T ) = 0.

Moreover, C1 = C2.
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2.2. Proof of Proposition 2.1

2.2.1. Carleman inequality

In this paragraph, we state a Carleman-type inequality keeping track of the explicit dependence of all the
constants with respect to a, ε and T . As in [6], we introduce the following weight functions:

∀x ∈ [−1, 0], η(x) := 2 + x, α(t, x) :=
e3 − eη(x)

t(T − t)
, φ(t, x) :=

eη(x)

t(T − t)
.

One may show the following Carleman inequality.

Proposition 2.5. There exists C > 0 and s0 > 0 such that for every ε ∈ (0, 1) and every s � s0(ε−1(T +T 2)+
a1/2ε−1/2T 2) the following inequality is satisfied for every ϕT ∈ X:

s3
∫

(0,T )×(−1,0)

φ3e−2sα|ϕ|2 + s3
∫

(0,T )×{0,−1}
φ3e−2sα|ϕ|2 � Cs7

∫
(0,T )×{0}

e−4sα+2sα(.,−1)φ7|ϕ|2. (2.2)

Here, ϕ stands for the solution of (S′a) associated to ϕT .

This Carleman estimate is quite similar to the one obtained in [2], Theorem 9. We have thus postponed its
proof to Appendix A.

Remark 2.6. One can in fact obtain the following Carleman estimate with control term in Γ1:

s3
∫

(0,T )×(−1,0)

φ3e−2sα|ϕ|2 + s3
∫

(0,T )×{0,−1}
φ3e−2sα|ϕ|2 � Cs7

∫
(0,T )×{−1}

e−4sα+2sα(.,0)φ7|ϕ|2, (2.3)

simply by choosing the weight function η(x) equal to x �→ −x+1 - the proof being very similar. This inequality
is the first ingredient to prove the first point stated in Remark 1.2.

2.2.2. Dissipation result

In this paragraph, we show a dissipation result for the solutions of (S′a). We will distinguish two cases
depending on the size of a.

• Case a ≤ ε−1.
Inspired by [3], we introduce a weight function θ(x) = exp(λ

ε x) for some constant λ ∈ (0, 1) which will be
fixed below.
We multiply the first equation in (S′a) by θϕ and we integrate on (−1, 0). This gives:

1
2

d
dt

(∫ 0

−1

θ|ϕ|2
)

= −
∫ 0

−1

θϕϕx − ε

∫ 0

−1

θϕϕxx︸ ︷︷ ︸
A

+a
∫ 0

−1

θ|ϕ|2.

Using now θ′ = λ
ε θ and integrating by parts several times, we obtain

A =
λ

2ε
(1 − λ)

∫ 0

−1

θ|ϕ|2 + ε

∫ 0

−1

θ|ϕx|2 +
1 − λ

2
(−θ(0)|ϕ(·, 0)|2 + θ(−1)|ϕ(·,−1)|2)

− ε (θ(0)ϕ(·, 0)ϕx(·, 0) − θ(−1)ϕ(·,−1)ϕx(·,−1)) .

Using now the boundary conditions for ϕ (see (S′a)) and the fact that a ≥ 0, we get

d
dt

(∫ 0

−1

θ|ϕ|2
)

+ 2ε
∫
{−1,0}

θϕtϕ ≥ λ(1 − λ)
ε

∫ 0

−1

θ|ϕ|2 + (1 − λ)
∫
{−1,0}

θ|ϕ|2.
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Since λ ∈ (0, 1), we readily deduce

d
dt

(
‖
√
θϕ(t)‖2

X1

)
≥ λ(1 − λ)

ε
‖
√
θϕ(t)‖2

X1 .

Gronwall’s lemma combined with exp(−λ
ε ) � θ � 1 successively gives, for 0 ≤ t1 ≤ t2 ≤ T ,

‖
√
θϕ(t1)‖2

X1 � exp
(
−λ(1 − λ)

ε
(t2 − t1)

)
‖
√
θϕ(t2)‖2

X1

and

‖ϕ(t1)‖2
X1 � exp

(
−1
ε

(λ(1 − λ)(t2 − t1) − λ)
)
‖ϕ(t2)‖2

X1

For t2 − t1 > 1, we finally choose

λ :=
t2 − t1 − 1
2(t2 − t1)

∈ (0, 1),

which gives

‖ϕ(t1)‖X1 � exp
{
− (t2 − t1 − 1)2

4ε(t2 − t1)

}
‖ϕ(t2)‖X1

if t2 − t1 > 1.

• Case a ≥ ε−1.
We multiply the equation satisfied by ϕ by ϕ and we integrate on (−1, 0). We get the following identity,
after an integration by parts in space:

1
2

d
dt

(∫ 0

−1

|ϕ|2
)

= −1
2

∫ 0

−1

∂x(|ϕ|2) − ε

∫ 0

−1

ϕxxϕ+ a

∫ 0

−1

|ϕ|2.

= −1
2
(|ϕ(·, 0)|2 − |ϕ(·,−1)|2) − εϕx(·, 0)ϕ(·, 0) + εϕx(·,−1)ϕ(·,−1)

+ε
∫ 0

−1

|ϕx|2 + a

∫ 0

−1

|ϕ|2.

Using now the boundary conditions, we easily deduce

d
dt

‖ϕ(·)‖2
X1 = |ϕ(·, 0)|2 + |ϕ(·,−1)|2 + 2ε

∫ 0

−1

|ϕx|2 + 2a
∫ 0

−1

|ϕ|2.

On the other hand, a standard trace result gives, for some constant c ∈]0, 1] (see for instance [9], Thm. 1.5.10)

ca1/2ε1/2(|ϕ(·, 0)|2 + |ϕ(·,−1)|2) ≤ ε

∫ 0

−1

|ϕx|2 + a

∫ 0

−1

|ϕ|2

and, consequently, we get, using that a ≥ ε−1,

d
dt
(‖ϕ(·)‖2

X1

) ≥ ca1/2ε−1/2‖ϕ(·)‖2
X1 .

Gronwall’s lemma finally gives, for any 0 ≤ t1 ≤ t2 ≤ T ,

‖ϕ(t1)‖2
X1 � exp

(
−ca1/2ε−1/2(t2 − t1)

)
‖ϕ(t2)‖2

X1 .

Summing up, we have shown the following dissipation result:

Lemma 2.7. There exists c0 > 0 such that, for any ε ∈ (0, 1), a ≥ 0, t2 − t1 > 1 and any solution ϕ
of (S′a),

‖ϕ(t1)‖2
X1 � exp

(
−c0 max{a1/2, ε−1/2}ε−1/2 (t2 − t1 − 1)2

t2 − t1

)
‖ϕ(t2)‖2

X1 . (2.4)
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2.2.3. Observability result

We estimate both sides of the Carleman inequality obtained in Proposition 2.5. Putting m = e3 − e2 and
M = e3 − e, we first have

s7
∫

(0,T )×{0}
e−4sα+2sα(.,−1)φ7|ϕ|2 � s7T−14 exp

(
s(8M − 16m)

T 2

)∫
(0,T )×{0}

|ϕ|2.

On the other hand, using that φ � 1
T 2

on [T
4 ,

3T
4

]
, we have the following estimate from below for the left

hand-side of the Carleman inequality (2.2)

s3

T 6
exp

(
−32sM

T 2

)(∫ 3T
4

T
4

∫ 0

−1

|ϕ|2 +
∫ 3T

4

T
4

∫
{−1,0}

|ϕ|2
)
.

Consequently we get that

‖ϕ‖2
L2((T/4,3T/4);X1) � C

∫
(0,T )×{0}

|ϕ|2,

where C = s4T−8 exp
(

16s(3M−m)
T 2

)
. Choosing now s ∼ ε−1(T + max{(aε)1/2, 1}T 2), C is estimated by, for

some c′ > 0 independent from T ≥ 1,

ε−4 max{(aε)2, 1} exp
(
c′ε−1 max{(aε)1/2, 1}

)
� exp

(
c′′ε−1 max{(aε)1/2, 1}

)
for any c′′ > c′. Summing up, we have obtained

‖ϕ‖2
L2((T/4,3T/4);X1) � exp

(
c′′ε−1 max{(aε)1/2, 1}

)∫
(0,T )×{0}

|ϕ|2. (2.5)

We now use the dissipation property (2.4) with t1 = 0 and t2 = t ∈ ]T
4 ,

3T
4

[
. We easily get, for T ≥ 8,

T

2
exp

(
c0T

16
ε−1 max{(aε)1/2, 1}

)
‖ϕ(0)‖2

X1 � ‖ϕ‖2
L2((T/4,3T/4);X1). (2.6)

Combining (2.5) with (2.6) finally gives the result with moreover

k =
c0T

16
− c′′ > 0 ⇐⇒ T > 16

c′′

c0
,

using Proposition 2.4.

3. Proof of the main results

We are now able to deduce Theorems 1.1 and 1.3.
As long as Theorem 1.1 is concerned, we will show that the cost associated to the null controllability problem

(Sv)

⎧⎪⎨
⎪⎩
ut + ∂xnu− εΔu = 0
ε(ut + ∂νu) = v

ε(ut + ∂νu) + u = 0
u(0, .) = u0

in (0, T ) ×Ω,
on (0, T ) × Γ0,
on (0, T ) × Γ1,
in Ω,

can be estimated using a Fourier transform in x′.
On the other hand, we will use a standard approach combining a dissipation result and a kind of conservation

of energy to prove Theorem 1.3.
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We first define, for any f ∈ X and for a.e. ξ′ ∈ R
n−1, the Fourier transform of f with respect to x′ by

f̂ ξ′
(xn) =

∫
Rn−1

e−iξ′.x′
f(x′, xn)dx′.

For real-valued functions f , we also define its real and imaginary part by, for a.e. ξ′ ∈ R
n−1,

f̂ ξ′
r (xn) =

∫
Rn−1

cos(ξ′.x′)f(x′, xn)dx′ and f̂ ξ′
i (xn) = −

∫
Rn−1

sin(ξ′.x′)f(x′, xn)dx′.

3.1. Proof of Theorem 1.1

We make use of Proposition 2.1. We obtain that, for T sufficiently large, ε sufficiently small and for a.e.
ξ′ ∈ R

n−1, there exists vξ′
r ∈ L2(0, T ) such that the solution ûξ′

r of⎧⎪⎪⎨
⎪⎪⎩
∂tû

ξ′
r + ∂xn û

ξ′
r − ε∂2

xn
ûξ′

r + ε|ξ′|2ûξ′
r = 0

ε(∂tû
ξ′
r + ∂ν û

ξ′
r ) = vξ′

r

ε(∂tû
ξ′
r + ∂ν û

ξ′
r ) + ûξ′

r = 0
ûξ′

r (0, .) = û0
ξ′
r

in (0, T ) × (−1, 0),
on (0, T )× {0},
on (0, T )× {−1},
in (−1, 0),

satisfies
ûξ′

r (T ) ≡ 0

and ∥∥∥vξ′
r

∥∥∥
L2(0,T )

≤ C exp
(
−k
ε

)∥∥∥û0
ξ′
r

∥∥∥
X1

.

Using analogous notations for the imaginary part, we deduce that, putting vξ′
= vξ′

r − ivξ′
i , the solution of⎧⎪⎪⎨

⎪⎪⎩
∂tû

ξ′
+ ∂xn û

ξ′ − ε∂2
xn
ûξ′

+ ε|ξ′|2ûξ′
= 0

ε(∂tû
ξ′

+ ∂ν û
ξ′

) = vξ′

ε(∂tû
ξ′

+ ∂ν û
ξ′

) + ûξ′
= 0

ûξ′
(0, .) = û0

ξ′

in (0, T )× (−1, 0),
on (0, T )× {0},
on (0, T ) × {−1},
in (−1, 0),

satisfies
ûξ′

(T ) ≡ 0

and ∥∥∥vξ′
∥∥∥

L2(0,T )
≤ C exp

(
−k
ε

)∥∥∥û0
ξ′∥∥∥

X1
.

It is now straightforward that, defining v as the inverse Fourier transform of ξ′ �→ vξ′
, the solution of

(Sv)

⎧⎪⎨
⎪⎩
ut + ∂xnu− εΔu = 0
ε(ut + ∂νu) = v

ε(ut + ∂νu) + u = 0
u(0, .) = u0

in (0, T ) ×Ω,
on (0, T ) × Γ0,
on (0, T ) × Γ1,
in Ω,

satisfies
u(T ) ≡ 0

and, using Parseval–Plancherel’s identity,

‖v‖L2((0,T ),Γ0) ≤ C exp
(
−k
ε

)
‖u0‖X .

This ends the proof.
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3.2. Proof of Theorem 1.3

In this paragraph, we follow the method exposed in [8], Section 5 to get a lower bound on the cost of null-
control. More precisely, we are going to find a function ϕT such that the associated solution to (S′) satisfies

‖ϕ‖L2((0,T ),Γ0) � e−C/ε (3.1)

and
‖ϕ(0, ·)‖X � 1, (3.2)

whenever ε is small enough and T < 1.
Let δ > 0 small enough such that 4δ < 1−T and let ϕT be a smooth function defined in Ω = R

n−1 × (−1, 0)
such that ⎧⎨

⎩
Supp(ϕT ) ⊂ R

n−1 × (−2δ,−δ),
‖ϕT ‖2

X =
∫

Ω

|ϕT |2 = 1. (3.3)

• Proof of (3.1)
We consider ρ(xn) = exp{λε−1xn} for all xn ∈ (−1, 0) and some λ ∈ (0, 1). Furthermore, we define a
function Ψ ∈ C∞(R) such that ⎧⎪⎨

⎪⎩
Ψ = 0 in (−∞,−3δ),

Ψ = 1 in (−2δ,+∞),

Ψ ′ ≥ 0
and denote

ψj(t, x) := Ψ (j)(xn + T − t) 0 ≤ j ≤ 2.

Then, we multiply the equation in (S′) by 2ρψ0ϕ and we integrate in Ω:

−1
2

d
dt

∫
Ω

ρψ0|ϕ|2 = −ε
∫

Ω

ρψ0Δϕϕ −
∫

Ω

ρψ0∂xnϕϕ − 1
2

∫
Ω

ρψ1|ϕ|2. (3.4)

Integrating by parts in the first term of the right-hand side, we have

−ε
∫

Ω

ρψ0Δϕϕ = −ε
∫

Γ

ρψ0∂νϕϕ+ λ

∫
Ω

ρψ0∂xnϕϕ+ ε

∫
Ω

ρψ1∂xnϕϕ+ ε

∫
Ω

ρψ0|∇ϕ|2.

We use the boundary conditions in (S′) for the first term and we integrate by parts again in the second and
third term. This yields:

−ε
∫

Ω

ρψ0Δϕϕ = −ε
2

d
dt

∫
Γ

ρψ0|ϕ|2 +
(
λ

2
+ 1
)∫

Γ0

ρψ0|ϕ|2

− ε

∫
Γ1

ρψ1|ϕ|2 − λ

2

∫
Γ1

ρψ0|ϕ|2 + ε

∫
Ω

ρψ0|∇ϕ|2

− λ2

2ε

∫
Ω

ρψ0|ϕ|2 − λ

∫
Ω

ρψ1|ϕ|2 − ε

2

∫
Ω

ρψ2|ϕ|2.

We plug this into (3.4) and we integrate by parts in the second term of the right-hand side of (3.4). We
obtain:

d
dt

∫
Ω

ρψ0|ϕ|2 = 2ε
∫

Ω

ρψ0|∇ϕ|2 +
λ(1 − λ)

ε

∫
Ω

ρψ0|ϕ|2

− 2λ
∫

Ω

ρψ1|ϕ|2 − ε

∫
Ω

ρψ2|ϕ|2 + (1 + λ)
∫

Γ0

ρψ0|ϕ|2

−
∫

Γ1

ρ((1 − λ)ψ0 + 2εψ1)|ϕ|2 − ε
d
dt

∫
Γ

ρψ0|ϕ|2.
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Observe that, thanks to the choice of the function Ψ , we have that ψ0|Γ1 = ψ1|Γ1 = 0 and so the sixth term
in the right-hand side vanishes. Since λ ∈ (0, 1), the second term is positive. Consequently,

d
dt

(∫
Ω

ρψ0|ϕ|2 + ε

∫
Γ

ρψ0|ϕ|2
)

≥ −
∫

Ω

(2λρψ1 + ερψ2)|ϕ|2.

Since the supports of the functions ψ1(t, ·) and ψ2(t, ·) are included in R
n−1 × (−∞,−2δ), we obtain:

d
dt

‖(ρψ0)1/2ϕ‖2
X ≥ −Ce−2δλ/ε

∫
Ω

|ϕ|2.

Then, from Remark 2.3, we deduce that

d
dt

‖(ρψ0)1/2ϕ‖2
X ≥ −Ce−2δλ/ε‖ϕT ‖2

X = −Ce−2δλ/ε.

Integrating between t and T , we have:

‖(ρψ0(t))1/2ϕ(t)‖2
X ≤ ‖(ρψ0(T ))1/2ϕT ‖2

X + Ce−2δλ/ε ≤ e−δλ/ε‖ϕT ‖2
X + Ce−2δλ/ε ≤ Ce−δλ/ε.

Finally, since ψ0(t)|Γ0 = ρ|Γ0 = 1, we find in particular

ε‖ϕ(t)‖2
L2(Γ0) ≤ Ce−δλ/ε t ∈ (0, T ).

This gives the desired result (3.1).

• Proof of (3.2)
In this part we prove a quasi-conservation result for the X-norm of ϕ (solution of (S′) associated to ϕT ) if
ε is small enough. Let θ be the solution of the transport equation{

θt + ∂xnθ = 0
θ(T, .) = ϕT

in (0, T )×Ω,
in Ω.

One notes that, in fact,
∀(t, x) ∈ (0, T ) ×Ω, θ(t, x) = ϕT (x′, T − t+ xn)

and, consequently, thanks to 4δ < 1 − T ,

θ = θt = ∂xnθ = 0 on (0, T ) × ∂Ω.

We then multiply the equation satisfied by ϕ (see (S′)) by θ and we integrate it over (0, T )×Ω to get, after
integration by parts, ∫

Ω

θ(T, .)ϕT −
∫

Ω

θ(0, .)ϕ(0, .) + ε

∫ T

0

∫
Ω

Δθϕ = 0.

Using θ(T, .) = ϕT and Remark 2.3, one gets for some C > 0,

‖ϕ(0)‖X ≥
∫

Ω

θ(0, .)ϕ(0, .) ≥ 1 − Cε

so that, for ε < 1
2C ,

‖ϕ(0)‖X ≥ 1
2
. (3.5)

This gives (3.2).
The proof of Theorem 1.3 is complete.
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Appendix A. Proof of Proposition 2.5

We will use the following notations: q := (0, T ) × (−1, 0) , σ := (0, T ) × {−1, 0}, σ0 := (0, T ) × {0} and
σ1 := (0, T )× {−1}. We will now explain how to get the following result.

We perform the proof of this theorem for smooth solutions, so that the general proof follows from a density
argument.

We recall the following properties of the weight functions:

|αt| � Tφ2, |αxt| � Tφ2, |αtt| � T 2φ3,

αx = −φ, αxx = −φ (A.1)

and we follow the standard method introduced in [6]. Let ψ := ϕe−sα ; then, using the equation satisfied by ϕ,
we find

P1ψ + P2ψ = P3ψ in q,

where
P1ψ = ψt + 2εsαxψx + ψx, (A.2)

P2ψ = εψxx + εs2α2
xψ + sαtψ + sαxψ − aψ, (A.3)

and
P3ψ = −εsαxxψ.

On the other hand, the boundary conditions are:

ψt + sαtψ − ψx − sαxψ − ε−1ψ = 0 on σ0, (A.4)

ψt + sαtψ + ψx + sαxψ = 0 on σ1. (A.5)

We take the L2 norm in both sides of the identity in q:

‖P1ψ‖2
L2(q) + ‖P2ψ‖2

L2(q) + 2(P1ψ, P2ψ)L2(q) = ‖P3ψ‖2
L2(q). (A.6)

Using (A.1), we directly obtain

‖P3ψ‖2
L2(q) � ε2s2

∫
q

φ2|ψ|2. (A.7)

We focus on the expression of the product (P1ψ, P2ψ)L2(q). This product contains 15 terms which will be denoted
by Tij(ψ) for 1 � i � 3, 1 � j � 5.

• For the first term in P1ψ, we integrate by parts in time and space. Using that ψ|t=T = ψ|t=0 = 0 and that
a is constant, we have

5∑
i=1

T1i =
∫

q

ψt(εψxx + εs2α2
xψ + sαtψ + sαxψ − aψ)

= −εs2
∫

q

αxαxt|ψ|2 − s

2

∫
q

(αtt + αxt)|ψ|2 + ε

∫
σ

ψt∂νψ

� −sT (εs+ T + T 2)
∫

q

φ3|ψ|2. (A.8)

In order to obtain the last estimate, we have used (A.1) and the boundary conditions.
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• For the second term in P1ψ, we first have:

T21 = −ε2s
∫

σ0

φ|ψx|2 + ε2s

∫
σ1

φ|ψx|2 + ε2s

∫
q

φ|ψx|2. (A.9)

Integrating by parts in space, we find

T22 = −ε2s3
∫

σ0

φ3|ψ|2 + ε2s3
∫

σ1

φ3|ψ|2 + 3ε2s3
∫

q

φ3|ψ|2 (A.10)

and
5∑

i=3

T2i = εs

∫
σ0

αx(sαt + sαx − a)|ψ|2 − εs

∫
σ1

αx(sαt + sαx − a)|ψ|2

−εs
∫

q

[αxx(sαt + 2sαx − a) + sαxαxt]|ψ|2

� −εT s2
∫

σ0

φ3|ψ|2 − εs[s(T + T 2) + aT 4]
(∫

σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)
, (A.11)

where we have used estimates (A.1).
• Finally, for the third term in P1ψ we obtain:

T31 + T32 =
ε

2

(∫
σ0

|ψx|2 −
∫

σ1

|ψx|2 + s2
∫

σ0

φ2|ψ|2 − s2
∫

σ1

φ2|ψ|2
)
− εs2

∫
q

φ2|ψ|2

� −εT 2

(∫
σ1

φ|ψx|2 + s2
∫

σ1

φ3|ψ|2 + s2
∫

q

φ3|ψ|2
) (A.12)

and
5∑

i=3

T3i =
1
2

(∫
σ0

(sαt + sαx − a)|ψ|2 −
∫

σ1

(sαt + sαx − a)|ψ|2 − s

∫
q

(αtx + αxx)|ψ|2
)

� −s(T 3 + T 4)
(∫

σ0

φ3|ψ|2 +
∫

σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)
− aT 6

∫
σ0

φ3|ψ|2.
(A.13)

Putting together (A.8)–(A.13), we obtain, since T 2 � T + T 3,

(P1ψ, P2ψ)L2(q) =
∑

1≤i≤3
1≤j≤5

Tij(ψ) ≥ ε2s3
(∫

σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)

+ ε2s

(∫
σ1

φ|ψx|2 +
∫

q

φ|ψx|2
)

−C

(
sT [ε(sT + s+ aT 3) + T + T 3]

(∫
σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)

+ [s2ε(T + εs) + T 3(s+ sT + aT 3)]
∫

σ0

φ3|ψ|2

+ ε2s

∫
σ0

φ|ψx|2 + εT 2

∫
σ1

φ|ψx|2
)
. (A.14)

We readily observe that the second line of this expression can be absorbed by the first term in the right-hand
side of the first line, that is to say,

ε2s3
(∫

σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)
,
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provided that
s � ε−1(T + T 2) + a1/2ε−1/2T 2. (A.15)

Consequently, we obtain

(P1ψ, P2ψ)L2(q) ≥ ε2s3

2

(∫
σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)

+ ε2s

(∫
σ1

φ|ψx|2 +
∫

q

φ|ψx|2
)

−C

(
[s2ε(T + εs) + T 3(s+ sT + aT 3)]

∫
σ0

φ3|ψ|2 + ε2s

∫
σ0

φ|ψx|2

+ εT 2

∫
σ1

φ|ψx|2
)
. (A.16)

Furthermore, the last term in this expression is absorbed by

ε2s

∫
σ1

φ3|ψ|2

if s � ε−1T 2. We also observe that the term in σ0 can be estimated as follows:

[s2ε(T + εs) + T 3(s+ sT + aT 3)]
∫

σ0

φ3|ψ|2 � ε2s3
∫

σ0

φ3|ψ|2,

provided that s � T 2(ε−1 + a1/3ε−2/3). This choice of the parameter s is implied by (A.15).
Coming back to (A.6), we have proved that

‖P1ψ‖2
L2(q) + ‖P2ψ‖2

L2(q) + ε2s3
(∫

σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)

+ ε2s

(∫
σ1

φ|ψx|2 +
∫

q

φ|ψx|2
)

� ε2s3
∫

σ0

φ3|ψ|2 + ‖P3ψ‖2
L2(q) + ε2s

∫
σ0

φ|ψx|2.
(A.17)

for s as in (A.15). Observe that from (A.2) and sε � T 2, we deduce that

s−1

∫
q

φ−1|ψt|2 + ε2s3
(∫

σ1

φ3|ψ|2 +
∫

q

φ3|ψ|2
)

+ ε2s

(∫
σ1

φ|ψx|2 +
∫

q

φ|ψx|2
)

� ε2s3
∫

σ0

φ3|ψ|2 + ‖P3ψ‖2
L2(q) + ε2s

∫
σ0

φ|ψx|2.
(A.18)

The term in P3ψ can be absorbed by the term in the left-hand side thanks to (A.7) and for s � ε−1T 2 � T 2.
We finally estimate

ε2s

∫
σ0

φ|ψx|2

using the boundary condition at x = 0 given by (A.4). It follows that

ε2s

∫
σ0

φ|ψx|2 � ε2s

(∫
σ0

φ(s2(αt)2 + s2(αx)2 + ε−2)|ψ|2 +
∫

σ0

φ|ψt|2
)

Using (A.1), we find

ε2s

∫
σ0

φ|ψx|2 � ε2s3
∫

σ0

(φ3 + T 2φ5)|ψ|2 + ε2s

∫
σ0

φ|ψt|2. (A.19)



ON THE COST OF NULL-CONTROL OF AN ARTIFICIAL ADVECTION-DIFFUSION PROBLEM 1223

We now come back to ϕ, recalling that ψ = e−sαϕ. Then, using again (A.1) and (A.15), we get from (A.18)
and (A.19)

s−1

∫
q

φ−1e−2sα|ϕt|2 + ε2s3
(∫

q

φ3e−2sα|ϕ|2 +
∫

σ

φ3e−2sα|ϕ|2
)

+ ε2s

∫
σ1

φe−2sα|ϕx|2

� ε2s3
∫

σ0

(φ3 + T 2φ5)e−2sα|ϕ|2 + ε2s

∫
σ0

φe−2sα|ϕt|2.
(A.20)

The last step is to estimate the term in |ϕt|2 on σ0 in the right-hand side of (A.20). Using that sϕ � 1 for s
satisfying (A.15), we have

ε2s

∫
σ0

φe−2sα|ϕt|2 = −ε2s
∫

σ0

φe−2sαϕttϕ+
ε2s

2

∫
σ0

(φe−2sα)tt|ϕ|2

� ε2s

∫
σ0

φe−2sα|ϕtt||ϕ| + ε2T 2s3
∫

σ0

φ5e−2sα|ϕ|2. (A.21)

The goal is now to estimate ϕtt on σ0. For this purpose, let us set ρ(t) := s−5/2φ(t,−1)−5/2e−sα(t,−1) and
w∗ := ρϕt. Then, w∗ satisfies

(S′a
∗ )

⎧⎪⎨
⎪⎩
w∗

t + w∗
x + εw∗

xx − aw∗ = ρ′ϕt

ε(w∗
t − ∂νw

∗) − w∗ = ερ′ϕt

w∗
t − ∂νw

∗ = ρ′ϕt

w∗(T, .) = 0

in (0, T ) × (−1, 0),
on (0, T ) × {0},
on (0, T )× {−1},
in (−1, 0).

• In a first step, we multiply this system by w∗ and we integrate in q. After some computations, we obtain

ε

∫
q

(w∗
x)2 +

1
2

∫
σ

|w∗|2 + a

∫
q

|w∗|2 =
∫

q

ρ′ϕtw
∗ − ε

∫
σ

ρ′ϕtw
∗.

In particular, we have, using Young inequality,

ε

∫
q

(w∗
x)2 �

∫
q

|ρ′ϕt|2 + ε2
∫

σ

|ρ′ϕt|2. (A.22)

• Then, we multiply by εw∗
t . Analogously, we get

ε

2

∫
q

(w∗
t )2 +

ε

2

∫
σ

(w∗
t )2 � ε2

∫
σ

|ρ′ϕt|2 + ε

∫
q

|ρ′ϕt|2 + ε

∫
q

(w∗
x)2.

Combining this with (A.22), we obtain

ε2
∫

σ

|wt|2 � ε2
∫

σ

|ρ′ϕt|2 +
∫

q

|ρ′ϕt|2.

Since wt = ρ′ϕt + ρϕtt, we have

ε2
∫

σ

ρ2|ϕtt|2 � ε2
∫

σ

|ρ′ϕt|2 +
∫

q

|ρ′ϕt|2.

In particular, we find

ε2s−5

∫
σ0

φ−5(t,−1)e−2sα(t,−1)|ϕtt|2 � ε2s−1

∫
σ

φ−1e−2sα|ϕt|2 + s−1

∫
q

φ−1e−2sα|ϕt|2. (A.23)
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Here, we have used that

φ−1(t,−1)e−2sα(t,−1) ≤ φ−1(t, x)e−2sα(t,x) for all x ∈ (−1, 0).

Coming back to (A.21), we have

ε2s

∫
σ0

φe−2sα|ϕt|2 ≤ Cε2s7
∫

σ0

φ7e−4sα+2sα(t,−1)|ϕ|2

+ δε2s−5

∫
σ0

φ−5(t,−1)e−2sα(t,−1)|ϕtt|2,

for s � T 2 and all δ > 0. From (A.23), we now obtain

ε2s

∫
σ0

φe−2sα|ϕt|2 ≤ Cε2s7
∫

σ0

φ7e−4sα+2sα(t,−1)|ϕ|2

+Cδ

(
ε2s−1

∫
σ

φ−1e−2sα|ϕt|2 + s−1

∫
q

φ−1e−2sα|ϕt|2
)
.

Combining this with (A.20), using the boundary conditions and taking δ small enough, we conclude that if
s satisfies (A.15),

s−1

∫
q

φ−1e−2sα|ϕt|2 + ε2s3
(∫

q

φ3e−2sα|ϕ|2 +
∫

σ

φ3e−2sα|ϕ|2
)

+ ε2s

∫
σ1

φe−2sα|ϕx|2

� ε2s7
∫

σ0

φ7e−4sα+2sα(t,−1)|ϕ|2.

In particular, this implies the desired inequality (2.2).
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