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TRANSPORT PROBLEMS AND DISINTEGRATION MAPS

Luca Granieri1 and Francesco Maddalena1

Abstract. By disintegration of transport plans it is introduced the notion of transport class. This
allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once
a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to
an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability
of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds
to a lucky case.
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1. Introduction

Optimal transport problems, also known as Monge−Kantorovich problems, have been very intensively studied
in the last years giving rise to numerous and important applications to PDE, Shape Optimization and Calculus
of Variations, so we witnessed a spectacular development of the field. The interested reader may look at the
monographs and lecture notes [3, 5, 10, 13, 17–20] where the subject is fully developed.

Let us briefly recall the formulations of the Monge−Kantorovich problems.
Let X,Y be two compact metric spaces and let c : X×Y → R

+ be a Borel cost function. The Monge problem
is formulated as follows: given two probability measures μ ∈ P(X), ν ∈ P(Y ) find a measurable map t : X → Y
such that t#μ = ν (# denotes the push-forward of measures) and such that t minimizes the total cost, i.e.

min
t:X→Y

{∫
X

c(x, t(x)) dμ, | t#μ = ν

}
(1.1)

It may happens that the set of admissible maps is empty (e.g. μ = δx and ν = 1
2 (δy + δz)). Then the problem

could be reformulated in its Kantorovich’s relaxation: find γ ∈ P(X × Y ) such that π1
#γ = μ and π2

#γ = ν (π1

and π2 are the projections on the factors of X × Y ) and such that γ minimizes the total cost, i.e.

min
γ

{∫
X×Y

c(x, y) dγ(x, y) | π1
#γ = μ, π2

#γ = ν

}
. (1.2)
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The admissible measures γ for the Kantorovich problem are called transport plans. We denote by Π(μ, ν) the set
of transport plans with marginals μ and ν. If t is admissible for the Monge problem then the measure associated
in the usual way to the graph of t, i.e. γ = (IX × t)#μ, is admissible for the Kantorovich problem. However the
class of admissible measures for the Kantorovich problem is never empty as it contains μ ⊗ ν. Moreover, the
Kantorovich problem is a linear one. Existence of minimizers for the Monge problem is difficult and may fails,
while for the Kantorovich problem the semicontinuity of c is enough to ensure existence of minimizers.

If X = Y , and c = d is the distance function, for p ≥ 1 the cost

Wp(μ, ν) =
(

min
{∫

X×X

dp(x, y) dγ(x, y) : γ ∈ Π(μ, ν)
})1/p

defines a distance on P(M) called p-Wasserstein distance.
Let us recall that by Kantorovich duality (see [3, 13, 19, 20]) the 1-Wasserstein distance between μ and ν,

which we will simply denote by W , can be expressed as follows

W (μ, ν) = sup
{∫

X

ϕ d(μ− ν) | ϕ ∈ Lip1(X)
}
, (1.3)

where Lip1(X) denotes the set of Lipschitz function having Lipschitz constant not greater than one.

Description of the results

A relevant tool in mass transportation theory is constituted by the Disintegration theorem (Thm. 2.1) of
measures which states that every transport plan γ ∈ P(X×Y ) can be written as γ = f(x)⊗μ where f(x) ∈ P(Y ).
We shall call disintegration map every f : X → (P(Y ),W ) such that

f(x) ⊗ μ ∈ Π(μ, ν).

In this paper we relate the structure of the set of transport plans Π(μ, ν) with the push-forward of disintegration
maps. Indeed, given the measure γ = f(x)⊗μ, obviously μ is the first marginal of γ, while the second marginal
depends on the disintegration map f . An interesting feature of transport plans appears by looking to the measure
f#μ. Precisely, if η = g(x) ⊗ μ is another transport plan, it results (see Lem. 2.5):

f#μ = g#μ⇒ π2
#γ = π2

#η.

Therefore, the second marginals can be fixed by looking to the push-forward of disintegration maps. In this way
the set of transport plansΠ(μ, ν) can be structured in transport classes (see Def. 2.7) by setting η ∈ [γ] ⇔ f#μ =
g#μ. Roughly speaking (see Example 2.8), fixing a transport class leads to consider a constrained transport
problem with respect to splitting masses or traveling ones. Lemma 2.3 shows that all transport plans induced
by transport maps belong to the same transport class. Moreover, by density of transport maps in Π(μ, ν), it
follows that (see Prop. 2.9) such transport class characterizes the transport plans induced by transport maps.

Therefore, in this perspective the Monge problem can be seen as a constrained Kantorovich problem, namely

min
{∫

X

c(x, t(x)) dμ : t#μ = ν

}
= min

{∫
X×Y

c(x, y) dγ : γ ∈ [δs ⊗ μ]
}
,

for a given transport map s. By density of transport maps, the Kantorovich transport problem also corresponds
to

min
{∫

X×Y

c(x, y) dγ : γ ∈ Π(μ, ν)
}

= min
{∫

X×Y

c(x, y) dγ : γ ∈ [δs ⊗ μ]
W
}
,

for a given transport map s.
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Hence the Monge problem represents a particular case of a more rich structure of problems, obtained by
fixing a transport class in the Kantorovich formulation of transport problems. In this context, considering
transport problems in a fixed transport class is quite natural. Since we are looking to the push-forward trough
disintegration maps, fixing a transport class results equivalent (see Sect. 2) to consider measures Λ ∈ P(P(Y ))
satisfying the barycenter constraint ∫

P(Y )

λ dΛ(λ) = ν.

The corresponding transport class is given by the transport plans f(x)⊗μ such that f#μ = Λ. In this formulation
we see that fixing a transport class is equivalent to consider transport maps f sending μ into Λ. So it is natural
to consider the following Monge−Kantorovich problem in the class Λ:

MKΛ(c, μ, ν) := inf
γ

{∫
X×Y

c(x, y) dγ | γ = f ⊗ μ, f#μ = Λ

}
. (1.4)

The above transport problem leads to consider an abstract Monge problem between the space X and P(Y ). Let
us consider the following transport cost

∀(x, λ) ∈ X × P(Y ) : c̃(x, λ) =
∫

Y

c(x, y) dλ.

We set

M(c̃, μ, Λ) := inf
f

{∫
X

c̃(x, f(x)) dμ | f#μ = Λ

}
. (1.5)

For every transport class Λ (see Prop. 3.2) we have

M(c̃, μ, Λ) = MKΛ(c, μ, ν).

Therefore, every existence result for the Monge problem M(c̃, μ, Λ) in the abstract setting corresponds to an
existence result for the Monge−Kantorovich problem in the transport class Λ. Of course, minimizing in a
transport class could be as difficult as for the Monge problem since, of course, the transport classes are not in
general closed. However, by this reformulation it comes out that the Monge case is peculiar. More precisely,
since the Monge problem is a particular case of transportation in a transport class, one may asks what happens
for others transport classes. In other words, the matter consists in establishing if the abstract Monge problem
admits solutions. The existence results for the Monge problem are usually stated in the following form: under
some assumption on the spaces, on the first marginal μ and on the cost c(x, y), for every second marginal ν the
Monge problem admits solutions. For the abstract Monge problem M(c̃, μ, Λ) this is not the case. For discrete
measures Λ, see Section 4, for the quadratic cost it results that M(c̃, μ, Λ) may not admit solutions. Therefore,
in the abstract setting, it could be also interesting to consider, under some assumption on the spaces, on the first
marginal μ and on the cost c(x, y), the question for what kind of second marginals the corresponding Monge
problem admits solutions. From this point of view, in some sense the Monge problem corresponds to a lucky
case.

Disintegration maps and variational problems

Our main motivation in introducing the notion of transport class is inspired from variational problems arising
in elasticity and shape analysis. Actually, a regular transport map can be viewed as a deformation of an
elastic body X into the deformed configuration Y . Since the mass is preserved, we may refer to these maps as
reformations of X into Y . Then, in the setting of nonlinear elasticity, one usually look for minimizers t : X → Y
of the stored energy

∫
X
W (∇t) dx. In this kind of approach of course X and Y should be also regular. For

instance, if X is connected, Y has to be connected too. In order to deal with more general situations also
allowing fragmentations, in [14] it is studied the notion of transport plan as a weak notion of reformation.
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Figure 1. An isometric fractured reformation.

Precisely, the role of deformations in classical elasticity is played by the disintegration maps corresponding to
transport plans. For instance, the configurations in Figure 1 are isometric, in the sense that the disintegration
map corresponding to the transport plan that splits the mass one half on the right and one half to the left is an
isometry with respect to the Wasserstein distance, although they cannot be compared by regular reformations.

To state a correspondent variational theory, some troubles appear. In this kind of problems, a key role is
played by invertibility properties of maps. By change of variables formula, one is lead to deal with a push-forward
condition like f#μ. The matter is that by considering disintegration maps f , the corresponding push-forward is
not constant with respect to f and may change, adding an extra difficulty to handle with minimizing sequences.
This phenomenon disappears in the classical approach since the push-forward of transport maps t#μ = ν is
fixed. Therefore, from this point of view it comes out quite natural to classify transport plans through the
notion of transport class. We refer the reader to [14] for details.

2. Disintegration maps and transport classes

Let X,Y ⊂ R
N be two compact sets and let M(Y ) be the space of Radon measures on Y . A map λ :

X → M(Y ) is said to be Borel, or equivalently weakly*-measurable, if for any open set B ⊂ Y the function
x ∈ X �→ λx(B) is a real valued Borel map. Equivalently, x �→ λx is a Borel map if, for any Borel and bounded
map ϕ : X × Y → R, it results that the map

x ∈ X �→
∫

Y

ϕ(x, y)dλx

is Borel.

Theorem 2.1 (Disintegration theorem). Let γ ∈ P(X × Y ) be given and let π1 : X × Y → X be the first
projection map of X × Y , we set μ = (π1)#γ. Then for μ− a.e. x ∈ X there exists νx ∈ P(Y ) such that

(i) the map x �→ νx is Borel,

(ii) ∀ϕ ∈ Cb(X × Y ) :
∫

X×Y ϕ(x, y)dγ =
∫

X

(∫
Y ϕ(x, y)dνx(y)

)
dμ(x).

Moreover the measures νx are uniquely determined up to a negligible set with respect to μ.

Let γ ∈ Π(μ, ν), as usual we will write γ = νx ⊗ μ, assuming that νx satisfy the condition (i) and (ii) of
Theorem 2.1. Obviously, the transport plan μ⊗ ν corresponds to the constant map x �→ νx = ν. Let t : X → Y ,
be a transport map, observe that for the transport plan γt := (I × t)#μ, the Disintegration Theorem yields
γt = δt(x) ⊗ μ. Therefore, the disintegration procedure for a transport plan γ = f(x) ⊗ μ produces a map

f : X → (P(Y ),W ), s.t. x �→ f(x) is Borel. (2.1)
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We shall refer to such maps f as disintegration maps. For a transport map t the corresponding disintegration
map is given by x �→ δt(x). Of course, it is possible to look at a disintegration map as a Borel map between X
and (P(Y ),W ). Indeed, we have the following result.

Lemma 2.2. A map f : X → (P(Y ),W ) is a disintegration map if and only if f is Borel.

Proof. Let f : X → (P(Y ),W ) be Borel and let A ⊂ Y be an open set. Observe that f(x)(A) =
∫

Y χA(y)df(x).
For a l.s.c. function ϕ over Y , define

Iϕ : (P(Y ),W ) → R, Iϕ(λ) :=
∫
P(Y )

ϕ(y)dλ. (2.2)

Since W metrizes the weak* topology of measures, we have that Iϕ is a l.s.c. map. For every x ∈ X it results∫
Y

ϕ(y)df(x) = Iϕ(f(x)).

If f is a Borel map, it follows that the map f(·)(A) : X → R is also Borel as composition of a l.s.c map and a
Borel one. Hence f is a disintegration map. Vice versa, observe that by the Ascoli−Arzelá Theorem the space
Lip1(Y ) is compact with respect to the uniform convergence. Fixed a countable dense subset D ⊂ Lip1(Y ), by
Kantorovich duality we have

W (ν1, ν2) = sup
u∈Lip1(Y )

∫
Y

u d(ν1 − ν2) = sup
u∈D

∫
Y

u d(ν1 − ν2).

Since x �→ f(x) is Borel, we have that, for every u ∈ Lip1(Y ), gu : X → R defined by gu(x) :=
∫

Y u d(ν − f(x))
is a Borel map . To check that f is a Borel map, it is sufficient to observe that

f−1(B(ν, r)) =
⋂

u∈D

g−1
u (] − r, r[) := A

is Borel since gu is Borel and D countable. It remains to check the above equality. If x ∈ A we get |gu(x)| < r,
for every u ∈ D. Hence, by definition of gu, it follows that W (ν, f(x)) < r and then f(x) ∈ B(ν, r). On the
other hand, if f(x) ∈ B(ν, r), i.e. W (ν, f(x)) < r, by Kantorovich duality |gu(x)| := | ∫

Y
u d(ν − f(x))| < r for

every u ∈ D. This implies x ∈ A. �

Let X ⊂ R
N , we recall that the barycenter of a measure μ ∈ P(X) is given by

β(μ) =
∫

X

x dμ.

Disintegration maps naturally produce measures of the form f#μ on the space (P(Y ),W ). By the following
lemma, we see that this point of view is equivalent to fix the second marginal of transport plans induced by
transport maps.

Lemma 2.3. Let t, s : X → Y be two given Borel maps, μ ∈ P(X) and let f, g : X → P(Y ) defined by
f(x) = δt(x), g(x) = δs(x). Then

t#μ = s#μ ⇔ f#μ = g#μ. (2.3)

Proof. Assume f#μ = g#μ and for any ϕ ∈ C(Y ) let us consider the function Iϕ defined in (2.2). Observe that
Iϕ ∈ C((P(Y ),W )). Hence we have∫

P(Y )

Iϕ(λ) d(f#μ) =
∫
P(Y )

Iϕ(λ) d(g#μ) ⇔
∫

X

Iϕ(f(x)) dμ =
∫

X

Iϕ(g(x)) dμ
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⇔
∫

X

(∫
Y

ϕ(y) df(x)
)

dμ =
∫

X

(∫
Y

ϕ(y) dg(x)
)

dμ. (2.4)

Since ∫
Y

ϕ(y) df(x) = ϕ(t(x)),
∫

Y

ϕ(y) dg(x) = ϕ(s(x)),

by (2.4) we get ∫
X

ϕ(t(x)) dμ =
∫

X

ϕ(s(x)) dμ.

By the arbitrariness of ϕ we infer t#μ = s#μ.
Vice-versa, for every ψ ∈ C((P(Y ),W )) let us consider the function ϕ(y) = ψ(δy). Observe that ϕ ∈ C(Y ).

If t#μ = s#μ we compute∫
Y

ψ d(f#μ) =
∫

X

ψ(f(x)) dμ =
∫

X

ψ(δt(x)) dμ

=
∫

X

ϕ(t(x)) dμ =
∫

X

ϕ(s(x)) dμ =
∫

Y

ψ d(g#μ).

By the arbitrariness of ψ we obtain f#μ = g#μ. �

Corollary 2.4. Let t, s : X → Y be two given Borel maps, μ ∈ P(X), let f, g : X → P(Y ) defined by
f(x) = δt(x), g(x) = δs(x) and let γ = f(x) ⊗ μ, η = g(x) ⊗ μ. Then

π2
#γ = π2

#η ⇔ f#μ = g#μ. (2.5)

Observe that the first part of the proof of the above Lemma works for general transport plans γ = f(x)⊗ μ,
η = g(x) ⊗ μ. Actually, by (2.4) we get the following

Lemma 2.5. Let μ ∈ P(X), f, g : X → P(Y ), γ = f(x) ⊗ μ, η = g(x) ⊗ μ be given. Then the following
implication holds true

f#μ = g#μ⇒ π2
#γ = π2

#η. (2.6)

Therefore, also for transport plans, the second marginal can be fixed by fixing the push-forward of disintegration
maps.

Notice that in general the converse of (2.6) is not true as we show in the next example.

Example 2.6. Let f : X → P(Y ) defined by f(x) = ν and let γ = f(x)⊗μ. Let η = g(x)⊗μ where g(x) = δt(x)

for a given transport map t : X → Y with t#μ = ν. For every ψ ∈ C((P(Y ),W )) we have∫
P(Y )

ψ d(g#μ) =
∫

X

ψ(δt(x)) dμ,

while ∫
P(Y )

ψ d(f#μ) = ψ(ν).

For any ϕ ∈ C(Y ) let us consider ψ(λ) =
∣∣∫

Y ϕ(y)dλ
∣∣ = |Iϕ(λ)|. We compute

∫
X

ψ(δt(x)) dμ =
∫

X

∣∣∣∣
∫

Y

ϕ(y) dδt(x)

∣∣∣∣ dμ =
∫

X

|ϕ(t(x))| dμ =
∫

Y

|ϕ(y)| dν.

However, on the other hand ψ(ν) =
∣∣∫

Y ϕ(y) dν
∣∣.
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Figure 2. Transport plans in the same class.

The above arguments allow to characterize transport plans through the push forward of disintegration maps.
We introduce the following notion of transport class.

Definition 2.7 (Transport classes). Let γ, η ∈ Π(μ, ν) with γ = f(x)⊗ μ, η = g(x)⊗ μ be given. We shall say
that γ and η are equivalent (by disintegration), in symbols γ ≈ η, if f#μ = g#μ.

For any given η ∈ Π(μ, ν) with η = g(x) ⊗ μ, we shall call transport class of η the equivalence class of
transport plans given by

[η] = {γ = f(x) ⊗ μ | f#μ = g#μ}. (2.7)

Notice that in the case of discrete first marginal μ =
∑

i αiδxi , for any disintegration map it is easily seen that

f#μ =
∑

i

αiδf(xi).

Therefore, transport classes are fixed by the range of f .

Example 2.8. Let

μ =
1
3
δx1 +

1
3
δx2 +

1
3
δx3 , ν =

1
6
δy1 +

5
6
δy2 .

Consider the transport plan which uniquely splits the mass at x1. This transport plan corresponds to the
disintegration map

f(x1) = 3(aδy1 + bδy2), f(x2) = δy2 , f(x3) = δy2 , a = b =
1
6
· (2.8)

By changing the point at which the mass is splitted, the range of the corresponding disintegration map does
not change. For instance, for the second transport plan in Figure 2 we get the following disintegration map

g(x1) = δy2 , g(x2) = 3(aδy1 + bδy2), g(x3) = δy2 , a = b =
1
6
·

It follows f#μ = g#μ. Analogously, all the transport plans with only one splitted mass belong to the same
transport class.

On the other hand, by changing the number of splitted masses the corresponding disintegration range is
changing.

Indeed, by looking at Figure 3, we may consider the disintegration map

h(x1) = 3(a′δy1 + b′δy2), h(x2) = 3(c′δy1 + d′δy2), h(x3) = δy2 ,

a′ =
3
30
, b′ =

7
30
, c′ =

2
30
, d′ =

8
30

·

In such a case we have that f#μ 
= h#μ. On the other hand, by keeping fixed the number of splitted masses,
the transport class may be changed by modifying the amount of traveling masses. Consider for instance the
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Figure 3. Two splitting masses.

disintegration

k(x1) = 3(a′′δy1 + b′′δy2), k(x2) = 3(c′′δy1 + d′′δy2), k(x3) = δy2 ,

a′′ =
1
30
, b′′ =

9
30
, c′′ =

4
30
, d′′ =

6
30
.

We get h#μ 
= k#μ.
Therefore, to fix a transport class leads to consider a constrained transport problem, with respect to splitting

masses or traveling ones.

By Lemma 2.3 it follows that all transport plans induced by transport maps belong to the same transport
class. Since the transport maps are dense in Π(μ, ν) we can prove the following result.

Proposition 2.9. Let s : X → Y be a transport map, i.e. such that s#μ = ν, with μ non-atomic, and let
η = (I × s)#μ = δs(x) ⊗ μ. If γ ∈ [η] then there exists a transport map t : X → Y such that γ = δt(x) ⊗ μ, i.e.
the transport plan γ is induced by a transport map t. In particular, if γ = f(x) ⊗ μ, it results t(x) = β(f(x))
μ-a.e..

Proof. By applying Theorem 9.3 of [3], see also [10], and the same argument employed in Theorem 2.1 of [3],
we find a sequence of Borel maps tn : X → Y such that

γ = lim
n→+∞ δtn(x) ⊗ μ, (tn)#μ = ν ∀n ∈ N

and therefore δtn(x) ⊗ μ ∈ [η], ∀n ∈ N. Consider ϕ(y) = |y|2. By the push-forward constraint we get∫
X

|tn(x)|2 dμ =
∫

X

ϕ(tn(x)) dμ =
∫

Y

ϕ(y) dν =
∫

Y

|y|2dν < +∞.

Let us consider ψ ∈ C((P(Y ),W )) defined by ψ(δy) = |y|2. In fact, setting Δ ⊂ P(Y ) the set of Dirac deltas,
the function ψ is Lipschitz, with respect to the Wasserstein distance, over Δ. Hence it suffices to consider any
Lipschitz extension of ψ on the whole P(Y ). For every n ∈ N, since (δtn)#μ = (δs)#μ we have∫

X

|tn(x)|2dμ =
∫

X

ψ(δtn(x)) dμ =
∫

X

ψ(δs(x)) dμ =
∫

X

|s|2dμ. (2.9)

Therefore, by passing to a subsequence, we may suppose that tn is weakly convergent and let t be the weak
limit of tn.

Let γ = f(x) ⊗ μ. By definition of weak convergence, by approximation with continuous functions, for any
g ∈ L2(X,RN ) we get∫

X

〈g, t〉dμ = lim
n→+∞

∫
X

〈g, tn〉dμ = lim
n→+∞

∫
X

(∫
Y

〈g, y〉dδtn(x)(y)
)

dμ

=
∫

X

(∫
Y

〈g, y〉 df(x)
)

dμ =
∫

X

〈
g,

∫
Y

y df(x)
〉

dμ =
∫

X

〈g, β(f(x))〉dμ.
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Therefore tn ⇀ β(f(x)). On the other hand, since γ ∈ [η], i.e. f#μ = (δtn)#μ, and by (2.9) we have∫
X

|β(f(x))|2dμ =
∫

X

|β(δs(x))|2dμ =
∫

X

|s|2dμ =
∫

X

|tn|2dμ.

Then, it follows that tn strongly converges to β(f(x)), hence by [3], Lemma 9.1, we deduce that γ = δt(x) ⊗ μ
with t(x) = β(f(x)). �

Of course, the above arguments hold true as well by considering Lp(X,μ) with p > 1. This corresponds to
consider the transport cost dp(x, y).

Proposition 2.9 allows to reformulate the Monge transport problem as follows:

min
{∫

X

c(x, t(x)) dμ : t#μ = ν

}
= min

{∫
X×Y

c(x, y) dγ : γ ∈ [δs ⊗ μ]
}
, (2.10)

for a given transport map s.
By density of transport maps, the Kantorovich transport problem can be seen as

min
{∫

X×Y

c(x, y)) dγ : γ ∈ Π(μ, ν)
}

= min
{∫

X×Y

c(x, y) dγ : γ ∈ [δt ⊗ μ]
W
}
, (2.11)

for a given transport map t.
Therefore, the Monge problem corresponds to minimize the functional

∫
X×Y c(x, y) dγ in a fixed transport

class of Π(μ, ν), while the Kantorovich one corresponds to minimize the same functional on the whole Π(μ, ν).

3. Monge−Kantorovich problems on transport classes

In the previous section we have seen that the Monge problem could be seen as a particular case of minimization
on a transport class. Since the transport classes are determined through the push-forward of disintegration maps,
they can be assigned by probability measures Λ over (P(Y ),W ).

Actually, consider f ⊗ μ ∈ Π(μ, ν) and Λ = f#μ. Since (π2)#(f ⊗ μ) = ν, for every ϕ ∈ C(Y ) we have∫
Y

ϕ(y) dν =
∫

X

(∫
Y

ϕ(y) df(x)
)

dμ =
∫

X

Iϕ(f(x)) dμ

=
∫
P(Y )

Iϕ(λ) dΛ(λ) =
∫
P(Y )

(∫
Y

ϕ(y) dλ
)

dΛ.

Therefore, in order to define a transport class, the measure Λ has to satisfy the constraint∫
P(Y )

λ dΛ = ν. (3.1)

Hence, every probability measure Λ over (P(Y ),W ) satisfying (3.1) defines a transport class [η] = {f ⊗ μ :
f#μ = Λ}.

For instance, the transport class [μ ⊗ ν] corresponds to the measure Λ = δν . While for a transport map t,
the transport class [δt(x) ⊗ μ] corresponds to Λ =

∫
X δδt(x)dμ. On the other hand, the transport class in (2.8)

corresponds to the discrete measure Λ = 1
6δδy1

+ 5
6δδy2

. In this perspective, transport plans in the transport
class Λ can be seen as transport maps between μ and Λ. It is then natural to consider the Monge−Kantorovich
problem in the class Λ defined as follows

MKΛ(c, μ, ν) := inf
γ

{∫
X×Y

c(x, y) dγ | γ = f ⊗ μ, f#μ = Λ

}
(3.2)

By Proposition 2.9, the Monge problem corresponds to the transport class Λ =
∫

X δδt(x)dμ.
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Remark 3.1. Observe that for a discrete transport class Λ =
∑

i αiδλi , the Monge−Kantorovich problem in
the class Λ yields the optimal allocation problem consisting in the determination of a Borel subdivision {Ui} of
X minimizing ∑

i

∫
Ui

(∫
Y

c(x, y)dλi

)
dμ,

under the constraint
∑

i αiλi = ν. For existence results in this framework see Section 4.

The notion of transport class leads naturally to consider an abstract Monge problem between the space X
and P(Y ). Consider the following transport cost

∀(x, λ) ∈ X × P(Y ) : c̃(x, λ) =
∫

Y

c(x, y)dλ. (3.3)

We have the following

Proposition 3.2. For every transport class Λ ⊂ Π(μ, ν) we have

M(c̃, μ, Λ) = MKΛ(c, μ, ν).

Proof. It suffices to observe that for any disintegration map f : X → P(Y ) such that f#μ = Λ, it results∫
X

c̃(x, f(x)) dμ =
∫

X

(∫
Y

c(x, y)df(x)
)

dμ =
∫

X×Y

c(x, y) d(f ⊗ μ). �

Observe that by the above proof it follows that f is a solution of M(c̃, μ, Λ) if and only if f ⊗ μ is a solution
of MKΛ(c, μ, ν). Therefore, every existence result for the Monge problem M(c̃, μ, Λ) in the abstract setting
corresponds to an existence result for the Monge−Kantorovich problem in the transport class Λ. The abstract
setting has the advantage of considering a nice cost, since it is linear with respect to the second variable. Of
course the disadvantage is the passage from the spaceX×Y ⊂ R

N×R
N to the spaceX×P(Y ). Observe that the

transport classes are always non-empty provided μ is non-atomic. Indeed, it is well-known, see for instance [17],
Theorem 2.4, that whenever μ is non-atomic transport maps between μ and ν always exists. Therefore, the only
obstacle in considering transport classes relies in the presence of atoms of μ.

Proposition 3.3. c is continuous, l.s.c., Caratheodory, normal iff c̃ is.

Where we say that a measurable map c(x, y) is Caratheodory (resp. normal) if c(x, ·) is continuous (resp. l.s.c.).

Lemma 3.4. Let c : X × Y → [0,+∞] be a Borel cost function satisfying

|c(x1, y) − c(x2, y)| ≤ α(x1 − x2), (3.4)

for a given map α : X → R continuous at x = 0 and such that α(0) = 0. We have the following
1. If c(x, ·) is continuous then c (and hence c̃) is continuous.
2. If c(x, ·) is l.s.c. then c (and hence c̃) is l.s.c.

Proof. Let c(x, ·) be continuous. If (xn, yn) → (x, y) on X × Y we compute

|c(x, y) − c(xn, yn)| ≤ |c(x, y) − c(x, yn)| + |c(x, yn) − c(xn, yn)|
≤ |c(x, y) − c(x, yn)| + α(x− xn) → 0,

as n→ +∞. If c(x, ·) is l.s.c. considering

c(xn, yn) = c(xn, yn) − c(x, yn) + c(x, yn),

by (3.4), passing to the liminf we obtain

lim inf
n→+∞ c(xn, yn) = lim inf

n→+∞ c(x, yn) ≥ c(x, y). �
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In general, for the existence of optimal transport plans in the Kantorovich problem at least the lower semicon-
tinuity property of the cost function is usually required. Actually, some regularity of the cost function is needed
to obtain a useful duality theory or to ensure that the infimum of the Kantorovich problem is equal to the
infimum of the Monge problem (see for instance [3,17]). However, it is not hard to verify that the Kantorovich
problem admits solutions under more weak requirements on the cost function (see for instance [6]).

For reader’s convenience here we provide some details based on disintegration maps.
Let πn = fn⊗μ be a minimizing sequence for the Monge−Kantorovich problem (1.2). Passing to a subsequence

we may suppose that πn ⇀ f ⊗ μ = π ∈ Π(μ, ν). Now, for any ψ(x) ∈ C(X), ϕ(y) ∈ C(Y ), we get

∫
X×Y

ψ(x)ϕ(y) dπ =
∫

X

ψ(x)
(∫

Y

ϕ(y)df(x)
)

dμ = lim
n→+∞

∫
X

ψ(x)
(∫

Y

ϕ(y)dfn(x)
)

dμ

= lim
n→+∞

∫
X×Y

ψ(x)ϕ(y) dπn. (3.5)

By density of continuous functions, the above limit holds for ψ ∈ L1(X,μ) as well. Therefore, if the cost function
has the form c(x, y) = a(x)b(y), with a ∈ L1, b ∈ C, then by (3.5) it follows that π is an optimal transport plan.
Arguing component-wise, the same reasonings apply to linear costs c(x, y) = 〈a(x), y〉. For a Caratheodory
cost function c(x, y), i.e. a Borel map such that c(x, ·) is continuous, observe that the disintegration maps
fn : X → P(Y ) ⊂ M(Y,R) belongs to L∞(X,M(Y,R)), which is the dual of L1(X, C(Y )). Therefore, by
passing to a subsequence we may suppose that fn

∗
⇀ f , i.e.

lim
n→+∞

∫
X

(∫
Y

ψ(x, y)dfn(x)
)

dμ =
∫

X

(∫
Y

ψ(x, y)df(x)
)

dμ ∀ψ ∈ L1(X, C(Y )).

The above continuity property shows that π = f ⊗ μ is an optimal transport plan, provided that∫
Y supy c(x, y) dμ < +∞.
If c(x, y) is a normal cost, i.e. a Borel measurable map such that c(x, ·) is lower semicontinuous, then it can

be reduced to a Caratheodory cost by standard approximation procedures. For instance (see [9]), we may write

c(x, y) = sup
h
ah(x)bh(y), bh ∈ C(Y ).

Hence, the cost cj = supi≤j aibi is Caratheodory and cj ↗ c. Since

∫
X×Y

cj(x, y)dπn ≤
∫

X×Y

c(x, y)dπn,

passing to the limit we obtain ∫
X×Y

cj(x, y)dπ ≤ lim inf
n→+∞

∫
X×Y

c(x, y)dπn.

Passing to the limit with respect to j we get that π is optimal. By representation of weakly* l.s.c. functionals
(see [4]), the same reasonings apply to normal cost on X × P(Y ). For a related result see also [12].

In the following we compare the Kantorovich problem (1.2) with the abstract version formulated using the
transport classes.

Lemma 3.5. For every transport class Λ ⊂ Π(μ, ν) it results

MK(c, μ, ν) ≤MK(c̃, μ, Λ).
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Proof. Let π̃ = N (x) ⊗ μ ∈ Π(μ,Λ). We compute

∫
X×P(Y )

c̃ dπ̃ =
∫

X

(∫
P(Y )

(∫
Y

c(x, y)dλ
)

dN (x)

)
dμ

=
∫

X

(∫
Y

c(x, y)df(x)
)

dμ =
∫

X×Y

c(x, y) d(f ⊗ μ), (3.6)

where f(x) =
∫
P(Y )

λ dN (x). It remains to check that (π2)#(f ⊗μ) = ν. By (3.1), for every ϕ ∈ C(Y ) we have

∫
X

(∫
Y

ϕ(y)df(x)
)

dμ =
∫

X

(∫
P(Y )

(∫
Y

ϕ(y)dλ
)

dN (x)

)
dμ =

∫
X×P(Y )

Iϕ(λ) dπ̃

=
∫
P(Y )

Iϕ(λ) dΛ =
∫
P(Y )

(∫
Y

ϕ(y) dλ
)

dλ =
∫

Y

ϕ(y) dν. �

Observe that the above definition of f(x) = β(N (x)) can be seen as a generalized barycenter map. Indeed, we
have the following

Lemma 3.6. The generalized barycenter map β : P(P(Y )) → P(Y ) defined by

β(N ) =
∫
P(Y )

λ dN

is 1-Lipschitz with respect to the Wasserstein distance.

Proof. First observe that if ϕ ∈ Lip1(Y ) then Iϕ ∈ Lip1(P(Y )). Fixed ϕ ∈ Lip1(Y ) we get
∫

Y

ϕ d(β(N1) − β(N2)) =
∫
P(Y )

(∫
Y

ϕ dλ
)

d(N1 −N2)

=
∫
P(Y )

Iϕ(λ) d(N1 −N2) ≤W (N1,N2).

Taking the supremum with respect to ϕ ∈ Lip1(Y ) it results

W (β(N1), β(N2)) ≤W (N1,N2). �

Observe that a probability measure Λ on P(Y ) defines a transport class iff its generalized barycenter is equal
to ν.

Lemma 3.7. If c̃ is normal then there exists a transport class Λ ⊂ Π(μ, ν) such that

MK(c, μ, ν) = MK(c̃, μ, Λ).

Proof. Let πn = fn ⊗ μ ∈ Π(μ, ν) be a minimizing sequence for MK(c, μ, ν). Set Λn = (fn)#μ. By passing to
a subsequence we have that Λn ⇀ Λ with respect to the weak convergence of measures. Observe that∫

P(Y )

(∫
Y

ϕ dλ
)

dΛ =
∫
P(Y )

Iϕ(λ) dΛ = lim
n→+∞

∫
P(Y )

Iϕ(λ) dΛn = lim
n→+∞

∫
X

Iϕ(fn(x)) dμ

= lim
n→+∞

∫
X

(∫
Y

ϕ(y)dfn(x)
)

dμ =
∫

Y

ϕ dν.
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Therefore, Λ defines a transport class. Consider the transport plans π̃n = (I × fn)#μ ∈ Π(μ,Λn). Passing to a
subsequence we may also suppose that weakly π̃n ⇀ π̃ ∈ Π(μ,Λ). Since c̃ is normal we get

MK(c̃, μ, Λ) ≤
∫

X×P(Y )

c̃ dπ̃ ≤ lim inf
n→+∞

∫
X×P(Y )

c̃ dπ̃n

= lim inf
n→+∞

∫
X

c̃(x, fn(x))dμ

= lim inf
n→+∞

∫
X

(∫
Y

c(x, y)dfn(x)
)

dμ = MK(c, μ, ν).

The result follows by Lemma 3.5. �

By the above analysis the Kantorovich problem overX×P(Y ) is essentially equivalent to the usual Kantorovich’s
one. Indeed, if c̃ is normal (for instance if the cost c satisfies the conditions of Lem. 3.4) by Lemma 3.7 we have
MK(c, μ, ν) = MK(c̃, μ, Λ) for a transport class Λ. If π̃ = N (x)⊗μ is an optimal transport plan forMK(c̃, μ, Λ),
for such transport class Λ, setting f(x) =

∫
P(Y ) λ dN (x), by (3.6) it follows that f(x) ⊗ μ is an optimal plan

for MK(c, μ, ν). For a related relaxation procedure see [11].

4. Existence and uniqueness for the Monge problem

In the previous section we have seen that the Monge−Kantorovich problem is essentially equivalent to the
transport problem on transport classes. Of course, the Monge problem reveals hard to handle. For linear cost
c(x, y) = 〈x, y〉, which is equivalent to the quadratic cost c(x, y) = |x− y|2 because of the expansion |x− y|2 =
|x|2 + |y|2 − 2〈x, y〉, it is relatively easy to find existence and uniqueness of optimal transport maps. We expect
some advantage by considering the special form of the cost c̃ for the Monge problem on a transport class.
In order to handle with the abstract Monge problem, we review here some usual tools for solving the Monge
problem. The available approaches to existence and uniqueness rely more or less on two basic facts. The first
one is based on the notion of c-cyclical monotonicity. A set S ⊂ X × Y is said c-cyclical monotone if for any
finite set of pairs (x1, y1), . . . , (xk, yk) and any permutation σ the following inequality holds true

k∑
i=1

c(xi, yi) ≤
k∑

i=1

c(xi, yσ(i)).

A fundamental fact in mass transportation is that the support of every optimal transport plan is a c-cyclical
monotone set and every c-cyclical monotone set is contained in the c-superdifferential ∂cψ (or contact set) of a
c-concave function ψ, where

∂cψ = {y ∈ Y : ψ(x′) − ψ(x) ≤ c(x′, y) − c(x, y) ∀x′ ∈ X}. (4.1)

A function ψ is said to be c-concave if there exist A×B ⊂ Y × R such that

ψ(x) = inf
(y,t)∈A×B

c(x, y) + t.

For details we refer the reader for instance to [17,20]. The c-transform of ψ is defined by ψc(y) = infx∈X{c(x, y)−
ψ(x)}. It can be shown that y ∈ ∂cψ ⇔ ψ(x) + ψc(y) = c(x, y). If one is able to show that for μ a.e. x ∈ X
the c-superdifferential is single valued, then every transport plan is supported on the graph of a transport map
(see [3,17,20]). Namely, there exists a unique solution of the Monge problem. The same reasonings apply as well
directly to the abstract problem M(c̃, μ, Λ). In other words, if the c̃-superdifferentials is single-valued, then the
Monge problem M(c̃, μ, Λ) admits a unique solution. In this framework the two Monge problems are essentially
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related. Indeed, suppose that the c̃-superdifferentials contain just one Dirac delta and let ψ be a c-concave
function. We set

Ã = {δy : y ∈ A} ×B ⊂ P(Y ) × R

and ψ̃(x) = inf(λ,t)∈Ã×B c̃(x, λ) + t. It follows that ψ̃ is c̃-concave and ψ̃(x) = ψ(x). Recalling that c̃(x, δy) =
c(x, y), the following implications hold true

y ∈ ∂cψ(x) ⇔ ψ(x′) − ψ(x) ≤ c(x′, y) − c(x, y)

⇔ ψ̃(x′) − ψ̃(x) ≤ c̃(x′, δy) − c̃(x, δy) ⇔ δy ∈ ∂ c̃ψ̃(x).

Therefore ∂cψ(x) = {y}.
Vice-versa, suppose that c-superdifferentials are single valued and let ψ̃ be a c̃-concave function. Consider

the c-transform (ψ̃)c(y) = infx{c(x, y) − ψ̃(x)}.
We have

δy ∈ ∂ c̃ψ̃(x) ⇔ ψ̃(x′) − ψ̃(x) ≤ c(x′, y) − c(x, y) ⇔ c(x, y) − ψ̃(x) ≤ c(x′, y) − ψ̃(x′)

⇔ c(x, y) − ψ̃(x) = (ψ̃)c(y) ⇔ y ∈ ∂cψ̃(x) ⊂ ∂cu(x)

for a c-concave function u (see for instance [17], Rem. 3.12, Thm. 3.10). It follows that ψ̃c(y) contains just one
delta. Of course this singleton condition of superdifferentials can be achieved under additional requirements on
the cost function. For a differentiable cost a general condition relies in the so called twist (or Spence−Mirrlees
in economic settings) condition, i.e.

x �→ c(x, y1) − c(x, y2) has no critical point ∀ y1 
= y2 (4.2)

(see [7, 10, 15]). For a generalization of such condition, in the case of suitable geometries see [2]. In the case
X = Y = M with M a Riemannian manifold and for a Lagrangian cost it is enough for the cost c to satisfy the
Mather’s shortening principle and the connectedness of the c-superdifferential, as it is shown in [20], Chapter 9.
Observe that in this case the connectedness is a key property. This property is easily satisfied if c(x, ·) is
linear as happens just for the cost c(x, y) = 〈x, y〉. However, general forms of the cost c which guarantee the
connectedness of the c-superdifferential are not known. In this perspective, the consideration of the linear cost
c̃ could be useful. Observe that for a cost c linear with respect to the second variable, the twist condition is not
in general satisfied. Consider for instance c(x, y) = 〈a(x), y〉 for possibly not invertible Jacobian matrix ∇a(x).
4.1. Monge−Mather’s shortening principle

By considering the cost c̃, it may happen that the c̃-superdifferential contains many points, which actually are
probability measures of P(Y ), although the c-superdifferential is a singleton. However, we have the advantage
that the c̃-superdifferential are convex sets. Consider X = Y = M and a cost c satisfying a shortening principle.
We briefly sketch the reasonings of [20], Chapter 9. Suppose that the following conditions are satisfied

1. There exists D ⊂M with μ(D) = 0 such that D intersects every nontrivial continuous curve over M .
2. The cost c satisfies a shortening principle.
3. The superdifferential ∂cψ is connected.

By assumption (2) it is possible to define a function F : γx,y(1
2 ) �→ x with y ∈ ∂cψ(x) having as domain the

mid point of geodesics over M . Indeed, by definition of c-superdifferential we get

ψ(x1) − ψ(x) ≤ c(x1, y) − c(x, y), ψ(x) − ψ(x1) ≤ c(x, y1) − c(x1, y1)

for every y ∈ ∂cψ(x), y1 ∈ ∂cψ(x1). It follows

c(x1, y1) − c(x, y1) ≤ c(x1, y) − c(x, y) ⇒ c(x1, y1) + c(x, y) ≤ c(x1, y) + c(x, y1).
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Hence, the shortening principle implies that

d(x, x1) ≤ Kd
(
γx,y

(
1
2

)
, ηx1,y1

(
1
2

))
. (4.3)

By the inequality (4.3) it follows that F is well defined and moreover it results a Lipschitz, actually also an Holder
condition works as well, map. By condition (1) and (3) it is possible to show that the set of points on which ∂cψ is
not single valued is of null measure. Indeed, let y1, y2 ∈ ∂cψ(x). By condition (3) consider a continuous curve ρt

lying in ∂cψ(x) connecting y1, y2. Therefore it is defined the non-trivial continuous curve mt = γx,ρt(1
2 ). Hence,

x = F (mt). By point (1) it follows that x ∈ F (D) which is a null measure set. Since c(x, y) = c̃(x, δy), we would
like to prove that the c̃-superdifferential are a.e. single valued. The analogue condition for c̃ superdifferential is

c̃(x1, λ1) + c̃(x, λ) ≤ c̃(x1, λ) + c̃(x, λ1).

By definition, the above inequality leads to

MK(c, δx1 , λ1) +MK(c, δx, λ) ≤MK(c, δx1, λ) +MK(c, δx, λ1).

A shortening principle should allow to estimate the distance d(x, x1) by the distance between mid points of
geodesics in M or in P(M). The main problem is to find a null set D, due to the fact that we are now dealing
with the space M × P(M).

4.2. Twist condition

Assume the cost function c satisfies the twist condition (4.2). Under differentiability requirement, for instance
on an open and bounded set Ω ⊂ R

N , with a uniform Lipschitz condition

|c(x, y) − c(x′, y)| ≤ K|x− x′|, ∀y ∈ Y, (4.4)

this means that the map y �→ ∇xc(x, y) is injective. It turns out that c-concave functions ψ are Lipschitz on Ω.
Indeed, it suffices to compute

ψ(x2) = inf{c(x2, y) + t, (y, t) ∈ A×B}
= inf{c(x2, y) − c(x1, y) + c(x1, y) + t, (y, t) ∈ A×B} ≤ K|x1 − x2| + ψ(x1).

Moreover, if ψ is differentiable at x ∈ Ω, for every y ∈ ∂cψ(x), we have

ψ(x+ tv) − ψ(x)
t

≤ c(x+ tv, y) − c(x, y)
t

·

Passing to the limit as t→ 0+ we get
〈∇ψ −∇xc(x, y), v〉 ≤ 0.

By the arbitrariness of v it follows ∇ψ(x) = ∇xc(x, y) (see also [7]). Therefore, if μ is absolutely continuous
with respect to the Lebesgue measure, then the twist condition implies that the superdifferential ∂cψ(x) is a
singleton for μ-a.e. x ∈ Ω. The same reasoning applies as well directly for the cost c̃. Indeed, since ∇xc̃(x, λ) =∫

Y
∇xc(x, y) dλ we have that c̃-superdifferentials contains at most one delta iff the cost c satisfies the twist

condition.
In the sequel we sketch a related approach to show existence and uniqueness for the Monge problem.
Assume that c(x, y) is a Caratheodory function, hence by Lemma 3.4 c is continuous. Approximate the target

measure ν by a finite convex combination of Dirac deltas, say by νn ∈ P(Y ). Consider the problem MK(c, μ, νn).
The optimal transport plans of this approximation problem are of course extremal points of Π(μ, νn). It can
be shown that these extremal points, which are supported on the graph of a c-concave function ψn, are of the
form (Id× t)#μ (see Sect. 5), i.e. the Monge problem M(c, μ, νn) admits a unique solution.
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By the uniform Lipschitz condition (4.4) it follows that the sequence of c-concave functions ψn is equi-
Lipschitz. Indeed, fixed x, x′ ∈ Ω, for yn ∈ ∂cψn(x) we have

ψn(x′) − ψn(x) ≤ c(x′, yn) − c(x, yn) ≤ K|x− x′|,
while for y′n ∈ ∂cψn(x′) we have

ψn(x) − ψn(x′) ≤ c(x, y′n) − c(x′, y′n) ≤ K|x− x′|.
By the Ascoli−Arzelá Theorem we may suppose that ψn → ψ, uniformly on compact subsets. Observe that ψ
is c-concave as well. Indeed, recall that a map ψ is c-concave iff ψ = ψcc, where

ψcc(x) = inf{ψ(x) ≤ f(x) : f c-concave}.
Fixed ε > 0, we find a large integer n such that |ψn(x) − ψ(x)| < ε. Since ψn is c-concave we get

ψ(x) < ε+ ψn(x) ⇒ ψcc(x) ≤ ψn(x) + ε ≤ ψ(x) + 2ε.

By the arbitrariness of ε we obtain ψcc ≤ ψ.
Let yn = tn(x) ∈ ∂cψn(x). By passing to a subsequence we may suppose that yn → y. Since

ψn(x′) − ψn(x) ≤ c(x′, yn) − c(x, yn) ≤ K|x− x′|,
passing to the limit as n→ +∞ we get

ψ(x′) − ψ(x) ≤ c(x′, y) − c(x, y).

Therefore y ∈ ∂cψ(x). Since the c-superdifferential is a singleton, the whole sequence yn converges to y. We set
t(x) = y. As limit of measurable maps, t is measurable as well. Moreover, it results∫

Ω

f(t(x))dμ = lim
n→+∞

∫
Ω

f(tn(x))dμ = lim
n→+∞

∫
Y

f(y)dνn =
∫

Y

f(y)dν.

Hence t#μ = ν. Since the graph (x, t(x)) is supported on ∂cψ(x) it follows, see [17], Theorem 3.22, that t is an
optimal transport map. For a related approximation procedure of the Kantorovich problem see [12].

Hence, under the twist condition for the cost c̃, we would have existence and uniqueness of optimal transport
plans in every fixed transport class. Therefore, an interesting question is that of finding condition on the cost c
ensuring the twist condition for c̃.

5. Existence in discrete transport classes

To treat discrete measures we sketch existence for the Monge problem in this setting. For an extensive
discussion of this case we refer to [1, 8, 16].

Let ν =
∑

i aiδyi be a discrete probability measure over a metric space Y . Let γ be an optimal transport
plan between μ and ν. Denote by Γ = supp(γ). By optimality, we have that Γ is a c-cyclically monotone set of
X × Y . Define Ai,j = {x ∈ X : (x, yi), (x, yj) ∈ Γ}. Let x, x′ ∈ Ai,j . By c-cyclically monotonicity we get

c(x, yi) + c(x′, yj) ≤ c(x, yj) + c(x′, yi) ≤ c(x, yi) + c(x′, yj).

Therefore, we obtain
c(x, yi) − c(x, yj) = c(x′, yi) − c(x′, yj) = λi,j .

Under the assumption of μ c-continuous, i.e.

μ ({x ∈ X : c(x, yi) − c(x, yj) = λi,j}) = 0,

for every yi, yj ∈ Y, λi,j ∈ R, we have that μ(Ai,j) = 0. Therefore, since the set of splitting masses is given by
A =

⋃
i,j Ai,j , if μ is c-continuous then μ(A) = 0. Hence, the transport plan γ is induced by a transport map.
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5.1. Existence in some transport classes

Let Λ be an atomic transport class. Optimal transport plan for MK(c̃, μ, Λ) are of the form
∑

i αiδfi ⊗ μ
(see [11, 12]). For every index it results fi(x) ∈ ∂ c̃ψ(x). By linearity of c̃ it follows f(x) =

∑
αifi ∈ ∂ c̃ψ(x).

Therefore, the transport map f(x) is optimal for M(c̃, μ, (f)#μ).

5.2. Non-existence in some transport classes

Consider a discrete transport class given by Λ =
∑

i aiδλi . Consider the cost c(x, y) = 〈x, y〉. For i, j observe
that

c̃(x, λi) − c̃(x, λj) =
〈
x,

∫
Y

y d(λi − λj)
〉
.

Therefore, M(c̃, μ, Λ) admits solution iff β(λi) 
= β(λj). Analogously, for cost c(x, y) = a(x)b(y), if μ({x ∈ X :
a(x) = k}) = 0 for every k ∈ R, it turns out that M(c̃, μ, Λ) admits solution iff

∫
Y b(y)d(λi − λj) 
= 0 for

every i, j.
In this section we have seen that the usual approaches to solve the Monge problem give rise to some difficulties

in the setting of the transport problem in a transport class. In some sense, these methods are specific for the
transport class corresponding to transport maps. The question to establish existence in different transport classes
remains open. We have shown that also for the case of a discrete transport class the answer could be negative.
Therefore, from this point of view, the Monge problem corresponds to a lucky case for the fixed transport class.
This feature of transport classes also naturally leads to the following question. The existence results for the
Monge problem are usually stated in the following form: under some assumption on the spaces, on the first
marginal μ and on the cost c(x, y), for every second marginal ν the Monge problem admits solutions. Having in
mind the abstract Monge problem M(c̃, μ, Λ), it could be also interesting to consider, under some assumption
on the spaces, on the first marginal μ and on the cost c(x, y), the question for what kind of second marginals
the corresponding Monge problem admits solutions.
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