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REGULARITY PROPERTIES OF OPTIMAL TRANSPORTATION PROBLEMS
ARISING IN HEDONIC PRICING MODELS

Brendan Pass1

Abstract. We study a form of optimal transportation surplus functions which arise in hedonic
pricing models. We derive a formula for the Ma–Trudinger–Wang curvature of these functions, yielding
necessary and sufficient conditions for them to satisfy (A3w). We use this to give explicit new examples
of surplus functions satisfying (A3w), of the form b(x, y) = H(x + y) where H is a convex function
on R

n. We also show that the distribution of equilibrium contracts in this hedonic pricing model is
absolutely continuous with respect to Lebesgue measure, implying that buyers are fully separated by
the contracts they sign, a result of potential economic interest.
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1. Introduction

Fix Borel probability measures μ and ν on smooth manifolds X and Y , respectively, and a smooth surplus
function b : X × Y → R. Monge’s optimal transportation problem is to find the map F : X → Y , pushing μ
forward to ν, which maximizes the transportation surplus:∫

X

b(x, F (x))dμ.

Assuming some regularity on μ (say absolute continuity with respect to local coordinates), sufficient conditions
on b for the existence and uniqueness of the minimizer F were found by Levin [25], building on results of
Gangbo and McCann [21], Caffarelli [5] and Gangbo [20] (condition (A1) in the next section). The regularity,
or smoothness, of F is currently a very hot area of research. Ma et al. [30] found a condition (A3s) on b under
which the optimizer must be smooth as long as the marginals μ and ν are smooth and bounded above and
below. Trudinger and Wang then proved that a weaker version of this hypothesis, (A3w), is in fact sufficient
for the regularity of F [35, 36] and Loeper showed that, even for rougher marginals, (A3w) is both necessary
and sufficient for the continuity of F [27]. This framework generalizes and unifies a series of earlier regularity
results obtained by Caffarelli [2,3], Urbas [37], Delanoe [8,9] and Wang [39]. Since then, many interesting results
on regularity have been obtained; see, for example, [13, 15–19, 22–24, 26, 28, 29]. An interesting line of current
research is to find examples of surplus functions satisfying (A3w) and (A3s).
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regularity of solutions.
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One main goal in the present paper is to determine when (A3w) holds for a particular class of surplus
functions. Explicitly, we are interested in functions of the form:

b(x, y) = sup
z∈Z

h(x, z) + g(y, z). (1.1)

Our motivation in studying surplus functions of this form comes partially from mathematical economics.
A recent paper by Chiappori et al. [7] demonstrated that finding an equilibrium in a certain hedonic pricing
model is equivalent to solving an optimal transportation problem with a surplus function of this form (see also
Ekeland [11,12] and Carlier and Ekeland [6] for another approach to this problem). We briefly review this model
now. Imagine X parameterizes a population of consumer types who are looking to buy some specific good (say
houses). The different directions in the manifold X may represent various characteristics which differentiate
among types (for example, age, income, family size, etc.) and dμ(x) represents the relative frequency of types
with characteristics x ∈ X . Suppose now that Y parameterizes a space of sellers looking to produce and
sell the same good (say companies looking to build customized houses). Again, the different directions in Y
represent characteristics differentiating seller types from each other (for example, the size of the company and
the location of its headquarters) and dν(y) their relative frequencies. Suppose that Z represents the space of
available goods that can potentially be produced (for example, the collection of all houses that can feasibly be
built, characterized by their size, location, etc.). The space Z is often referred to as the space of contracts. The
functions h(x, z) and g(y, z) represent the preference of consumer x to buy house z and the preference of seller
y to build house z, respectively. The result of Chiappori et al. implies that the equilibrium coupling of buyers
to sellers is also a solution to the optimal transportation problem with marginals μ and ν and surplus b(x, y)
given by equation (1.1). Despite their relevance in mathematical economics, however, optimal transportation
problems with surplus functions of this form do not seem to have been studied systematically in the literature.

The (A3w) condition is that a certain tensor – the Ma–Trudinger–Wang curvature, defined in the next
section – should be nonnegative on a certain set of vectors. One of our goals here is to find a formula for the
Ma–Trudinger–Wang curvature of b in terms of g and h. This will then yield necessary and sufficient conditions
on g and h in order for b to satisfy (A3w).

In particular, our work here will produce sufficient conditions on g and h which will ensure that the equilibrium
assignment of sellers to buyers in the hedonic pricing problem is continuous. In addition, this result should be
of independent interest to mathematicians working in optimal transportation, as at present there are fairly few
known examples of surplus functions satisfying (A3w). Our result here yields new examples of such functions.
In particular, we show that for special choices of the preference functions h and g, we obtain b(x, y) = H(x+y),
where H is a convex function on R

n 2. Our work here yields a new formula for the Ma–Trudinger–Wang
curvature in terms of the Legendre dual H∗ of H ; this formula splits into two terms, one of which is always
positive. Therefore, for b to satisfy (A3w), it suffices that the other term (which has a simple form) is non-
negative. In this sense, it is simpler to verify (A3w) from this formula than the original formula of Ma, Trudinger
and Wang.

In a recent paper by Figalli et al., a variant of (A3w), called (B3w), emerged as a central concept in another
type of economic problem [14]. This condition also asserts the positivity of the Ma–Trudinger–Wang curvature,
but on a larger set of vectors than (A3w). Let us mention here that, as we derive a formula for the Ma–
Trudinger–Wang curvature, our method also yields necessary and sufficient conditions on g and h so that b
satisfies (B3w).

Another issue of economic interest that does not seem to have received much attention is the structure of
the distribution μZ of signed contracts, which is a measure on the space Z of feasible contracts; we define μZ

precisely in section 4. Economically, we can interpret the support of μZ as the set of contracts that are executed
in equilibrium. In fact, the original version of the hedonic pricing problem, due to Ekeland, is equivalent to
finding the measure on Z which minimizes the sum of the transportation costs to μ and ν [11]. This formulation

2Surplus functions of this form are reminiscent of a class of functions studied by Gangbo and McCann [21], who were interested
in minimizing the transportation cost for cost functions of the form l(|x − y|), where l ≥ 0 is strictly concave.
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is in fact equivalent to the formulation of Chiappori et al. and μZ coincides with the minimizing measure in
Ekeland’s formulation [6, 7].

While Ekeland proved existences and uniqueness of an optimal measure in his formulation of the problem,
it is natural to ask about the structure of this measure, and this issue is related to a number of questions of
economic interest. For instance, does bunching, the phenomena where a positive fraction of buyers choose the
same good in equilibrium, occur? This would correspond to point masses in μZ . On the other hand, is there
local separation of types by contracts; that is, do all pairs x and x of nearby buyers choose distinct goods in
equilibrium? The optimal transportation formulation of the hedonic pricing problem has already proven useful
in resolving structural questions about the optimal coupling of buyers to sellers and it is reasonable to expect
it to be helpful in addressing the structure of μZ as well.

Our main result in this direction is that, assuming twist and non-degeneracy conditions on g and h, defined in
the next section, and equality of the dimensions of X , Y and Z, the function x �→ z(x, F (x)) mapping each buyer
to the contract he signs is locally invertible almost everywhere. This implies local separation of types, and also
the absolute continuity of μZ (which, in turn, implies global separation of types under stronger assumptions).

In the next section, we recall various structural hypotheses on the function b which arise in the regularity
theory of optimal transportation, (A3w) and (A3s) being the most important. In Section 3, we derive conditions
on g and h that ensure b will satisfy these hypotheses. In the final section, we study the structure of the
distribution of contracts that gets signed in equilibrium.

It is a pleasure to thank Robert McCann for suggesting this problem to me and for useful discussions during
the course of this work.

2. Assumptions and definitions

We will assume that the domains X , Y and Z can all be smoothly embedded in larger manifolds, such that
their closures X, Y and Z are compact. We will also make several assumptions on the preference functions g
and h.

1. The smooth manifolds X , Y , and Z all share the same dimension, which we will denote by n.
2. h ∈ C2(X × Z) and g ∈ C2(Y × Z).
3. For each (x, y) the supremum is attained by a unique z(x, y) ∈ Z.
4. For all (x, y), the n × n matrix D2

zzh(x, z(x, y)) + D2
zzg(y, z(x, y)) is non-singular.

Economically, z(x, y) is the contract that maximizes the total utility of agents x and y; if, in equilibrium, x
and y choose to conduct business with each other, z(x, y) is the contract they sign.

Assumption (1) on the dimensions is not entirely necessary. Most of the literature on optimal transportation
deals with equal dimensional spaces; one exception is a recent paper by the present author on the regularity of
optimal transportation when the dimensions differ [34]. For economic applications, however, it may be desirable
to allow these dimensions to differ. The dimensions of X , Y and Z may represent the number of characteristics
used in the model to differentiate among buyers, sellers and contracts, respectively, and it is certainly possible
that these will not coincide. For simplicity, we assume here that the dimensions are all equal, but note that it
is straightforward to extend the analysis to the case dim(X) ≥ dim(Z) ≥ dim(Y ), using the extensions of the
conditions (A0)–(A3s) found in [33, 34].

Definition 2.1. We say b is (x, y)-twisted if for all x ∈ X, the mapping y �→ Dxb(x, y) is injective on Y . We
say b is (y, x)-twisted if for all y ∈ Y , the mapping x �→ Dyb(x, y) is injective on X. We say b is bi-twisted if it
is both (x, y) and (y, x)-twisted.

If b is (x, y)-twisted, the map y �→ Dxb(x, y) is invertible on its range and we will denote its inverse by
b-expx(·).
Definition 2.2. We say b is non-degenerate if for all (x, y) the matrix of mixed, second order partials D2

xyb(x, y)
is non-singular.
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We will use analogous terminology for g and h; for example, we will say that g is (y, z)-twisted if z �→ Dyg(y, z)
is injective.

The first three regularity conditions formulated by Ma, Trudinger and Wang are:

(A0) b ∈ C4(X × Y ).
(A1) b is bi-twisted.
(A2) b is non-degenerate.

For sufficiently regular marginals μ and ν, (A1) implies the existence and uniqueness of a maximizer
F , [5, 20, 21, 25]. The condition (A2), in turn, implies that the graph of F is contained in an n-dimensional
Lipschitz submanifold of the product X × Y [32].

Our next definition concerns the structure of the domain Y.

Definition 2.3. We say Y is b-convex if for all x the set Dxb(x, Y ) ⊆ T ∗
xX is convex.

Ma et al. showed that the b-convexity of Y is necessary for the continuity of the map F for arbitrary smooth
marginals μ and ν [30]. Assuming this condition, as well as, (A0)–(A2) they showed that under, (A3s), which
we define below, the optimal map F is smooth. Loeper then showed that the weakening (A3w) of this condition
is necessary and sufficient for the continuity of F [27].

To formulate (A3w) and (A3s), we will need the following definition.

Definition 2.4. Assume (A0)–(A2) hold and that Y is b-convex. Let x ∈ X and y ∈ Y . Choose tangent
vectors v ∈ TxX and u ∈ TyY . Set q = Dxb(x, y) ∈ T ∗

xX and p = (D2
xyb(x, y)) ·u ∈ T ∗

xX . For any smooth curve
β(s) in X with β(0) = x and dβ

ds (0) = v, we define the Ma–Trudinger–Wang curvature of b at x and y, in the
directions v and u by:

MTW b
(x,y)〈v, u〉 :=

∂4

∂s2∂t2
b(β(s), b- expx(tp + q)).

A local coordinates expression for MTW b
(x,y)〈v, u〉 was first introduced by Ma et al. [30]. The formulation

above is due to Loeper [27], who showed that MTW b
(x,y)〈v, u〉 is invariant under smooth changes of coordinates

and, when, −b(x, y) is the quadratic cost on a Riemannian manifold, it is equal to the sectional curvature
along the diagonal. For general smooth surplus functions, Kim and McCann [23] showed that it is the sectional
curvature of certain null planes, corresponding to a certain pseudo-Riemannian metric.

We can now state the final regularity conditions:

(A3w) For all (x, y) ∈ X × Y , v ∈ TxX and u ∈ TyY such that vT · D2
xyb · u = 0 we have MTW b

(x,y)〈v, u〉 ≥ 0.

(A3s) For all (x, y) ∈ X × Y , v ∈ TxX and u ∈ TyY such that vT · D2
xyb · u = 0 and v, u 	= 0 we have

MTW b
(x,y)〈v, u〉 > 0.

In subsequent sections, we will often refer to the curve t �→ b- expx(tp + q) ∈ Y as a b-segment in Y . We also
note here that the conditions (B3w) and (B3s) found in [14] are equivalent to (A3w) and (A3s), respectively,
without the orthogonality condition vT · D2

xyb · u = 0.

3. Regularity properties of b

The aim of this section is to understand when b satisfies certain regularity properties, namely (A1), which
ensures the existence and uniqueness of the optimal map F , (A2), ensuring the rectifiability of the graph of F ,
b-convexity of Y and (A3w)/(A3s), governing the regularity of the optimal map.

First, we verify some simple facts.
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Lemma 3.1. The map z(x, y) is continuously differentiable and b is C2 smooth. For all x, y we have the
following formulae:

Dxb(x, y) = Dxh(x, z(x, y)) (3.1)
Dyb(x, y) = Dyg(y, z(x, y)) (3.2)
Dxz(x, y) = −M−1(x, y)D2

zxh(x, z) (3.3)
Dyz(x, y) = −M−1(x, y)D2

zyg(y, z) (3.4)

D2
xyb(x, y) = −D2

xzh(x, z)M−1(x, y)D2
zyg(y, z) (3.5)

where M(x, y) := D2
zzh(x, z(x, y)) + D2

zzg(y, z(x, y)).

Proof. Note that, as z(x, y) maximizes z �→ h(x, z) + g(y, z), we have

Dzh(x, z(x, y)) + Dzg(y, z(x, y)) = 0. (3.6)

As D2
zzh(x, z(x, y))+D2

zzg(y, z(x, y)) is non-singular by assumption, the Implicit Function Theorem now implies
that z(x, y) is C1. This, in turn, implies that b(x, y) = h(x, z(x, y)) + g(y, z(x, y)) is at least C1. Now note
that b(x, y) − h(x, z) + g(y, z) ≥ 0, for all z, with equality when z = z(x, y), which implies (3.1) and (3.2).
Differentiating (3.6) with respect to x and y, respectively, yields (3.3) and (3.4). Differentiating (3.1) with
respect to y and using (3.4) yields (3.5). �

We will first prove results about (A0)–(A2). These proofs are based on similar arguments, found in [7, 34];
we recreate them here for the reader’s convenience.

Corollary 3.2. If h and g satisfy (A0), then b satisfies (A0) as well.

Proof. Using (3.6) and the implicit function theorem we find that z(x, y) is C3; equations (3.1) and (3.2) together
with the chain rule now imply the desired result. �

Proposition 3.3. If h and g are non-degenerate, then b is non-degenerate. If h is (x, z)-twisted and g is (z, y)-
twisted, then b is (x, y)-twisted.

Proof. The non-degeneracy part of the proposition follows immediately from (3.5).
Assume that h is (x, z) twisted and g is (z, y) twisted. Suppose we have Dxb(x, y0) = Dxb(x, y1); we need

to show y0 = y1. By (3.1), we have Dxh(x, z(x, y0)) = Dxh(x, z(x, y1)) and so by the twistedness of h we have
z(x, y0) = z(x, y1). Now, for i = 0, 1 we have Dzh(x, z(x, yi)) + Dzg(yi, z(x, yi)) = 0 by 3.6. Therefore, as
z(x, y0) = z(x, y1),

Dzg(y0, z(x, y0)) = −Dzh(x, z(x, y0)) = −Dzh(x, z(x, y1)) = Dzg(y1, z(x, y1)).

Again using z(x, y0) = z(x, y1), the equality Dzg(y0, z(x, y0)) = Dzg(y1, z(x, y1)) and the twistedness of g
imply that y0 = y1 as desired. �

Of course, an analogous result holds if h is (z, x)-twisted and g is (y, z)-twisted and so we immediately obtain
the following.

Corollary 3.4. If h and g satisfy (A1), then so does b. If h and g satisfy (A2), then so does b.

Next, we consider the b-convexity condition.

Proposition 3.5. Assume Z is h-convex and for all h-segments zt at x, −Dzh(x, zt) is in the domain of
g − expzt

(·). Then the domain Y is b-convex.



REGULARITY OF OPTIMAL TRANSPORT PROBLEMS IN HEDONIC PRICING 673

Proof. Let Dxb(x, yi) = pi, for i = 0, 1. For all t ∈ [0, 1], we must show that there is some yt ∈ Y such that
Dxb(x, yt) = t(p1 − p0) + p0 := pt. Let zi = z(x, yi); then Dxh(x, zi) = Dxb(x, yi) = pi for i = 0, 1, by 3.1
in Lemma 3.1. The given conditions imply the existence of a zt such that Dxh(x, zt) = pt and a yt such that
Dzh(x, zt) + Dzg(yt, zt) = 0. Therefore, zt = z(x, yt), and so Dxb(x, yt) = Dxh(x, zt) = pt, as desired. �

We now provide a formula for the Ma–Trudinger–Wang curvature in terms of g and h.

Theorem 3.6. Let x ∈ X, z ∈ Z, v ∈ TxX and zt be a b-segment at x. Set yt = g-expzt
(−Dzh(x, zt)). Then,

for u = ẏ0, MTW b
(x,y0)

〈v, u〉 is given by

d2

dt2

∣∣∣
t=0

vT ·
(
D2

xxh(x, zt) − D2
xzh(x, zt) ·

(
D2

zzh(x, zt) + D2
zzg(yt, zt)

)−1 · D2
zxh(x, zt)

)
· v. (3.7)

To prove this result, we will need a simple lemma about the Ma–Trudinger–Wang curvature. This lemma is
well known, and the resulting formula for the Ma–Trudinger–Wang curvature appears in, for example, [22], but
it does not seem to be proven explicitly in the literature, so we provide a proof below.

Lemma 3.7. Let yt be a b-segment at x: Dxb(x, yt) = tp + q. Then, for u = ẏ0,

MTW b
(x,y0)

〈v, u〉 =
d2

dt2

∣∣∣
t=0

vT · D2
xxb(x, yt) · v.

Proof. Letting xs be a curve such that x0 = x and ẋ0 = v, we have

MTW b
(x,y0)

〈v, u〉 =
d4

dt2ds2

∣∣∣
t=0,s=0

b(xs, yt)

=
d3

dt2ds

∣∣∣
t=0,s=0

Dxb(xs, yt) · ẋs

=
d2

dt2

∣∣∣
t=0,s=0

(ẋs
T · D2

xxb(xs, yt) · ẋs + Dxb(xs, yt) · ẍs)

=
d2

dt2

∣∣∣
t=0

(vT · D2
xxb(x, yt) · v) +

d2

dt2

∣∣∣
t=0

(Dxb(x, yt) · ẍ0)

=
d2

dt2

∣∣∣
t=0

(vT · D2
xxb(x, yt) · v) +

d2

dt2

∣∣∣
t=0

((pt + q) · ẍ0)

=
d2

dt2

∣∣∣
t=0

(vT · D2
xxb(x, yt) · v). �

We can now prove Proposition 3.6.

Proof. In light of the preceding lemma, it suffices to show:

D2
xxb(x, yt) = D2

xxh(x, zt) − D2
xzh(x, zt) ·

(
D2

zzh(x, zt) + D2
zzg(yt, zt)

)−1 · D2
zxh(x, zt).

By Lemma 3.1,
Dxb(x, y) = Dxh(x, z(x, y)).

Differentiating this equation with respect to x, noting that z(x, yt) = zt and using the formula in Lemma 3.1
for Dxz(x, y) yields the desired result. �

Equation (3.7) for the Ma–Trudinger–Wang curvature naturally splits into two terms:

MTW b
(x,y0)

〈v, u〉 = A + B
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where

A =
d2

dt2

∣∣∣
t=0

vT ·
(
D2

xxh(x, zt)
)
· v, B = − d2

dt2

∣∣∣
t=0

vT
t · (Mt)−1 · vt.

Here Mt = D2
zzh(x, zt) + D2

zzg(yt, zt), and vt = D2
zxh(x, zt) · v. The first term, A, is exactly the Ma–Trudinger–

Wang curvature of h. The second term B, can be further refined using the chain rule and the formulae for the
derivatives of the matrix M−1

t :

˙(M−1
t ) = −M−1

t ṀtM
−1
t , ¨(M−1

t ) = −M−1
t M̈tM

−1
t + 2M−1

t ṀtM
−1
t ṀtM

−1
t .

Differentiating vT
t · (Mt)−1 · vt twice, applying these formulae and using the symmetry of Mt and its derivatives

yields:

B =
(
− 2v̈t

T · M−1
t · vt − 2v̇t

T · M−1
t · v̇t + 4v̇t

T · M−1
t ṀtM

−1
t · vt

+ vT
t · M−1

t M̈tM
−1
t · vt − 2vT

t · M−1
t ṀtM

−1
t ṀtM

−1
t · vt

)
|t=0. (3.8)

Now, note that the maximality of z �→ h(xt, z)+g(yt, z) at zt = z(x, yt) implies that Mt, the second derivative
of this map, is negative semi-definite. Assumption 4 at the beginning of Section 2 asserts that Mt is non-singular,
and therefore it is negative-definite. The second and last terms in (3.8) are therefore non-negative, due to the
negative definiteness of M−1

t and the symmetry of M−1
t and Ṁt.

3.1. Convex functions of the sum

For appropriate forms of the functions h and g, b(x, y) = H(x + y) becomes an arbitrary convex function
of the sum. Understanding when functions of this form have positive cross curvature is interesting in its own
right. In this setting, the present approach – essentially doing calculations on H∗ rather than H – has a distinct
advantage; b-segments for H correspond to ordinary line segments for the dual variables. That is, instead of
evaluating H along a b-segment, we evaluate H∗ along a line.

Proposition 3.8. Take X = Y = Z = R
n and set h(x, z) = x · z −H∗(z), where H∗ is the Legendre transform

of some smooth, uniformly convex function H : R
n → R, and g(y, z) = y · z. Then b(x, y) = H(x + y) and

MTW b
(x,y)(v, u) is given by:

∑
i,j,k,l

− ∂4H∗

∂zi∂zj∂zk∂zl
pkplwiwj + 2

∑
i,j,k,l,a,r

∂3H∗

∂zi∂zl∂zk

∂3H∗

∂zr∂zj∂za

∂2H

∂zl∂zr
wiwjpapk (3.9)

where p = D2H(x + y) · u, w = D2H(x + y) · v.
Proof. The curve yt is given by DH(x+yt) = tp+q, or yt = DH∗(tp+q)−x, and zt is given by zt = Dxh(x, zt) =
tp + q. Note that A = 0, as D2

xxh(x, zt) = 0. Turning to B, note that as D2
xzh(x, zt) = I, we have vt = v, and

Mt = −D2H∗(tp + q), so that Ṁt = −D3H∗(tp + q) · p, or, in matrix notation, (Ṁt)ij = −∑
k

∂3H∗
∂zi∂zj∂zk pk.

Similarly, (M̈t)ij = −∑
k,l

∂4H∗
∂zi∂zj∂zk∂zl pkpl.

Now, the first three terms in (3.8) vanish. The final two terms are exactly the desired expression. �

The formula (3.9) for the Ma–Trudinger–Wang curvature does not seem much simpler than the original formula
of Ma et al. [30], but it has an important advantage; the second term is always non-negative, because of the
symmetry of mixed partials and the positive definiteness of D2H . It is therefore straightforward to find examples
of functions H∗ so that H(x + y) satisfies (A3w). We obtain immediately, for example, that on any domain
where the fourth order derivatives of H∗ are small compared to its third order derivatives and the second order
derivatives of H , b satisfies (A3s) (in fact, it satisfies the stronger condition (B3s)). In this sense, it is easier
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to check (A3w) and (A3s) of H(x + y) using formula (3.9) than using the traditional formula, which involves
H but not its dual H∗. We work out some explicit examples below.

Of course, from an economic perspective, formula (3.9) has another advantage. When solving the hedonic
pricing problem, one is given the functions g and h (in the preceding example, g(y, z) = y · z and h(x, z) =
x · z −H∗(z)) but one needs to calculate b(x, y) = supz∈Z g(y, z)+ h(x, z). In may then be desirable to find the
Ma–Trudinger–Wang curvature without determining b. Our main result, Theorem 3.6, shows how to do this in
general and the example illustrates this for special forms of g and h. Of course, given H∗, one must still compute
D2H to use (3.9), but as D2H(x + y) = [D2H∗(z(x, y))]−1, one can do this without direct knowledge of H .

Example 3.9. Let H∗(z) =
∑n

i=1 Aiz
i +

∑n
i,j=1 Bijz

izj +
∑n

i,j,k=1 Cijkzizjzk, where B is a positive definite
n × n matrix. Then in a neighbourhood U of the origin, H∗ is convex. As the fourth order derivatives of H∗

vanish, Proposition 3.8 immediately implies that the Legendre transform, b(x, y) = H(x + y), satisfies (B3w)
on V := DH∗(U).

Example 3.10. Suppose H∗(z) =
∑∞

α=0

∑n
i1,i2,...iα=1 Aα

i1,i2,...iα
zi1zi2 . . . ziα is an analytic function, expressed

via it’s Taylor series at the origin. Here Aα
i1,i2,...iα

= 1
α!

∂H∗
∂zi1∂zi2 ...∂ziα

(0) is a symmetric α-tensor. Assume that

1. A2
i1i2 = δi1i2 .

2. A4
i1i2i3i4

= −δi1i2δi3i4 − δi1i3δi2i4 − δi1i4δi2i3

The first condition ensures that H∗ is convex in some neighbourhood U of the origin. The second ensures that

−
∑

i,j,k,l

∂4H∗

∂zi∂zj∂zk∂zl
pkplwiwj = α! ·

∑
i,j,k,l

(δijδkl + δikδjl + δilδjk)pkplwiwj

= α! · [|p|2|w|2 + 2(p · w)2]
= > 0.

Therefore, H(x + y) satisfies (B3s) at DH∗(0) (and therefore in a neighbourhood of DH∗(0)).

4. Structure of the distribution of equilibrium contracts

Here we study the structure of the distribution of contracts that get signed in equilibrium in the hedonic
pricing problem. As in previous sections, we will assume for simplicity that dim(X) = dim(Y ) = dim(Z) :=
n, but remark that Proposition 4.1 may be extended to the case where dim(X) ≥ dim(Z) ≥ dim(Y ) in a
straightforward way.

Assuming that μ assigns zero mass to every set of Hausdorff dimension less than or equal to n − 1, the
(x, y)-twist condition implies the existence of a unique map F : X → Y solving Monge’s optimal transportation
problem; as b is C2, this map is differentiable almost everywhere [5, 20, 21, 25]. In economic terms, this means
that, in equilibrium almost every agent x conducts business with a unique agent y := F (x); they sign the
contract z(x, F (x)). The fact that it is optimal for each buyer x to conduct business with exactly one seller,
y = F (x), is sometimes referred to as purity of the equilibrium in the economics literature. We define the
distribution of signed contracts μZ to be the push forward of μ by the map x �→ z(x, F (x)); our goal here is to
investigate the structure of this measure. Let us emphasize again that this measure coincides with the solution
to the optimal pricing problem in the formulation on Ekeland [11].

Economically, the support of this measure can be interpreted as the set of all contracts that are executed in
equilibrium, while dμZ(z) represents the relative frequency of contracts that are executed in equilibrium.

Proposition 4.1. Assume that h is (x, z)-twisted, g is (z, y)-twisted and that both g and h are non-degenerate.
At any point where the map x �→ z(x, F (x)) is differentiable, it’s derivative has full rank.
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Proof. Fix a point x0 where F is well defined and differentiable. Set y0 = F (x0) and z0 = z(x0, y0). It is well
known that there is a function u : X → R, twice differentiable almost everywhere, such that for all x where u
is differentiable we have

Du(x) = Dxb(x, F (x)).

Wherever F is differentiable, u is twice differentiable, and we have

D2u(x) = D2
xxb(x, F (x)) + D2

xyb(x, F (x))DF (x). (4.1)

In particular, the preceding equality holds at x = x0. Set P0 = D2u(x0) − D2
xxb(x0, y0); it is well known that

P0 ≥ 0. Rearranging (4.1) implies

DF (x0) =
(
D2

xyb(x0, y0)
)−1

P0. (4.2)

Now, the derivative of x �→ z(x, F (x)) at x0 is

Dxz(x0, y0) + Dyz(x0, y0)DF (x0)

Now, using the formulae in Lemma 3.1 together with (4.2) we see that this is equal to

−M−1(x0, y0) · D2
zxh(x0, z0) +

(
D2

xzh(x0, z0)
)−1 · P0 =(

− M−1(x0, y0) +
(
D2

xzh(x0, z0)
)−1 · P0 ·

(
D2

zxh(x0, z0)
)−1

)
· D2

zxh(x0, z0) (4.3)

Now, as M(x0, y0) < 0, we have −M−1(x0, y0) > 0. Also, P0 ≥ 0, hence

(
D2

xzh(x0, z0)
)−1

P0

(
D2

zxh(x0, z0)
)−1 =

(
D2

xzh(x0, z0)
)−1

P0

((
D2

xzh(x0, z0)
)−1

)T

≥ 0.

Therefore, the term in brackets in (4.3) is positive definite and thus invertible, which, as D2
zxh(x0, z0) is invertible,

implies the invertibility of (4.3). �

It is interesting to note that this Proposition 4.1 immediately implies the local separation of types by contracts:
choose any x where F is differentiable. Then there is a neighborhood U of x on which x �→ z(x, F (x)) is injective;
that is, no two buyers on U will choose the same contract in equilibrium. This should be compared with the
separation of buyers by sellers; in the case where g and h are bi-twisted, then so is b by Corollary 3.4. Assuming
that ν is absolutely continuous with respect to local coordinates, this implies that the map F is invertible almost
everywhere. This means that almost no two buyers x and x conduct business with the same seller y; that is,
sellers fully separate buyers.

This proposition, combined with the change of variables formula immediately implies that a large set of
contracts gets signed in equilibrium:

Corollary 4.2. Assume the conditions in Proposition 4.1. If in addition μ is absolutely continuous with respect
to Lebesgue measure, then the distribution μZ of signed contracts is absolutely continuous with respect to Lebesgue
measure.

Proof. The result follows easily from a sufficiently general change of variables formula (for example, [38])
Theorem 11.1. �

Finally, we show that the preceding Corollary actually implies global separation of types if we assume in
addition that h is (z, x) twisted. This means that the map x �→ z(x, F (x)) is globally injective almost everywhere,
so that buyers of different types almost always buy goods of different types.
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Corollary 4.3. Assume the conditions in Proposition 4.1, and that h is (z, x) twisted. If μ is absolutely con-
tinuous with respect to Lebesgue measure, then the map z(x, F (x)) is invertible almost everywhere.

Proof. It is proven in [6] that the map x �→ z(x, F (x)) is in fact the optimal map between μ and μZ ; that is,
(Id, z(·, F (·)))#μ is the unique maximizer of

∫
X×Z

h(x, z)dγ

among measures γ on X × Z with marginals μ and μZ . Now, as μZ is absolutely continuous with respect to
Lebesgue measure h is (z, x) twisted, a standard result in optimal transport implies that this optimal measure
is concentrated on the graph of a function G : Z → X [5, 20, 21, 25]. It is then straightforward to verify that
z(G(z), F (G(z))) = z almost everywhere, implying the almost everywhere injectivity of x �→ z(x, F (x)). �

References

[1] Y. Brenier, Decomposition polaire et rearrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Ser. I Math.
305 (1987) 805–808.

[2] L.A. Caffarelli, The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5 (1992) 99–104.

[3] L.A. Caffarelli, Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45 (1992) 1141–1151.

[4] L.A. Caffarelli, Boundary regularity of maps with convex potentials-II. Ann. of Math. 144 (1996) 453–496.

[5] L. Caffarelli, Allocation maps with general cost functions, in Partial Differential Equations and Applications, edited by P.
Marcellini, G. Talenti and E. Vesintini. Lect. Notes Pure Appl. Math. 177 (1996) 29–35.

[6] G. Carlier and I. Ekeland, Matching for teams. Econ. Theory 42 (2010) 397–418.

[7] P.-A. Chiappori, R. McCann and L. Nesheim, Hedonic price equilibria, stable matching and optimal transport; equivalence,
topology and uniqueness. Econ. Theory 42 (2010) 317–354.
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