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GAMMA-CONVERGENCE RESULTS FOR PHASE-FIELD APPROXIMATIONS
OF THE 2D-EULER ELASTICA FUNCTIONAL

Luca Mugnai

Abstract. We establish some new results about the Γ -limit, with respect to the L1-topology, of two
different (but related) phase-field approximations {Eε}ε, {Ẽε}ε of the so-called Euler’s Elastica Bending
Energy for curves in the plane. In particular we characterize the Γ -limit as ε → 0 of Eε, and show that
in general the Γ -limits of Eε and Ẽε do not coincide on indicator functions of sets with non-smooth
boundary. More precisely we show that the domain of the Γ -limit of Ẽε strictly contains the domain of
the Γ -limit of Eε.
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1. Introduction

In this paper we present some new results about the sharp interface limit of two families of phase-field
functionals involving the so-called Cahn–Hilliard energy functional and its L2- gradient. To introduce the two
families of functionals we are going to study let us recall that the Cahn–Hilliard energy {Pε}ε is defined as
follows: given Ω ⊂ R

d open, bounded and with smooth boundary we set

Pε(u) :=

{∫
Ω

ε
2 |∇u|2 + W (u)

ε dx if u ∈ W 1,2(Ω),
+∞ otherwise on L1(Ω),

(1.1)

where ε > 0 is a parameter representing the typical “diffuse interface width”, and W ∈ C3(R, R+ ∪ {0}) is a
double-well potential with two equal minima (throughout the paper we make the choice W (s) := (1 − s2)2/4,
though most of the results we obtain hold true for a wider class of potentials). The families of functionals {Ẽε}ε,
{Eε}ε we consider in this paper are respectively defined by

Ẽε := (Pε + Wε) : L1(Ω) → [0, +∞], (1.2)

where Wε(u) :=

⎧⎨⎩ 1
ε

∫
Ω

(
εΔu − W ′(u)

ε

)2

dx if u ∈ C2(Ω),

+∞ elsewhere on L1(Ω),
(1.3)
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and

Eε :=
(
Pε + Bε

)
: L1(Ω) → [0, +∞], (1.4)

where Bε(u) :=

⎧⎨⎩ 1
ε

∫
Ω

∣∣∣ε∇2u − W ′(u)
ε νu ⊗ νu

∣∣∣2 dx if u ∈ C2(Ω),

+∞ elsewhere on L1(Ω),
(1.5)

and νu is a unit vector-field such that

νu =
∇u

|∇u| on {∇u 	= 0} and νu ≡ const. on {∇u = 0}.

We remark that Wε(u) represents the (rescaled) norm of the L2-gradient of Pε at u, and that Wε and Bε are
linked by the relation

tr
[
ε∇2u − W ′(u)

ε
νu ⊗ νu

]
= εΔu − W ′(u)

ε
·

Hence we have

d

∣∣∣∣ε∇2u − W ′(u)
ε

νu ⊗ νu

∣∣∣∣2 ≥
(

εΔuε − W ′(uε)
ε

)2

. (1.6)

Next, we briefly summarize the known results about the sharp interface limit of {Ẽε}ε and {Eε}ε. The starting
point for the analysis of the asymptotic behavior, as ε → 0, of {Ẽε}ε and {Eε}ε is a well-known result, due to
Modica and Mortola, establishing the Γ -convergence of Pε to the area functional. More precisely, in [16], it has
been proved that the Γ (L1(Ω))-limit of the family {Pε}ε is given by

Γ (L1(Ω)) − lim
ε→0

Pε(u) = P(u) :=

{
c0
2

∫
Ω

d|∇u| if u ∈ BV (Ω, {−1, 1}),
+∞ elsewhere in L1(Ω),

where c0 :=
∫ 1

−1

√
2W (s) ds. We remark that for every u ∈ BV (Ω, {−1, 1}) we can write u = 2χE − 1 =:

�E , where χE denotes the characteristic function of the finite perimeter set E := {u ≥ 1}. Hence P(u) =
c0Hd−1(∂∗E) where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure in R

d and ∂∗E denotes the
reduced boundary of E (see [19]).

The main result concerning the Γ -convergence of {Ẽε}ε has been established, for d = 2 and d = 3, by Röger
and Schätzle in [18] and independently, but only in the case d = 2, by Tonegawa and Yuko in [17], partially
answering to a conjecture of De Giorgi (see [9]). In particular in [18] the authors proved that for d = 2 or 3 and
E ⊂ Ω open and with C2-smooth boundary, we have

Γ (L1(Ω)) − lim
ε→0

Ẽε(�E) = c0

∫
Ω∩∂E

[
1 + |H∂E(x)|2] dHd−1(x), (1.7)

where H∂E(x) denotes the mean curvature vector of ∂E in the point x ∈ ∂E. When d = 2 we call the functional
on the right hand side of (1.7) the Euler’s Elastica Functional.

The sequence of functionals {Eε}ε has been introduced in [3] in connection with the problem of finding
a diffuse interface approximation of the Gaussian curvature. As a straightforward consequence of the results
established in [3] it follows that, again for d = 2, 3 and E ⊂ Ω open with C2-smooth boundary, we have

Γ (L1(Ω)) − lim
ε→0

Eε(�E) = c0

∫
Ω∩∂E

[1 + |B∂E(x)|2] dHd−1(x), (1.8)

where this time B∂E(x) denotes the second fundamental form of ∂E in the point x ∈ ∂E.
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In the present paper we restrict to the case d = 2, and investigate the behavior of {Ẽε}ε and {Eε}ε along
sequences {uε}ε ⊂ C2(Ω) such that

lim
ε→0

‖uε − �E‖L1(Ω) = 0, �E ∈ BV (Ω, {−1, 1}), (1.9)

removing the C2-regularity assumption on the boundary of the limit set E. In other words we aim at proving
a full Γ -convergence result, on the whole space L1(Ω).

We recall that if a family of functionals Γ -converges, and a certain equicoercivity property holds, then the
minimizers of such family converge to the minimizers of the Γ - limit. Therefore, though the proofs of our
main results are relatively easy and short, we expect that a description of the Γ - limit, besides its possible
mathematical interest, may be of some relevance at least for those applications, such as [5,10–12,15], where the
families {Ẽε}ε and {Eε}ε are introduced to formulate, and solve numerically, a “diffuse interface” variational
problem whose solutions are expected to converge, as ε → 0, to the solutions of a given sharp interface minimum
problem.

In synthesis our results are the following: we identify the Γ (L1(Ω)) − limε→0 Eε, and we show the existence
of functions �E ∈ BV (Ω, {−1, 1}) such that

Γ (L1(Ω)) − lim
ε→0

Ẽε(�E) < Γ (L1(Ω)) − lim
ε→0

Eε(�E).

Hence, the sharp interface limits of {Ẽε}ε and {Eε}ε in general do not coincide, although in two space dimensions,
by (1.7) and (1.8) and

|B∂E(x)|2 = |H∂E(x)|2, (1.10)

we have
Γ (L1(Ω)) − lim

ε→0
Eε(�E) = Γ (L1(Ω)) − lim

ε→0
Ẽε(�E)

for every E ⊂ Ω open and with smooth boundary.
In order to better explain our results, we remark that, since Γ -limits are necessarily lower semi-continuous

functionals (see [7], Prop. 4.16), in view of (1.7)–(1.10), a candidate for the Γ -limit of both Ẽε and Eε is the
lower semi-continuous envelope (with respect to the L1(Ω)-topology) of the functional

F(u) :=

{∫
Ω∩∂E

[1 + |H∂E |2] dH1 if u = �E and Ω ∩ ∂E ∈ C2,

+∞ otherwise on L1(Ω),
(1.11)

that is the functional

F(u) := inf{lim inf
k→∞

F(uk) : L1(Ω) − lim
k→∞

uk = u} (1.12)

= sup{G(u) : G ≤ F on L1(Ω), G is lower semi-continuous on L1(Ω)}.
Since by [1], Theorem 3.2, we have F(�E) = F(�E) whenever Ω ∩ ∂E is of class W 2,2, by (1.7), (1.8) and the
definition of F , we can conclude that

Γ (L1(Ω)) − lim
ε→0

Ẽε ≤ c0F on L1(Ω), Γ (L1(Ω)) − lim
ε→0

Eε ≤ c0F on L1(Ω).

We can now rephrase the results we obtain as follows: we prove that Γ (L1(Ω)) − limε→0 Eε = c0F , and we
show that there exist �E ∈ BV (Ω, {−1, 1}) such that Γ (L1(Ω)) − limε→0 Ẽε(�E) < c0F(�E) = +∞. More
precisely: In Theorem 4.1, we show that the assumption supε>0 Eε(uε) < +∞, implies additional “regularity”
on the support of the measure μ := θH1

M
arising as limit of the energy density measures

με := [ε/2|∇uε|2 + W (uε)/ε]Ld
Ω
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(here Ld
Ω

denotes the Lebesgue measure on R
d restricted to Ω). Namely we establish that in every point of

M ∩ Ω a (unique) tangent-line to M is well defined. Hence, in Corollary 4.4, by means of a characterization
of F obtained in [2] (see also Prop. 2.5) we show that Γ (L1(Ω)) − limε→0 Eε = c0F .

For what concerns the family {Ẽε}ε, in Corollary 4.5 we show that in general the support of the limit
measure does not necessarily have an unique tangent line in every point. This difference in regularity between
the support of the two limit measures is related to the existence of so called “saddle shaped solutions” to
the semilinear elliptic equation −ΔU + W ′(U) = 0 on R

2 (see [6, 8]). In particular we obtain the existence of
�E ∈ BV (Ω, {−1, 1}) such that

Γ (L1(Ω)) − lim
ε→0

Ẽε(�E) < c0F(�E) = Γ (L1(Ω)) − lim
ε→0

Eε(�E) = +∞.

We remark that we do not expect an analogue of Theorem 4.1 to hold in space dimensions d > 2. In
fact, to prove Theorem 4.1 we make use of some regularity results obtained in [13], that are valid only for
generalized (d−1)-dimensional hypersurfaces (namely curvature varifolds, see Def. 2.2) with (generalized) second
fundamental form in Lp for some p > (d − 1). Moreover, though we expect that an analogue of Corollary 4.4
holds also (at least) when d = 3, to prove such a result we would probably need a different approach. In fact,
in the proof of Corollary 4.4 we make an essential use of an “explicit” representation of F , that has been
established in [2] and is available only in two space dimensions.

The paper is organized as follows. In Section 2 we fix some notation, and recall some results about varifolds
and the lower semi-continuous envelope of F . In Section 3, for the readers convenience, we briefly recall some of
the main results of [3,17,18]. In Section 4 we state and prove our main results, namely Theorem 4.1, Corollary 4.4
and Corollary 4.5.

2. Notation and preliminary results

2.1. General notation

Throughout the paper we adopt the following notation. By Ω we denote an open bounded connected subset
of R

2 with smooth boundary. By BR(x) := {z ∈ R
2 : |z| < R} we denote the euclidean open ball of radius R

centered in x.
By L2 we denote the 2-dimensional Lebesgue-measure, and by H1 the one-dimensional Hausdorff measure.
For every set E ⊆ R

2 we denote by �E the function such that �E(x) = 1 if x ∈ E, �E(x) = −1 if x /∈ E. We
denote by E and ∂E respectively the closure and the topological boundary of E.

We say that E ⊂ Ω is of class W 2,2 (resp. Ck, k ≥ 1) in Ω, and write E ∈ W 2,2(Ω) (resp. E ∈ C k(Ω)) if E
is open in Ω and, locally near every x ∈ ∂E ∩ Ω, the set E can be represented (up to rigid motions) as the
subgraph of a function of class W 2,2 (resp. Ck).

We say that a set E ⊂ R
2 has finite perimeter in Ω if �E ∈ BV (Ω). Moreover if E has finite perimeter

by ∂∗E we denote its reduced boundary (see [19]).
We endow the space of the (2 × 2) matrices M = (mij) ∈ R

2×2 (resp. 23 tensors T = (tijk) ∈ R
23

) with the
norm

|M |2 := tr(MT M) =
2∑

i,j=1

(mij)2

⎛⎝resp. |T |2 :=
2∑

i,j,k=1

(tijk)2

⎞⎠ , (2.1)

where MT is the transposed of M .
Let u ∈ C2(Ω), we define

νu :=
∇u

|∇u| , Pu := Id − νu ⊗ νu, on {∇u 	= 0}, (2.2)
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and νu := e2, Pu := Id−e2⊗e2 on {∇u = 0}. Moreover we define the second fundamental form of the ensemble
of the level sets of u by

Bu =
(

(Pu)T∇2uPu

|∇u|
)
⊗ νu, (2.3)

on {∇u 	= 0} and Bu := ⊗3e2 on {∇u = 0}. Similarly we define

Au
ijk := −

2∑
l=1

Pu
il

[
∂l((νu)j(νu)k)

]
, (i, j, k ∈ {1, 2}) (2.4)

on {∇u 	= 0} and Au := ⊗3e2 on {∇u = 0}.

2.2. Geometric measure theory: varifolds

Let us recall some basic fact in the theory of varifolds, the main bibliographic sources being [14, 19].
By G1,2 we denote the Grasmannian of 1-subspaces of R

2. We identify T ∈ G1,2 with the projection matrix
PT ∈ R

2×2 on T , and endow G1,2 with the relative distance as a compact subset of R
2×2. Moreover, given

Ω ⊂ R
2 open, we define the product space G1(Ω) := Ω × G1,2, and endow it with the product distance.

We call varifold any positive Radon measure on G1(Ω). In this paper we are confined to curves, hence we
use the term varifold to mean a 1-varifold.

By varifold convergence we mean the convergence as Radon measures on G1(Ω).
For any varifold V we define μV to be the Radon measure on Ω obtained projecting V onto Ω.
Let M be a 1-rectifiable subset of R

2 and let θ : M → R
+ be a H1 M -measurable functions. We define the

rectifiable varifold v(M, θ), by

v(M, θ)(φ) :=
∫

M

φ(x, TxM) θ(x)dH2 ∀φ ∈ C0
c (G1(Ω)).

When θ takes values in N we say that v(M, θ) is a rectifiable integer varifold and we write v(M, θ) ∈ IV1(Ω).
Let V be a varifold on Ω. We define the first variation of V as the linear operator

δV : C1
c (Ω, R2) → R, Y →

∫
tr(S∇Y (x)) dV (x, S).

We say that V has bounded first variation if δV can be extended to a linear continuous operator on C0
c (Ω, R2).

In this case by |δV | we denote the total variation of δV . Whenever the varifold V has bounded first variation
we call generalized mean curvature vector of V the vector field

HV =
dδV

dμV
,

where the right-hand side denotes the Radon–Nikodym derivative of δV with respect to μV . We say that a
varifold V is stationary if δV ≡ 0. We say that V ∈ IV1(Ω) has L2-bounded first variation if

sup
Y ∈C1

c (Ω),
‖Y ‖L2(μV )≤1

δV (Y ) < +∞.

If V ∈ IV1(Ω) has L2-bounded first variation then

δV (Y ) =
∫

HV · Y dμV , HV ∈ L2
(
μV , R2

)
,
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and we set

F2(V ) :=
∫

[1 + |HV |2] dμV = μV (Ω) +

⎛⎜⎜⎝ sup
Y ∈C1

c (Ω),
‖Y ‖L2(μV )≤1

δV (Y )

⎞⎟⎟⎠
2

.

Remark 2.1. If V ∈ IV1(Ω) has L2-bounded first variation, by [19], Corollary 17.8, the 1-density of μV in x

Θ(μV , x) := lim
ρ→0

μV (Bρ(x))
πρ

,

is well defined everywhere on spt(μV ). Moreover Θ(μV , x) ∈ N and Θ(μV , x) < C, where C > 0 is a constant
that depends only on ‖HμV ‖L2(μV ,R2), furthermore V = v(M, θ) where M = spt(μV )∩Ω and θ(x) = Θ(μV , x).

For our purposes we also need to define a further class of varifolds, firstly introduced in [14].

Definition 2.2. Let V ∈ IV1(Ω). We say that V is a curvature varifold with generalized second fundamental
form in L2, if there exists AV = AV

ijk ∈ L2(V, R23
) such that for every function φ ∈ C1

c (G1(Ω)) and i = 1, 2,

∫
G1(Ω)

⎛⎝∑
j=1,2

Sij∂jφ +
∑

j,k=1,2

AV
ijkDmjk

φ +
∑

j=1,2

AV
jijφ

⎞⎠ dV (x, S) = 0, (2.5)

where Dmjk
φ denotes the derivative of φ(x, ·) with respect to its jk-entry variable.

Moreover we define the generalized second fundamental form BV = (Bk
ij)1≤i,j,k≤2 of V as

Bk
ij(x, S) :=

2∑
l=1

SjlA
V
ikl(x, S). (2.6)

By CV 2
1(Ω) we denote the class of curvature varifolds in Ω with generalized second fundamental form in L2.

Remark 2.3. Every V ∈ CV 2
1(Ω) has also L2-bounded first variation in Ω, and

HV (x) = (A212(x, TxμV ), A121(x, TxμV )) ∈ L2
(
μV , R2

)
,

for μV almost every x ∈ Ω (see [14]). Moreover if V ∈ CV 2
1(Ω) we have

F2(V ) =
∫

[1 + |HV |2] dμV =
∫

[1 + |BV |2] dV =
∫

[1 + |AV |2] dV. (2.7)

Eventually we need to introduce the following subset of CV 2
1(Ω)

Definition 2.4. We define the set D(Ω) as the set of v(M, θ) ∈ C V 2
1(Ω) for which there exists a sequence

{Ek}k ⊂ C 2(Ω) such that

lim
k→∞

v(∂Ek, 1) = v(M, θ) as varifolds, sup
k∈N

F2(v(∂Ek, 1)) < +∞. (2.8)

By an adaptation of the results obtained in [2] we prove the following

Proposition 2.5. We have

D(Ω) =
{
v(M, θ) ∈ CV 2

1(Ω) : M ∩ Ω has everywhere an unique tangent line
}

. (2.9)
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Proof. For every n ∈ N, let Yn : Ω → Ωn := Yn(Ω) be the map defined by

Yn(x) := x + δn(dist(x, ∂Ω))ν∂Ω(π∂Ω(x)),

where: δn ∈ C∞(0, +∞) is a decreasing function such that δn(s) = 1/n2 if s ∈ [0, 1/2n], δn(s) = 0 if s ≥ 1/n,
and ‖δ′n‖L∞(0,+∞) < 10/n ; ν∂Ω(·) denotes the interior unit normal to ∂Ω, and π∂Ω(x) the projection of x
onto ∂Ω. By the regularity assumption on Ω, the map Yn is a C2-diffeomorphism for every n ∈ N large enough.
Moreover we have Ωn ⊂⊂ Ωn+1 ⊂⊂ Ω, and Yn converges uniformly to the identity map on Ω as n → ∞.

Suppose v(M, θ) ∈ D(Ω), and let {Ek}k ⊂ C 2(Ω) be a sequence verifying (2.8). For a fixed n ∈ N the number
of connected components of ∂Ek such that Ωn ∩ ∂Ek 	= ∅ is bounded by a constant depending only on n and
supk∈N

F2(v(∂Ek, 1)). In fact, if the closure Nk of a connected component of ∂Ek intersects Ωn but does not
intersect ∂Ω then it is a closed curve, and an easy calculation (see [1], Lem. 3.1) shows that the contribution
of Nk to F2((v(∂Ek, 1)) is at least H1(Nk) + (2π)2/H1(Nk). However, if Nk ∩ Ωn 	= ∅, and Nk ∩ ∂Ω 	= ∅, then
the contribution of Nk to F2((v(∂Ek, 1)) is larger than dist(∂Ωn, ∂Ω) > 0. Hence, fixed n ∈ N, we can select
a subsequence (not relabeled) such that the connected components of ∂Ek intersecting Ωn are in a fixed, finite
number Λ(n), and the length of each of this connected components is bounded from below by a constant C > 0
that depends only on n and supk∈N F2((v(∂Ek , 1)). Therefore, for every k ∈ N, and j = 1, . . . , Λ(n), we can

choose αj
k ∈ C2([0, 1], R2) such that α̇j

k(t) = const. > C for t ∈ [0, 1], and such that αj
k([0, 1]) = N j

k where N j
k

is a connected component of ∂Ek such that N j
k ∩ Ωn 	= ∅. By (2.8) and

F2(v(N j
k , 1)) =

1
(H1(N j

k))2

∫ 1

0

|α̈j
k(t)|2 dt,

we conclude that there exists a subsequence such that, for every j = 1, . . . Λ(n), as k → ∞ the sequence αj
k

converges weakly in W 2,2([0, 1], R2), and strongly in C1([0, 1], R2), to a certain constant speed parametrization αj

such that

M ∩ Ωn = ∪Λ(n)
j=1 αj([0, 1]) ∩ Ωn, θ(y) =

Λ(n)∑
i=1

�{(αi)−1(y)} for H1 − a.e. y ∈ Ω,

where by �{(αi)−1(y)} we denote the cardinality of the counter-image through αi of y.
By construction we have: αi

k([0, 1]) ∩ αj
k([0, 1]) ∩ Ω = ∅ for every i 	= j and k ∈ N; αi

k((0, 1)) does not self
intersect and if αi

k(0) = αi
k(1) then α̇i

k(0) = α̇i
k(1). Hence, by the strong convergence in C1([0, 1], R2), if for

some s0, s1 ∈ [0, 1] and i, j ∈ {1, . . . , Λ(n)} we have αi(s0) = αj(s1) ∈ Ωn then α̇i(s0) and α̇j(s1) are parallel.
Hence

D(Ω) ⊆
{
v(M, θ) ∈ CV 2

1(Ω) : M ∩ Ω has everywhere an unique tangent line}.

In order to prove that also the opposite inclusion holds we proceed as follows. Given v(M, θ) ∈ CV 2
1(Ω) such

that M ∩ Ω has an unique tangent line in every point, we fix n ∈ N and consider v(M ∩ Ωn, θ) ∈ C V 2
1(Ωn).

By [2] we can conclude that M ∩ Ωn can be locally written (up to rigid motions) as a finite union of W 2,2-
graphs, and that M ∩ ∂Ωn consists of a finite number of points. Reasoning as in [1, 2], we can find a sequence
{En

k }k ⊂ C 2(Ωn) such that

lim
k→∞

v(Y−1
n (∂En

k ), 1) = v(Y−1
n (M ∩ Ωn), θ(Y−1

n )) as varifolds,

lim
k→∞

F2(v(Y−1
n (∂En

k ), 1)) = F2(v(Y−1
n (M ∩ Ωn), θ(Y−1

n ))).

Since as n → ∞ we also have

v(Y−1
n (M ∩ Ωn), θ(Y−1

n )) → v(M, θ) as varifolds in Ω,

F2(v(Y−1
n (M ∩ Ωn), θ(Y−1

n ))) → F2(v(M, θ)),
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we can extract a diagonal sequence {Y−1
n (En

k(n))}n ⊂ C 2(Ω) verifying (2.8). Hence

D(Ω) ⊇ {v(M, θ) ∈ C V 2
1(Ω) : M ∩ Ω has everywhere an unique tangent line

}
and this concludes the proof. �

Finally, being F as in (1.12), as a straightforward consequence of [2], Theorem 4.3, and Proposition 2.5 we
have the following

Theorem 2.6. Let u ∈ L1(Ω). Then F(u) < +∞ if and only if u = �E ∈ BV (Ω, {−1, 1}), and, if E 	= ∅, the
set

A (E) := {v(M, θ) ∈ D(Ω) : M ⊃ ∂∗E,

θ(x) is odd for x ∈ ∂∗E,

θ(x) is even for x ∈ spt(μV ) \ ∂∗E},
is not empty. Moreover, if A (E) 	= ∅, the following representation formula holds

F(�E) = min
v(M,θ)∈A (E)

F2(v(M, θ)).

In particular if E ∈ W 2,2(Ω) we have F(�E) = F2(v(∂E, 1)).

3. Preliminary known results on diffuse interfaces approximations of F
We begin this section specifying some further notation needed in the sequel.
We set W (r) := 1

4 (1 − r2)2 for r ∈ R, and c0 :=
∫ 1

−1

√
2W (s) ds.

To every family {uε}ε ⊂ C2(Ω) we associate

• the families of Radon measures

με :=
(

ε

2
|∇uε|2 +

W (uε)
ε

)
L2

Ω
, μ̃ε := ε|∇uε|2L2

Ω
; (3.1)

• the family of diffuse varifolds

Vε(φ) := c−1
0

∫
φ(x, Puε (x)) dμ̃ε(x), ∀φ ∈ C0

c (G1(Ω)), (3.2)

where Puε(x) denotes the projection on the tangent space to the level line of uε passing through x (see (2.2)).

The next result has been proved in [17, 18]

Theorem 3.1. Let {uε} ⊂ C2(Ω) be a family such that

sup
ε>0

Ẽε(uε) = sup
ε>0

(
Pε(uε) + Wε(uε)

)
< +∞. (3.3)

(A) There exists a subsequence (still denoted by {uε}) converging in L1(Ω) to a function �E ∈ BV (Ω, {−1, 1}).
Moreover the sequence {Vε}ε converges in the varifolds sense to v(M, θ) ∈ IV1(Ω) with L2-bounded first
variation, such that θ assumes odd (respectively even) values on ∂∗E (respectively M \ ∂∗E) and

c0θH1
M

= lim
ε→0+

με = lim
ε→0+

μ̃ε as Radon measures , (3.4)

lim inf
ε→0+

1
ε

∫
Ω

(
εΔuε − W ′(uε)

ε

)2

dx ≥ c0

∫
|HV |2 dμV . (3.5)
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(B) For every �E ∈ BV (Ω, {−1, 1}) such that E ∈ W 2,2(Ω), we have

Γ (L1(Ω)) − lim
ε→0

Ẽε(�E) = c0F(�E).

Next we recall some of the main results obtained in [3].

Theorem 3.2. Let {uε} ⊂ C2(Ω) be such that

sup
ε>0

Eε(uε) := sup
ε>0

(
Pε(uε) + Bε(uε)

)
< +∞. (3.6)

(A1) The conclusions of Theorem 3.1 hold. Moreover v(M, θ) ∈ CV 2
1(Ω) and

lim inf
ε→0+

1
ε

∫
Ω

∣∣∣∣ε∇2uε − W ′(uε)
ε

νuε ⊗ νuε

∣∣∣∣2 dx ≥ c0

∫
|BV |2 dV. (3.7)

(B1) For every �E ∈ BV (Ω, {−1, 1}) such that E ∈ W 2,2(Ω), we have

Γ (L1(Ω)) − lim
ε→0

Eε(�E) = c0

∫
Ω∩∂E

[1 + |B∂E |2] dH1 = c0F(�E).

4. Main results

The first of our main results shows that a varifold v(M, θ) ∈ CV 2
1(Ω) arising as the limit of diffuse interface

varifolds veryfing (3.6) (see Thm. 3.2-(A1)) is more regular than a generic element of C V 2
1(Ω).

Theorem 4.1. Let {uε}ε ⊂ C2(Ω) satisfy (3.6). Let Vε be as in (3.2) and suppose limε→0 Vε = v(M, θ) ∈
C V 2

1(Ω). Then M has an unique tangent line in every p ∈ M ∩ Ω.

In order to prove Theorem 4.1 we need two easy Lemmata.

Lemma 4.2. Let {Mk}k ⊂ B2R be a sequence of C2-embedded curves without boundary in B2R. Suppose that

0 < lim inf
k→∞

H1(Mk ∩ BR), lim sup
k→∞

H1(Mk) < +∞,

lim
k→∞

|δv(Mk, 1)|(B2R) = lim
k→∞

∫
Mk

|HMk
| dH1 = 0. (4.1)

There exist a finite collection of 1-dimensional affine subspaces T1, . . . , TN of R
2 such that

Ti ∩ Tj ∩ BR = ∅, for i 	= j, i, j ∈ {1, . . . , N}, (4.2)

and a subsequence (not relabelled) {v(Mk, 1)}k ⊂ IV1(B2R) such that

lim
k→∞

v(Mk, 1) =
N∑

j=1

v(Tj , Θj), (4.3)

where Θj ∈ N are constants.

Proof. By (4.1) we can apply Allard’s compactness Theorem (see [19], Thm. 42.7), and extract a subsequence
such that, as k → ∞, v(Mk, 1) → v(M, θ) ∈ IV1(B2R), with v(M, θ) stationary in B2R, and μV (BR) > 0.
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By (4.1), and arguing as in the proof of Lemma 2.5, we select a further subsequence (not relabeled) such
that:

(i) there are no closed curves among the connected components of Mk;
(ii) the connected components of Mk intersecting B3R/2 are in a fixed number.

Hence we can find a constant C > 0, and N sequences of maps {αj
k}k∈N ⊂ C2([0, 1], B3R/2) such that, for

j = 1, . . . , N and k ∈ N, we have

C < |α̇j
k| = const. on [0, 1], Mk ∩ BR =

N⋃
j=1

(αj
k)([0, 1]) ∩ BR.

Since

lim
k→∞

N∑
j=1

1
H1(αj

k(0, 1))

∫ 1

0

|α̈j
k| dt ≤ lim

k→∞
|δv(Mk, 1)|(B2R) = 0,

(up to the extraction of a further subsequence) αj
k → αj strongly in W 2,1([0, 1], R2), for every j = 1, . . . , N ;

αj
k → αj in C1([0, 1]; R2) and α̈j = 0 on [0, 1]. Since for every φ ∈ C0

c (G1(BR))

lim
k→∞

v(Mk, 1)(φ) = lim
k→∞

N∑
j=1

∫ 1

0

φ

(
αj

k(s), Id − α̇j
k(s) ⊗ α̇j

k(s)

|α̇j
k(s)|2

)
|α̇j

k(s)| ds

=
N∑

j=1

∫ 1

0

φ

(
αj(s), Id − α̇j(s) ⊗ α̇j(s)

|α̇j(s)|2
)
|α̇j(s)| ds,

we conclude that (4.3) holds for Tj ∩ BR := αj([0, 1]) ∩ BR. Finally (4.2) follows, as in Proposition 2.5, by the
strong convergence αj

k → αj in C1([0, 1], R2) and αj
k([0, 1]) ∩ αl

k([0, 1]) = ∅ for every j 	= l ∈ {1, . . . , N} and
k ∈ N. �

Lemma 4.3. Let ũε ∈ C2(B2R) be such that

0 < lim
ε→0

∫
B2R

ε

2
|∇ũε|2 +

W (ũε)
ε

dx < +∞, (4.4)

lim
ε→0

1
ε

∫
B2R

∣∣∣∣ε∇2ũε − W ′(ũε)
ε

νũε
⊗ νũε

∣∣∣∣2 dx = 0. (4.5)

Being Ṽε the diffuse interface varifold associated to ũε (see (3.2)), up to a subsequence we have limε→0 Ṽε = Ṽ ,

where Ṽ ∈ IV1(B2R) is stationary and verifies (4.3) and (4.2).

Proof. By (4.4), (4.5) we can apply Theorem 3.2, and extract a subsequence (not relabeled) such that Ṽε → Ṽ ∈
C V 2

1(B2R), where Ṽ is stationary. Moreover by Sard’s Lemma and [3], Lemma 7.1, we can find a subsequence
{Ṽεk

}k and a subset J ⊂ [−1, 1], with L1(J) = 0, such that for every s ∈ [−1, 1] \ J ,

{ũεk
= s} is a smooth embedded surface without boundary in B2R

{ũεk
= s} ∩ {∇ũεk

= 0} = ∅, (4.6)

lim
k→∞

v({ũεk
= s}, 1) = Ṽ as varifolds on B2R.
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Next we fix δ ∈ (0, 1) and set Iδ := [−1 + δ, 1 − δ]. For every x ∈ B2R such that ũεk
(x) = s ∈ [−1, 1] \ J

let Bũεk
(x) be as in (2.3). As in [3], Lemma 5.3, we have∫

Iδ\J

|δv({ũεk
= s}, 1)| (B2R) ds =

∫
Iδ\J

∫
{ũεk

=s}∩B2R

∣∣∣div
(
νũεk

)∣∣∣ dH1 ds

≤ 2
(2δ − δ2)

∫
B2R

|Bũεk
|
√

2W (ũεk
)|∇ũεk

| dx

≤ 2
(2δ − δ2)

(
1
εk

∫
B2R

∣∣∣ε∇2ũε − W ′(ũε)
ε

νũε
⊗ νũε

∣∣∣2 dx

)1/2 (∫
B2R

W (ũεk
)

εk
dx

)1/2

.

By (4.5), the choice of εk and that of the set J , there exists sεk
∈ Iδ \ J such that

lim sup
k→∞

H1({ũεk
= sεk

} ∩ B2R) < +∞, lim sup
k→∞

∣∣∣δv({ũεk
= sεk

}, 1)
∣∣∣(B2R) = 0.

Applying Lemma 4.2 to the sequence {v({ũεk
= sεk

}, 1)}k ⊂ IV1(B2R), and making use of (4.6), we conclude
the proof. �

Proof of Theorem 4.1. For x ∈ R
2 and λ > 0 we define

ηx,λ : R
2 → R

2, y �→ y − x

λ
,

and consider, for x ∈ spt(μV ), the varifolds

(ηx,ρ)
V (φ) :=
1
ρ

∫
φ(ρy + x, Q) dV (y, Q), ∀φ ∈ C0

c

(
G1

(
R

2
))

.

By [13], Theorem 3.4 we can conclude that for every x ∈ spt(μV ) there exists Vx ∈ IV1

(
R

2
)

such that

lim
ρ→0+

(ηx,ρ)
V (φ) = Vx(φ), ∀φ ∈ C0
c

(
G1

(
R

2
))

, (4.7)

and

Vx =
Nx∑
i=1

v(Ti(x), Θi(x)),

where Nx ∈ N, and where T̃1(x), . . . , T̃Nx(x) ∈ G1,2 and Θ1(x), . . . , ΘNx(x) ∈ N verify

Nx⋂
i=1

Ti(x) = {0},
Nx∑
i=1

Θi(x) = θ(x). (4.8)

In order to prove the existence of an unique tangent line in every point of spt(μV ) we show that Nx = 1 for
every x ∈ spt(μV ).

Without loss of generality we suppose that x = 0. In view of (4.7) to conclude that N0 = 1 it is enough to
fix a sequence {ρk}k ⊂ R

+ such that limk→∞ ρk = 0, and prove that

V0 = lim
k→∞

(η0,ρk
)
V = v(T, θ(0)), (4.9)

where T ∈ G1,2 is a linear 1-dimensional subspace of R
2.
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By (4.7), (3.6) and by limk→∞ Vεk
= V as varifolds in Ω, fixed an open bounded subset U ⊂ R

2 containing
the origin, we can find a sequence {εk}k such that

lim
k→∞

εk = lim
k→∞

εk

ρk
= 0,

and such that, setting ũk(y) := uεk
(ρky), ε̃k := εk/ρk, denoted by Ṽε̃k

the diffuse varifolds associated to ũk as
in (3.2) we have

Ṽε̃k
→ V0 as varifolds in U, 0 < lim

k→∞

∫
U

ε̃k|∇ũk|2 +
W (ũk)

ε̃k
dx < +∞,

and, by (2.7),

1
ε̃k

∫
U

∣∣∣∣ε̃k∇2ũk − W ′(ũk)
ε̃k

νũk
⊗ νũk

∣∣∣∣2 dy

=
ρk

εk

∫
ρkU

∣∣∣∣εk∇2uεk
(x) − W ′(uεk

(x))
εk

νuεk
(x) ⊗ νuεk

(x)
∣∣∣∣2 dx ≤ Cρk.

We can thus apply Lemma 4.3 and obtain that

Ṽε̃k
→ V0 =

N0∑
j=1

v(Tj ∩ U, Θj) as varifolds in U,

where, if N0 > 1, we have Ti ∩ Tj ∩ BR = ∅ for every B2R ⊂⊂ U and i 	= j. Hence, by (4.8), we have N0 = 1.

As a consequence of Theorems 4.1 and 2.6 we obtain

Corollary 4.4. We have Γ (L1(Ω)) − limε→0 Eε = c0F , where F is as in (1.12).

Proof. We begin proving the so-called Γ − lim inf-inequality, that is: For every uε → u in L1(Ω) as ε → 0 we
have

lim inf
ε→0

Eε(uε) ≥ c0F(u).

We suppose that {uε}ε ⊂ C2(Ω) satisfies (3.6) (otherwise we have nothing to prove). By Theorem 3.2 we can
find a subsequence {εk}k∈N such that limk→∞ εk = 0 and

lim
k→∞

Eεk
(uεk

) = lim inf
ε→0

Eε(uε),

L1(Ω) − lim
k→∞

uεk
→ �E ∈ BV (Ω, {−1, 1}), lim

k→∞
Vεk

= v(M, θ) ∈ CV 2
1(Ω) as varifolds.

Moreover, by Proposition 2.5 and Theorem 4.1, we have v(M, θ) ∈ D(Ω). Hence, by Theorem 2.6, Theo-
rem 3.2-(A1) and (2.7),

lim inf
ε→0

Eε(uε) = lim
k→∞

Eεk
(uεk

) ≥ c0

∫
M

(1 + |BV |2)θ dH1 ≥ c0F(E).

That is the Γ − lim inf inequality holds.
To prove the Γ − lim sup inequality we have to show that for every u ∈ L1(Ω) we can find a recovery family,

that is a family {uε}ε ⊂ C2(Ω) verifying

lim
ε→0

‖uε − u‖L1(Ω) = 0, lim sup
ε→0

Eε(uε) ≤ F(u). (4.10)
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However, this now follows by Proposition 2.5 and a standard density argument. In fact, by the previous step
we can conclude that for every u ∈ L1(Ω) such that Γ (L1(Ω)) − limε→0 Eε(u) < +∞ we also have u = �E and
F(�E) < +∞. Therefore we can find a sequence {Ek}k ⊂ C 2(Ω) such that

L1(Ω) − lim
k→∞

�Ek
= �E , lim

k→∞
F(�Ek

) = F(�E).

Since for any fixed k ∈ N the existence of a recovery family {uk
ε}ε follows from [3,4], we can extract a diagonal

sequence verifying (4.10).
Eventually we also obtain a results concerning the Γ -limit of the family of functionals {Ẽε}ε, and its relation

with F . More precisely, combining Corollary 4.4 with the results proved in [8] (see also [6]), we have

Corollary 4.5. There exists a family {uε}ε ⊂ C2(Ω) and �E ∈ BV (Ω, {−1, 1}), where E 	= ∅ is such that ∂E
does not have an unique tangent line in every point, verifying

L1(Ω) − lim
ε→0

uε = �E , lim
ε→0

Vε = v(∂E, 1) ∈ CV 2
1(Ω),

sup
ε>0

Pε(uε) < +∞, Wε(uε) ≡ 0.

In particular

lim
ε→0

Ẽε(uε) = F2(v(∂E, 1)) < F(�E) = Γ (L1(Ω)) − lim
ε→0

Eε(�E) = +∞. (4.11)

Proof. By [6], Theorem 1.3 (see also [8]) we can find U ∈ C3
(
R

2
)

such that

ΔU = W ′(U) on R
2, (4.12)

and U is such that

• ‖U‖L∞(R2) ≤ 1, {U = 0} = C where

C := ({0} × R) ∪ (R × {0})
and U > 0 (respectively U < 0) in the I and III (respectively II and IV) quadrant of R

2;
• there exists C > 0 such that for every R > 0∫

BR

1
2
|∇U |2 + W (U) dy ≤ C R. (4.13)

Defining {uε}ε ⊂ C2(Ω) by uε(x) := U(x/ε), by (4.12), (4.13) we have

εΔuε − W ′(uε)
ε

= 0,∫
Ω

ε

2
|∇uε|2 +

W (uε)
ε

dx = ε

∫
Bε−1

1
2
|∇U |2 + W (U) dy ≤ C.

Hence applying Theorem 3.1 we have that, up to subsequences, uε → �E ∈ BV (Ω, {−1, 1}) and Vε → v(M, θ) ∈
IV1(Ω), where v(M, θ) is stationary in Ω. Moreover, in view of [8], Lemma 5, and [18], we obtain that E coincides
with the intersection of Ω with the I, III quadrants of R

2, and also that M = C = ∂E. This concludes the
proof of the first part of Corollary 4.5. It remains to prove that (4.11) holds. To this aim it is enough to remark
that, being {uε}ε and �E as above, by Proposition 2.5 and Theorem 4.1 we have

F(�E) = Γ (L1(Ω)) − lim
ε→0

Eε(�E) = +∞.
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Remark 4.6. We remark that combining Corollary 4.5 with [2], Example 1, we obtain the existence of an open
subset E ⊂⊂ B10 and of a family {uε}ε ⊂ C2(B10) such that

L1(B10) − lim
ε→0

uε = �E , lim
ε→0

Vε = v(M, θ) ∈ C V 2
1(B10) \ A (E),

lim
ε→0

Ẽε(uε) < F(�E) < +∞.
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