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ON SHAPE OPTIMIZATION PROBLEMS INVOLVING THE FRACTIONAL
LAPLACIAN

Anne-Laure Dalibard1 and David Gérard-Varet2

Abstract. Our concern is the computation of optimal shapes in problems involving (−Δ)1/2. We focus
on the energy J(Ω) associated to the solution uΩ of the basic Dirichlet problem (−Δ)1/2uΩ = 1 in Ω,
u = 0 in Ωc. We show that regular minimizers Ω of this energy under a volume constraint are disks.
Our proof goes through the explicit computation of the shape derivative (that seems to be completely
new in the fractional context), and a refined adaptation of the moving plane method.
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1. Introduction

This article is concerned with shape optimization problems involving the fractional laplacian. The typical
example we have in mind comes from the following system:

(−Δ)1/2u = 1 on Ω,
u = 0 on Ωc, (1.1)

set for a bounded open set Ω of R2. We wish to find the minimizers of the associated energy

J(Ω) := inf
v∈H1/2(R2),

v|Ωc=0

(
1
2

〈
(−Δ)1/2v, v

〉
H−1/2,H1/2

−
∫

R2
v

)
. (1.2)

among open sets Ω with prescribed measure (and a smoothness assumption). Beyond this specific example, we
wish to develop mathematical tools for shape optimization in the context of fractional operators.

Our original motivation comes from a drag reduction problem in microfluidics. Recent experiments, carried
on liquids in microchannels, have suggested that drag is substantially lowered when the wall of the channel is
water-repellent and rough [11,16]. The idea is that the liquid sticks to the bumps of the roughness, but may slip
over its hollows, allowing for less friction at the boundary. Mathematically, one can consider Stokes equations
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for the liquid (variable (x, z) = (x1, x2, z), velocity field u = (v, w) = (v1, v2, w)):

−Δu+ ∇p = 0, ∇ · u = 0, z > 0, (1.3)

set above a flat surface {z = 0}. This flat surface replaces the rough hydrophobic one, and is composed of
areas on which the fluid satisfies alternately perfect slip and no-slip boundary conditions. In the simplest
models, these areas of perfect slip and no-slip form a periodic pattern, corresponding to a periodic pattern of
hollows and bumps. That means that the impermeability condition w = 0 at {z = 0} is completed with mixed
Dirichlet/Navier conditions:

∂zv = 0 in Ω, v = 0 in Ωc (1.4)

where Ω ⊂ R2 corresponds to the zones of perfect slip and Ωc to the zones of no-slip. The whole issue is to
design Ω so that the energy J(Ω) associated with this problem is minimal for a fixed fraction of slip area.
Unfortunately, this optimization problem (Stokes operator, periodic pattern) is still out of reach. That is why
we start with the simpler equations (1.1) (still difficult, and interesting on their own!). Note that they can be
seen as a scalar version of (1.3)–(1.4), replacing the Stokes operator by the Laplacian, and the Navier by the
Neumann condition. Using the classical characterization of (−Δ)1/2 as the Dirichlet-to-Neumann operator leads
to system (1.1) and energy (1.2). Again, we stress that the methods developed in our paper may be useful in
more elaborate contexts.

If the fractional laplacian in (1.1) is replaced by a standard laplacian (which leads to the classical Dirichlet
energy), this problem is well-known and described in detail in the book [10] by Henrot and Pierre (see also [14]).
In this case, one can show that a smooth domain Ω minimizing the Dirichlet energy under the constraint |Ω| = 1
is a disc. A standard proof of this result has two main steps:

1. One computes the shape derivative associated with the Dirichlet energy for the laplacian. This leads to
the following result: if Ω is a minimizer of the Dirichlet energy and uΩ is the solution of the associated
Euler–Lagrange equation, then ∂nu is constant on ∂Ω.

2. One analyzes an overdetermined problem. More precisely, the idea is to prove that if there exists a function
u solving

−Δu = 1 in Ω,
u = 0 on ∂Ω,

∂nu = c on ∂Ω,

then all the connected components of Ω are discs. This second step is achieved thanks to the moving plane
method.

Our goal in this article is to develop the same approach in the context of the fractional laplacian, showing
radial symmetry of any smooth minimizer Ω of (1.2). Accordingly, we start with the computation of the shape
derivative.

Theorem 1.1. Let f ∈ C∞(R2,R), and let

Jf (Ω) := inf
v∈H1/2(R2),

v|Ωc=0

(
1
2

〈
(−Δ)1/2v, v

〉
H−1/2,H1/2

−
∫

R2
fv

)
.

Let ζ ∈ C∞
0 (R2,R2), and let (φt)t∈R be the flow associated with ζ, namely φ̇t = ζ(φt), φ0 = Id.

Let Ω be an open set with C∞ boundary, and let uΩ,f be the unique minimizer of Jf (Ω),

(−Δ)1/2uΩ,f = f in Ω,
uΩ,f = 0 in Ωc.

Then, denoting by n(x) the outward pointing normal vector to ∂Ω,
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1. For all x ∈ ∂Ω, the limit

lim
y→x,y∈Ω

uΩ,f (y)
|(y − x)n(x)|1/2

exists; we henceforth denote it by ∂1/2
n uΩ,f (x).

2. The function ∂
1/2
n uΩ,f belongs to C1(∂Ω).

3. There exists an explicit constant C0, which does not depend on Ω, such that

d
dt
Jf (φt(Ω))|t=0 = C0

∫
∂Ω

(∂1/2
n uΩ,f)2ζ n dσ.

This theorem implies easily

Corollary 1.2. Assume that there exists an open set Ω ⊂ R2 such that Ω has C∞ regularity, |Ω| = 1, and

J(Ω) = inf
Ω′⊂R

2,
|Ω′|=1

J(Ω′).

Let uΩ be the solution of the associated Euler-Lagrange equation (1.1), and let n(x) be the outward pointing
normal at x ∈ ∂Ω. Then, ∂1/2

n uΩ exists, and there exists a constant c0 ≥ 0 such that

∂1/2
n uΩ(x) = c0 ∀x ∈ ∂Ω.

Taking into account this extra condition on the fractional normal derivative, we can then determine the
minimizing domain:

Theorem 1.3. Let Ω ⊂ R2 be a C∞ open set such that the system

(−Δ)1/2u = 1 in Ω,
u = 0 in Ωc,

∂1/2
n u = c0 on ∂Ω. (1.5)

has at least one solution. Assume that Ω is connected. Then Ω is a disc.

Of course, Theorem 1.1 and Corollary 1.3 imply immediately the following:

Corollary 1.4. Let Ω ⊂ R2 be a C∞ connected open set such that |Ω| = 1, and

J(Ω) = inf
Ω′⊂R

2,
|Ω′|=1

J(Ω′).

Then Ω is a disc.

Let us make a few comments on our results. As regards Theorem 1.1, we stress that, due to the non-locality
of the fractional laplacian, the shape derivative of Jf is hard to compute. In the case of the classical laplacian,
it is obtained through integration by parts, which are completely unavailable in the present context. The idea
is to bypass the nonlocality by using an asymptotic expansion of uΩ,f (x) as the distance between x and ∂Ω
goes to zero. Such asymptotic expansion follows from general results of [7], on the solutions of linear elliptic
systems in domains with cracks. We insist that the proof of the theorem neither uses scalar arguments, nor
Fourier-based calculations. In particular, we believe that its interet goes much beyond Corollary 1.4 (that is
finding the minimizer of (1.2)). It is likely that it can be adapted to vectorial settings, or functionals with non-
constant coefficients. Notice also that Theorem 1.1 and Corollary 1.2 do not require the connectedness of Ω.
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For our special case f = 1, they imply that the value of the fractional normal derivative is the same on all the
boundaries of the connected components of Ω.

As regards Theorem 1.3, it is deduced from an adaptation of the moving plane method to our fractional
setting. Again, this is not straightforward, as the standard method relies heavily on the maximum principle
and Hopf’s Lemma, which are essentially local tools. To overcome our non-local problem, we use appropriate
three-dimensional extensions of u, to which we can apply maximum principle methods in a classical context.
Note however that we need to assume that Ω is connected: this hypothesis is precisely due to the nonlocality of
the fractional laplacian.

We conclude this introduction by a brief review of related results. Let us first mention that the condi-
tion ∂1/2

n u = c0 appears in other problems related to the fractional laplacian. In [6], Caffarelli, Roquejoffre and
Sire consider a minimization problem for another energy related to the fractional laplacian, and they prove
that minimizers satisfy the condition ∂

1/2
n u = c0 on ∂{u = 0}. However, we emphasize that the issues of the

present paper and those of [6] are rather different. The problem addressed in [6] is essentially a free-boundary
problem (i.e. Ω is not given, but is defined as {u > 0}), and therefore questions such as the regularity and the
non-degeneracy of u, and the regularity of the free boundary, are highly non trivial and are at the core of the
paper [6]. Here, our goal is not to investigate these questions, but rather to derive information on the shape
of Ω, assuming a priori regularity. As mentioned before, we rely on article [7] by Costabel and co-authors, which
provides asymptotic expansions for solutions of linear elliptic equations near cracks. As they derive accurate
asymptotics, based on pseudo-differential calculus, they need the domain to be C∞. In our context, only cruder
information is needed (broadly, we need the first term in the expansion, and tangential regularity). Apart from
these asymptotic expansions, the proofs of Theorems 1.1 and 1.3 use very little information on the regularity
of ∂Ω (existence of tangent and normal vectors, boundedness and regularity of the curvature). Hence, it is likely
that our C∞ regularity requirement can be lowered.

As regards our adaptation of the moving plane method, it relates to other results on the proof of radial
symmetry for minimizers of nonlocal functionals: see for instance [13] on local Riesz potentials

u(x) =
∫

Ω

1
|x− y|N−1

or [5] on the radial symmetry of solutions of nonlinear equations involving A1/2, where A is the Dirichlet
laplacian of a ball in Rn. Note that in these two papers, “local” maximum principles are still available, which
helps. Further references (notably to article [3]) will be provided in due course.

Let us eventually point out that more direct proofs of the final Corollary 1.4 might be available. For instance,
in the case of the classical laplacian, one way to proceed is to consider the auxiliary problem: minimize

E(u) :=
1
2

∫
R2

|∇u|2 −
∫

R2
u

under the measure constraint: |{u > 0}| = 1}. Crudely, any minimizer u of E provides a solution Ωu = {u > 0}
of the shape optimization problem, and vice versa. We refer once again to [10] for rigourous statements. In
particular, showing that any minimizer of E is radial shows that any minimizing domain is radial (without a
priori regularity assumption).

In the case of the fractional laplacian, a close context has been recently investigated by Lopes and Maris
in [12]. Their result is the following:

Proposition 1.5. Let s ∈ (0, 1) and assume that F,G : R → R are such that u �→ F (u), u �→ G(u) map Ḣs(Rd)
into L1(Rd). Assume that u ∈ Ḣs(Rd) is a solution of the minimization problem

Minimize E(u) :=
∫

Rd

|ξ|2s|û(ξ)|2 dξ +
∫

Rd

F (u) under the constraint
∫

Rd

G(u) = λ.

Then u is radially symmetric.
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Looking closely at their proof, it seems that their arguments can be extended as such to the functionals

F (u) := u, G(u) := 1u>0

although such F and G do not map Ḣ1/2(R2) into L1(R2). This is likely to yield the radial symmetry of the
minimizing domain for our shape functional J (without a priori regularity assumption). See Remark 4.5 for
further discussion.

The plan of our paper is the following: Section 2 collects more or less standard results on the fractional
laplacian, which will be used throughout the article. Special attention is paid to regularity properties of solutions
of (1.1), that we deduce from regularity results for the Laplace equations in domains with cracks. Section 3 is
devoted to the proof of Theorem 1.1 and Corollary 1.2. Finally, Section 4 contains the proof of Theorem 1.3.

2. Preliminaries

2.1. Reminders on the fractional laplacian

We remind here some basic knowledge about (−Δ)1/2, see for instance [15]. We start with

Definition 2.1. For any f ∈ S(Rn), one defines (−Δ)1/2f through the identity

̂(−Δ)1/2f(ξ) = |ξ|f̂(ξ).

Note that g = (−Δ)1/2f does not belong to S(Rn) because of the singularity of |ξ| at 0. Nevertheless, it is C∞

and satisfies for all k ∈ N:
sup

x∈Rn

(1 + |x|n+1)|g(k)(x)| < +∞

This allows for a definition of (−Δ)1/2 over a large subspace of S′(Rn), by duality. We shall only retain

Proposition 2.2. (−Δ)1/2 extends into a continuous operator from H1/2(Rn) to H−1/2(Rn).

This is clear from the definition.
It is also well-known that (−Δ)1/2 can be identified with the Dirichlet-to-Neumann operator, in the following

sense (writing (x, z) ∈ Rn × R the elements of Rn+1):

Theorem 2.3. Let u ∈ H1/2(Rn). One has (−Δ)1/2u = −∂zU |z=0, where U is the unique solution in

Ḣ1(Rn+1
+ ) :=

{
U ∈ L2

loc(R
n+1
+ ), ∇U ∈ L2(Rn+1

+ )
}

of
−Δx,zU = 0 in R

n+1
+ , U |z=0 = u.

Let us remind that the normal derivative ∂zU |z=0 ∈ H−1/2(Rn) has to be understood in a weak sense: for
all φ ∈ H1(Rn+1

+ ),

〈∂zU |z=0, γφ〉 = −
∫

R
n+1
+

∇U · ∇φ

where γ is the trace operator (onto H1/2(Rn)). It coincides with the standard derivative whenever U is smooth.
We end this reminder with a formula for the fractional laplacian:

Theorem 2.4. Let f satisfying
∫

Rn

|f(x)|
1+|x|n+1 dx < +∞, with regularity C1,ε, ε > 0, over an open set Ω. Then,

(−Δ)1/2f is continuous over Ω, and for all x ∈ Ω, one has

(−Δ)1/2f(x) = C1 PV
∫

Rn

f(x) − f(y)
|x− y|n+1

dy (2.1)

= C1

∫
Rn

f(x) − f(y) −∇f(x) · (x − y)1|x−y|≤C

|x− y|n+1
dy. (2.2)

for some C1 = C1(n) and any C > 0.



ON SHAPE OPTIMIZATION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN 981

2.2. The Dirichlet problem for (−Δ)1/2. Regularity properties (2d case)

In view of system (1.1), a key point in our analysis is to know the behavior near the boundary of solutions
to the following fractional Dirichlet problem:

(−Δ)1/2u = f on Ω,
u = 0 on Ωc,

(2.3)

where Ω is a smooth open set of R2 and f ∈ C∞(R2). Note that in system (2.3), we prescribe the value of u
not only at ∂Ω, but in the whole Ωc. This is reminiscent of the non-local character of (−Δ)1/2: remind that
u = U |z=0, where U satisfies the (3d) local problem

−ΔU = 0 in z > 0,
∂zU = −f over Ω × {0}, U = 0 over Ωc × {0}, (2.4)

whose mixed Robin/Dirichlet boundary condition must be specified over the whole plane {z = 0}.
We were not able to find direct references for regularity properties of problem (2.3), although the C0,1/2

regularity of u and the existence of ∂1/2
n u are evoked in [4, 6, 9]. In particular, we could not collect information

on transverse and tangential regularity of the solution u near ∂Ω × {0}. We shall use results for the Laplace
equation in domains with cracks, in the following way. Let η ∈ C∞

c (R3), odd in z, with θ(x, z) = z for x in a
neighborhood of Ω̄ and |z| ≤ 1. Then, V (x, z) := U(x, z) + η(x, z)f(x) satisfies

−ΔV = F in z > 0,
∂zV = 0 over Ω × {0}, U = 0 over Ωc × {0}, (2.5)

where F := −Δx,z(ηf) is smooth, odd in z, and compactly supported in R3. We then extend V to {z < 0} by
the formula V (x, z) := −V (x,−z), z < 0. In this way, we obtain the system

−ΔV = F in R3 \ (Ω × {0}) (2.6)

∂zV = 0 at (Ω × {0})± (2.7)

which corresponds to a Laplace equation outside a “crack” Ω×{0} with Neumann boundary condition on each
side of the crack. We can now use regularity results for the laplacian in singular domains, such as those of [7].
First, note that V is C∞ away from Ω×{0}, by standard elliptic regularity. Let now Γ be a connected component
of ∂Ω, and ϕ a truncation function such that ϕ = 1 in a neighborhood of Γ , with Suppϕ∩ (∂Ω \ Γ ) = ∅. Then,
ϕV still satisfies a system of type (2.6), with Ω replaced by Suppϕ, and F by F−[Δ,ϕ]V (which is still smooth).
We can then apply [7], Theorem A.4.3, which leads to the following

Theorem 2.5. Let Γ be a connected component of ∂Ω. We denote by (r, θ) polar coordinates in the planes
normal to Γ and centered on Γ , and by s the arc-length on Γ , so that

R3 \ ((Suppϕ ∩ Ω) × {0}) = {(s, r, θ), s ∈ (0, L), r > 0, θ ∈ (−π, π)}.
Then, the solution V of (2.6) has the following asymptotic expansion, as r → 0: for any integer K ≥ 0,

V =
K∑

k=0

r1/2+kΨk(s, θ) + Ureg,K + Urem,K (2.8)

where:

• the coefficients Ψk are regular over [0, L]× [−π, π];
• Ureg,K is regular over R3;
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• the remainder Urem,K satisfies ∂βUrem,K = o(rK−|β|+1/2) for all β ∈ N3.

Setting
ψk(s) := Ψk(s, π), urem,K(x) := Urem,K(x, 0+), ureg,K(x) := Ureg,K(x, 0+),

we can get back to the solution u of (2.3) and obtain the asymptotic expansion

u =
K∑

k=0

r1/2+kψk(s) + ureg,K + urem,K . (2.9)

Such formulas will be at the core of the next sections.

3. Shape derivative of the energy J(Ω)

This section is devoted to the proof of Theorem 1.1 and Corollary 1.2. The proof of Theorem 1.1 is rather
technical, although it follows a simple intuition. Therefore let us first explain how Corollary 1.2 is derived.

Assume that Theorem 1.1 holds. Consider the application

J : ζ ∈ C1
b (R2,R2) �→ J((I + ζ)Ω),

where
C1

b (R2,R2) = C1 ∩W 1,∞(R2,R2).

We recall that C1
b equipped with the norm ‖ · ‖W 1,∞ is a Banach space.

We first claim that J is differentiable at ζ = 0. This follows from the differentiability of the application

ζ ∈ C1
b (R2,R2) �→ vζ ∈ H1/2(R2),

where vζ = uζ ◦(I+ζ) and uζ = u(I+ζ)Ω is the solution of the Euler–Lagrange equation associated with (I+ζ)Ω.
The proof goes along the same lines as the one of Lemma 3.1 below. Furthermore, the variational formulation
of the Euler–Lagrange equation implies (see formula (3.9))

J((I + ζ)Ω) = −1
2

∫
R2
vζ det(I + ∇ζ).

The differentiability of J follows.
Using Theorem 1.1, we then identify the differential of J at ζ = 0. Indeed, if (φt)t∈R is the flow associated

with ζ ∈ C∞
0 (R2), (

d
dt
J(φt(Ω))

)
|t=0

is the Gâteaux derivative of J at point 0 in the direction ζ. We infer that

dJ (0)ζ = C0

∫
∂Ω

ζ · n(∂1/2
n uΩ)2 dσ

for all ζ ∈ C∞
0 (R2,R2), and by density for all ζ ∈ C1

b (R2,R2).
Now, assume that Ω is a bounded domain with C∞ boundary, which minimizes J under the constraint |Ω| = 1.

In other words, ζ = 0 is a minimizer of J (ζ) in the Banach space C1
b under the constraint V (ζ) := |(I+ζ)(Ω)| = 1.

According to the theorem of Lagrange multipliers, there exists λ ∈ R such that

∀ζ ∈ C1
b (R2,R2), (dJ (0) + λdV (0)) ζ = 0. (3.1)
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It is proved in [10] that

dV (0)ζ =
∫

∂Ω

ζ · n dσ.

Thus (3.1) becomes

∃λ ∈ R, ∀ζ ∈ C1
b (R2,R2),

∫
∂Ω

(ζ · n)
(

(∂1/2
n uΩ)2 +

λ

C0

)
dσ = 0.

Since ζ is arbitrary, we infer that ∂1/2
n uΩ is constant on Ω. Moreover, since uΩ ≥ 0 on Ω by the maximum

principle, the constant is positive. This completes the proof of Corollary 1.2.
We now turn to the proof of Theorem 1.1. In the case of the classical laplacian, the shape derivative of the

Dirichlet energy is well-known and is proved in the book by Henrot et Pierre [10]. Let us recall the main steps
of the derivation, which will be useful in the case of the fractional laplacian. Let

If (Ω) := inf
u∈H1

0 (Ω)

(
1
2

∫
Ω

|∇u|2 −
∫

Ω

fu

)
,

For all ζ ∈ C1 ∩W 1,∞(R2), consider the flow φt associated with ζ. Then for all t ∈ R, φt is a diffeomorphism of
R2. We recall the following properties, which hold for all t ∈ R:

φ̇0 = ζ, |det(∇φt(x))| =: j(t, x) = exp
(∫ t

0

(div ζ)(φs(x)) ds
)

dφ−1
t

dt |t=0
= −ζ, ∣∣det(∇φ−1

t )
∣∣ = j(−t, x).

(3.2)

The last line merely expresses the fact that φ−1
t = φ−t, for all t ∈ R.

For t ≥ 0, let Ωt = φt(Ω), and let wt be the solution of the associated Euler–Lagrange equation, namely

−Δwt = f in Ωt,

wt = 0 on ∂Ωt.

Eventually, we define zt := wt ◦ φt.
It is proved in [10] that (

d
dt
If (Ωt)

)
|t=0

= −1
2

∫
∂Ω

(ζ · n)(∂nw0)2dσ.

Indeed, since wt solves the Euler–Lagrange equation, we have

If (Ωt) = −1
2

∫
Ωt

fwt = −1
2

∫
Ω

zt(y)f ◦ φt(y)j(t, y) dy.

Differentiating zt = wt ◦ φt with respect to t, we obtain

żt = ẇt + φ̇t · ∇wt,

and thus in particular
ẇ0 + ζ · n ∂nw0 = 0 on ∂Ω.

The Euler–Lagrange equation yields
−Δẇ0 = 0 in Ω.
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Gathering all the terms and using the fact that w0|∂Ω = 0, we deduce that

(
d
dt
If (Ωt)

)
|t=0

= −1
2

∫
Ω

(f(ẇ0 + ζ · ∇w0) + (ζ · ∇f)w0 + fdiv ζw0)

= −1
2

∫
Ω

(−ẇ0Δw0 + div (ζfw0))

=
1
2

(∫
Ω

w0Δẇ0 +
∫

∂Ω

ẇ0∂nw0dσ
)

= −1
2

∫
∂Ω

(ζ · n)(∂nw0)2dσ.

Therefore the shape derivative of If is similar to the one of Jf , the fractional derivative being merely replaced
by a classical derivative.

Unfortunately, the proof in the case of the classical laplacian can only partially be transposed to the fractional
laplacian. Indeed, several integration by parts play a crucial role in the computation, and cannot be used in the
framework of the fractional laplacian.

We use therefore a different method to estimate dJf (Ωt)/dt. The main steps of the proof are as follows:

1. As above, we introduce ut = uΩt,f and vt = ut◦φt. We derive regularity properties and asymptotic expansions
for vt, from which we deduce a decomposition of u0 and u̇0.

2. In order to avoid the singularities of u̇0 near ∂Ω, we introduce a truncation function χk supported in Ω, and
vanishing in the vicinity of the boundary. Using the integral form of the fractional laplacian, we then derive
an integral formula for an approximation of dJf (Ωt)/dt involving u0, u̇0 and χk.

3. Keeping only the leading order terms in the decomposition of u0 and u̇0, we obtain an expression of dJf (Ωt)/dt
in terms of ∂1/2

n u0, and we prove that this expression is independent of the choice of the truncation function
χk.

4. We then evaluate the contributions of the remainder terms to the integral formula, and we prove that they
all vanish as k → ∞.

Most of the technicalities are contained in steps 3 and 4. However, some more or less formal calculations –
performed at the end of step 2 – lead relatively easily to the desired result. Before tackling the core of the proof,
let us introduce some notation:

• We denote by Γ1, . . . , ΓN the connected components of ∂Ω, and we parametrize each Γi by its arc-length s.
We denote by Li the length of Γi.

• The number r ∈ R stands for the (signed) distance to the boundary of Ω. More precisely, |r| is the distance
to the boundary, and r > 0 inside Ω, r < 0 outside Ω;

• We denote by Ut the three dimensional extension of ut in the half-space, i.e. the function such that

−ΔUt = 0 on R3
+, Ut|z=0 = ut.

The three-dimensional function Vt is then defined by

Vt(x, z) = Ut(φt(x), z) x ∈ R2, z ∈ R,

so that Vt|z=0 = vt.
• Derivatives with respect to t are denoted with a dot.

3.1. Regularity of u0 and u̇0 and expansions

We start with the following lemma
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Lemma 3.1. For all t in a neighbourhood of zero,

vt ∈ H1/2(R2), v̇t ∈ H1/2(R2),

ut ∈ H1/2(R2), u̇t ∈ H−1/2(R2).
(3.3)

The proof is rather close to the one of Theorem 5.3.2 in [10]. In order to keep the reading as fluent as possible,
the details are postponed to the end of the section. The idea is to prove that Vt solves a three-dimensional
elliptic equation with smooth coefficients. The implicit function theorem then implies that t �→ Vt ∈ H1 is C1

in a neighbourhood of t = 0. Since vt is the trace of Vt, t �→ vt ∈ H1/2 is also a C1 application. Eventually, the
chain-rule formula entails that u̇t ∈ H−1/2.

We also derive asymptotic formulas for Vt and vt in terms of r: we rely on the results in the paper by Costabel,
Dauge and Duduchava [7], and we use the notations of paragraph 2.2 (see also Thm. 2.5 of the present paper).
We claim that there exists ψ0, ψ1, ψ2 ∈ C1(∂Ω), u1, u2 ∈W 1,∞(R2) such that

u0 =
√
r+ψ0(s) + u1(x), (3.4)

u̇0 = 1r>0
1√
r
ψ1(s) +

√
r+ψ2(s) + u2(x), (3.5)

where

ψ0(s) = ∂1/2
n u0(s), (3.6)

ψ1(s) =
1
2
ζ · n(s)ψ0(s). (3.7)

Moreover, there exists δ > 0 such that

u̇t ∈ L∞((−δ, δ), L1(R2)). (3.8)

These decompositions and the regularity result (3.8) will be proved at the end of the section, after the Proof of
Lemma 3.1.

3.2. An integral formula for an approximation of dJf(Ωt)/dt

We first use the Euler–Lagrange equation (1.1) in order to transform the expression defining Jf (Ωt).
Classically, we prove that the unique minimizer u of the energy

1
2

〈
(−Δ)1/2v, v

〉
H−1/2,H1/2

−
∫

R2
fv

in the class {v ∈ H1/2(R2), v|Ωc
t

= 0} satisfies

〈
(−Δ)1/2u, v

〉
H−1/2,H1/2

−
∫

R2
fv = 0 ∀v ∈ H1/2(R2) s.t. v|Ωc

t
= 0.

Choosing v ∈ C∞
0 (Ωt), we infer that (−Δ)1/2u = f in Ω. Since u|Ωc

t
= 0, we infer that u = uΩt,f = ut, and in

particular

〈(−Δ)1/2ut, ut〉 =
∫

Ωt

fut.

The identity above yields

Jf (Ωt) = −1
2

∫
R2
fut = −1

2

∫
Ωt

fut.
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Changing variables in the integral, we obtain

Jf (Ωt) = −1
2

∫
Ω

vt(y)f ◦ φt(y)j(t, y) dy. (3.9)

Since t �→ vt ∈ H1/2 is differentiable, t �→ Jf (Ωt) is C1 for t close to zero, and(
d
dt
Jf (Ωt)

)
|t=0

= −1
2

∫
Ω

(v̇0f + ζ · ∇fv0 + v0fdiv ζ).

Now, for k ∈ N large enough, we define χk ∈ C∞
0 (R2) by χk(x) = χ(kr), where χ ∈ C∞(R) and χ(ρ) = 0 for

ρ ≤ 1, χ(ρ) = 1 for ρ ≥ 2. Then, since u0 = v0,(
d
dt
Jf (Ωt)

)
|t=0

= −1
2

lim
k→∞

∫
R2
χk(v̇0f + v0 div (ζf))

= −1
2

lim
k→∞

(∫
R2
χku0 div (ζf) +

[
d
dt

∫
R2
χkfvt

]
|t=0

)

= −1
2

lim
k→∞

(∫
R2
χku0 div (ζf) +

[
d
dt

∫
R2
ut(fχk) ◦ φ−1

t j(−t, ·)
]
|t=0

)
.

For fixed k and for t in a neighbourhood of zero, there exists a compact set Kk such that Kk � Ω and
Suppχk ◦ φ−1

t ⊂ Kk. Since u̇t ∈ L∞
t (L1

x) according to (3.8), we can use the chain rule and write[
d
dt

∫
R2
ut(fχk) ◦ φ−1

t j(−t, ·)
]
|t=0

=
∫

R2
(u̇0fχk − u0fζ · ∇χk − u0χkζ · ∇f − u0χkfdiv ζ).

Using the decomposition (3.4) together with the definition of χk, we deduce that∣∣∣∣
∫

R2
u0fζ · ∇χk

∣∣∣∣ ≤ C

∫
R

√
r+k|χ′(kr)| dr ≤ C√

k
.

Notice also that ∫
R2

(−u0χkζ · ∇f − u0χkfdiv ζ) = −
∫

R2
u0χkdiv (fζ).

We now focus on the term involving u̇0; since (−Δ)1/2u0 = f on the support of χk, we have∫
R2
u̇0fχk =

∫
R2
u̇0χk(−Δ)1/2u0

=
∫

R2
u0(−Δ)1/2(u̇0χk).

Notice also that χk(−Δ)1/2(u̇0) = 0. Indeed, u̇t is smooth on Kk for t small enough (see for instance (3.28)
below). Hence for x ∈ Kk, the integral formula (2.2) makes sense and we have, using (3.8),

(−Δ)1/2u̇0(x) = C1

∫
R2

u̇0(x) − u̇0(y) −∇u̇0(x) · (x− y)1|x−y|≤C

|x− y|3 dy

= C1

[
d
dt

∫
R2

ut(x) − ut(y) −∇ut(x) · (x− y)1|x−y|≤C

|x− y|3 dy
]
|t=0

=
d
dt

(f(x)) = 0.
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Eventually, we obtain ∫
R2
u̇0fχk =

∫
R2
u0

[
(−Δ)1/2, χk

]
u̇0.

Gathering all the terms, we infer eventually(
d
dt
Jf (Ωt)

)
|t=0

= −1
2

lim
k→∞

∫
R2
u0

[
(−Δ)1/2, χk

]
u̇0.

Let us now express the right-hand side in terms of the kernel of the fractional laplacian. Using the integral
formula (2.2) together with the expansion (3.5), we infer that[

(−Δ)1/2, χk

]
u̇0(x) = C1

∫
R2

u̇0(y)(χk(x) − χk(y)) − u̇0(x)∇χk(x) · (x− y)1|x−y|≤C

|x− y|3 dy.

The value of the integral above is independent of the constant C. Therefore the shape derivative of the energy
Jf is given by

d
dt
Jf (Ωt)|t=0 = −C1

2
lim

k→∞
Ik, where

Ik : =
∫

R2×R2

u0(x)
|x− y|3

{
u̇0(y)(χk(x) − χk(y)) − u̇0(x)∇χk(x) · (x− y))1|x−y|≤C

}
dx dy. (3.10)

The next step is to compute the asymptotic value of Ik as k → ∞. This part is rather technical, and involves
several error estimates. However, the intuition leading the calculations is simple: first, the main order is obtained
when u0 and u̇0 are replaced by the leading terms in their respective developments. Moreover, because of the
truncation χk, the integral is concentrated on the boundary ∂Ω. All these claims will be fully justified in the
next paragraph.

If we follow these guidelines, we end up with

Ik ≈ PV
∫

Tδ×Tδ

u0(x)u̇0(y)
|x− y|3 (χk(x) − χk(y)) dx dy,

where Tδ is a tubular neighbourhood of ∂Ω of width δ � 1 (see (3.11)). If we change cartesian coordinates for
local ones, and if we neglect the curvature of ∂Ω – which is legitimate if δ is small – we are led to

Ik ≈ PV
∫

[0,δ]2

∫
(0,L)2

ψ0(s)ψ1(s)
((s− s′)2 + (r − r′)2)3/2

√
r

r′
(χ(kr) − χ(kr′) ds ds′ dr dr′.

For simplicity, we have assumed that ∂Ω only has one connected component, of length L. Integrating first with
respect to s′, and changing variables by setting ρ = kr, ρ′ = kr′, we obtain eventually

Ik ≈ 2C

(∫ L

0

ψ0ψ1

)
PV

∫ ∞

0

∫ ∞

0

√
ρ

ρ′
χ(ρ) − χ(ρ′)
|ρ− ρ′|2 dρ dρ′

≈ C

(∫ L

0

ψ0ψ1

)∫ ∞

0

∫ ∞

0

χ(ρ) − χ(ρ′)√
ρρ′(ρ− ρ′)

dρ dρ′,

where
C =

∫ ∞

0

dz
(1 + z2)3/2

.

There remains to prove that the value of the integral in the right-hand side does not depend on χ, which we do
at the end of the next paragraph, and the formula of Theorem 1.1 is proved.

Of course, the above calculation is very sketchy, and careful justification must be given at every step. But
the general direction follows these formal arguments.
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3.3. Asymptotic value of Ik

We now evaluate the integral Ik defined in (3.10). There are two main ideas:

• We prove that the domain of integration can be restricted to a tubular neighbourhood of ∂Ω (see Lem. 3.2).
• Since the integral Ik is bilinear in u0, u̇0, we replace u0 and u̇0 by their expansions in (3.4), (3.5). The leading

term is obtained when u0 and u̇0 are replaced by the first terms in their respective developments. We prove
in the next subsection that all other terms vanish as k → ∞.

We begin with the following Lemma (of which we postpone the proof):

Lemma 3.2. For δ > 0, let
Tδ := {x ∈ R2, d(x, ∂Ω) < δ}. (3.11)

Choose C = δ
2 in the definition of Ik (3.10). Then there exists a constant Cδ such that for k > 5/δ,∣∣∣∣∣

∫
(Tδ×Tδ)c

u0(x)
|x− y|3

{
u̇0(y)(χk(x) − χk(y)) − u̇0(x)∇χk(x) · (x− y))1|x−y|≤δ/2

}
dx dy

∣∣∣∣∣ ≤ Cδ√
k
.

We henceforth focus our attention on the value of the integral on Tδ × Tδ. Replacing u0 and u̇0 by the first
terms in the expansions (3.4), (3.5), we define

Iδ
k :=

∫
Tδ×Tδ

ψ0(s)
√
r+

|x− y|3
[
ψ1(s′)

1r′>0√
r′

(χ(kr) − χ(kr′))

−ψ1(s)
1r>0√
r
kχ′(kr)n(s) · (x − y)1|x−y|≤δ/2

]
dx dy. (3.12)

There is a slight abuse of notation in the integral above, since we use simultaneously cartesian and local
coordinates. In order to be fully rigorous, r, r′, s, s′ should be replaced by r(x), r(y), s(x), s(y) respectively.
However, the first step of the proof will be to express the integral Iδ

k in local coordinates, and therefore we will
avoid these heavy notations.

In fact, the computation of the limit of Iδ
k is much more technical than the estimation of all other quadratic

remainder terms, which we will achieve in the next subsection. We now prove the following:

Lemma 3.3. There exists an explicit constant C2, independent of χ and of Ω, such that

lim
δ→0

lim
k→∞

Iδ
k = C2

N∑
i=1

∫ Li

0

ψ0(s)ψ1(s) ds.

Proof. Throughout the proof, different types of error terms will appear, which we have gathered in Lemma 3.4
below. We will therefore refer to (3.19), (3.20), (3.21), (3.22) to classify the different types of error terms.

Several preliminary simplifications are necessary:

• We use local coordinates instead of cartesian ones, i.e. we change x into (s, r) and y into (s′, r′). Since
|r|, |r′| ≤ δ, the jacobian of this change of coordinates is, for δ > 0 small enough,

|1 + rκ(s)| |1 + r′κ(s′)| = (1 + rκ(s)) (1 + r′κ(s′)) ,

where κ is the algebraic curvature of ∂Ω. We refer to the Appendix for a simple proof. Notice that this
jacobian is always bounded.



ON SHAPE OPTIMIZATION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN 989

• We write Tδ = ∪N
i=1T

i
δ , where

T i
δ = {x ∈ R2, d(x, Γi) < δ}.

If δ is small enough, T i
δ ∩ T j

δ = ∅ for i �= j, and |x − y| is bounded from below for x ∈ T i
δ , y ∈ T j

δ by a
constant independent of δ. Hence, for i �= j,∣∣∣∣∣

∫
T i

δ×T j
δ

ψ0(s)
√
r+

|x− y|3
[
ψ1(s′)

1r′>0√
r′

(χ(kr) − χ(kr′)) − ψ1(s)
1r>0√
r
kχ′(kr)n(s) · (x− y)1|x−y|≤δ/2

]
dx dy

∣∣∣∣∣
≤ C

∫
T i

δ×T j
δ

1r,r′>0

√
r√
r′

dx dy

≤ C

∫
(0,δ)2

√
r√
r′

dr dr′

≤ Cδ2.

Therefore, in the integral defining Iδ
k , we replace the domain of integration Tδ ×Tδ by ∪N

i=1T
i
δ ×T i

δ , and this
introduces an error term of order δ2.

• In local coordinates, we write T i
δ as (0, Li) × (−δ, δ). We replace the jacobian

(1 + rκ(s)) (1 + r′κ(s′))

by (1 + rκ(s))2. Since s, s′ ∈ (0, Li) (i.e. x and y belong to the neighbourhood of the same connected
component of ∂Ω), this change introduces error terms bounded by (3.19), (3.21), which vanish as k → ∞
and δ → 0. More details will be given in the fourth step for similar error terms; we refer to Lemma 3.4.

• We evaluate |x− y| in local coordinates for x, y ∈ T i
δ . We have

x = p(s) − rn(s),
y = p(s′) − r′n(s′),

where p(s) ∈ R2 is the point of ∂Ω with arc-length s. Since the boundary Γi is C∞,

p(s) − p(s′) = (s− s′)τ(s) +O(|s− s′|2),
where τ(s) is the unit tangent vector at p(s) ∈ ∂Ω. Using the Frenet-Serret formulas, we also have

n(s) − n(s′) = −(s− s′)κ(s)τ(s) +O(|s− s′|2),
where κ is the curvature of Γi. Gathering all the terms, we infer that

x− y = (s− s′)(1 + κ(s)r)τ(s) + (r − r′)n(s) +O(|s− s′|2 + |r − r′|2), (3.13)

so that
|x− y|2 = (s− s′)2(1 + κ(s)r)2 + (r − r′)2 +O

(|s− s′|3 + |r − r′|3) (3.14)

and
|x− y|−3 =

(
(s− s′)2(1 + κ(s)r)2 + (r − r′)2

)−3/2
(1 +O(|s− s′| + |r − r′|)) .

In particular, there exists a constant C such that

1
|x− y|3 ≤ C

((s− s′)2 + (r − r′)2)3/2
,

and replacing |x− y|−3 by
(
(s− s′)2(1 + κ(s)r)2 + (r − r′)2

)−3/2 generates yet another error term bounded
by (3.19), (3.21).
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• We replace the factor ψ1(s′) by ψ1(s); this also leads to an error term of the type (3.19).
• Using (3.13), we infer that

n(s) · (x− y) = r − r′ +O(|s− s′|2 + |r − r′|2).
The second term in the right-hand side of the above equality gives rise to an error term of the type (3.21).

• The last preliminary step is to replace the indicator function 1|x−y|≤δ/2 in (3.12) by a quantity depending
on s, s′, r, r′. Using the asymptotic development (3.14) above, it can be easily proved that there exists a
constant c such that∣∣1|x−y|≤δ/2 − 1(s−s′)2(1+κ(s)r)2+(r−r′)2≤δ2/4

∣∣ ≤ 1(1−cδ) δ
2≤|x−y|≤(1+cδ) δ

2
.

Therefore the substitution between the two indicator functions yields an error term bounded by

N∑
i=1

∫
T i

δ×T i
δ

dx dy
|x− y|2 |∇χk(x)|1(1−cδ) δ

2≤|x−y|≤(1+cδ)δ
2
≤

N∑
i=1

∫
T i

δ

|∇χk(x)| dx
∫

R2

dz
|z|2 1(1−cδ) δ

2≤|z|≤(1+cδ) δ
2

≤ C ln
(

1 + cδ

1 − cδ

)
≤ Cδ.

As a consequence, at this stage, we have proved that

Iδ
k =

N∑
i=1

∫ δ

0

∫ δ

−δ

∫
(0,Li)2

ψ0(s)ψ1(s)
√
r(1 + rκ(s))2

((s− s′)2(1 + κ(s)r)2 + (r − r′)2)3/2

×
[
1r′>0√
r′

(χ(kr) − χ(kr′)) − 1√
r
kχ′(kr)(r − r′)1(s−s′)2(1+κr)2+(r−r′)2≤δ2/4

]
ds ds ′dr′ dr

+O

(
ln k√
k

+ δ| ln δ|
)
. (3.15)

We now evaluate the right-hand side of the above identity. We first prove that the term involving χ′(kr) does
not contribute to the limit, due to symmetry properties of the integral. This was expected, since this term had
a vanishing integral in the beginning; its only role was to ensure the convergence of Ik. We then focus on the
term involving χ(kr) − χ(kr′), and we prove that its asymptotic value is independent of χ.

First, since the integral (3.15) is convergent, we have

(3.15) =
N∑

i=1

lim
ε→0

∫ δ

0

∫ δ

−δ

∫
(0,Li)2

1|r−r′|≥ε . . .

Therefore, up to the introduction of a truncation, we can separate the two terms of (3.15). We have in particular

∫ δ

−δ

ψ0(s)ψ1(s)1|r−r′|≥ε(1 + rκ(s))2

((s− s′)2(1 + κ(s)r)2 + (r − r′)2)3/2
kχ′(kr)(r − r′)1(s−s′)2(1+κr)2+(r−r′)2≤δ2/4dr′ =

−
∫ δ−r

−δ−r

ψ0(s)ψ1(s)1|ξ|≥ε(1 + rκ(s))2

((s− s′)2(1 + κ(s)r)2 + ξ2)3/2
kχ′(kr)ξ 1(s−s′)2(1+κr)2+ξ2≤δ2/4dξ. (3.16)

Notice that the above integral only bears on the values of ξ such that |ξ| ≤ δ/2. On the other hand, for all r
such that χ′(kr) �= 0, we have 1/k ≤ r ≤ 2/k, so that if k > 4/δ,

δ − r ≥ δ − 2
k
>
δ

2
,

−δ − r < −δ < − δ
2
.
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Hence the integral (3.16) is in fact equal to

ψ0(s)ψ1(s)(1 + rκ(s))2kχ′(kr)
∫ δ/2

−δ/2

ξ1|ξ|≥ε1(s−s′)2(1+κr)2+ξ2≤δ2/4

((s− s′)2(1 + κ(s)r)2 + ξ2)3/2
dξ.

Since the integrand is odd in ξ, the integral is identically zero for all ε > 0 and for all δ, k such that kδ > 4.
There remains to investigate the first term in (3.15), namely∫

(0,δ)2

∫
(0,Li)2

ψ0(s)ψ1(s)(1 + rκ(s))2(χ(kr) − χ(kr′))

((s− s′)2(1 + κ(s)r)2 + (r − r′)2)3/2

√
r

r′
1|r−r′|≥εds ds′ dr′ dr. (3.17)

We first symmetrize the integral by exchanging the roles of r and r′. We have

√
r

r′
(1 + rκ(s))2 −

√
r′

r
(1 + r′κ(s))2 =

r − r′√
rr′

(1 + rκ(s))2 +O

(√
r′

r
|r − r′|

)
,

1

((s− s′)2(1 + κ(s)r)2 + (r − r′)2)3/2
− 1

((s− s′)2(1 + κ(s)r′)2 + (r − r′)2)3/2
= O

(
|r − r′|

((s− s′)2 + (r − r′)2)3/2

)
.

The term ∫
(0,δ)2

∫
(0,Li)2

|ψ0(s)ψ1(s)(χ(kr) − χ(kr′))|
√
r′

r

|r − r′|
((s− s′)2 + (r − r′)2)3/2

ds ds′ dr′ dr

is bounded by an error term of the type (3.19), and is therefore O(ln k/
√
k) for all ε > 0. As a consequence,

lim
ε→0

(3.17) =
1
2

∫
(0,δ)2

∫
(0,Li)2

ψ0(s)ψ1(s)(1 + rκ(s))2(χ(kr) − χ(kr′))

((s− s′)2(1 + κ(s)r)2 + (r − r′)2)3/2

r − r′√
rr′

ds ds′ dr′ dr +O

(
ln k√
k

)
. (3.18)

We now compute the integral with respect to s′ ∈ (0, Li). Setting

φ(ξ) :=
∫ ξ

0

dz
(1 + z2)3/2

,

we have∫ Li

0

ds′

((s− s′)2(1 + κ(s)r)2 + (r − r′)2)3/2
=

1
(r − r′)2(1 + κ(s)r)

(
φ

(
(Li − s)(1 + κ(s)r)

|r − r′|
)

+ φ

(
s(1 + κ(s)r)

|r − r′|
))

.

Inserting this formula into the integral above and changing variables, we obtain

(3.18) =
1
2

∫
(0,kδ)2

∫ Li

0

ψ0(s)ψ1(s)
χ(ρ) − χ(ρ′)
(ρ− ρ′)

√
ρρ′

(
1 + κ(s)

ρ

k

)

×
[
φ

(
k(Li − s)(1 + κ(s)ρ/k)

|ρ− ρ′|
)

+ φ

(
ks(1 + κ(s)ρ/k)

|ρ− ρ′|
)]

ds dρ dρ′.

Since ∫ ∞

0

∫ ∞

0

∣∣∣∣χ(ρ) − χ(ρ′)
(ρ− ρ′)

√
ρρ′

∣∣∣∣ dρ dρ′ <∞,

and 0 ≤ φ(ξ) ≤ φ(+∞) <∞ ∀ξ > 0,
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using Lebesgue’s theorem, we infer that for all δ > 0,

lim
k→∞

(3.18) = φ(+∞)

(∫ Li

0

ψ0(s)ψ1(s)ds

)∫ ∞

0

∫ ∞

0

χ(ρ) − χ(ρ′)
(ρ− ρ′)

√
ρρ′

dρ dρ′.

There only remains to prove that the integral involving χ is in fact independent of χ. We have

I0 :=
∫ ∞

0

∫ ∞

0

χ(ρ) − χ(ρ′)
(ρ− ρ′)

√
ρρ′

dρ dρ′

=
∫ ∞

0

∫ ∞

0

∫ 1

0

χ′(τρ+ (1 − τ)ρ′)
dτ dρ dρ′√

ρρ′

=
z=ρ′/ρ

∫ ∞

0

∫ ∞

0

∫ 1

0

χ′(ρ(τ + (1 − τ)z))
dτ dρ dz√

z

=
∫ ∞

0

∫ 1

0

1
τ + (1 − τ)z

dτ dz√
z

=
∫ ∞

0

ln z
(z − 1)

√
z
dz.

Gathering all the terms, we infer that

lim
k→∞

Iδ
k = I0φ(+∞)

N∑
i=1

∫ Li

0

ψ0ψ1 +O (δ| ln δ|) .

Passing to the limit as δ → 0, we obtain the result announced in Lemma 3.3. �

3.4. Evaluation of remainder terms in the integral Ik

� We start with the proof of Lemma 3.2. The idea is to divide R2 × R2 \ Tδ × Tδ into subdomains and to
evaluate the contribution of every subdomain.

• For (x, y) ∈ (T c
δ ∩ Ω)2, χk(x) = χk(y) = 1 and ∇χk(x) = 0 for k > δ−1, so that the contribution of

T c
δ ∩ Ω × T c

δ ∩ Ω is zero.
• For x ∈ T c

δ ∩ Ωc, u0(x) = 0: the contribution of T c
δ ∩ Ωc × R2 is zero.

• For x ∈ T c
δ ∩Ω, y ∈ T c

δ ∩Ωc, u̇0(y) = 0 and ∇χk(x) = 0, so that the contribution of T c
δ ∩Ω× T c

δ ∩Ωc is zero.
• For x ∈ T c

δ ∩ Ω, y ∈ Tδ, χk(x) = 1 and ∇χk(x) = 0, so that the contribution of the sub-domain is∣∣∣∣∣
∫

T c
δ ∩Ω×Tδ

u0(x)
|x− y|3

{
u̇0(y)(χk(x) − χk(y)) − u̇0(x)∇χk(x) · (x− y)1|x−y|≤δ/2

}
dx dy

∣∣∣∣∣
≤ C

∫
T c

δ ∩Ω×Tδ

1
|x− y|3 |u̇0(y)|(1 − χk(y))dx dy.

Since 1−χk is supported in Ωc ∪{d(y, ∂Ω) ≤ 2/k} and |u̇0(y)| ≤ C 1Ω√
d(y,∂Ω)

, the right-hand side is bounded

by
C

|δ − 2
k |3
∫ 2/k

0

dr√
r
≤ Cδ√

k
.

• For x ∈ Tδ, y ∈ T c
δ , the integral∫

Tδ×T c
δ

u0(x)u̇0(x)
|x− y|3 ∇χk(x) · (x− y)1|x−y|≤δ/2 dx dy
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is in fact supported in

({d(x, ∂Ω) ≤ 2/k} × {d(y, ∂Ω) > δ}) ∩ {|x− y| ≤ δ/2}.

It is easily seen that for k large enough (say k > 5/δ) this set is empty, and therefore the integral is zero.
• There only remains ∫

Tδ×T c
δ

u0(x)
|x− y|3 u̇0(y)(χk(x) − χk(y)) dx dy.

Using the same kind of estimates as for the domain T c
δ ∩Ω× Tδ, it can be proved that this term is bounded

by Cδk
−3/2.

� We now estimate the remainder terms on Tδ × Tδ. We use the following lemma:

Lemma 3.4. Let k ≥ 1 and δ > 0 such that kδ > 5.
Then the following estimates hold: for 1 ≤ i ≤ N ,

∫
T i

δ×T i
δ

1r,r′>0

√
r√

r′(
√
r +

√
r′)

1
|x− y|2 |χk(x) − χk(y)| dx dy = O

(
ln k√
k

)
, (3.19)

∫
T i

δ×T i
δ

√
r+

|x− y|3
∣∣χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2

∣∣ dx dy = O

(√
δ +

ln k√
k

)
, (3.20)

∫
T i

δ×T i
δ

|∇χk(x)|
|x− y| dx dy = O(δ| ln δ|), (3.21)

∫
T i

δ×T i
δ

1r>0,r′<0

√
r

|x− y|3 |χk(x) − χk(y)| dxdy = O

(
1
k1/2

)
. (3.22)

Proof. Throughout the proof, we use the following facts:

• The jacobian of the change of variables (x, y) → (s, r, s′, r′) is

(1 + rκ(s)) (1 + r′κ(s′)) ≤ C;

• Using the expansion (3.14), we infer that there exists a constant C such that

1
|x− y| ≤

C

((s− s′)2 + (r − r′)2)1/2
·

• For all α ≥ 1, there exists a constant Cα such that for all s ∈ (0, Li), for all r, r′ ∈ (−δ, δ) with r �= r′,

∫ Li

0

ds′

((s− s′)2 + (r − r′)2)α/2
≤ Cα

{ |r − r′|1−α if α > 1,
| ln |r − r′| | if α = 1. (3.23)

Indeed, for α > 1

∫ Li

0

ds′

((s− s′)2 + (r − r′)2)α/2
≤

∫
R

dz
(z2 + (r − r′)2)α/2

≤
ξ=z/|r−r′|

|r − r′|1−α

∫
R

dξ
(1 + ξ2)α/2

,
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while for α = 1

∫ Li

0

ds′

((s− s′)2 + (r − r′)2)1/2
=
∫ Li−s

|r−r′|

− s
|r−r′|

dξ
(1 + ξ2)1/2

≤
∫ Li

|r−r′|

− Li
|r−r′|

dξ
(1 + ξ2)1/2

≤ 2 ln
(

Li

|r − r′|
)
.

We now tackle the proof of (3.19)–(3.22).

1. Proof of (3.19): we split the domain (Tδ × Tδ) ∩ {r, r′ ≥ 0} into four subdomains:
• 0 ≤ r, r′ ≤ 3/k;
• 0 ≤ r′ ≤ 3/k and 3/k < r < δ;
• 0 ≤ r ≤ 3/k and 3/k < r′ < δ;
• 3/k < r, r′ < δ.
Since χk(x) = 1 for r > 2/k, it is easily seen that χk(x) − χk(y) = 0 on the last subdomain. Moreover, we
obviously have

∫
s,s′∈Γi

∫
0≤r≤3/k, 3/k<r′<δ

√
r√

r′(
√
r +

√
r′)

1
|x− y|2 |χk(x) − χk(y)| dx dy ≤

∫
s,s′∈Γi

∫
0≤r′≤3/k, 3/k<r<δ

√
r√

r′(
√
r +

√
r′)

1
|x− y|2 |χk(x) − χk(y)| dx dy.

Therefore we focus on the estimates of the integral on the first two subdomains above. First, since χk is a
Lispchitz function with a Lipschitz constant of order k, we have

∫
s,s′∈Γi

∫
0≤r,r′≤3/k

√
r√

r′(
√
r +

√
r′)

1
|x− y|2 |χk(x) − χk(y)| dx dy

≤ Ck

∫
s,s′∈Γi

∫
0≤r,r′≤3/k

√
r√

r′(
√
r +

√
r′)

1
|x− y| dx dy

≤ Ck

∫
0≤r,r′≤3/k

∫
(0,Li)2

√
r√

r′(
√
r +

√
r′)

1
((s− s′)2 + (r − r′)2)1/2

ds ds′ dr dr′

≤ Ck

∫
0≤r,r′≤3/k

√
r√

r′(
√
r +

√
r′)

| ln |r − r′| | dr dr′

≤ Ck

(∫ 3/k

0

dr′√
r′

)(∫ 3/k

−3/k

| ln |z| | dz
)

≤ Ck × 1√
k
× ln k

k
.
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As for the second subdomain, since χk(x) = 1 for r > 2/k, in fact, the domain of integration in r′ is only
r′ < 2/k. Since χk is bounded by 1, we have

∫
s,s′∈Γi

∫
0≤r′≤3/k, 3/k<r<δ

√
r√

r′(
√
r +

√
r′)

1
|x− y|2 |χk(x) − χk(y)| dx dy

≤ C

∫
0≤r′≤2/k, 3/k<r<δ

∫
(0,Li)2

√
r√

r′(
√
r +

√
r′)

1
(s− s′)2 + (r − r′)2

ds ds′ dr dr′

≤ C

∫
0≤r′≤2/k, 3/k<r<δ

√
r√

r′(
√
r +

√
r′)

1
|r − r′|dr dr′

≤ C

(∫ 2/k

0

dr′√
r′

)(∫ δ

1/k

dz
z

)

≤ C
ln k√
k
·

2. Proof of (3.20): we use the same type of domain decomposition as above; the only difference lies in the fact
that r′ may take negative values.
• On the subdomain r ≥ 3/k, r′ ≥ 3/k, the integral is identically zero;
• On the subdomain 3/k < r < δ, −δ < r′ < 3/k, we have ∇χk(x) = 0 and as soon as r′ ≥ 2/k,

χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2 = 0.

Therefore

∫
3/k<r<δ,−δ<r′<3/k,

s,s′∈Γi

√
r+

|x− y|3
∣∣χk(x) − χk(y) −∇χk(x) · (x − y)1|x−y|≤δ/2

∣∣ dx dy

≤ C

∫
3/k<r<δ,−δ<r′<2/k

∫
(0,Li)2

√
r+

((s− s′)2 + (r − r′)2)3/2
ds ds′ dr dr′

≤ C

∫
3/k<r<δ,−δ<r′<2/k

√
r

|r − r′|2 dr dr′

≤ C

∫ δ

3/k

√
r

r − 2
k

dr.

Using the inequality

√
r ≤

√
r − 2

k
+

√
2
k
,

we infer eventually that the integral is bounded by C
(√

δ + ln k√
k

)
.

• On the subdomain 0 ≤ r ≤ 3/k, |r′| ≥ 3/k, we use the bound

|χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2| ≤ Ck|x− y|,
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so that ∫
0≤r≤3/k,3/k<|r′|<δ,

s,s′∈Γi

√
r

|x− y|3
∣∣χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2

∣∣ dx dy

≤ Ck

∫
0≤r≤3/k,3/k<|r′|<δ

√
r

|r − r′|dr dr′

≤ −Ck
∫ 3/k

0

√
r ln

(
3
k
− r

)
dr

≤ Ck × 1√
k
× ln k

k
.

• On the subdomain 0 ≤ r ≤ 3/k, |r′| ≤ 3/k, we use a Taylor–Lagrange expansion for the function χk,
which yields

|χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2| ≤ Ck2|x− y|2,

so that ∫
0≤r≤3/k,|r′|≤3/k,

s,s′∈Γi

√
r+

|x− y|3
∣∣χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2

∣∣ dx dy

≤ Ck2

∫
0≤r≤3/k,|r′|≤3/k

√
r |ln |r − r′|| dr dr′

≤ Ck2 ln k
k
k−3/2.

3. Proof of (3.21): this term is easier to estimate than (3.19), (3.20). We merely have

∫
T i

δ
×T i

δ

|∇χk(x)|
|x− y| dx dy ≤ C

∫
(−δ,δ)2

k|χ′(kr)| |ln |r − r′| | dr dr′

≤ C

∫ 2δ

−2δ

|ln |z| | dz

≤ Cδ| ln δ|.

4. Proof of (3.22): since χk(y) = 0 if r′ < 0, we have

∫
T i

δ×T i
δ

1r>0,r′<0

√
r

|x− y|3 |χk(x) − χk(y)| dxdy

=
∫

T i
δ×T i

δ

1r>0,r′<0

√
r

|x− y|3χk(x) dxdy

≤C

∫ 0

−δ

∫ δ

0

√
r

|r − r′|2χ(kr) dr dr′

≤C

∫ 2/k

0

√
r

(
1
r
− 1
r + δ

)
dr

≤ C√
k
· �
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We now address the rest of the proof of Theorem 1.2. With the help of Lemma 3.4, the estimation of the
remainder terms in Ik is immediate. We set

w0(x) : = 1r>0
ψ1(s)√

r
,

w1(x) : =
√
r+ψ2(s) + u2(x),

so that u̇0 = w0 + w1. We write

u̇0(y)(χk(x) − χk(y)) − u̇0(x)∇χk(x) · (x− y)1|x−y|≤δ/2 = u̇0(x)
[
χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2

]
+ (u̇0(y) − u̇0(x))(χk(x) − χk(y)).

There exists a constant C such that

|u1(x)u̇0(x)| + |√r+ψ0(s)w1(x)| ≤ C
√
r+ ∀x ∈ R2,

so that∣∣∣∣
∫

Tδ×Tδ

u1(x)u̇0(x)
|x− y|3

[
χk(x) − χk(y) −∇χk(x) · (x − y)1|x−y|≤δ/2

]
dx dy

∣∣∣∣+∣∣∣∣
∫

Tδ×Tδ

√
r+ψ0(s)w1(x)
|x− y|3

[
χk(x) − χk(y) −∇χk(x) · (x− y)1|x−y|≤δ/2

]
dx dy

∣∣∣∣ ≤ (3.20).

On the other hand, simple calculations show that

|u̇0(x) − u̇0(y)| ≤ C|x− y|
(

1 +
1r,r′>0√

rr′(
√
r +

√
r′)

)

+C1rr′<0
1√

r+ +
√
r′+
,

|w1(x) − w1(y)| ≤ C|x− y|
(

1 +
1r,r′>0√
r +

√
r′

)

+C1rr′<0(
√
r+ +

√
r′+).

As a consequence,

|u1(x)||u̇0(x) − u̇0(y)| ≤ C|x− y|
(
r+ + 1r,r′>0

√
r√

r′(
√
r +

√
r′)

)
+ C1r>0,r′<0

√
r,

∣∣√r+ψ0(s)
∣∣ |w1(x) − w1(y)| ≤ C|x− y|

(√
r+ + 1r,r′>0

√
r√

r +
√
r′

)
+ C1r>0,r′<0r,

so that∣∣∣∣
∫

Tδ×Tδ

u1(x)
|x− y|3 (u̇0(x) − u̇0(y))(χk(x) − χk(y)) dx dy

∣∣∣∣+∣∣∣∣
∫

Tδ×Tδ

√
r+ψ0(s)
|x− y|3 (|w1(x) − w1(y))(χk(x) − χk(y)) dx dy

∣∣∣∣ ≤ (3.19) + (3.22).

Gathering all the terms, we deduce that

lim
δ→0

lim
k→∞

Ik = C2

N∑
i=1

∫ Li

0

ψ0ψ1,
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where C2 is an explicit positive constant. Moreover, using formulas (3.6), (3.7), we have

ψ0(s)ψ1(s) = −1
2
(∂1/2

n u0(s))2ζ · n(s),

where ζ(x) = φ̇0(x). Eventually, we deduce that

dJf (Ωt)
dt |t=0

= −C1C2

4

N∑
i=1

∫ Li

0

(∂1/2
n u0(s))2ζ · n(s)ds = −C1C2

4

∫
∂Ω

(∂1/2
n u0(s))2ζ · n(s)dσ(s).

Therefore Theorem 1.1 is proved, with C0 := −(C1C2)/4. Notice that C0 does not depend on Ω.

3.5. Proofs of Lemma 3.1 and formulas (3.4), (3.5)

• The proof of (3.3) follows closely the one of Theorem 5.3.2 in [10]. The only differences come from the mixed
boundary conditions and the fact that φt only affects horizontal variables.
The key point is to prove that Vt is differentiable with respect to t with values in H1(R3

+). To that end,
observe that Vt is the solution of the elliptic problem

−div (At∇Vt) = 0 in R3
+,

∂zVt = f ◦ φt on Ω × {0},
Vt = 0 on Ωc × {0},

(3.24)

where

At = det(∇φt)
(

(∇φt)−1(∇φT
t )−1 0

0 1

)
.

(Notice that ∇φt is a 2 × 2 matrix.)
Indeed, (3.24) is easily proved by writing the variational formulation associated with the equation on Ut and
performing changes of variables. Since the latter are strictly identical to the ones of [10], we skip the proof.
For further reference, we also write the system derived by lifting the Neumann boundary condition. We set
Vt(x, z) = Ṽt(x, z)+f(φt(x))η(φt(x), z), where η ∈ C∞

0 (R3) is such that η(x, z) = z for x in a neighbourhood
of Ω and |z| ≤ 1. Then Ṽt solves

−div (At∇Ṽt) = | det(∇φt)|(Δ(fη))(φt(x), z) on R3
+,

∂zṼt = 0 on Ω × {0}, Ṽt = 0 on Ωc × {0}. (3.25)

Let
V :=

{
V ∈ L2

loc(R
3
+), ∇V ∈ L2(R3

+), V = 0 on Ωc × {0}} .
Then according to the Hardy inequality in R3, there exists a constant CH such that for all V ∈ V , V (1 +
|x|2 + |z|2)−1/2 ∈ L2(R3

+) and

∫
R

3
+

|V (x, z)|2
1 + |x|2 + |z|2 dx dz ≤ CH

∫
R

3
+

|∇V |2.

This inequality is usually stated in the whole space, but a simple symmetry argument shows that it remains
true in the half-space. Therefore ‖∇V ‖L2 is a norm on the Hilbert space V .
Now, for t in a neighbourhood of zero and Ṽ ∈ V , define the linear form F (t, Ṽ ) ∈ V ′ by

∀W ∈ V , 〈W,F (t, Ṽ )〉 =
∫

R
3
+

(At∇Ṽ ) · ∇W −
∫

R
3
+

| det(∇φt)|(Δ(fη))(φt(x, z))W (x, z) dx dz.
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Notice that F (t, Ṽ ) = 0 is the variational formulation associated with equation (3.25). We then claim that
the operator

F : (t, Ṽ ) ∈ R × V �→ F (t, Ṽ ) ∈ V ′

has C1 regularity for t small enough. Indeed, t �→ At ∈ L∞(R2,M3) is C∞ for t in a neighbourhood of zero.
On the other hand, for (A, Ṽ ) ∈ L∞(R2,M3) × V , W , let

a(A, Ṽ ) : W ∈ V �→
∫

R
3
+

(A∇Ṽ ) · ∇W −
∫

R
3
+

| det(∇φt)|(Δ(fη))(φt(x, z))W (x, z) dx dz.

Then the application
(A, V ) ∈ L∞(R2,M3) × V �→ a(A, V ) ∈ V ′,

has C1 regularity since it is the sum of a bilinear and continuous function and a constant term (with respect
to A, V ).

Let Ṽ0 ∈ V be the solution of (3.25) for t = 0, i.e.

−ΔṼ0 = Δ(fη),

∂zṼ0 = 0 on Ω × {0}, Ṽ0 = 0 on Ωc × {0}.

Now, for W ∈ V , dV F (0, Ṽ0)W is the linear form

W ′ ∈ V �→
∫

R
3
+

∇W ′ · ∇W,

i.e. the scalar product on V . Therefore the differential

dV F (0, Ṽ0) : V → V ′

is an isomorphism. The implicit function theorem implies that there exists a C1 function t �→ Ṽ (t) in a
neighbourhood of zero such that

F (t, Ṽ (t)) = 0.

Uniqueness for equation (3.25) yields Ṽt = Ṽ (t). We infer immediately that t �→ Vt is C1 in a neighbourhood
of zero. We now use the following trace result: for any U ∈ V ,

‖U |z=0‖H1/2(R2) ≤ C(Ω)‖∇U‖L2(R3
+). (3.26)

Indeed, it is well known that if U ∈ V , the following estimates hold (with constants which do not depend
on Ω)

‖U |z=0‖Ḣ1/2(R2) ≤ C‖∇U‖L2(R3
+),

‖U |z=0‖L4(R2) ≤ C‖∇U‖L2(R3
+).

There only remains to prove that the L2 norm of U |z=0 is bounded by ‖∇U‖L2. Since U |z=0 = 0 on Ωc, we
have

‖U |z=0‖L2(R2) ≤ |Ω|1/2‖U |z=0‖L4(R2)

≤ C(Ω)‖∇U‖L2(R3
+).

Therefore (3.26) is proved. As a consequence, t �→ vt ∈ H1/2(R2) is C1 in a neighbourhood of zero. The
result on u̇t follows almost immediately by differentiating the formula

ut = vt ◦ φ−1
t
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with respect to t. The only difficulty comes from the fact that vt is a priori not smooth enough with respect
to x in order to use the chain rule. However, we can write

ut − u0 = (vt − v0) ◦ φ−1
t +

(
v0 ◦ φ−1

t − v0
)
.

Since v̇t ∈ C([−δ, δ], H1/2(R2)) for δ > 0 small enough, the first term is O(t) in L2(R2). As for the second
one, if v0 were smooth, say v0 ∈ H1(R2), then we could write

d
dt
v0 ◦ φ−1

t =
(

dφ−1
t

dt

)
· ∇v0 ◦ φ−1

t .

It can be easily checked that the right-hand side is bounded in H−1/2 by C‖v0‖H1/2 , where C is a constant
depending only on φt. Therefore if v0 ∈ H1, t > 0,

‖v0 ◦ φ−1
t − v0‖H−1/2(R2) ≤ Ct‖v0‖H1/2(R2).

By density, this inequality remains true for all v0 ∈ H1/2. We conclude that u̇t belongs to
C([−δ, δ], H−1/2(R2)).

• We end this section by proving the asymptotic expansions (3.4), (3.5). We apply the results of Chapter C in
[7] to the function Vt. We start by extending Vt on R3 \ Ω × {0} by setting

Vt(x, z) = −Vt(x,−z) x ∈ R2, z < 0.

Without any loss of generality, we assume that the function η ∈ C∞
0 (R3) defined in the Proof of Lemma 3.1

is odd with respect to z.
Then the extended function Vt satisfies

Vt = Ṽt + f(φt(x))η(φt(x), z),

−div (At∇Ṽt) = | det(∇φt)|Δ(fη)(φt(x), z) on R3 \ Ω × {0}
∂z Ṽt = 0 on Ω × {0}.

By elliptic regularity, Ṽt ∈ C∞(K) for any compact set K ⊂ R3 \ Ω × {0} such that K ∩ ∂Ω = ∅. For every
connected component Γi of ∂Ω, we introduce a truncation function ϕi ∈ C∞

0 (R2) such that

ϕi ≡ 1 on a neighbourhood of Γi,

Suppϕi ∩ (∂Ω \ Γi) = ∅.

Since the support of ∇ϕi is separated from the zones where Ṽt has singularities, we infer that for all t,
ϕi(x)Ṽt(x, z) solves a boundary value problem which is elliptic of order two in the sense of Agmon et al.
(see [1, 2] and the definitions in Chapter 7 of [8]), with homogeneous boundary conditions of order one and
with C∞ right-hand side. Moreover, we have proved in Lemma 3.1 that Vt ∈ H1

loc(R
3 \ Ω × {0}). Therefore

we can apply Corollary C.6.5 in [7]. As in paragraph 2.2, we denote by (r, θ) polar coordinates in the planes
normal to Γi and centered on Γi, and by s the arc-length on Γi, so that

R3 \ (Suppϕi ∩ Ω × {0}) = Wπ = {(s, r, θ), s ∈ (0, Li), r > 0, θ ∈ (−π, π)}.

We deduce that for all i, there exist functions ψ̃0
i (t; s, θ), ψ̃1

i (t; s, θ), which are smooth with respect to
s, θ ∈ [−π, π], such that

ϕi(x)Ṽt(x, z) = ψ̃0
i (t; s, θ)r1/2 + ψ̃1

i (t; s, θ)r3/2 + ureg(t;x, z) + urem(t;x, z), (3.27)
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with ureg(t; ·) ∈ C∞(R3) for all t and urem(t; ·) ∈ C2(Wπ) with ∂βurem(t;x, z) = o(r3/2−|β|) for all t and for
any multi-index β. Setting

V 1
i (t;x, z) := ψ̃1

i (t; s, θ)r3/2 + ureg(t;x, z) + urem(t;x, z) + η(φt(x), z),

we have V 1
i ∈ C1(Wπ), V 1

i (t;x, z) = O(r) for all t, and

Vt(x, z) = ψ̃0(t; s, θ)r1/2 + V 1
i (t;x, z)

for x in a neighbourhood of Γi. Since

u0(x) = lim
z→0,z>0

V0(x, z),

we obtain decomposition (3.4) with

ψ0(s) := ψ̃0
i (0, s, π) for s ∈ Γi, u1(x) = lim

z→0+
V 1

i (0;x, z) for x ∈ Suppϕi.

Differentiating (3.5) requires regularity results with respect to t on the terms of the decomposition (3.27).
Using for instance Theorem C.6.2 in [7], or looking precisely at the details of the proof in Section C of [7], it
is easily proved that the functions ψ̃0, ψ̃1, ureg and urem are differentiable with respect to t, and that their
t-derivatives are smooth with respect to x. Denoting by s(x), r(x) the local coordinates of a point x ∈ R2,
we have

ut(x) = ψ̃0(t, s(φ−1
t (x)), π)(r(φ−1

t (x)))1/2 + V 1(t, φ−1
t (x), 0+)

so that

u̇t =
(
∂tψ̃

0 + ∂t(φ−1
t (x)) · ∇s(φ−1

t (x))∂sψ̃
0
)

(t, s(φ−1
t (x)), π)(r(φ−1

t (x)))1/2

+
1
2
∂t(φ−1

t (x)) · ∇r(φ−1
t (x))

1
r(φ−1

t (x))1/2
(3.28)

+∂tV
1(t, φ−1

t (x), 0+) + ∂t(φ−1
t (x)) · ∇V 1(t, φ−1

t (x), 0+).

Therefore u̇t ∈ L∞
t (L1

x), which proves (3.8). We recall that φ0 = φ−1
0 = Id, and that ζ = φ̇0. Notice also that

since n is the outward pointing normal, ∇r = −n. We infer

u̇0 =
ζ · n
2
√
r

+ ψ2(s)
√
r + u2(x),

where
ψ2(s) =

(
∂tψ̃

0 + ζ · τ∂sψ̃
0
)

(0, s, π),

u2(x) = ∂tV
1(0, x, 0+) + ζ · ∇V 1(0, x, 0+).

Thus (3.5) is proved.

4. Radial symmetry by the moving plane method

The aim of this section is to prove Theorem 1.3. This theorem extends the well-known theorem of Serrin [14]
on the classical laplacian, for which (1.5) is replaced by⎧⎪⎨

⎪⎩
−Δu = 1, x ∈ Ω,

u = 0, x ∈ ∂Ω,
∂nu = c0, x ∈ ∂Ω

(4.1)

The proof of Serrin uses the celebrated moving plane method, and we will adapt it to our fractional setting.
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Figure 1. Configuration 1 (on the left) and configuration 2 (on the right).

4.1. Reminders on the moving plane method

We remind here the main arguments of Serrin’s proof. The starting point is the introduction of a family of
hyperplanes (lines in our 2d case), say Hλ := {x ∈ R2, x1 = λ}, parametrized by λ ∈ R. We also define, for any
function u defined on R2, Rλu(x1, x2) := u(2λ − x1, x2) the reflection of u with respect to Hλ. For λ small
enough, Hλ does not intersect the domain Ω. Increasing λ, that is moving Hλ from left to right, one reaches a
first contact position, corresponding to

λ0 := inf{λ,Hλ ∩ Ω �= ∅}.
Up to a translation, we can always assume that λ0 = 0. Thus, for λ > 0, we can consider the cap Σλ :=
Ω ∩ {x1 < λ} and its reflection Σ′

λ with respect to Hλ. Note that, for λ > 0 small enough, Σ′
λ is non-empty

and included in Ω. As λ increases, it remains included in Ω at least until one of the following two geometric
configurations is reached (see Fig. 1):
1. Σ′

λ is internally tangent to the boundary of Ω at some point P not on Hλ.
2. Hλ is orthogonal to the boundary of Ω at some point Q.

Let Λ be the first value of λ for which configuration 1 or 2 holds. Note that we may have Σ′
λ ⊂ Ω for some

λ > Λ, but this will be irrelevant in the proof. The main point in Serrin’s proof is to show that one has RΛu = u
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inside ΣΛ, where u is the solution of (4.1). This fact yields easily the symmetry of Ω with respect to HΛ. As
the direction of HΛ was chosen arbitrarily, it will follow that for any direction, there is an axis of symmetry for
Ω with that direction. This property implies that Ω is a disk.

To show the identity RΛu = u inside ΣΛ, one argues by contradiction through three main steps. Assume that
the equality does not hold. Then

• Step 1. One shows that the function w := u−RΛu is positive inside Σ′
Λ.

• Step 2. One obtains an upper bound for w near the tangency point P (configuration 1) or Q (configuration
2). As the normal derivative of u is constant along ∂Ω, one has w = ∂nw = 0 at P or Q. For configuration
2, one can show furthermore that the second derivatives cancel at Q: ∂ijw = 0 for all i, j = 1, 2. Denoting
by r the distance at the tangency point, these properties imply that

w = O(r2) at P (configuration 1), or w = O(r3) at Q (configuration 2). (4.2)

• Step 3. One shows a lower bound which contradicts (4.2). For configuration 1, this lower bound is obtained
easily. Indeed, one knows from Step 1 that w > 0 inside Σ′

Λ. Hence, Hopf’s lemma implies ∂nw > 0 at P
(where n is the inward normal), which shows that w should grow at least linearly with r inside the domain.
For configuration 2, Σ′

Λ is not regular enough at Q to apply Hopf’s lemma. However, one can still show that

∂sw > 0 or ∂2
sw > 0 at Q

for any direction s entering Σ′
Λ non-tangentially: see [14], Lemma 3.1. It follows that w should grow at least

like r2 inside the domain. In both cases, we reach the targeted contradiction. We refer to [14] for all details.

Our ambition is to transpose this scheme of proof to problem (1.5). Due to the nonlocal character of (−Δ)1/2,
it requires many modifications:

• In the case of the Laplacian, Step 1 follows from a simple application of the strong maximum principle, as
w ≥ 0 on ∂Σ′

Λ. In our fractional (and therefore nonlocal) setting, such use of the maximum principle is
impossible: it would require that w ≥ 0 on the whole R2 \Σ′

Λ, which is not true (w is an odd function). The
appropriate treatment of Step 1 will be addressed in paragraph 4.2.

• In the case of the Laplacian, Steps 2 and 3 rely on the regularity of u up to the boundary. In the case of
(−Δ)1/2, we only have C0,1/2 regularity of u, which implies substantial changes. Loosely:
– the upper bounds will follow from the asymptotic expansion (2.9) of u near the boundary;
– the lower bounds will follow from the construction of refined subsolutions.

Additionally, we emphasize that the constant c0 in (1.5) is necessarily strictly positive. Indeed, c0 ≥ 0 by the
maximum principle. The fact that c0 > 0 is a consequence of the Hopf Lemma for the fractional laplacian. In
the present context, we may present a self-contained proof: if c0 = 0, we jump to paragraph 4.3. The arguments
developed there (for the function w instead of u) allow us to conclude that u ≡ 0. This is excluded by the
equation (−Δ)1/2u = 1. Therefore we restrict our analysis to c0 > 0.

4.2. Positivity of w

We shall first prove that if non-identically 0, w̌ := RΛu−u is positive inside ΣΛ (which amounts to achieving
Step 1). We shall rely on ideas developed by M. Birkner, J. Lopez–Mimbela and A. Wakolbinger in article [3].
They show there the radial symmetry of solutions of some semilinear fractional problems

(−Δ)αu+ F (u) = 0, x ∈ B(0, 1), u = 0 in Rn \B(0, 1)

set in the unit ball B(0, 1) of Rn. Their proof is based on an adaptation of the moving plane method, and its
baseline can be used to show the positivity of w. Nevertheless, several changes are needed, and simplifications
of the original arguments can be made, as we now describe.
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First of all, we introduce the set

L := {λ ∈]0, Λ[, s.t. ∀0 < γ ≤ λ, Rγu− u ≥ 0 on Σγ , and ∂1u > 0 on Hγ ∩ Ω}.
The main point is to show that L =]0, Λ[. We proceed in several steps:

• Statement 1: ]0, ε] ⊂ L for ε > 0 small enough.

To prove that ]0, ε[⊂ L, it is enough to show that ∂1u > 0 for all x ∈ Ω with 0 < x1 < ε. From the condition
∂

1/2
n u = c0 > 0, and the expansion (2.8), we know that

∂ru =
1
2
c0 r

−1/2 + O(1), ∂su = O(1)

as the distance r to the boundary (measured inside the domain) goes to zero. It follows that

∂1u = ∂1r ∂ru + ∂1s ∂su =
1
2
c0 (∂1r) r−1/2 +O(1), r → 0.

Moreover, for 0 < λ < Λ, for all inward normal vectors n along ∂Ω ∩ {x1 < λ}, one has e1 · n > 0, where
e1 = (1, 0). It follows that ∂1r has a positive lower bound for 0 < x1 < ε small enough. The statement follows.

• Statement 2: L is an open subset of ]0, Λ[.

The point is to show that if λ ∈ L, [λ, λ + ε[⊂ L for ε > 0 small enough. This statement will be deduced from
the following:

Lemma 4.1. Let λ < Λ. Then

(i) For all x ∈ ∂Ω ∩ {x1 < λ}, Rλu(x) − u(x) > 0.
(ii) Assume that Rλu − u ≥ 0 on Σλ. Then, Rλu − u > 0 on Σλ. In particular, one has Rλu − u > 0 on Σλ

for any λ ∈ L.

Proof. We remind that u > 0 in Ω by the maximum principle.

(i) As λ < Λ, for all x = (x1, x2) ∈ ∂Ω ∩ {x1 < λ}, xλ := (2λ− x1, x2) ∈ Ω. In particular:

Rλu(x) − u(x) = u(xλ) > 0.

(ii) We assume that w̌ := Rλu − u ≥ 0 on Σλ. Note that on {x1 < λ} \ Σλ, one has w̌ = Rλu ≥ 0, so that
w̌ ≥ 0 on the whole half-space {x1 < λ}. Note also that by (i) and the continuity of u, the fonction w̌ is
not identically zero in Σλ. We want to show that w̌ > 0 in Σλ. We introduce the harmonic extension W̌ of
w̌, defined on R3

+. We remind that

ΔW̌ = 0 on R3
+, W̌ |z=0 = w̌ on R2.

Moreover, as (−Δ)1/2u = 1 in Ω, ∂zW̌ |z=0 = 0 in Σλ. We can express W̌ with the Poisson kernel:

W̌ (x1, x2, z) =
z

2π

∫
R2

dt1dt2
((x1 − t1)2 + (x2 − t2)2 + z2)1/2

w̌(t1, t2).

As Rλw̌ = −w̌, this integral formula can be written

W̌ (x1, x2, z) =
z

2π

∫
{t1<λ}

dt1dt2(
1

((x1 − t1)2 + (x2 − t2)2 + z2)1/2
− 1

(x1 + (t1 − 2λ))2 + (x2 − t2)2 + z2)1/2

)
w̌(t1, t2).

As w̌ ≥ 0 on {t1 < λ} and not identically zero, we deduce from this formula that W̌ > 0 for x1 < λ, z > 0.
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To conclude on the positivity of w̌, we assume a contrario that w̌(x∗) = 0 for some x∗ = (x1, x2) ∈ Σλ.
The function W̌ is smooth up to the boundary in the vicinity of (x∗1, x

∗
2, 0), and 0 = W̌ (x∗1, x

∗
2, 0) < W̌ (x, z)

for all (x, z) ∈ R3
+. By Hopf’s lemma, we should have ∂zW̌ (x∗1, x

∗
2, 0) > 0 hence reaching a contradiction. This

concludes the proof. �

Back to Statement 2: we argue by contradiction, as in [3], paragraph 4.2. We assume that there is λ ∈ L and
a decreasing sequence (λn) ⊂]0, Λ[\L converging to λ. Up to the extraction of a subsequence, we can assume
that there exists a sequence (γn) such that λ < γn < λn and
1. either there exists a sequence (xn), xn ∈ Σγn for all n, such that xn → x∗ and u(xn) > Rγnu(xn) for all n.
2. or there exists a sequence (xn), xn ∈ Hγn ∩ Ω for all n, such that xn → x∗ and ∂1u(xn) ≤ 0 for all n.

We first consider case 1: since λ ∈ L, we have Rλu − u ≥ 0 on Σλ. As u is continuous, we get
u(x∗) −Rλu(x∗) ≥ 0. By Lemma 4.1, we cannot have x∗ ∈ Σλ ∪ (∂Ω ∩ {x1 < λ}). Hence, x∗ ∈ Hλ ∩ Ω. If
x∗ ∈ Hλ ∩ ∂Ω, one has ∂1/2

n u(x∗) = c0 > 0. Moreover, as λ < Λ, e1 · n∗ > 0 for n∗ the inward normal vector at
x∗: indeed, since λ < Λ, configuration 2 has not been met, and therefore e1 ·n(y) does not vanish for all y ∈ ∂Ω
such that y1 ≤ λ. Since e1 · n(y) = 1 when y = (0, y2) ∈ ∂Ω, we infer e1 · n∗ > 0.

Reasoning as in the proof of Statement 1, we obtain that u is strictly increasing with x1 in the vicinity of x∗

(inside the domain). Hence, for n large enough, we get

Rγnu(xn) − u(xn) > 0

in contradiction with the assumption u(xn) > Rγnu(xn) for all n. If x∗ ∈ Hλ ∩ Ω, then ∂1u(x∗) > 0 (because
λ ∈ L). This means again that u is strictly increasing with x1 in the vicinity of x∗, which yields the same
contradiction as before.

It remains to consider case 2. With the same reasoning as in case 1, we get that x∗ ∈ Hλ ∩ Ω, and that u is
strictly increasing with x1 in the vicinity of x∗. This contradicts the assumption ∂1u(xn) ≤ 0 for all n.

• Statement 3: L =]0, Λ[.

From the previous statements on L, we know that L =]0, Λmax[ for some Λmax ≤ Λ. Again, we shall argue by
contradiction and assume that Λmax < Λ. For all λ < Λmax, one has Rλu− u > 0 in Σλ, so that by continuity
of u, RΛmaxu− u ≥ 0 in ΣΛmax . Lemma 4.1 implies in turn that

RΛmaxu− u > 0 in ΣΛmax .

We want to show that ∂1u > 0 on HΛmax ∩ Ω. This would imply that Λmax ∈ L, so the contradiction.
As w̌ := RΛmaxu − u is odd with respect to HΛmax , it is enough to prove that ∂1w̌ < 0 on HΛmax ∩ Ω. We

introduce its harmonic extension, as in the proof of Lemma 4.1: it satisfies

ΔW̌ = 0 on R3
+, W̌ |z=0 = w̌ on R2, ∂zW̌ |z=0 = 0 on ΣΛmax .

We extend W̌ to the lower half-space by setting

W̌ (x1, x2, z) := W̌ (x1, x2,−z) for z < 0.

As ∂zW̌ |z=0 = 0 on ΣΛmax ×{0}, this extension is harmonic through ΣΛmax , that is outside (R2 \ΣΛmax)×{0}.
Notice also that as in the proof of Lemma 4.1, w̌ ≥ 0 on {x1 < Λmax}, and therefore W̌ ≥ 0 on {x1 < Λmax}.
Let x∗ ∈ HΛmax ∩ Ω. W̌ is smooth and harmonic near (x∗1, x

∗
2, 0). Moreover, one has

0 = w̌(x∗) = W̌ (x∗1, x
∗
2, 0) < W̌ (x, z), say for all (x, z) ∈ O := ΣΛmax × R

Applying Hopf’s lemma in O (for which (x∗1, x
∗
2, 0) is a boundary point), we obtain that ∂1W̌ (x∗1, x

∗
2, 0) < 0 that

is ∂1w̌(x∗) < 0, as expected.
As a conclusion of our analysis, we obtain that Rλu − u > 0 on Σλ for all λ < Λ. By continuity of u, we

obtain that w̌ := RΛu− u ≥ 0 on ΣΛ. From there, there are two possibilities:
• either w̌ = 0 on ΣΛ. It follows easily that Ω is symmetric with respect to HΛ. As explained in paragraph 4.1,

the direction of HΛ being arbitrary, it follows that Ω is a disk.
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• or w̌(x) > 0 for some point x in ΣΛ. But then, following exactly the proof of point ii) in Lemma 4.1, we
obtain that w̌ > 0 on ΣΛ (or w := u−RΛu > 0 on Σ′

Λ).

The rest of the section aims at excluding the second possibility. From now on, we assume that w > 0 on Σ′
Λ,

and will establish contradictory lower and upper bounds on w.
First of all, we state a lemma, to be used in both configurations 1 and 2.

Lemma 4.2. Let W be the harmonic extension of w to R3
+. For all R > 0 sufficiently large there exists cR > 0

such that
W (x, z) ≥ cR (x1 − Λ) z, for all Λ ≤ x1 ≤ R, −R ≤ x2 ≤ R, 0 ≤ z ≤ R.

Proof. Let R > 0 large, and QR :=]Λ,R[×]−R,R[×]0, R[. As W and W ′ := x �→ (x1 −Λ) z are both harmonic
functions on QR, we can use the maximum principle to compare them: we just have to show that W ≥ cRW

′

on ∂QR for cR > 0. We take R large enough so that the vertical sides of the cube (other than the one supported
by {x1 = Λ}) do not intersect Ω × {0}. Then, we distinguish between the different sides:

• On ∂QR ∩ {z = 0} or ∂QR ∩ {x1 = Λ}, one has W ≥ 0 (remind that w ≥ 0 on {x1 ≥ Λ}), and W ′ = 0. The
inequality is clear.

• Let Γ1,R := ∂QR ∩ {x1 = R}. Let ε > 0. As W is continous and > 0 on the compact set Γ1,R ∩ {z ≥ ε}, one
can find c = cε > 0 such that W ≥ cW ′. To have the same inequality on the whole Γ1,R, it is enough to
show that

lim inf
(x,z)∈Γ1,R,

z→0+

W (x, z)
W ′(x, z)

=
1

R− Λ
lim inf

(x,z)∈Γ1,R,

z→0+

W (x, z)
z

> 0. (4.3)

This is a consequence of Hopf’s lemma: W is positive harmonic on QR, satisfies W = 0 on Γ1,R ∩ {z = 0}.
It follows that ∂zW > 0 on Γ1,R ∩{z = 0}. Note that ∂zW exists thanks to our choice of R, away from Ω. It
is furthermore continuous, so that it is bounded from below by a positive constant. Inequality (4.3) follows.

• On Γ3,R := ∂QR∩{z = R}, one can proceed exactly as in the case of Γ1,R: use the positivity of W away from
{x1 = Λ}, and use Hopf’s lemma to get ∂1W ≥ c > 0 at Γ3,R ∩ {x1 = Λ}.

• We now turn to Γ2,R = ∂QR ∩ {x2 = ±R}. Away from the edge x1 = Λ, z = 0, we can as before use
the positivity of W and Hopf’s lemma to obtain W ≥ cW ′. It then remains to handle the vicinity of
X = (Λ,±R, 0). The main point is to show that

lim inf
(x,z)∈Γ2,R

(x,z)→X

W (x, z)
(x1 − Λ) z

> 0. (4.4)

We can not apply Hopf’s lemma: W is harmonic in the dihedra {x1 > Λ, z > 0}, but it does not satisfy the
interior sphere condition at X . As W (x, z) = 0 both for x1 = Λ and z = 0, one has{

∂k
zW (x, z) = 0 for x1 = Λ, ∀k ∈ N

∂k
1W (x, z) = 0 for z = 0, ∀k ∈ N.

(4.5)

((x, z) in the vicinity of X). Hence, to prove (4.4), it is enough to show that

∂1∂zW (x, z) ≥ c > 0, (x, z) ∈ B(X, δ) ∩ {x1 ≥ Λ, z ≥ 0},
for small enough δ. By continuity of ∂1∂zW , it is enough to show that ∂1∂zW (X) > 0. This positivity
condition follows straightforwardly from a famous lemma of Serrin, see [14], Lemma 3.1, p. 308. In our
context, it reads: for any vector s entering the region {x1 > Λ, z > 0}, we have ∂sW (X) > 0 or ∂2

sW (X) > 0.
Taking s = e1 + e3, we obtain that

(∂1 + ∂z)W (X) > 0, or (∂1 + ∂z)2W (X) > 0.
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Figure 2. The coordinates (ρ, θ, φ).

Combining this statement with (4.5), we see that the first condition is not realized, and that the second one
amounts to ∂1∂zW (X) > 0 as expected. �

4.3. Contradictory bounds on w: configuration 1

Lower bound

We start with configuration 1, that is when Σ′
Λ is internally tangent to ∂Ω at a point P not in HΛ. We

introduce a small open disk DR ⊂ Ω of radius R, also tangent to ∂Ω at P . We take R small enough so that
∂DR ∩ ∂Ω = {P}. Let xR be the center of DR, and let φ ∈ [0, 2π] parametrizing ∂DR. Finally, for any x in DR,
denote by ρ = ρ(x) the distance between x and the circle ∂DR. One has x = xR + ((R− ρ) cosφ, (R− ρ) sinφ).
The aim of this paragraph is to prove the following

Proposition 4.3. Let β > 1/2. There exists cβ > 0, ρβ > 0 such that for all x ∈ DR with 0 < ρ(x) < ρβ,

w(x) ≥ cβ ρ
β .

First, we shall extend the 2d coordinate system (ρ, φ) to a 3d coordinate system (ρ, φ, θ) in the R/2-
neighborhood of CR := ∂DR × {0} (see Fig. 2). Any (x, z) = (x1, x2, z) in this neighborhood has a unique
projection p(x, z) on CR, which reads:

p(x, z) = (xR, 0) + (R cosφ,R sinφ, 0).
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We introduce ρ = |(x, z) − p(x, z)| the distance between (x, z) and CR, and θ ∈ [−π, π[ the oriented angle
between the vector (xR, 0) − p(x, z) and (x, z) − p(x, z). Then, one can write

(x, z) = p(x, z) + (−ρ cos θ cosφ,−ρ sin θ sinφ, ρ sin θ)
= (xR, 0) + ((R − ρ cos θ) cosφ, (R − ρ sin θ) sinφ, ρ sin θ).

The triplet (ρ, θ, φ) defines a system of orthogonal curvilinear coordinates in the R/2 neighborhood of CR. For
θ = 0, it matches the 2d coordinates (ρ, φ) introduced above.

To prove Proposition 4.3, we shall rely again on the harmonic extension W of w. It satisfies

ΔW = 0 on R3
+, W |z=0 = w on R2, ∂zW |z=0 = 0 on Σ′

Λ.

We can extend W to R3 into an even function of z (still denoted W ). Thanks to the last condition, it is harmonic
through Σ′

Λ. We will show that for β > 1
2 ,

W (x, z) ≥ cβ ρ
β cos(θ/2), ∀ρ = ρ(x) < δ small enough. (4.6)

This will yield Proposition 4.3 for θ = 0. This lower bound on W will follow from the maximum principle. We
introduce Uδ := {x, ρ(x) < δ} \ {θ = π}. The open set Uδ is obtained by removing from the δ-neighborhood of
CR the part of the plane {z = 0} outside DR. Let Wβ given in (ρ, θ, φ) coordinates by Wβ(x, z) = ρβ cos(θ/2).
We will show that for δ >0 small enough, one has:

(i) ΔWβ ≥ 0 (= ΔW ) in Uδ.
(ii) W ≥ cβWβ on ∂Uδ, for some cβ > 0.

The lower bound (4.6) will follow.

Proof of (i). One can check that the Laplacian in coordinates (ρ, θ, φ) reads

Δf =
1

ρ(R− ρ cos θ)

(
∂

∂ρ

(
ρ(R− ρ cos θ)

∂

∂ρ
f

)
+

∂

∂θ

(
R− ρ cos θ

ρ

∂

∂θ
f

)
+

∂

∂φ

(
ρ

R − ρ cos θ
∂

∂φ
f

))
. (4.7)

This implies that

ΔWβ =
1

ρ(R − ρ cos θ)

((
(β2 − 1/4)ρβ−1(R− ρ cos θ) − βρβ cos θ

)
cos(θ/2) − 1

2
ρβ sin θ sin(θ/2)

)

=
1

ρ(R − ρ cos θ)
(
(β2 − 1/4)ρβ−1(R− ρ cos θ) − βρβ cos θ − ρβ sin2(θ/2)

)
cos(θ/2)

=
1

ρ(R − ρ cos θ)
(
(β2 − 1/4)Rρβ−1 +O(ρβ)

)
cos(θ/2) ≥ 0

for δ (and ρ < δ) small enough. Note that we used the identity sin θ = 2 sin(θ/2) cos(θ/2) in the second line.

Proof of (ii). We must distinguish between different zones.

• On ∂Uδ ∩ {θ = ±π}, one has W ≥ 0,Wβ = 0, so that the inequality is clear.
• The compact set ∂Uδ ∩ {θ = 0} is included in Σ′

Λ, so that W > 0 there, and as W is continuous, it is even
bounded from below by a positive constant. In particular, one can find c > 0 such that W ≥ cWβ .

• For any ε > 0, we also know that W > 0 on the compact set ∂Uδ ∩ {|z| ≥ ε}. We obtain again that W ≥ cWβ

for some c = cε > 0.
• It remains to show that for ε > 0 small enough, one has

W ≥ cWβ on ∂Uδ ∩ {0 < |z| ≤ ε}.
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Due to the fact that W is non-negative in R3 and even in the variable z, it is enough to show that

lim inf
(x,z)∈∂Uδ,

z→0+

|W (x, z)/Wβ(x, z)| > 0.

To show such a property, we argue by contradiction. Assume that we can find a sequence (xk, zk) satisfying:

(xk, zk) ⊂ R3
+ ∩ ∂Uδ, zk → 0+,

∣∣W (xk, zk)/Wβ(xk, zk)
∣∣→ 0.

Up to the extraction of a subsequence, we can assume that xk, zk → X for some X ∈ ∂Uδ with X =
(X1, X2, 0). There are two possibilities:
• either W (X) > 0. As Wβ is bounded, this yields easily a contradiction.
• or W (X) = 0. In particular, X is outside CR, which implies in turn Wβ(X) = 0. More generally,

W (x1, x2, 0) = 0 for all (x1, x2) close to (X1, X2). Moreover, as Wβ is smooth near X , we obtain

|Wβ(x, z)| = O(z), as z → 0+, x in the vicinity of X.

From there, we get that

lim sup
k→∞

|W (xk, zk)|/zk = 0 (4.8)

As xk
1 remains away from Λ, this limit contradicts Lemma 4.2.

Upper bound

We now turn to an upper bound for w. Let x ∈ Σ′
Λ. For x close to P , we can write in a unique way

x = x∗ + r n, resp. x = x̄∗ + r̄ n̄, r, r̄ > 0,

where x∗ ∈ ∂Ω, resp. x̄∗ ∈ ∂Σ′
Λ, and n = n(x∗), resp. n̄ = n̄(x∗), refers to the inward normal to ∂Ω at x, resp.

to the inward normal to ∂Σ′
Λ at x̄. We now use the results of Costabel et al. [7], and the fact that ∂1/2

n u = c0
at the boundary. Following (2.9), we get the expansions

u(x) = c0r
1/2 +O(r), RΛu(x) = c0r̄

1/2 +O(r̄), r, r̄ → 0.

Now, we remark that the inward normal vectors n and n̄ coincide at P . The expansions above then lead to the
upper bound

w(P + r n) = O(r), r > 0 small enough. (4.9)

Furthermore, the coordinate r along the normal at P coincides with the coordinate ρ from Proposition 4.3.
Applying this proposition with β = 3/4, we get

w(P + r n) ≥ c r3/4, r > 0 small enough

Comparison between this lower bound and the upper bound (4.9) gives a contradiction.

4.4. Contradictory bounds on w: configuration 2

In this paragraph, we investigate configuration 2, in which HΛ is orthogonal to ∂Ω at some point Q.
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Lower bound

We shall prove the following

Proposition 4.4. Let ν = (1, ν) be a vector entering Σ′
Λ at Q. Let β > 1/2. There exists cβ > 0 such that

w(Q+ tν) ≥ cβ t
1+β , for t small enough.

To prove this proposition, we consider again a small disk DR, of radius R, tangent to ∂Ω at Q. Exactly as in the
proof of Proposition 4.3, we introduce the 3d coordinates (ρ, θ, φ) in a R/2-neighborhood of CR = ∂DR × {0}.
We also introduce the 3d harmonic extension W of w, even with respect to the variable z. Our aim is to prove
a lower bound on W which implies Proposition 4.4, namely

W (x, z) ≥ cβ ρ
β cos(θ/2) cosφ, ∀ − π/2 ≤ φ ≤ π/2, ∀θ ∈ [−π, π], ∀ρ = ρ(x) < ρβ (4.10)

with ρβ > 0 small enough. Therefore, let Wβ(x, z) = ρβ cos(θ/2) cosφ. Comparison between W and Wβ will
come from the maximum principle. The main change with respect to configuration 1 is that W = 0 on the
hyperplane {x = (x1, x2, z), x1 = Λ} (corresponding to φ = ±π/2). We have to restrict to the open set

U+
δ = Uδ ∩ {x1 > Λ} = {ρ < δ, x1 > Λ, θ �= ±π}.

We shall prove that

(a) ΔWβ ≥ 0 (= ΔW ) on U+
δ .

(b) W ≥ cβWβ on ∂U+
δ , δ > 0 small.

Proof of (a). We use again formula (4.7). It gives

ΔWβ =
1

ρ(R− ρ cos θ)

((
(β2 − 1/4)Rρβ−1 + O(ρβ)

)
cos(θ/2) cosφ

− ρβ+1

R− ρ cos θ
cos(θ/2) cosφ

)

=
1

ρ(R− ρ cos θ)
(
(β2 − 1/4)Rρβ−1 +O(ρβ)

)
cos(θ/2) cosφ ≥ 0.

Proof of (b). Let ε > 0. Away from HΛ, that is over ∂U+
δ ∩ {x1 > Λ + ε}, we can perform exactly the same

analysis as in the proof of Proposition 4.3, point ii). Thus,

W ≥ cWβ , over ∂U+
δ ∩ {x1 > Λ+ ε} for some c = cε > 0.

It remains to treat the vicinity of HΛ inside ∂U+
δ . For x1 = Λ (that is φ = ±π/2), one has W (x, z) =

Wβ(x, z) = 0. Also, for θ = ±π, one has W (x, z) ≥ 0,Wβ(x, z) = 0. Everywhere else, Wβ(x, z) > 0 and
W (x, z) > 0. Hence, it remains to show that

lim inf
(x,z)∈∂U+

δ \{|θ|=π},

x1→Λ+

|W (x, z)/Wβ(x, z)| > 0.

Again, we argue by contradiction: we assume that there is a sequence

(xk, zk) ⊂ ∂U+
δ \ {θ = π}, xk

1 → Λ+,
∣∣W (xk, zk)/Wβ(xk, zk)

∣∣→ 0.
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Up to a subsequence, we can assume that (xk, zk) → X for some X = (Λ,X2, Z) ∈ ∂U+
δ . As W and Wβ are

even in z, we can also assume that zk ≥ 0 for all k. There are several cases:

(X1, X2) = (Λ,X2) ∈ Ω. W is harmonic and positive on {(x, z), |(x, z) −X | ≤ ε, x1 > Λ}, ε > 0 small enough.
Moreover, for all (x, z) in this set, we have W (x, z) > 0 = W (Λ, x2, z). We can apply Hopf’s lemma, which
yields ∂1W (Λ, x2, z) ≥ C > 0. Hence,

lim inf
k→∞

W (xk, zk)
|xk

1 − Λ| > 0

which yields in turn

lim inf
k→∞

W (xk, zk)
|Wβ(xk, zk)| > 0.

Indeed, |Wβ(xk, zk)| = |Wβ(xk, zk)−Wβ(Λ, xk
2 , z

k)| = O(|xk
1 −Λ|) due to the regularity of Wβ near X . Thus,

we reach a contradiction.
(X1, X2) = (Λ,X2) /∈ Ω, Z �= 0. We are still in a situation where we can apply Hopf’s lemma to W near X ,

which yields the same contradiction as above.
(X1, X2) = (Λ,X2) /∈ Ω, Z = 0. Although W is harmonic and positive on the dihedra {x1 > Λ, z > 0},

we can not apply Hopf’s lemma because the dihedra does not satisfy the interior sphere condition at X .
Nevertheless, thanks to Lemma 4.2, we get that for some c′ > 0, for all k large enough

W (xk, zk) ≥ c (xk
1 − Λ)zk ≥ c′

(π
2
− |φk|

)
(π − θk) ≥ c′′Wβ(xk, z

k).

This ends the proof of (4.10), and so the proof of Proposition 4.4.

Upper bound

We now look for an upper bound for w along the ray Q + tν, ν = (1, ν), t > 0 small. We show

w(Q+ tν) = O(t2), as t goes to 0+. (4.11)

Of course, such an upper bound leads to a contradiction with Proposition 4.4 (for 1/2 < β < 1).
As in configuration 1, this bound follows from the behaviour of u near ∂Ω, as given by (2.9). We remind that

for x near Q,
u(x) = c0 r

1/2 + C1(x1) r3/2 + ureg(x)

where

• r = r(x) is a normal coordinate in the vicinity of ∂Ω (which corresponds to r = 0).
• c0 is the constant fractional normal derivative at ∂Ω, C1 is a smooth function of x1.
• ureg is C2 near ∂Ω, and vanishes at ∂Ω.

We can then write
w(x) = c0w1/2(x) + C1w3/2(x) + wreg(x) +O(|x1 − Λ|r3/2)

with C1 := C1(Λ),

w1/2(x) := r1/2(x) − r1/2(x̌), w3/2(x) := r3/2(x) − r3/2(x̌), wreg(x) := ureg(x) − ureg(x̌),

where x̌ := (2Λ− x1, x2). Note that w1/2, w3/2, wreg vanish at Q.
Let us first prove that ∇wreg(Q) = 0. The idea is the same as in the paper of Serrin [14]. Clearly, wreg(Λ, ·) = 0,

so that ∂2wreg(Λ, ·) = 0. In particular, ∂2wreg(Q) = 0. We then have to show that ∂1wreg(Q). Near Q, we can
write ∂Ω as a graph: x2 = ψ(x1), with ψ′(Λ) = 0. Moreover,

ureg(x1, ψ(x1)) = 0 ⇒ ∂1ureg + ψ′∂2ureg = 0,

so that ∂1ureg(Λ, 0) = 0, and from there, ∂1wreg(Q) = 2 ∂1ureg(Q) = 0. It follows that wreg(Q + tν) = O(t2)
for t→ 0+.
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We still have to control wα, α = 1/2 or 3/2. For x close enough to ∂Ω, we denote p = p(x) its orthogonal
projection on ∂Ω. Near Q, it reads p = (p1, ψ(p1)), with(

x1 − p1

x2 − ψ(p1)

)
·
(

1
ψ′(p1)

)
= 0. (4.12)

Then, r(x)2 = (x1 − p1)2 + (x2 − ψ(p1))2 = (1 + ψ′(p1)2)(x2 − ψ(p1))2, and

wα(x) = (1 + ψ′(p1)2)α/2|x2 − ψ(p1)|α − (1 + ψ′(p̌1)2)α/2|x2 − ψ(p̌1)|α

with p̌ := p(x̌). One may then Taylor expand wα(Q+ tν) with respect to t (x1 = Λ+ t, x2 = ψ(Λ)+νt). Indeed,
relation (4.12):

Λ+ t− p1 + (ψ(Λ) + νt− ψ(p1))ψ′(p1) = 0,
resp.2Λ− (Λ + t) − p̌1 + (ψ(Λ) + νt− ψ(p̌1))ψ′(p̌1) = 0

leads to p1 = Λ+ t+O(t2), resp. p̌1 = Λ− t+O(t2). Then, since ψ′(Λ) = 0,

ψ(p1) = ψ(Λ) +
ψ′′(Λ)

2
t2 +O(t3), ψ(p̌1) = ψ(Λ) +

ψ′′(Λ)
2

t2 +O(t3),

so that

|x2 − ψ(p1)|α = |νt|α
(

1 − αψ′′(Λ)
2ν

t+O(t2)
)
,

resp. |x2 − ψ(p̌1)|α = |νt|α
(

1 − αψ′′(Λ)
2ν

t+O(t2)
)

and
(1 + ψ′(p1)2)α/2 = 1 +

α

2
ψ′′(Λ)t2 +O(t3), resp. (1 + ψ′(p̌1)2)α/2 = 1 +

α

2
ψ′′(Λ)t2 +O(t3).

Combining previous Taylor expansions yields: wα(Q + tν) = O(t2+α) as t → 0+. Together with the estimate
wreg(Q+ tν) = O(t2), it implies the upper bound (4.11).

Remark 4.5. If the domain Ω is not connected, our method can still be applied, provided the connected
components of Ω can be “ordered”, in the following sense: for every direction of the moving hyperplanes Hλ,
for all λ < Λ, Hλ intersects at most one connected component of Ω. In this case, it can be checked that our
arguments remain valid. In particular, if Ω has radial symmetry, we infer that Ω is a disc.

Appendix

This appendix is devoted to the calculation of the jacobian of the change of variables x = (x1, x2) → (s, r),
where x belongs to a tubular neighbourhood Tδ of ∂Ω, s is the arc-length, and r = d(x, ∂Ω)(21x∈Ω − 1). Using
the same notation as in Section 3, we write

x = p(s) − rn(s),

where p(s) ∈ R2 is the point of ∂Ω with arc-length s, and n(s) is the outward pointing normal. We deduce that

∂x

∂s
= τ(s) − r

dn
ds

= (1 + κ(s)r)τ(s),

∂x

∂r
= −n(s).

Let θ be the oriented angle between e1 and n. Then, up to a change of the orientation of the curve,

n(s) =
(

cos θ(s)
sin θ(s)

)
, τ(s) =

(− sin θ(s)
cos θ(s)

)
.
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We infer that the jacobian matrix of the change of variables is

⎛
⎜⎜⎝

dx1

ds
dx1

dr

dx2

ds
dx2

dr

⎞
⎟⎟⎠ =

(−(1 + κ(s)r) sin θ(s) − cos θ(s)
(1 + κ(s)r) cos θ(s) − sin θ(s)

)
,

and therefore the jacobian of the change of variables is |1 + κ(s)r|.
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