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Abstract. Any two-input left-invariant control affine system of full rank, evolving on the Euclidean
group SE (2), is (detached) feedback equivalent to one of three typical cases. In each case, we consider an
optimal control problem which is then lifted, via the Pontryagin Maximum Principle, to a Hamiltonian
system on the dual space se (2)∗. These reduced Hamilton−Poisson systems are the main topic of this
paper. A qualitative analysis of each reduced system is performed. This analysis includes a study of the
stability nature of all equilibrium states, as well as qualitative descriptions of all integral curves. Finally,
the reduced Hamilton equations are explicitly integrated by Jacobi elliptic functions. Parametrisations
for all integral curves are exhibited.
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1. Introduction

A general left-invariant control affine system on the Euclidean group SE (2) has the form ġ = g(A+ u1B1 +
· · · + u�B�), where A,B1, . . . , B� ∈ se (2), 1 ≤ � ≤ 3. (The elements B1, . . . , B� are assumed to be linearly
independent). Specific left-invariant optimal control problems on the Euclidean group SE (2), associated with
the above mentioned control systems, have been studied by several authors (see, e.g., [2,10–12,17,22,23,25–28]).

In this paper, we consider only two-input control systems, i.e., systems of the form ġ = g (A+ u1B1 + u2B2).
Any such homogeneous full-rank control system is (detached feedback) equivalent to the control system Σ0 :
ġ = g(u1E2 + u2E3). Then again, any such inhomogeneous control system is (detached feedback) equivalent to
exactly one of the control systems Σ1 : ġ = g(E1 + u1E2 + u2E3) and Σ2,α : ġ = g(αE3 + u1E1 + u2E2),
α > 0. Here E1, E2 and E3 denote elements of the standard basis for se (2). In each typical case, we consider
an optimal control problem (with quadratic cost) of the form

ġ = g (A+ u1B1 + u2B2) , g ∈ SE (2), u = (u1, u2) ∈ R
2

g(0) = g0, g(T ) = gT

J = 1
2

∫ T

0

(
c1u

2
1(t) + c2u

2
2(t)
)

dt → min .
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Each problem is lifted, via the Pontryagin Maximum Principle, to a Hamiltonian system on the dual space
se (2)∗. Then the (minus) Lie−Poisson structure on se (2)∗ is used to derive the equations for extrema
(cf. [3, 11, 14]). The stability nature of all equilibrium states for the reduced system is then investigated by
the energy-Casimir method. Also, a qualitative description of all integral curves of the reduced system is given.
Finally, these equations are explicitly integrated by Jacobi elliptic functions. A brief description of this process
is given now.

First, we partition the set of initial conditions in terms of simple inequalities. Specifically, we distinguish
between various ways that the level sets, defined by the constants of motion, intersect. When required, this set
is further partitioned in order to facilitate integration. This enables one to distinguish between solution curves
with different explicit expressions. In each case, the extremal equations are reduced to a (separable) differential
equation and then transformed into standard form (see, e.g., [4] or [15]). Thereafter, an integral formula is
applied. Consequently, by use of the constants of motion (and allowing for possible changes in sign), an explicit
expression for the solution is obtained.

The paper is organized as follows. In Section 2 we review some basic facts regarding left-invariant control
systems, optimal control, the energy-Casimir method and Jacobi elliptic functions. In Section 3 we classify all
two-input left-invariant control affine systems on SE (2) and then introduce a general optimal control problem
(with quadratic cost) to be considered for each equivalence class. In Section 4 a qualitative analysis of the reduced
Hamiltonian systems is given and in Section 5 the reduced systems are explicitly integrated. A tabulation of
integral curves is included as an appendix. We conclude the paper with a summary and a few remarks.

2. Preliminaries

2.1. Invariant control systems and optimal control

Invariant control systems on Lie groups were first considered in 1972 by Brockett [8] and by Jurdjevic and
Sussmann [13]. A left-invariant control system Σ is a (smooth) control system evolving on a (real, finite-
dimensional) Lie group G, whose dynamics Ξ : G×U → TG are invariant under left translations. (The tangent
bundle TG is identified with G × g, where g is the Lie algebra of G). For the sake of convenience, we shall
assume that G is a matrix Lie group. Also, for the purposes of this paper, we may assume that U = R

�. Such
a control system is described as follows (cf. [3, 11, 24])

ġ = Ξ (g, u), g ∈ G, u ∈ R
� (2.1)

where Ξ (g, u) = g Ξ (1, u) ∈ TgG.
Admissible controls are bounded and measurable maps u(·) : [0, T ] → R

�, whereas the parametrisation
map Ξ (1, ·) : R

� → g is an embedding. The trace Γ = imΞ (1, ·) is a submanifold of g so that Γ ={
Ξu = Ξ (1, u) : u ∈ R

�
}

(cf. [5,6]). A left-invariant control affine system is one whose parametrisation map is
affine. For such a system, the trace Γ is an affine subspace of g. We say that the system has full rank if the Lie
algebra generated by its trace, Lie (Γ ), coincides with g. A trajectory for an admissible control u(·) : [0, T ] → R

�

is an absolutely continuous curve g(·) : [0, T ] → G such that ġ(t) = g(t)Ξ (1, u(t)) for almost every t ∈ [0, T ].
We shall denote a (left-invariant control) system Σ by (G, Ξ) (see, e.g., [5, 6]). We say that a system

Σ = (G, Ξ) is connected if its state space G is connected. Let Σ = (G, Ξ) and Σ′ = (G′, Ξ ′) be two connected
full-rank systems with traces Γ ⊆ g and Γ ′ ⊆ g′, respectively. We say that Σ and Σ′ are locally detached
feedback equivalent if there exist open neighbourhoods N and N ′ of (the unit elements) 1 and 1′, respectively,
and a diffeomorphism Φ = φ×ϕ : N ×R

� → N ′ ×R
� such that φ(1) = 1′ and Tgφ ·Ξ (g, u) = Ξ ′ (φ(g), ϕ(u))

for g ∈ N and u ∈ R
�. Two detached feedback equivalent systems have the same trajectories (up to a

diffeomorphism in the state space), which are parametrised differently by admissible controls. We recall the
following result.

Proposition 2.1 ([6]). Σ = (G, Ξ) and Σ′ = (G′, Ξ ′) are locally detached feedback equivalent if and only if
there exists a Lie algebra isomorphism ψ : g → g′ such that ψ · Γ = Γ ′.
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Now, consider an optimal control problem given by the specification of (i) a left-invariant control system
Σ = (G, Ξ), (ii) a cost function L : R

� → R, and (iii) boundary data, consisting of an initial state g0 ∈ G, a target
state g1 ∈ G and a terminal time T > 0. Explicitly, we want to minimize the functional J =

∫ T

0
L(u(t)) dt

over the trajectory-control pairs of Σ subject to the boundary conditions

g(0) = g0, g(T ) = g1. (2.2)

The Pontryagin Maximum Principle is a necessary condition for optimality which is most naturally expressed
in the language of the geometry of the cotangent bundle T ∗G of G (cf. [3, 11]). The cotangent bundle T ∗G
can be trivialized (from the left) such that T ∗G = G× g∗, where g∗ is the dual space of the Lie algebra g. The
dual space g∗ has a natural Poisson structure, called the “minus Lie−Poisson structure”, given by

{F,G} (p) = −p ([dF (p), dG(p)])

for p ∈ g∗ and F,G ∈ C∞(g∗). (Note that dF (p) is a linear function on g∗ and so is an element of g). The
Poisson space (g∗, {·, ·}) is denoted by g∗−. Each left-invariant Hamiltonian on the cotangent bundle T ∗G is
identified with its reduction on the dual space g∗−. To an optimal control problem (with fixed terminal time)∫ T

0

L(u(t)) dt→ min (2.3)

subject to (2.1) and (2.2), we associate, for each real number λ and each control parameter u ∈ R
�, a

Hamiltonian function on T ∗G = G × g∗ :

Hλ
u (ξ) = λL(u) + ξ (g Ξ (1, u))

= λL(u) + p (Ξ (1, u)) , ξ = (g, p) ∈ T ∗G.

The Maximum Principle can be stated, in terms of the above Hamiltonians, as follows.

Maximum Principle. Suppose the trajectory-control pair (ḡ(·), ū(·)) defined over the interval [0, T ] is a
solution for the optimal control problem (2.1)−(2.3). Then, there exists a curve ξ(·) : [0, T ] → T ∗G with
ξ(t) ∈ T ∗

ḡ(t)G, t ∈ [0, T ], and a real number λ ≤ 0, such that the following conditions hold for almost every
t ∈ [0, T ]:

(λ, ξ(t)) �≡ (0, 0) (2.4)

ξ̇(t) = 
Hλ
ū(t)(ξ(t)) (2.5)

Hλ
ū(t) (ξ(t)) = max

u
Hλ

u (ξ(t)) = const. (2.6)

An optimal trajectory ḡ(·) : [0, T ] → G is the projection of an integral curve ξ(·) of the (time-varying)
Hamiltonian vector field 
Hλ

ū(t) defined for all t ∈ [0, T ]. A trajectory-control pair (ξ(·), u(·)) defined on [0, T ]
is said to be an extremal pair if ξ(·) satisfies the conditions (2.4), (2.5) and (2.6). The projection ξ(·) of an
extremal pair is called an extremal. An extremal curve is called normal if λ = −1 and abnormal if λ = 0. In
this paper, we shall be concerned only with normal extremals. Suppose the maximum condition (2.6) eliminates
the parameter u from the family of Hamiltonians (Hu), and as a result of this elimination, we obtain a smooth
function H (without parameters) on T ∗G (in fact, on g∗−). Then the whole (left-invariant) optimal control
problem reduces to the study of integral curves of a fixed Hamiltonian vector field 
H.

2.2. The energy-Casimir method

The energy-Casimir method [9] gives sufficient conditions for Lyapunov stability of equilibrium states for
certain types of Hamilton−Poisson dynamical systems (cf. [16, 21]). The method is restricted to certain types
of systems, since its implementation relies on an abundant supply of Casimir functions.
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The standard energy-Casimir method states that if ze is an equilibrium point of a Hamiltonian vector field

H (associated with an energy function H) and if there exists a Casimir function C such that ze is a critical
point of H + C and d2(H + C)(ze) is (positive or negative) definite, then ze is Lyapunov stable.

Ortega and Ratiu have obtained a generalisation of the standard energy-Casimir method (cf. [18, 19]). This
extended version states that if C = λ1C1 + · · · + λkCk, where λ1, . . . , λk ∈ R and C1, . . . , Ck are conserved
quantities (i.e., they Poisson commute with the energy function H ), then definiteness of d2(λ0H+C)(ze), λ0 ∈
R is only required on the intersection (subspace) W = ker dH(ze) ∩ ker dC1(ze) ∩ · · · ∩ ker dCk(ze).

2.3. Jacobi elliptic functions

Given the modulus k ∈ [0, 1], the basic Jacobi elliptic functions sn(·, k), cn(·, k) and dn (·, k) can be defined
as

sn(x, k) = sin am(x, k)
cn(x, k) = cos am(x, k)

dn(x, k) =
√

1 − k2 sin2 am(x, k)

where am(·, k) = F (·, k)−1 is the amplitude and F (ϕ, k) =
∫ ϕ

0
dt√

1−k2 sin2 t
· (For the degenerate cases k = 0

and k = 1, we recover the circular functions and the hyperbolic functions, respectively). The complementary
modulus k′ and the number K are then defined as k′ =

√
1 − k2 and K = F (π

2 , k). (The functions sn(·, k) and
cn(·, k) are 4K periodic, whereas dn(·, k) is 2K periodic). Nine other elliptic functions are defined by taking
reciprocals and quotients; in particular, we get nd(·, k) = 1

dn(·,k) , sd(·, k) = sn(·,k)
dn(·,k) and cd(·, k) = cn(·,k)

dn(·,k) · Simple
elliptic integrals can be expressed in terms of appropriate inverse (elliptic) functions. The following formulas
hold true (see [4] or [15]):

∫ x

0

dt√
(a2 − t2)(b2 − t2)

= 1
a sn−1

(
1
b x,

b
a

)
, 0 ≤ x ≤ b < a (2.7)

∫ x

0

dt√
(a2 + t2)(b2 − t2)

= 1√
a2+b2

sd−1
(√

a2+b2

ab x, b√
a2+b2

)
, 0 ≤ x ≤ b (2.8)

∫ a

x

dt√
(a2 − t2)(t2 − b2)

= 1
a dn−1

(
1
a x,

√
a2−b2

a

)
, b ≤ x ≤ a. (2.9)

3. Control systems on SE (2)

We consider two-input left-invariant control affine systems on SE (2). Such a system is fully specified by its
parametrisation map Ξ (1, u) = A + u1B1 + u2B2. A system is said to be homogeneous if A ∈ 〈B1, B2〉, i.e.,
the trace Γ is a linear subspace of se (2). (In this paper, the notation 〈·, ·〉 is used for the linear span of two
vectors). Otherwise, the system is said to be inhomogeneous. A classification of all full-rank two-input systems,
under detached feedback equivalence, is provided. We then introduce a general optimal control problem (with
diagonal cost) to be considered for each equivalence class.

3.1. The Euclidean group SE (2)

The Euclidean group

SE (2) =
{[

1 0
v R

]
: v ∈ R

2×1, R ∈ SO (2)
}
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is a (real) three-dimensional connected matrix Lie group. The associated Lie algebra is given by

se (2) =

⎧⎨
⎩
⎡
⎣ 0 0 0
x1 0 −x3

x2 x3 0

⎤
⎦ : x1, x2, x3 ∈ R

⎫⎬
⎭ .

Let

E1 =

⎡
⎣0 0 0

1 0 0
0 0 0

⎤
⎦ , E2 =

⎡
⎣0 0 0
0 0 0
1 0 0

⎤
⎦ , E3 =

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦

be the standard basis of se (2). (The bracket operation is given by [E2, E3] = E1, [E3, E1] = E2 and [E1, E2] =
0). With respect to this basis, the group of Lie algebra automorphisms of se (2) is given by

Aut (se (2)) =

⎧⎨
⎩
⎡
⎣ x y v
−ςy ςx w
0 0 ς

⎤
⎦ : x, y, v, w ∈ R, x2 + y2 �= 0, ς = ±1

⎫⎬
⎭ .

We use the non-degenerate bilinear form

〈〈⎡
⎣ 0 0 0
x1 0 −x3

x2 x3 0

⎤
⎦ ,
⎡
⎣ 0 0 0
y1 0 −y3
y2 y3 0

⎤
⎦
〉〉

= x1y1 + x2y2 + x3y3

to identify se (2) with se (2)∗ (cf. [11]). Then each extremal curve p(·) in se (2)∗ is identified with a curve
P (·) in se (2) via the formula 〈〈P (t), X〉〉 = p(t)(X) for all X ∈ se (2). Thus

P (t) =

⎡
⎣ 0 0 0
P1(t) 0 −P3(t)
P2(t) P3(t) 0

⎤
⎦

where Pi(t) = 〈〈P (t), Ei〉〉 = p(t)(Ei) = pi(t), i = 1, 2, 3.
Now consider a Hamiltonian H on se (2)∗−. The equations of motion take the following form

ṗi = −p([Ei, dH(p)]), i = 1, 2, 3

or, explicitly, ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṗ1 =
∂H

∂p3
p2

ṗ2 = −∂H
∂p3

p1

ṗ3 =
∂H

∂p2
p1 − ∂H

∂p1
p2·

We note that C : se (2)∗− → R, C(p) = p2
1 + p2

2 is a Casimir function.

3.2. Classification of systems

It turns out that there is only one homogeneous two-input system on SE (2), up to equivalence. Furthermore,
in the inhomogeneous case there are only two types. The characterisation of detached feedback equivalence in
Proposition 2.1 is used to prove both these results.
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Theorem 3.1. Any full-rank homogeneous two-input system Σ is locally detached feedback equivalent to the
system Σ0 with parametrisation

Ξ0 (1, u) = u1E2 + u2E3.

Proof. Let the trace of Σ be given by Γ =
〈∑3

i=1 biEi,
∑3

i=1 ciEi

〉
· First, as either b3 �= 0 or c3 �= 0, we

may assume b3 �= 0. Then

Γ =
〈

b1
b3
E1 + b2

b3
E2 + E3, (c1 − b1c3

b3
)E1 + (c2 − b2c3

b3
)E2

〉
.

Now let x = c1 − b1c3
b3

and y = c2 − b2c3
b3

· Then

ψ =

⎡
⎣ y x b1

b3

−x y b2
b3

0 0 1

⎤
⎦

is a Lie algebra automorphism mapping Γ0 = 〈E2, E3〉 to Γ . �
Theorem 3.2. Any inhomogeneous two-input system Σ is locally detached feedback equivalent to exactly one
of the following systems: Σ1 or Σ2,α (α > 0) with respective parametrisations

Ξ1 (1, u) = E1 + u1E2 + u2E3, Ξ2,α (1, u) = αE3 + u1E1 + u2E2.

Proof. Let the trace of Σ be given by

Γ =
3∑

i=1

aiEi +

〈
3∑

i=1

biEi,

3∑
i=1

ciEi

〉
·

First, consider the case b3 �= 0 or c3 �= 0. We may assume b3 �= 0 and so

Γ = a′1E1 + a′2E2 + 〈b′1E1 + b′2E2 + E3, c
′
1E1 + c′2E2〉

for some constants a′i, b
′
i, c

′
i ∈ R, i = 1, 2. Now either c′1 �= 0 or c′2 �= 0 and so[

c′1 −c′2
c′2 c′1

] [
v1
v2

]
=
[−a′1−a′2

]

has a unique solution. (Note that v2 = 0 leads to a contradiction). Hence

ψ =

⎡
⎣ v2c′2 v2c

′
1 b

′
1

−v2c′1 v2c′2 b′2
0 0 1

⎤
⎦

is a Lie algebra automorphism mapping Γ1 = E1 + 〈E2, E3〉 to Γ .
Next, consider the case b3 = 0 and c3 = 0. Then

Γ = a1E1 + a2E2 + a3E3 + 〈b1E1 + b2E2, c1E1 + c2E2〉 ·
Since a3 �= 0 and either b1 �= 0 or b2 �= 0, we get that

ψ =

⎡
⎣b1 −sgn(a3)b2 a1

α
b2 sgn(a3)b1 a2

α
0 0 sgn(a3)

⎤
⎦

is a Lie algebra automorphism. If we set α = |a3|, then ψ maps Γ2,α = αE3 + 〈E1, E2〉 to Γ .
Finally, a simple argument shows that Σ1 is not equivalent to any system Σ2,α, and that Σ2,α is not

equivalent to Σ2,β, for any α �= β, α, β > 0. �
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3.3. Left-invariant control problems

Henceforth, we consider only the systems Σ0, Σ1 and Σ2,α. In each of these typical cases, we shall investigate
the optimal control problem corresponding to an arbitrary diagonal cost L(u) = c1u

2
1 + c2u

2
2, where c1, c2 > 0.

Specifically, we shall consider the left-invariant control problems:

ġ = g (u1E2 + u2E3)
g(0) = g0, g(T ) = gT

J = 1
2

∫ T

0

(
c1u

2
1(t) + c2u

2
2(t)
)

dt → min

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

LiCP(1)

ġ = g (E1 + u1E2 + u2E3)

g(0) = g0, g(T ) = gT

J = 1
2

∫ T

0

(
c1u

2
1(t) + c2u

2
2(t)
)

dt → min

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

LiCP(2)

and
ġ = g (αE3 + u1E1 + u2E2)
g(0) = g0, g(T ) = gT

J = 1
2

∫ T

0

(
c1u

2
1(t) + c2u

2
2(t)
)

dt→ min .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

LiCP(3)

Remark 3.3. Each member of a significant subclass of left-invariant control problems on SE (2) is equivalent
to one of the above three problems, up to cost-equivalence [7]. (If two cost-extended systems are cost-equivalent,
then they have the same extremal trajectories, up to a Lie group isomorphism between their state spaces. The
corresponding controls are mapped by an affine isomorphism). More specifically, any full-rank cost-extended
system

Ξ (1, u) = u1B1 + u2B2, L(u) = u�Qu

is cost-equivalent to
Ξ0(1, u) = u1E2 + u2E3, L0(u) = u2

1 + u2
2. (3.1)

(Here Q ∈ R
2×2, Q is positive definite; a proof can be found in [7]). LiCP(1) corresponds to (3.1). On the other

hand, any cost-extended system

Ξ (1, u) = A+ u1B1 + u2B2, L(u) = (u − μ)�Q (u− μ)

where A /∈ 〈B1, B2〉 is cost-equivalent to one of the cost-extended systems

Ξ1(1, u) = E1 + u1E2 + u2E3, L1,β1(u) = (u1 − μ1)2 + β1(u2 − μ2)2 (3.2)
Ξ2,α(1, u) = αE3 + u1E1 + u2E2, L2,β2(u) = u2

1 + β2u
2
2 (3.3)

where α, β1 > 0 and β2 ≥ 1. (Here μ ∈ R
2, Q ∈ R

2×2, and Q is positive definite). LiCP(2) corresponds to (3.2)
with μ1 = μ2 = 0, whereas LiCP(3) corresponds to (3.3).

The following three results easily follow.

Proposition 3.4. For the LiCP(1), the (normal) extremal control is given by u1 = 1
c1
p2, u2 = 1

c2
p3, where

H1(p) = 1
2

(
1
c1
p2
2 + 1

c2
p2
3

)
and ⎧⎪⎪⎨

⎪⎪⎩
ṗ1 = 1

c2
p2p3

ṗ2 = − 1
c2
p1p3

ṗ3 = 1
c1
p1p2.

(3.4)
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Proposition 3.5. For the LiCP(2), the (normal) extremal control is given by u1 = 1
c1
p2, u2 = 1

c2
p3, where

H2(p) = p1 + 1
2

(
1
c1
p2
2 + 1

c2
p2
3

)
and ⎧⎪⎪⎨

⎪⎪⎩
ṗ1 = 1

c2
p2p3

ṗ2 = − 1
c2
p1p3

ṗ3 =
(

1
c1
p1 − 1
)
p2.

(3.5)

Proposition 3.6. For the LiCP(3), the (normal) extremal control is given by u1 = 1
c1
p1, u2 = 1

c2
p2, where

H3(p) = αp3 + 1
2

(
1
c1
p2
1 + 1

c2
p2
2

)
and ⎧⎪⎪⎨

⎪⎪⎩
ṗ1 = αp2

ṗ2 = −αp1

ṗ3 =
(

1
c2

− 1
c1

)
p1p2.

(3.6)

4. Qualitative analysis

In this section a qualitative analysis of the reduced Hamilton−Poisson systems (3.4)–(3.6) is performed. The
stability nature of every equilibrium state is determined. The vector fields 
H1, 
H2, and 
H3 are shown to be
complete. Subsequently, each maximal integral curve is described as a constant, periodic or bounded curve.

4.1. Equilibrium states

The equilibrium states for (3.4) are

eμ
1 = (μ, 0, 0), eν

2 = (0, ν, 0) and eμ
3 = (0, 0, μ)

where μ, ν ∈ R, ν �= 0.

Theorem 4.1. The equilibrium states have the following behaviour:

(i) Each equilibrium state eμ
1 is stable.

(ii) Each equilibrium state eν
2 is unstable.

(iii) Each equilibrium state eμ
3 is stable.

Proof. The linearization of the system is given by⎡
⎣ 0 1

c2
p3

1
c2
p2

− 1
c2
p3 0 − 1

c2
p1

1
c1
p2

1
c1
p1 0

⎤
⎦ ·

(i) Assume μ �= 0. (The state e01 = e03 is dealt with in (iii)). Let Hχ = H + χ(C) be an energy-Casimir
function, i.e.,

Hχ(p1, p2, p3) = 1
2c1
p2
2 + 1

2c2
p2
3 + χ(p2

1 + p2
2)

where χ ∈ C∞(R). The derivative

dHχ =
[
2p1χ̇(p2

1 + p2
2)

1
c1
p2 + 2p2χ̇(p2

1 + p2
2)

1
c2
p3

]
vanishes at eμ

1 if χ̇(μ2) = 0. Then the Hessian (at eμ
1 )

d2Hχ(μ, 0, 0) = diag
(
2χ̇(μ2) + 4μ2χ̈(μ2), 1

c1
+ 2χ̇(μ2), 1

c2

)
is positive definite if χ̈(μ2) > 0 (and χ̇(μ2) = 0). The function χ(x) = 1

2x
2 − μ2x satisfies these require-

ments. Hence, by the standard energy-Casimir method, eμ
1 is stable.
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(ii) The linearization of the system at eν
2 has eigenvalues λ1 = 0, λ2,3 = ± ν√

c1c2
· Thus eν

2 is unstable.

(iii) Let Hλ = λ0H+λ1C. Then dHλ(0, 0, μ) =
[
0 0 λ0μ

c2

]
and d2Hλ(0, 0, μ) = diag(2λ1,

λ0
c1

+2λ1,
λ0
c2

). Suppose

μ = 0 and let λ0 = λ1 = 1. Then dHλ(0, 0, 0) = 0 and d2Hλ(0, 0, 0) is positive definite. On the other
hand, suppose μ �= 0 and let λ0 = 0, λ1 = 1. Then dHλ(0, 0, μ) = 0 and d2Hλ(0, 0, μ) = diag (2, 2, 0).
Also,

ker dH(eμ
3 ) ∩ ker dC(eμ

3 ) = span {(1, 0, 0), (0, 1, 0)}
and so d2Hλ(0, 0, μ)

∣∣
W×W

= diag (2, 2) is positive definite. Hence, by the extended energy-Casimir
method, eμ

3 is stable. �

The equilibrium states for (3.5) are

eμ
1 = (μ, 0, 0), eμ

2 = (c1, μ, 0) and eν
3 = (0, 0, ν)

where μ, ν ∈ R, ν �= 0.

Theorem 4.2. The equilibrium states have the following behaviour:

(i) Each equilibrium state eμ
1 is unstable if μ ∈ [0, c1] and stable if μ ∈ (−∞, 0) ∪ (c1,∞).

(ii) Each equilibrium state eμ
2 is unstable.

(iii) Each equilibrium state eν
3 is stable.

Proof. The linearization of the system is given by
⎡
⎣ 0 1

c2
p3

1
c2
p2

− 1
c2
p3 0 − 1

c2
p1

1
c1
p2

1
c1
p1 − 1 0

⎤
⎦ ·

(i) Assume μ ∈ (0, c1). The linearization of the system (at eμ
1 ) has eigenvalues λ1 = 0, λ2,3 = ±

√
(c1−μ)μ

c1c2
·

Thus eμ
1 is unstable. Now, assume μ = c1 or μ = 0. Then the linearization of the system (at eμ

1 ) has
eigenvalues λ1,2,3 = 0. Thus, as the geometric multiplicity is strictly less than the algebraic multiplicity,
eμ
1 is unstable.

Assume μ ∈ (−∞, 0) ∪ (c1,∞). Let Hχ = H + χ(C) be an energy-Casimir function, i.e.,

Hχ(p1, p2, p3) = p1 + 1
2c1
p2
2 + 1

2c2
p2
3 + χ(p2

1 + p2
2)

where χ ∈ C∞(R). The derivative

dHχ =
[
1 + 2p1χ̇(p2

1 + p2
2)

1
c1
p2 + 2p2χ̇(p2

1 + p2
2)

1
c2
p3

]
vanishes at eμ

1 if χ̇(μ2) = − 1
2μ . Then the Hessian (at eμ

1 )

d2Hχ(μ, 0, 0) = diag (4μ2χ̈(μ2) + 2χ̇(μ2), 1
c1

+ 2χ̇(μ2), 1
c2

)

= diag(4μ2χ̈(μ2) − 1
μ ,

1
c1

− 1
μ ,

1
c2

)

is positive definite if χ̈(μ2) > 1
4μ3 · The function χ(x) = ( 1

8μ3 +1)x2− 3+8μ3

4μ x satisfies these requirements.
Hence, by the standard energy-Casimir method, eμ

1 is stable.
(ii) Assume μ �= 0. (The case μ = 0 has already been dealt with). The linearization of the system (at eμ

2 ) has
eigenvalues λ1 = 0, λ2,3 = ± μ√

c1c2
· Thus eμ

2 is unstable.
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(iii) Let Hλ = λ0H + λ1C, where λ0 = 0, λ1 = 1. Now dH =
[
1 1

c1
p2

1
c2
p3

]
and dC =

[
2p1 2p2 0

]
. Hence

dHλ(0, 0, ν) = 0 and d2Hλ(0, 0, ν) = diag(2, 2, 0). Also,

ker dH(eν
3) ∩ ker dC(eν

3) = span {(−ν, 0, c2), (0, 1, 0)}

and so d2Hλ(0, 0, ν)
∣∣
W×W

= diag
(
2ν2, 2
)

is positive definite. Hence, by the extended energy-Casimir
method, eν

3 is stable. �

The equilibrium states for (3.6) are
eμ = (0, 0, μ), μ ∈ R.

Theorem 4.3. Each equilibrium state eμ is stable.

Proof. Let Hλ = λ0H + λ1C, where λ0 = 0, λ1 = 1. Now dH =
[

1
c1
p1

1
c2
p2 α
]

and dC =
[
2p1 2p2 0

]
. Hence

dHλ(0, 0, μ) = 0 and d2Hλ(0, 0, μ) = diag(2, 2, 0). Also,

ker dH(eμ) ∩ ker dC(eμ) = span {(1, 0, 0), (0, 1, 0)}

and so d2Hλ(0, 0, μ)
∣∣
W×W

= diag (2, 2) is positive definite. Hence, by the extended energy-Casimir method,
eμ is stable. �

4.2. Integral curves

We give qualitative descriptions of the integral curves of 
H1, 
H2, and 
H3. Let E1, E2, and E3 denote the
set of equilibrium points for 
H1, 
H2, and 
H3, respectively.

Proposition 4.4. The level sets

Ci =
(
C−1(c0) ∩H−1

i (hi)
) \Ei, i = 1, 2, 3

are bounded embedded 1-submanifolds of se (2)∗ for c0 > 0, h1 > 0, h2 > −√
c0, and h3 ∈ R.

(Some typical cases for these sets are graphed in Figs. 1–3).

Proof. Let F1 : se (2)∗\E1 → R
2, p �→ (C(p), H1(p)). Note that, as E1 is closed, se (2)∗\E1 is open and thus an

embedded 3-submanifold of se (2)∗. We have

DF1(p) =
[
2p1 2p2 0
0 1

c1
p2

1
c2
p3

]

which has full rank unless p1 = 0 and p3 = 0. However, (0, p2, 0) ∈ E1. Thus C1 = F−1(c0, h1) is an embedded
1-submanifold of se (2)∗. For p = (p1, p2, p3) ∈ C1, we have p2

1 + p2
2 = c0 and 1

2

(
1
c1
p2
2 + 1

c2
p2
3

)
= h1. Hence

p2
1 ≤ c0, p2

2 ≤ c0, and p2
3 ≤ 2h1c2. Thus C1 is bounded.

A similar argument shows that C2 and C3 are bounded embedded 1-submanifolds of se (2)∗. The conditions
on c0, h1, and h2 are required such that the sets C1, C2, and C3 are nonempty. �

As Hi and C are constants of the motion, any non-constant integral curve p(·) of 
Hi evolves on Ci (where
c0 = C(p(0)) and hi = Hi(p(0))). Moreover, as each Ci is bounded, any integral curve lies in a compact subset
of se (2)∗. Hence (see, e.g., [1])
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Corollary 4.5. The vector fields 
H1, 
H2 and 
H3 are complete.

We now describe the integral curves of 
H1, 
H2, and 
H3. Let p(·) be a maximal integral curve of a complete
vector field on se (2)∗. A point p ∈ se (2)∗ is an ω-limit point of p(·) if there exists a sequence (tn) such that
tn → ∞ and p(tn) → p. Similarly, if there exists a sequence (tn) such that tn → −∞ and p(tn) → q , then
q is an α-limit point. The set of all α-limit points of p(·) is denoted limα p(·); the set of all ω-limit points of
p(·) is denoted limω p(·).
Theorem 4.6. Let p(·) : R → se (2)∗ be a non-constant maximal integral curve of 
Hi. Let C0

i be the corre-
sponding connected component of Ci containing p(0).

1. Suppose p(·) is an integral curve of 
H1.
(a) If C0

1 is closed (or equivalently cl C0
1 ∩ E1 = ∅), then p(·) is periodic.

(b) If C0
1 is not closed (or equivalently cl C0

1 ∩E1 �= ∅), then p(·) is bounded and the limit sets limω p(·) and
limα p(·) are singletons in E1.

In either case, p(·) has image C0
1 .

2. Suppose p(·) is an integral curve of 
H2.
(a) If C0

2 is closed (or equivalently cl C0
2 ∩ E2 = ∅), then p(·) is periodic.

(b) If C0
2 is not closed (or equivalently cl C0

2 ∩E2 �= ∅), then p(·) is bounded and the limit sets limω p(·) and
limα p(·) are singletons in E2.

In either case, p(·) has image C0
2 .

3. If p(·) is an integral curve of 
H3, then p(·) is periodic and has image C0
3 .

Proof. First we show that C0
i is closed if and only if cl C0

i ∩ Ei = ∅ (for i = 1, 2, 3). If C0
i is closed, then

cl C0
i = C0

i ⊆ (C−1(c0) ∩H−1
i (hi)
) \Ei and so cl C0

i ∩ Ei = ∅. Conversely, suppose cl C0
i ∩ Ei = ∅. Then cl C0

i ⊂
se (2)∗\Ei and cl C0

i ⊆ C−1(c0) ∩ H−1
i (hi), i.e., cl C0

i ⊆ Ci. However, as C0
i is connected, cl C0

i is connected.
Thus clC0

i = C0
i .

(1) We have that p(·) evolves on C0
1 . As C0

1 is a connected 1-manifold, it is diffeomorphic to either the circle
S or the real line R. (1a) Suppose C0

1 is closed. Then C0
1 is diffeomorphic to S. Let X be the push-forward

(to S) of the restriction of 
H1 to C0
1 . X is complete and nonzero everywhere. As S is compact, ‖X‖ attains

a positive minimum. Hence there is a finite interval [t0, t1] in which any integral curve of X covers S. Hence
any maximal integral curve of X is periodic. Consequently, p(·) is periodic (as it is diffeomorphic to a periodic
integral curve) and has image C0

1 .
(1b) Suppose C0

1 is not closed. As C1 is bounded, the limit sets limα p(·) and limω p(·) are non-empty,
connected, compact subsets of se (2)∗ (cf. [20]). Also p(·) is bounded. Now C0

1 is diffeomorphic to R. Let X
be the push-forward (to R) of the restriction of 
H1 to C0

1 . X is complete and nonzero everywhere. Hence, we
may assume X(q) > 0 for q ∈ R. Let q(·) : R → R be a maximal integral curve of X . For every compact
interval [q(t0), q1] or [q0, q(t1)] in R, ‖X‖ attains a positive minimum. Hence (for every such interval) there
exists a T ≥ 0 such that q(t0 + T ) > q1 or q(t1 − T ) < q0, respectively. From this we draw two conclusions.
First, any maximal integral curve of X covers R. Second, if (tn) is a sequence in R such that tn → ±∞ and
q(·) : R → R is a maximal integral curve, then (q(tn)) does not converge in R. Consequently, the image of
p(·) is C0

1 . Also, there are no α- or ω-limit points of p(·) in C0
1 . However, any α- or ω-limit point must be in

cl C0
1 ⊆ C−1(c0) ∩H−1

1 (h1).
We claim that limα p(·) ∩ C1 = ∅ and limω p(·) ∩ C1 = ∅. Suppose there exists p ∈ limα p(·) ∩ C1 or

p ∈ limω p(·) ∩ C1. Then p ∈ cl C0
1 , p ∈ C1, and p /∈ C0

1 . Hence C0
1 ∪ {p} is connected and C0

1 ∪ {p} ⊆ C1. Thus
C0
1 ∪ {p} is contained in the connected component C0

1 of C1 containing p(0), a contradiction. So we have

limα p(·) ⊆ C−1(c0) ∩H−1
1 (h1) limα p(·) ∩

((
C−1(c0) ∩H−1

1 (h1)
) \E1

)
= ∅

and similarly for limω p(·). Hence

limα p(·), limω p(·) ⊆ C−1(c0) ∩H−1
1 (h1) ∩ E1.
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A simple calculation shows that C−1(c0)∩H−1
1 (h1)∩E1 is finite and hence completely disconnected. Therefore,

as limα p(·) and limω p(·) are non-empty and connected, limα p(·) and limω p(·) are singletons.
For (2), a similar argument yields the result. (3) We show that C0

3 is closed by showing that cl C0
3 ∩ E3 = ∅.

The result then follows in the same way as for (1a). Suppose there exists p ∈ clC0
3 ∩ E3. Then p ∈ C−1(c0) ∩

H−1
3 (h3) ∩ E3. Hence, as p ∈ E3, p = (0, 0, μ) for some μ ∈ R. Hence, as p ∈ C−1(c0), we get c0 = 0, a

contradiction. �

5. Explicit integration

The reduced Hamilton equations (3.4)–(3.6) can be integrated by Jacobi elliptic functions. (In fact, (3.6)
can easily be integrated by trigonometric functions). In each of these cases, we obtain explicit expressions for
the integral curves of 
H . Before producing these results, we outline the basic approach employed in obtaining
them. (In each case, Mathematica is utilised to facilitate calculations). A similar approach was used in [2] for
single-input systems on SE (2).

Note 5.1. In this section we consider only non-constant integral curves.

First, we fix a Hamiltonian vector field 
H (specifically (3.4) or (3.5)). We then partition the set of all initial
conditions; this enables one to produce a single explicit expression for each (sub)case. The first separation is
made by considering when the level surfaces, defined by the constants of motion C and H , are tangent to one
another. This level of separation is sufficient for solving (3.4), but further partitioning (made retrospectively)
is needed in solving (3.5).

Next, we suppose that p̄(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H (satisfying some appropriate
conditions). We let h0 = H(p̄(0)) and c0 = C(p̄(0)) > 0. Then, as p̄(·) solves (3.4) or (3.5), we get that

d
dt
p̄2 = ±

√
1

c1c2
(c0 − p̄2

2) (2h0c1 − p̄2
2) (5.1)

d
dt
p̄1 = ±

√
1

c1c2
(c0 − p̄2

1) (2c1h0 − c0 − 2c1p̄1 + p̄2
1) (5.2)

respectively. In most cases, the respective (separable) differential equation is transformed into standard form
(see [4] or [15]). A formula for an elliptic integral is then applied to obtain an expression for p̄2(t) or p̄1(t),
respectively. (Observe however that (5.1) is already in standard form). Often, a good deal of further simplification
is then performed. Next, by use of the constants of motion C and H , expressions for p̄1(t), p̄2(t) and p̄3(t)
are determined up to a choice of sign and organised so as to be smooth (again involving further simplification).

Accordingly, we get a prospective (smooth) integral curve p̄(·) whose domain is extended to R. In some
special cases, the prospective integral curve p̄(·) may be produced by a limiting process from other results
already obtained, or by directly solving the differential equation, as is the case with (3.6). Then, by explicitly
differentiating p̄(·), we verify for which choices of sign p̄(·) is an integral curve of 
H . (This is then further
verified by solving the respective differential equation numerically for some suitable initial condition). Finally,
we show that any other integral curve p(·) : (−ε, ε) → se (2)∗ of 
H , evolving on C−1(c0)∩H−1(h0), is identical
to p̄(·) up to a translation in the independent variable and an allowable choice of sign.

Various properties of the Jacobi elliptic functions are involved in making the above mentioned calculations
(cf. [4, 15]). In particular, we use the periodicity properties (e.g., sn(x+K, k) = cd(x, k)), relations of squares
(e.g., 1 − k2sn2(x, k) = dn2(x, k)) and half-angle formulas (e.g., cn2

(
1
2 x, k
)

= cn(x, k)+dn(x, k)
1+dn(x, k) ).

We now produce the results for each typical case. (A summary of these results may be found in the appendix).
Only for Theorem 5.10 will a proof detailing the method used to obtain the result be provided. For the remaining
results we omit details pertaining to finding a maximal integral curve (they follow the same approach or are
easy to obtain by straightforward integration) and only verify that every other integral curve is identical up to
a translation in the independent variable.
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Figure 1. Typical cases of LiCP(1).

5.1. Homogeneous systems

There are three typical cases for the reduced extremal equations (3.4), corresponding to (a) c0 > 2c1h0, (b)
c0 = 2c1h0 and (c) c0 < 2c1h0. In Figure 1, we graph the level sets of H and C and their intersection for some
suitable values of h0, c0, c1 and c2. The stable equilibrium points (illustrated in blue) and unstable equilibrium
points (illustrated in red), as presented in Theorem 4.1, are also plotted in each case.

We begin our presentation of the integral curves of (3.4) with case (a). (In the following theorem, formula (2.7)
is used to obtain a prospective integral curve).

Theorem 5.2 (case a). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) = h0 > 0,
C(p(0)) = c0 > 0 and c0 > 2c1h0. Then there exists t0 ∈ R and σ ∈ {−1, 1} such that p(t) = p̄(t + t0) for
t ∈ (−ε, ε), where

⎧⎪⎨
⎪⎩
p̄1(t) = σ

√
c0 dn (Ω t, k)

p̄2(t) =
√

2c1h0 sn (Ω t, k)

p̄3(t) = −σ
√

2c2h0 cn (Ω t, k) ·

Here k =
√

2c1h0
c0

and Ω =
√

c0
c1c2

·

Proof. Verification that p̄(·) is an integral curve satisfying H(p̄(0)) = h0, C(p(0)) = c0 whenever c0 > 2c1h0 >
0 is straightforward. We have p1(0)2 +p2(0)2 = c0 and 1

c1
p2(0)2 + 1

c2
p3(0)2 = 2h0. Thus p2(0)2 ≤ 2h0c1 and so
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p1(0)2 = c0 − p2(0)2 ≥ c0 − 2h0c1 > 0. Let σ = sgn (p1(0)) (we have σ �= 0). Furthermore, −√
2h0c2 ≤ p3(0) ≤√

2h0c2, p̄3(0) = −σ√2c2h0 and p̄3(2K
Ω ) = σ

√
2c2h0. Hence there exists t1 ∈ R such that p̄3(t1) = p3(0). Now

p2(0)2 = 2h0c1 − c1
c2
p3(0)2 = 2h0c1 − c1

c2
p̄3(t1)2 = p̄2(t1)2.

Thus p2(0) = ±p̄2(t1). However, p̄2(−t) = −p̄2(t) and p̄3(−t) = p̄3(t). Therefore there exists t0 ∈ R (either
t0 = t1 or t0 = −t1) such that p3(0) = p̄3(t0) and p2(0) = p̄2(t0). Also

p1(0)2 = c0 − p2(0)2 = c0 − p̄2(t0)2 = p̄1(t0)2.

Hence, as sgn (p1(0)) = σ = sgn (p̄1(t0)), we get p1(0) = p̄1(t0). Thus p(0) = p̄(t0). Consequently the integral
curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

Next, by limiting c0 → 2c1h0 in Theorem 5.2 (and allowing for possible changes in sign), we get a prospective
integral curve for case (b).

Proposition 5.3 (case b). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) = h0 >
0, C(p(0)) = c0 > 0 and c0 = 2c1h0. Then there exists t0 ∈ R and σ1, σ2 ∈ {−1, 1} such that p(t) = p̄(t+ t0)
for t ∈ (−ε, ε), where ⎧⎪⎪⎨

⎪⎪⎩
p̄1(t) = σ1σ2

√
c0 sech (Ω t)

p̄2(t) = σ1
√
c0 tanh (Ω t)

p̄3(t) = −σ2

√
c0c2
c1

sech (Ω t) ·

Here Ω =
√

c0
c1c2

·

Proof. Let σ2 = −sgn (p3(0)) and let σ1 = σ2 sgn (p1(0)). We have p1(0)2 +p2(0)2 = c0. Thus −√
c0 ≤ p2(0) ≤√

c0 and so there exists t0 ∈ R such that p2(0) = p̄2(t0). A simple computation then yields p(0) = p̄(t0). (It
is also simple to verify that σ1 �= 0 and σ2 �= 0 provided that p(·) is not constant). Consequently the integral
curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

Lastly, for case (c), we obtain a prospective integral curve by use of formula (2.7).

Theorem 5.4 (case c). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) = h0 > 0,
C(p(0)) = c0 > 0 and c0 < 2c1h0. Then there exists t0 ∈ R and σ ∈ {−1, 1} such that p(t) = p̄(t + t0) for
t ∈ (−ε, ε), where ⎧⎪⎨

⎪⎩
p̄1(t) = σ

√
c0 cn (Ω t, k)

p̄2(t) =
√
c0 sn (Ω t, k)

p̄3(t) = −σ
√

2c2h0 dn (Ω t, k) ·

Here k =
√

c0
2c1h0

and Ω =
√

2h0
c2

·

Proof. Let σ = −sgn (p3(0)). We have p1(0)2 + p2(0)2 = c0 and 1
c1
p2(0)2 + 1

c2
p3(0)2 = 2h0. Hence p2(0)2 ≤ c0

and so p3(0)2 ≥ c2
c1

(2c1h0 − c0) > 0. Thus σ �= 0. Also, −√
c0 ≤ p2(0) ≤ √

c0, p̄2(K
Ω ) =

√
c0 and p̄2(3K

Ω ) =
−√

c0. Therefore there exists t1 ∈ [K
Ω ,

3K
Ω ] such that p2(0) = p̄2(t1). We have

p1(0)2 = c0 − p2(0)2 = c0 − p̄2(t1)2 = p̄1(t1)2.
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Thus p1(0) = ±p̄1(t1). Now p̄1(−t+ 2K
Ω ) = −p̄1(t) and p̄2(−t+ 2K

Ω ) = p̄2(t). Hence there exists t0 ∈ R (t0 = t1
or t1 = −t1 + 2K

Ω ) such that p1(0) = p̄1(t0) and p2(0) = p̄2(t0). Next

p3(0)2 = 2h0c2 − c2
c1
p2(0)2 = 2h0c2 − c2

c1
p̄2(t0)2 = p̄3(t0)2.

Hence, as sgn (p3(0)) = σ = sgn (p̄3(t0)), p3(0) = p̄3(t0). Thus p(0) = p̄(t0). Consequently the integral curves
t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

Remark 5.5. These three results are similar to those found by Sachkov [26]. However, our approach and
formulation are different. The control problem LiCP(1), or rather, the associated sub-Riemannian problem, is
further studied in [17, 27, 28].

5.2. Inhomogeneous systems

In order to separate qualitatively different cases of (3.5), we determine at which points (and for what values
of h0, c0, c1 and c2) the cylinder C−1(c0) and the paraboloid H−1(h0) are tangent to one another. If they
are tangent at a point p = (p1, p2, p3), then the gradients of the functions defining these level surfaces at p
must be parallel, i.e.,

∇C(p) =
[
2p1 2p2 0

]
= r
[
1 1

c1
p2

1
c2
p3

]
= r∇H(p)

for some r ∈ R. There are three distinct possibilities:⎧⎨
⎩
p1 = 0
p2 = 0
p3 = ±√

2h0c2

⎧⎨
⎩
p1 = c1
p2 = ±√c0 − c21 �= 0
p3 = 0

⎧⎨
⎩
p1 �= 0
p2 = 0
p3 = 0.

The first case corresponds to a constant solution and is therefore ignored. By back substitution (into C and
H), the third case yields h2

0 = c0; this motivates us to distinguish between the three signs for h2
0 − c0. (Observe

however that the cases h0 = −√
c0 and c0 = 0 correspond to constant solutions, whereas the situation

h0 < −√
c0 is impossible). The second case only occurs when c0 − c21 > 0 (and is hence distinguished from

the case c0 − c21 ≤ 0). Back substitution yields h0 = 1
2c1

(c0 + c21), motivating another separation of three cases.
However, not all combinations of these cases are possible.

Lemma 5.6. If c0 − c21 > 0 and h0 ≥ 1
2c1

(c0 + c21), then h0 >
√
c0.

Proof. It suffices to show that 1
2c1

(c0 + c21) >
√
c0. Now

1
2c1

(c0 + c21) >
√
c0

⇔ (c0 + c21)
2 > 4c0c21

⇔ c20 − 2c0c21 + c41 > 0
⇔ (c0 − c21)

2 > 0

thus yielding the result. �

Some of the above mentioned cases are (retrospectively) further subdivided to facilitate integration. An index
of the final subdivision of cases is provided in Table 1.

In Figure 2, we graph the level sets of H and C and their intersection for each major case (i.e., by choosing
some suitable values for h0, c0, c1 and c2). The stable equilibrium points (illustrated in blue) and unstable
equilibrium points (illustrated in red), as presented in Theorem 4.2, are also plotted in each case.

We start our presentation of the integral curves of (3.5) by considering case 1a(i). (Formula (2.7) is utilised
in the following theorem).
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Figure 2. Typical cases of LiCP(2).
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Table 1. Index of typical cases for reduced extremals of LiCP(2).

Conditions Index

c0 − c2
1 ≤ 0

h0 >
√

c0

c1 − h0 >
√

h2
0 − c0 1a(i)

c1 − h0 =
√

h2
0 − c0 1a(ii)

c1 − h0 <
√

h2
0 − c0 1a(iii)

h0 =
√

c0
h0 < c1 1b(i)

h0 = c1 1b(ii)

−√
c0 < h0 <

√
c0 1c

c0 − c2
1 > 0

h0 > 1
2c1

(c0 + c2
1) 2a

h0 = 1
2c1

(c0 + c2
1) 2b

h0 <
c0+c21
2c1

h0 >
√

c0 2c(i)

h0 =
√

c0 2c(ii)

−√
c0 < h0 <

√
c0 2c(iii)

Theorem 5.7 (case 1a(i)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) = h0,
C(p(0)) = c0 > 0 and the conditions of case 1a(i) are satisfied. Then there exists t0 ∈ R and σ ∈ {−1, 1} such
that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) =
√
c0

√
h0 − δ −√

h0 + δ sn (Ω t, k)√
h0 + δ −√

h0 − δ sn (Ω t, k)

p̄2(t) = −σ
√

2c0δ
cn (Ω t, k)√

h0 + δ −√
h0 − δ sn (Ω t, k)

p̄3(t) =
2σδ

√
c2

k′
dn (Ω t, k)√

h0 + δ −√
h0 − δ sn (Ω t, k)

·

Here δ =
√
h2

0 − c0, Ω =
√

(h0+δ)(c1−h0+δ)
c1c2

, k =
√

(h0−δ)(c1−h0−δ)
(h0+δ)(c1−h0+δ) and k′ =

√
2δc1

(h0+δ)(c1−h0+δ) ·

Proof. Again, verification that p̄(·) is a maximal integral curve satisfying H(p̄(0)) = h0 and C(p(0)) = c0
whenever c0−c21 ≤ 0, h0 >

√
c0 and c1−h0 >

√
h2

0 − c0 is straightforward. (Also, note that
√
h0 + δ >

√
h0 − δ

and so p̄(t) is defined for all t ∈ R). We have p1(0)2 + p2(0)2 = c0, p1(0) + 1
2

(
1
c1
p2(0)2 + 1

c2
p3(0)2
)

= h0 and

h0 >
√
c0. Thus −√

c0 ≤ p1(0) ≤ √
c0. Also p3(0)2 = h0 − p1(0) − 1

2c1
(c0 − p1(0)2). Now

min
−√

c0≤p1≤√
c0

(
−p1 − 1

2c1
(c0 − p2

1)
)

= −√
c0.

Hence p3(0)2 ≥ h0 −√
c0 > 0. Hence p3(0) �= 0. Let σ = sgn (p3(0)). Now p̄1(−K

Ω ) =
√
c0 and p̄1(K

Ω ) = −√
c0.

Thus there exists t1 ∈ [−K
Ω ,

K
Ω ] such that p̄1(t1) = p1(0). Next

p2(0)2 = c0 − p1(0)2 = c0 − p̄1(t1)2 = p̄2(t1)2.

Hence p2(0) = ±p̄2(t1). Now p̄1(−t+ 2K
Ω ) = p̄1(t) and p̄2(−t+ 2K

Ω ) = −p̄2(t). Thus there exists t0 ∈ R (t0 = t1
or t0 = −t1 + 2K

Ω ) such that p1(0) = p̄1(t0) and p2(0) = p̄2(t0). We have

p3(0)2 = 2c2h0 − 2c2p1(0) − c2
c1
p2(0)2 = 2c2h0 − 2c2p̄1(t0) − c2

c1
p̄2(t0)2 = p̄3(t0)2.

Thus, as sgn (p3(0)) = σ = sgn (p̄3(t0)), we get p3(0) = p̄3(t0). Hence p(0) = p̄(t0). Consequently the integral
curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �
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Next, by limiting δ → c1 − h0 (from the right) in the above result, we get a prospective integral curve for
case 1a(ii). The proof is omitted as it is essentially the same as for Theorem 5.7 (K is replaced by π

2 ).

Proposition 5.8 (case 1a(ii)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) =
h0, C(p(0)) = c0 > 0 and the conditions of case 1a(ii) are satisfied. Then there exists t0 ∈ R and σ ∈ {−1, 1}
such that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) =
√
c0

√
h0 − δ −√

h0 + δ sin(Ω t)√
h0 + δ −√

h0 − δ sin(Ω t)

p̄2(t) = −σ
√

2c0δ
cos(Ω t)√

h0 + δ −√
h0 − δ sin(Ω t)

p̄3(t) =
2σδ

√
c2√

h0 + δ −√
h0 − δ sin(Ω t)

·

Here δ =
√
h2

0 − c0 and Ω =
√

2(c1−h0)
c2

·
It turns out that integral curves satisfying the conditions of case 1a(iii) or 2a take the same explicit expression.

We shall provide a detailed proof for the result.

Lemma 5.9. For cases 1a(iii) and 2a we have

h0 − c1 +
√
h2

0 − c0 > 0 and c1 − h0 +
√
h2

0 − c0 > 0.

Theorem 5.10 (cases 1a(iii) and 2a). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that
H(p(0)) = h0, C(p(0)) = c0 > 0 and the conditions of case 1a(iii) or 2a are satisfied. Then there exists t0 ∈ R

and σ ∈ {−1, 1} such that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) =
√
c0

√
h0 − δ −√

h0 + δ cn (Ω t, k)√
h0 + δ −√

h0 − δ cn (Ω t, k)

p̄2(t) = σ
√

2c0δ
sn (Ω t, k)√

h0 + δ −√
h0 − δ cn (Ω t, k)

p̄3(t) = 2σδ
√
c2

dn (Ω t, k)√
h0 + δ −√

h0 − δ cn (Ω t, k)
·

Here δ =
√
h2

0 − c0, Ω =
√

2δ
c2

and k =
√

(h0−δ)(h0−c1+δ)
2δc1

·
Proof. We start by explaining how the expression for p̄(·) was found. A number of convenient assumptions
are made implicitly and translations in the independent variable are discarded. We shall verify that p̄(·) is a
maximal integral curve (defined for any h0, c0, c1 and c2 satisfying the conditions of case 1a(iii) or 2a) only
at the end of the construction.

Suppose p̄(·) is an integral curve of 
H satisfying the conditions of 1a(iii) or 2a, where h0 = H(p̄(0)) and
c0 = C(p̄(0)). We transform (5.2) into standard form (see, e.g., [4] or [15]). First, we can rewrite (5.2) as

dp̄1

dt
=
√

(A1(p̄1 − r1)2 +B1(p̄1 − r2)2) (A2(p̄1 − r1)2 +B2(p̄1 − r2)2)

where

A1 =
h0 + δ

2c1c2δ
> 0 A2 = −h0 − c1 + δ

2δ
< 0

B1 = −h0 − δ

2c1c2δ
< 0 B2 = −c1 − h0 + δ

2δ
< 0

r1 = h0 − δ r2 = h0 + δ.
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Then we have ∫
dt =
∫

dp̄1√
(A1(p̄1 − r1)2 +B1(p̄1 − r2)2) (A2(p̄1 − r1)2 +B2(p̄1 − r2)2)

·

We make a change of variable s = p̄1−r1
p̄1−r2

, which then yields

t =
1

(r1 − r2)
√−A1A2

∫ p̄1(t)−r1
p̄1(t)−r2

0

ds(
B2
A2

+ s2
)(

−B1
A1

− s2
) ·

Applying formula (2.8), we get

(r1 − r2)
√
−A1A2 t =

1√
B2
A2

− B1
A1

sd−1

⎛
⎝
√

B2
A2

− B1
A1√

−B1
A1

√
B2
A2

p̄1(t) − r1
p̄1(t) − r2

,

√
−B1

A1√
B2
A2

− B1
A1

⎞
⎠ ·

Solving for p̄1(t) we find

p̄1(t) =
r2

√
B1B2

B1A2−B2A1
sd
(
(r1 − r2)

√
B1A2 −B2A1 t,

√
B1A2

B1A2−B2A1

)
− r1√

B1B2
B1A2−B2A1

sd
(
(r1 − r2)

√
B1A2 −B2A1 t,

√
B1A2

B1A2−B2A1

)
− 1

·

Substituting the values for A1, A2, B1, B2, r1, r2 and simplifying then yields

p̄1(t) =
√
h2

0 − δ2
√
h0 − δ −√

h0 + δ k′ sd (Ω t, k)√
h0 + δ −√

h0 − δ k′ sd (Ω t, k)
·

Now cn (x+3K, k) = k′ sd (x, k). Thus, by making a suitable translation in t, we get the following (prospective)
expression for p̄1

p̄1(t) =
√
h2

0 − δ2
√
h0 − δ −√

h0 + δ cn (Ω t, k)√
h0 + δ −√

h0 − δ cn (Ω t, k)
·

Next, as C(p̄(t)) = c0, we get

p̄2(t)2 = c0 − p̄1(t)2 =
2δ
(
h2

0 − δ2
)

sn (Ω t, k)2(√
h0 + δ −√

h0 − δ cn (Ω t, k)
)2 ·

Hence

p̄2(t) = σ2

√
2c0δ sn (Ω t, k)√

h0 + δ −√
h0 − δ cn (Ω t, k)

for some σ2 ∈ {−1, 1}. By a similar computation, using the constant of motion H , we obtain

p̄3(t) = σ3
2δ
√
c2 dn (Ω t, k)√

h0 + δ −√
h0 − δ cn (Ω t, k)

for some σ3 ∈ {−1, 1}. We now show that p̄(·) is an integral curve for certain values of σ2 and σ3. From (3.5),
we require that d

dt p̄1(t) = 1
c2
p̄2(t)p̄3(t). Now

d
dt
p̄1(t) − 1

c2
p̄2(t)p̄3(t) =

2δ
√

2δ dn (Ω t, k) sn (Ω t, k)
√

h2
0−δ2

c2
(1 − σ2σ3)(√

h0 + δ −√
h0 − δ cn (Ω t, k)

)2 ·
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Therefore, if σ2 = σ3 = σ ∈ {−1, 1}, then d
dt p̄1(t) = 1

c2
p̄2(t)p̄3(t). For this choice of σ2 and σ3, further

calculation shows that d
dt p̄2(t) = − 1

c2
p̄1(t)p̄3(t) and d

dt p̄3(t) =
(

1
c1
p̄1(t) − 1

)
p̄2(t). This motivates p̄(·) as a

prospective integral curve.
Elementary calculations show that p̄(·) is defined over R when either set of conditions (case 1a(iii) or 2a) is

satisfied. In particular, note that the denominator in each expression is strictly positive, the constants δ, k and
Ω are real, and 0 < k < 1. Thus p̄(·) is a maximal integral curve of 
H for any h0, c0, c1 and c2 satisfying
the conditions of case 1a(iii) or 2a.

Finally, we claim that any integral curve p(·) (as described in the statement of the theorem) must be of
the form p(t) = p̄(t + t0) for some σ ∈ {−1, 1} and t0 ∈ R. By Theorem 4.6, p̄(·) covers each connected
component of H−1(h0) ∩ C−1(c0) (for each σ ∈ {−1, 1}, respectively) as illustrated in Figures 2a and 2d.
Thus, as p(0) ∈ H−1(h0) ∩ C−1(c0) by assumption, there must exists t0 ∈ R and σ ∈ {−1, 1} satisfying the
conditions of the theorem. We now give a proof for this claim.

We have p1(0)2 + p2(0)2 = c0 and p1(0) + 1
2

(
1
c1
p2(0)2 + 1

c2
p3(0)2
)

= h0. Thus −√
c0 ≤ p1(0) ≤ √

c0. Also
1

2c2
p3(0)2 = h0 − p1(0) − 1

2c1
(c0 − p1(0)2). Suppose the conditions of case 1a(iii) hold. Then

min
−√

c0≤p1≤√
c0

(
−p1 − 1

2c1
(c0 − p2

1)
)

= −√
c0.

Hence 1
2c2
p3(0)2 ≥ h0 −√

c0 > 0 and so p3(0) �= 0. On the other hand, suppose the conditions of case 2a hold.
Then

min
−√

c0≤p1≤√
c0

(
−p1 − 1

2c1
(c0 − p2

1)
)

= − 1
2c1

(c0 + c21).

Hence 1
2c2
p3(0)2 ≥ h0 − 1

2c1
(c0 + c21) > 0 and so p3(0) �= 0.

Let σ = sgn (p3(0)). Now p̄1(0) = −√
c0 and p̄1(2K

Ω ) =
√
c0. Thus there exists t1 ∈ [0, 2K

Ω ] such that
p̄1(t1) = p1(0). Next we have

p2(0)2 = c0 − p1(0)2 = c0 − p̄1(t1)2 = p̄2(t1)2.

Therefore p2(0) = ±p̄2(t1). Now p̄1(−t) = p̄1(t) and p̄2(−t) = −p̄2(t). Hence there exists t0 ∈ R (t0 = t1 or
t0 = −t1) such that p1(0) = p̄1(t0) and p2(0) = p̄2(t0). Next

p3(0)2 = 2c2h0 − 2c2p1(0) − c2
c1
p2(0)2 = 2c2h0 − 2c2p̄1(t0) − c2

c1
p̄2(t0)2 = p̄3(t0)2.

Thus, as sgn (p3(0)) = σ = sgn (p̄3(t0)), we get p3(0) = p̄3(t0). Hence p(0) = p̄(t0). Consequently the integral
curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

Limiting processes were unsuccessful in producing a prospective integral curve for case 1b. Therefore, we
resorted to integrating case 1b(i) independently by use of formula (2.9).

Proposition 5.11 (case 1b(i)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) =
h0, C(p(0)) = c0 > 0 and the conditions of case 1b(i) are satisfied. Then there exists t0 ∈ R and σ ∈ {−1, 1}
such that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) =
h0

2
c1(cosh(2Ω t) − 3) + 2h0

c1 cosh2(Ω t) − h0

p̄2(t) = 2σh0

√
c1 (c1 − h0)

sinh(Ω t)
c1 cosh2(Ω t) − h0

p̄3(t) = 2σ (c1 − h0)
√
c2h0

cosh(Ω t)
c1 cosh2(Ω t) − h0

·

Here Ω =
√

h0(c1−h0)
c1c2

·
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Proof. We have p1(0)2 + p2(0)2 = c0, p1(0) + 1
2

(
1
c1
p2(0)2 + 1

c2
p3(0)2
)

= h0 and h0 =
√
c0. If p3(0) = 0, then

a simple calculation shows that p2(0) = 0 and so p(·) is constant. Hence p3(0) �= 0 (if p(·) is not constant).
Let σ = sgn (p3(0)).

Now −√
c0 ≤ p1(0) <

√
c0, p̄1(0) = −√

c0 and limt→∞ p̄1(t) =
√
c0. Thus there exists t1 ∈ R such that

p̄1(t1) = p1(0). Next

p2(0)2 = c0 − p1(0)2 = c0 − p̄1(t1)2 = p̄2(t1)2.

Hence p2(0) = ±p̄2(t1). Now p̄1(−t) = p̄1(t) and p̄2(−t) = −p̄2(t). Thus there exists t0 ∈ R (t0 = t1 or
t0 = −t1) such that p1(0) = p̄1(t0) and p2(0) = p̄2(t0). We have

p3(0)2 = 2c2h0 − 2c2p1(0) − c2
c1
p2(0)2 = 2c2h0 − 2c2p̄1(t0) − c2

c1
p̄2(t0)2 = p̄3(t0)2.

Thus, as sgn (p3(0)) = σ = sgn (p̄3(t0)), we get p3(0) = p̄3(t0). Hence p(0) = p̄(t0). Consequently the integral
curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

A simple calculation (either limiting h0 → c1 from the left in the above case, or integrating (5.2) directly)
then yields a prospective integral curve for case 1b(ii). The proof is omitted as it is essentially the same as for
Proposition 5.11.

Proposition 5.12 (case 1b(ii)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) =
h0, C(p(0)) = c0 > 0 and the conditions of case 1b(ii) are satisfied. Then there exists t0 ∈ R and σ ∈ {−1, 1}
such that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p̄1(t) = c1
c1t

2 − c2
c1t2 + c2

p̄2(t) = 2σc1
√
c1c2

t

c1t2 + c2

p̄3(t) = 2σc2
√
c1c2

1
c1t2 + c2

·

For case 1c, the roots of the two quadratics in (5.2) need to be deinterlaced before this differential equation
can be transformed into standard form. Consequently, the expression for this integral curve is quite involved. It
turns out that integral curves satisfying the conditions of case 2c(iii), take the same explicit expression as those
of case 1c. (The following result utilises formula (2.7)).

Theorem 5.13 (cases 1c and 2c(iii)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that
H(p(0)) = h0, C(p(0)) = c0 > 0 and the conditions of case 1c or 2c(iii) are satisfied. Then there exists t0 ∈ R

such that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) = η1

2
√

c0c1−ρ2

2
√

c0c1+ρ2

√
ρ1 + ρ2 −√

ρ1 − ρ2 cd (Ω t, k)
√
ρ1 + ρ2 −√

ρ1 − ρ2 cd (Ω t, k)

p̄2(t) = −η2 k
′

√
k

sd
(

1
2Ω t, k

)√
1 + nd (Ω t, k)

√
1 + k cd (Ω t, k)√

ρ1 + ρ2 −√
ρ1 − ρ2 cd (Ω t, k)

p̄3(t) = − η3√
k

cn
(

1
2Ω t, k

)√
1 + nd (Ω t, k)

√
1 − k cd (Ω t, k)√

ρ1 + ρ2 −√
ρ1 − ρ2 cd (Ω t, k)

·
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Here

δ =
√
c21 − 2c1h0 + c0 k =

√
ρ1 − 1

2

(√
c0 + c1 − δ

)
2 − ρ2

ρ1 − 1
2

(√
c0 + c1 − δ

)
2 + ρ2

ρ1 = (c1 + 2δ)
√
c0 + δ (δ − c1) + c0 k′ =

√
2ρ2

ρ1 − 1
2

(√
c0 + c1 − δ

)
2 + ρ2

ρ2 = 2 4
√
c0

√
δ ((

√
c0 + δ) 2 − c21) Ω =

√
ρ1 − 1

2

(√
c0 + c1 − δ

)
2 + ρ2

2c1c2
and

η1 =

(
2c1

√
c0 + ρ2

)
2
(
δ +

√
c0
)

η2 =
√√

c0 (
√
c0 + c1 − δ) (ρ2 + (

√
c0 + c1 − δ) c1 − ρ1)

η3 =

√√√√√c2 (ρ1 − ρ2) ρ2

(
4δc1 +

(
δ√
c0

− 1
)
ρ2

)
4
(
δ +

√
c0
)2
c1

·

Proof. Verification that p̄(·) is an integral curve is quite involved. However, it is sufficient to show that ˙̄p1(t) =
1
c2
p̄2(t)p̄3(t), p̄1(t)2 + p̄2(t)2 = c0 and p̄1(t) + 1

2

(
1
c1
p̄2(t)2 + 1

c2
p̄3(t)2
)

= h0.

We have p1(0)2 + p2(0)2 = c0 and p1(0) + 1
2

(
1
c1
p2(0)2 + 1

c2
p3(0)2
)

= h0. Hence −√
c0 ≤ p1(0) ≤ √

c0. Also,

p1(0) + 1
2c1

(c0 − p1(0)2) − h0 ≤ 0. Thus 1
2c1

(p1(0) − (c1 − δ)) (p1(0) − (c1 + δ)) ≥ 0, and so p1(0) ≤ c1 − δ or
p1(0) ≥ c1 + δ. It turns out that −√

c0 ≤ c1 − δ ≤ √
c0 ≤ c1 + δ. Therefore −√

c0 ≤ p1(0) ≤ c1 − δ.
We have that

p̄1(−t) = p̄1(t) p̄1

(
t+ 4K

Ω

)
= p̄1(t) p̄1

(−t+ 4K
Ω

)
= p̄1(t)

p̄2(−t) = −p̄2(t) p̄2

(
t+ 4K

Ω

)
= −p̄2(t) p̄2

(−t+ 4K
Ω

)
= p̄2(t)

p̄3(−t) = p̄3(t) p̄3

(
t+ 4K

Ω

)
= −p̄3(t) p̄3

(−t+ 4K
Ω

)
= −p̄3(t).

Now p̄1(0) = −√
c0 and p̄1(2K

Ω ) = c1 − δ. Hence there exists t1 ∈ [0, 2K
Ω ] such that p̄1(t1) = p1(0). Then (by

using the constants of motion C and H ) we get p2(0) = ±p̄2(t1) and p3(0) = ±p̄3(t1). Therefore there exists
t0 ∈ R ( t0 = t1, t0 = −t1, t0 = t1 + 2K

Ω , or t0 = −t1 + 2K
Ω ) such that p(0) = p̄(t0). Consequently the integral

curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

We now proceed to case 2b. In this case, a prospective integral curve is found by limiting h0 → 1
2c1

(
c0 + c1

2
)

from the left in case 2a (Thm. 5.10) and allowing for possible changes in sign.

Proposition 5.14 (case 2b). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) =
h0, C(p(0)) = c0 > 0 and the conditions of case 2b are satisfied. Then there exists t0 ∈ R and σ1, σ2 ∈ {−1, 1}
such that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) = c1 +
c0 − c21

c1 − σ1
√
c0 cosh(Ω t)

p̄2(t) =
√
c0
σ1σ2

√
c0 − c21 sinh(Ω t)

c1 − σ1
√
c0 cosh(Ω t)

p̄3(t) =
σ2

(
c0 − c21

)√
c2
c1

c1 − σ1
√
c0 cosh(Ω t)

·

Here Ω =
√

c0−c12

c1c2
·
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Proof. We have p1(t)2 + p2(t)2 = c0 and p1(t) + 1
2

(
1
c1
p2(t)2 + 1

c2
p3(t)2
)

= h0. Hence we have 2c1p1(t) +

p2(t)2 − c0 − c21 = − c1
c2
p3(t)2. Let s(p1, p2) = 2c1p1 + p2

2 − c0 − c21. Consider the restriction of s to the circle
S = {(p1, p2) : p2

1 + p2
2 = c0}; s|S has exactly two roots (p1, p2) = (c1,±

√
c0 − c21).

We claim that p1(t) �= c1 and p3(t) �= 0 for any t ∈ (−ε, ε). Suppose p3(t1) = 0 for some t1. Then p1(t1) = c1
and so p(t1) is a equilibrium point. Hence we have p(·) is a constant trajectory, a contradiction. On the other
hand suppose p1(t1) = c1 for some t1. Then p2(t1)2 = c0 − c21 and so p3(t1) = 0. Hence p(·) is a constant
trajectory, a contradiction. Now sgn (p̄1(t) − c1) = −σ1 and sgn (p̄3 (t)) = −σ1σ2. Let σ1 = −sgn (p1(0) − c1)
and σ2 = −σ1 sgn (p3(0)).

We claim that there exists t0 ∈ R such that p2(0) = p̄2(t0) and sgn (p1(0)) = sgn (p̄1(t0)). We need to
consider two cases for p1(0). First suppose p1(0) > c1. Then σ1 = −1. We have −√c0 − c21 < p2(0) <

√
c0 − c21,

lim
t→−∞ p̄2(t) = σ2

√
c0 − c21 lim

t→∞ p̄2(t) = −σ2

√
c0 − c21

and p̄1(t) > 0 for t ∈ R. Thus there exists t0 ∈ R satisfying the claim. Now suppose p1(0) < c1. Then σ1 = 1.
Let α = 1

Ω cosh−1
(√

c0

c1

)
> 0. We have

p̄2 (−α) = σ2
√
c0 p̄2 (α) = −σ2

√
c0

lim
t→−∞ p̄2(t) = σ2

√
c0 − c21 lim

t→∞ p̄2(t) = −σ2

√
c0 − c21

and

p̄1(t) < 0 for t ∈ (−∞,−α) ∪ (α,∞)
p̄1(t) > 0 for t ∈ (−α, α) .

Note that −∞ < −α < α < ∞. We have −√
c0 ≤ p2(0) ≤ √

c0. If p1(0) ≤ 0 then there exists t0 ∈ [−α, α]
satisfying the claim. If 0 < p1 < c1, then −√

c0 < p2(0) < −
√
c0 − c21 or

√
c0 − c21 < p2(0) <

√
c0. In either

case there exists t0 ∈ (−∞,−α) ∪ (α,∞) satisfying the claim.
By using the constant of motion C, we find p1(0)2 = p̄1(t0)2. However, we have that sgn (p1(0)) =

sgn (p̄1(t0)) and so p1(0) = p̄1(t0). Next, by using the constant of motion H , we find p3(0)2 = p̄3(t0)2.
However sgn (p3(0)) = −σ1σ2 = sgn (p̄3(t0)) and so p3(0) = p̄3(t0). Consequently the integral curves t �→ p(t)
and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are identical. �

Moving on to case 2c(i), we again find a prospective integral curve by use of formula (2.9).

Theorem 5.15 (case 2c(i)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) = h0,
C(p(0)) = c0 > 0 and the conditions of case 2c(i) are satisfied. Then there exists t0 ∈ R and σ ∈ {−1, 1} such
that p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) = (h0 − δ)
h0+δ
h0−δk

′√h0 − δ − σ
√
h0 + δ dn (Ω t, k)

k′
√
h0 − δ − σ

√
h0 + δ dn (Ω t, k)

p̄2(t) = −k
√

2δ (h2
0 − δ2)

cn (Ω t, k)
k′
√
h0 − δ − σ

√
h0 + δ dn (Ω t, k)

p̄3(t) = 2σδk′
√
c2

sn (Ω t, k)
k′
√
h0 − δ − σ

√
h0 + δ dn (Ω t, k)

·

Here δ =
√
h2

0 − c0, Ω =
√

(h0−δ)(h0−c1+δ)
c1c2

, k =
√

2δc1
(h0−δ)(h0−c1+δ) and k′ =

√
(h0+δ)(h0−c1−δ)
(h0−δ)(h0−c1+δ) ·
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Proof. We have p1(0)+ 1
2

(
1
c1
p2(0)2 + 1

c2
p3(0)2
)

= h0 and p1(0)2+p2(0)2 = c0. Hence p1(0)+ 1
2c1
p2(0)2−h0 ≤ 0.

Let s(p1, p2) = p1 + 1
2c1
p2
2 − h0. Consider the restriction of s to the circle S = {(p1, p2) : p2

1 + p2
2 = c0}; s|S

has exactly four roots (p1, p2) = (α1,±α2) and (p1, p2) = (β1,±β2), where

α1 = c1 +
√
c0 + c21 − 2c1h0 α2 =

√
2c1

√
h0 − c1 −

√
c0 + c21 − 2c1h0

β1 = c1 −
√
c0 + c21 − 2c1h0 β2 =

√
2c1

√
h0 − c1 +

√
c0 + c21 − 2c1h0.

Consequently, if p1(0) > c1, then α1 ≤ p1(0) ≤ √
c0. On the other hand, if p1(0) < c1, then −√

c0 ≤ p1(0) ≤ β1.
It is easy to show, under the conditions of 2c(i), that p1(0) �= c1. Let σ = −sgn (p1(0) − c1). Suppose

p1(0) > c1, i.e., σ = −1. A somewhat involved computation yields p̄1(0) = α1 and p̄1(K
Ω ) =

√
c0. Hence there

exists t1 ∈ [0, K
Ω ] such that p̄1(t1) = p1(0). On the other hand, suppose p1(0) < c1, i.e., σ = 1. Again, a

somewhat involved computation yields p̄1(0) = β1 and p̄1(K
Ω ) = −√

c0. Hence there again exists t1 ∈ [0, K
Ω ]

such that p̄1(t1) = p1(0).
Finally, we claim that there exists t0 ∈ R such that p̄(t0) = p(0). By using the constants of motion C and

H , we get p2(0) = ±p̄2(t1) and p3(0) = ±p̄3(t1). Now

p̄1(−t) = p̄1(t) p̄1

(
t+ 2K

Ω

)
= p̄1(t) p̄1

(−t+ 2K
Ω

)
= p̄1(t)

p̄2(−t) = p̄2(t) p̄2

(
t+ 2K

Ω

)
= −p̄2(t) p̄2

(−t+ 2K
Ω

)
= −p̄2(t)

p̄3(−t) = −p̄3(t) p̄3

(
t+ 2K

Ω

)
= −p̄3(t) p̄3

(−t+ 2K
Ω

)
= p̄3(t).

Therefore there exists t0 ∈ R ( t0 = t1, t0 = −t1, t0 = t1 + 2K
Ω , or t0 = −t1 + 2K

Ω ) such that p(0) = p̄(t0).
Consequently the integral curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are
identical. �

We are left to consider case 2c(ii). By limiting c0 → h2
0 in case 2c(iii) (Thm. 5.13) and allowing for possible

changes in sign, we obtain a prospective integral curve.

Proposition 5.16 (case 2c(ii)). Suppose p(·) : (−ε, ε) → se (2)∗ is an integral curve of 
H such that H(p(0)) =
h0, C(p(0)) = c0 > 0 and the conditions of case 2c(ii) are satisfied. Then there exists t0 ∈ R such that
p(t) = p̄(t+ t0) for t ∈ (−ε, ε), where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄1(t) = −√
c0

√
c0 + 1

2c1(−3 + cos(2Ω t))√
c0 − 1

2c1(1 + cos(2Ω t))

p̄2(t) =
2
√
c0
(√
c0 − c1

)
c1 sin(Ω t)

√
c0 − 1

2c1(1 + cos(2Ω t))

p̄3(t) =
2
(√
c0 − c1

)√√
c0c2 cos(Ω t)√

c0 − 1
2c1(1 + cos(2Ω t))

·

Here Ω =
√√

c0(
√

c0−c1)
c1c2

·

Proof. We have p1(0)+ 1
2

(
1
c1
p2(0)2 + 1

c2
p3(0)2
)

= h0 and p1(0)2+p2(0)2 = c0. Hence p1(0)+ 1
2c1
p2(0)2−h0 ≤ 0.

Let s(p1, p2) = p1 + 1
2c1
p2
2 − h0. Consider the restriction of s to the circle S = {(p1, p2) : p2

1 + p2
2 = c0}; s|S

has exactly three roots

(p1, p2) = (
√
c0, 0) (p1, p2) =

(
2c1 −√

c0,±2
√
c1

√√
c0 − c1

)
.
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Consequently p1(0) =
√
c0 or −√

c0 ≤ p1(0) ≤ 2c1 − √
c0. However, if p1(0) =

√
c0, then p2(0) = 0 and

p3(0) = 0, i.e., p(·) is a constant trajectory. Thus this case can be discarded.
Now p̄1(0) = −√

c0 and p̄1( π
2Ω ) = 2c1 − √

c0. Thus there exists t1 ∈ [0, π
2Ω ] such that p̄1(t1) = p1(0). By

using the constants of motion C and H , we get p2(0) = ±p̄2(t1) and p3(0) = ±p̄3(t1). Now

p̄1(−t) = p̄1(t) p̄1

(
t+ π

Ω

)
= p̄1(t) p̄1

(−t+ π
Ω

)
= p̄1(t)

p̄2(−t) = −p̄2(t) p̄2

(
t+ π

Ω

)
= −p̄2(t) p̄2

(−t+ π
Ω

)
= p̄2(t)

p̄3(−t) = p̄3(t) p̄3

(
t+ π

Ω

)
= −p̄3(t) p̄3

(−t+ π
Ω

)
= −p̄3(t).

Therefore there exists t0 ∈ R ( t0 = t1, t0 = −t1, t0 = t1 + π
Ω , or t0 = −t1 + π

Ω ) such that p(0) = p̄(t0).
Consequently the integral curves t �→ p(t) and t �→ p̄(t+ t0) solve the same Cauchy problem, and therefore are
identical. �

Finally, let us consider the invariant control problem LiCP(3). There is only one typical case which is easy
to integrate. Again, we graph the level sets of H and C and their intersection.
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Figure 3. Typical reduced extremal of LiCP(3).

Proposition 5.17. The reduced Hamilton equations (3.6) have the solutions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1(t) =
√
c0 sin (α t+ t0)

p2(t) =
√
c0 cos (α t+ t0)

p3(t) = h0
α − c0

2α

(
1
c1

sin2 (α t+ t0) + 1
c2

cos2 (α t+ t0)
)

where c0 = C(p(0)), h0 = H(p(0)) and t0 ∈ R.
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6. Conclusion

This paper shows that there are only three types of two-input left-invariant control affine systems on SE (2)
(up to equivalence), and then studies a general optimal control problem (with quadratic cost) for each type. In
each case the problem is reduced (via the Pontryagin Maximum Principle) to the study of a single HamiltonianH
on the Poisson space se (2)∗−. The stability nature of all equilibrium states (of the reduced system) is investigated
by use of the energy-Casimir method. 
H is shown to be complete. Also, every maximal integral curve is shown
to be a constant, periodic or bounded curve.

For each problem, explicit expressions for all integral curves of 
H are found, up to a choice of sign and a
translation in the independent variable. This is achieved (in most instances) by reducing the given system of
differential equations to a single (separable) differential equation and then transforming it into standard form.
Thereafter, an application of an appropriate integral formula yields a solution involving Jacobi elliptic functions.
Using the constants of motion C and H (and allowing for possible changes in sign) an explicit expression for
an integral curve of 
H is then obtained. Finally, we verify that any other integral curve, satisfying the same
partitioning conditions, is identical to the one produced (up to a translation).

We now have explicit expressions for all (normal) extremal controls. A natural next step would be to solve the
equations on the base SE (2), i.e., to obtain expressions for the (normal) extremal trajectories. For the control
problem LiCP(1), this was essentially accomplished in [26]. The inhomogeneous case has yet to be considered.

Single-input systems evolving on SE (2) have been considered in [2]. Specifically, it was shown that there
are only two typical cases (up to equivalence). Likewise, stability and explicit integration were addressed. The
three-input case is a topic for future research.

Appendix A. Tabulation of integral curves

Table A.1. Integral curves of 
H for reduced extremals of LiCP(1) and LiCP(3).

Case a c0 > 2c1h0

p̄1(t) = σ
√

c0 dn (Ω t, k)

p̄2(t) =
√

2c1h0 sn (Ω t, k)

p̄3(t) = −σ
√

2c2h0 cn (Ω t, k)

k =
√

2c1h0
c0

Ω =
√

c0
c1c2

σ ∈ {−1, 1}

Case b c0 = 2c1h0

p̄1(t) = σ1σ2
√

c0 sech (Ω t)

p̄2(t) = σ1
√

c0 tanh (Ω t)

p̄3(t) = −σ2

√
c0c2
c1

sech (Ω t, )

Ω =
√

c0
c1c2

σ1 ∈ {−1, 1}
σ2 ∈ {−1, 1}

Case c c0 < 2c1h0

p̄1(t) = σ
√

c0 cn (Ω t, k)

p̄2(t) =
√

c0 sn (Ω t, k)

p̄3(t) = −σ
√

2c2h0 dn (Ω t, k)

k =
√

c0
2c1h0

Ω =
√

2h0
c2

LiCP(3)

p1(t) =
√

c0 sin (α t + t0)

p2(t) =
√

c0 cos (α t + t0)

p3(t) = h0
α

− c0
2α

(
1
c1

sin2 (α t + t0) + 1
c2

cos2 (α t + t0)
)
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Table A.2. Integral curves of 
H for reduced extremals of LiCP(2).

Case 1a(i) c0 − c2
1 ≤ 0, h0 >

√
c0, c1 − h0 >

√
h2

0 − c0

p̄1(t) =
√

c0

√
h0−δ−√

h0+δ sn(Ω t, k)√
h0+δ−√

h0−δ sn(Ω t, k)

p̄2(t) = −σ
√

2c0δ
cn(Ω t, k)√

h0+δ−√
h0−δ sn(Ω t, k)

p̄3(t) =
2σδ

√
c2

k′
dn(Ω t, k)√

h0+δ−√
h0−δ sn(Ω t, k)

δ =
√

h2
0 − c0

Ω =
√

(h0+δ)(c1−h0+δ)
c1c2

k =
√

(h0−δ)(c1−h0−δ)
(h0+δ)(c1−h0+δ)

σ ∈ {−1, 1}

Case 1a(ii) c0 − c2
1 ≤ 0, h0 >

√
c0, c1 − h0 =

√
h2

0 − c0

p̄1(t) =
√

c0

√
h0−δ−√

h0+δ sin(Ω t)√
h0+δ−√

h0−δ sin(Ω t)

p̄2(t) = −σ
√

2c0δ
cos(Ω t)√

h0+δ−√
h0−δ sin(Ω t)

p̄3(t) =
2σδ

√
c2√

h0+δ−√
h0−δ sin(Ω t)

δ =
√

h2
0 − c0

Ω =
√

2(c1−h0)
c2

σ ∈ {−1, 1}

Cases 1a(iii) c0 − c2
1 ≤ 0, h0 >

√
c0, c1 − h0 <

√
h2

0 − c0

& 2a c0 − c2
1 > 0, h0 >

c0+c21
2c1

p̄1(t) =
√

c0

√
h0−δ−√

h0+δ cn(Ω t, k)√
h0+δ−√

h0−δ cn(Ω t, k)

p̄2(t) = σ
√

2c0δ
sn(Ω t, k)√

h0+δ−√
h0−δ cn(Ω t, k)

p̄3(t) = 2σδ
√

c2
dn(Ω t, k)√

h0+δ−√
h0−δ cn(Ω t, k)

δ =
√

h2
0 − c0

Ω =
√

2δ
c2

k =
√

(h0−δ)(h0−c1+δ)
2δc1

σ ∈ {−1, 1}

Case 1b(i) c0 − c2
1 ≤ 0, h0 =

√
c0, h0 < c1

p̄1(t) = h0
2

c1(cosh(2Ω t)−3)+2h0
c1 cosh2(Ω t)−h0

p̄2(t) = 2σh0

√
c1 (c1 − h0)

sinh(Ω t)

c1 cosh2(Ω t)−h0

p̄3(t) = 2σ (c1 − h0)
√

c2h0
cosh(Ω t)

c1 cosh2(Ω t)−h0

Ω =
√

h0(c1−h0)
c1c2

σ ∈ {−1, 1}

Case 1b(ii) c0 − c2
1 ≤ 0, h0 =

√
c0, h0 = c1

p̄1(t) = c1
c1t2−c2
c1t2+c2

p̄2(t) = 2σc1
√

c1c2
t

c1t2+c2

p̄3(t) = 2σc2
√

c1c2
1

c1t2+c2

σ ∈ {−1, 1}
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Table A.3. Integral curves of 
H for reduced extremals of LiCP(2) (continued).

Cases 1c c0 − c2
1 ≤ 0, −√

c0 < h0 <
√

c0

& 2c(iii) c0 − c2
1 > 0, h0 <

c0+c21
2c1

, −√
c0 < h0 <

√
c0

p̄1(t) = η1

2
√

c0c1−ρ2
2
√

c0c1+ρ2

√
ρ1+ρ2−

√
ρ1−ρ2 cd(Ω t, k)

√
ρ1+ρ2−

√
ρ1−ρ2 cd(Ω t, k)

p̄2(t) = − η2 k′
√

k

sd

(
1
2

Ω t, k

)√
1+ nd(Ω t, k)

√
1+k cd(Ω t, k)

√
ρ1+ρ2−

√
ρ1−ρ2 cd(Ω t, k)

p̄3(t) = − η3√
k

cn

(
1
2

Ω t, k

)√
1+ nd(Ω t, k)

√
1−k cd(Ω t, k)

√
ρ1+ρ2−

√
ρ1−ρ2 cd(Ω t, k)

δ =
√

c21−2c1h0+c0 k =

√
ρ1− 1

2 (√c0+c1−δ)2−ρ2

ρ1− 1
2 (√c0+c1−δ)2+ρ2

ρ1 =(c1+2δ)
√

c0+δ(δ−c1)+c0 k′ =
√

2ρ2

ρ1− 1
2 (√c0+c1−δ)2+ρ2

ρ2 =2 4√c0

√
δ((√c0+δ)2−c21) Ω =

√
ρ1− 1

2 (√c0+c1−δ)2+ρ2

2c1c2

η1 =
2c1

√
c0+ρ2

2(δ+
√

c0)

η2 =
√√

c0(
√

c0+c1−δ)(ρ2+(√c0+c1−δ)c1−ρ1)

η3 =

√√√√ c2(ρ1−ρ2)ρ2

(
4δc1+

(
δ√
c0

−1

)
ρ2

)
4(δ+

√
c0)

2
c1

Case 2b c0 − c2
1 > 0, h0 =

c0+c21
2c1

p̄1(t) = c1 +
c0−c21

c1−σ1
√

c0 cosh(Ω t)

p̄2(t) =
√

c0
σ1σ2

√
c0−c21 sinh(Ω t)

c1−σ1
√

c0 cosh(Ω t)

p̄3(t) =
σ2(c0−c21)

√
c2
c1

c1−σ1
√

c0 cosh(Ω t)

Ω =

√
c0−c1

2

c1c2

σ1 ∈ {−1, 1}
σ2 ∈ {−1, 1}

Case 2c(i) c0 − c2
1 > 0, h0 <

c0+c21
2c1

, h0 >
√

c0

p̄1(t) = k′(h0+δ)
√

h0−δ−σ(h0−δ)
√

h0+δ dn(Ω t, k)

k′√h0−δ−σ
√

h0+δ dn(Ω t, k)

p̄2(t) = − k
√

2δ(h2
0−δ2) cn(Ω t, k)

k′√h0−δ−σ
√

h0+δ dn(Ω t, k)

p̄3(t) =
2σδk′√c2 sn(Ω t, k)

k′√h0−δ−σ
√

h0+δ dn(Ω t, k)

δ =
√

h2
0 − c0

Ω =
√

(h0−δ)(h0−c1+δ)
c1c2

k =
√

2δc1
(h0−δ)(h0−c1+δ)

σ ∈ {−1, 1}

Case 2c(ii) c0 − c2
1 > 0, h0 <

c0+c21
2c1

, h0 =
√

c0

p̄1(t) = −√
c0

√
c0+

1
2

c1(−3+cos(2Ω t))

√
c0− 1

2
c1(1+cos(2Ω t))

p̄2(t) =
2
√

c0(
√

c0−c1)c1 sin(Ω t)

√
c0− 1

2
c1(1+cos(2Ω t))

p̄3(t) =
2(√c0−c1)

√√
c0c2 cos(Ω t)

√
c0− 1

2
c1(1+cos(2Ω t))

·

Ω =

√
√

c0(
√

c0−c1)
c1c2
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