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ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL ∗

Mathieu Lewin
1

and Nicolas Rougerie
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Abstract. We consider a multi-polaron model obtained by coupling the many-body Schrödinger equa-
tion for N interacting electrons with the energy functional of a mean-field crystal with a localized defect,
obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute
a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the
possibility to form a bound state of electrons via their interaction with the polarizable background. We
prove first that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1.
Then we discuss the case of multi-polarons containing N ≥ 2 electrons. We show that their existence
is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.
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1. Introduction

A quantum electron in a crystal may form a bound state by using the deformation of the medium which
is generated by its own charge [1]. The resulting quasi-particle, composed of the electron and its polarization
cloud, is called a polaron in the physics literature. Likewise, a multi-polaron or N -polaron is the system formed
by the interaction of N electrons with a crystal.

That a polaron can be in a bound state is a rather simple physical mechanism. When the (negatively charged)
electron is added to the medium, it locally repels (respectively attracts) the other electrons (respectively the
positively charged nuclei) of the crystal. A local deformation is thus generated in the crystal, and it is itself
felt by the added particle. In other words the additional electron carries a “polarization cloud” with it. It is
therefore often useful to think of the polaron as a dressed particle, that is a single (composite) particle with new
physical properties: effective mass, effective charge, etc. For an N -polaron the situation is a bit more involved.
Since the effective polarization has to overcome the natural Coulomb repulsion between the particles, bound
states do not always exist.

The question of what model to use to describe the polaron is an important and non trivial one. In the
Born–Oppenheimer approximation, a quantum crystal is a very complicated object, made of infinitely many
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classical nuclei and delocalized electrons. The accurate description of such a system is a very delicate issue and,
for this reason, simple effective models are often considered. They should remain mathematically tractable while
still capturing as much of the physics of the system as possible.

A famous example is the model of Fröhlich [8, 9] dating back from 1937, in which the crystal is described as
an homogeneous quantized polarization field with which the electrons interact. In the limit of strong coupling
between the electrons and the field, the model reduces to Pekar’s theory [17, 20–23]. There the crystal is a
classical continuous polarizable model, leading to an effective attractive Coulomb interaction in the energy
functional of the theory:

EP
εM

[ψ] =
1
2

∫
R3

|∇ψ(x)|2 dx+
(εM)−1 − 1

2

∫
R3

∫
R3

|ψ(x)|2|ψ(y)|2
|x− y| dxdy. (1.1)

Here ψ is the wave-function of the electron, εM > 1 is the static dielectric constant of the crystal and we work
in atomic units. The variational equation corresponding to (1.1) is sometimes called the Schrödinger–Newton
or Choquard equation.

It is the attractive Coulomb term in (1.1) that leads to the existence of bound states of electrons, i.e.
minimizers (or ground states) of the energy functional. Whereas the energy functional for electrons in vacuum
has no minimizer, Lieb [15] proved the existence and uniqueness (up to translations) of a ground state for
Pekar’s functional (1.1).

The same nonlinear attractive term is obtained in Pekar’s model for the N -polaron. Then, as we have already
mentioned, depending on the strength of the attractive Coulomb term as compared to the natural repulsion
between the electrons, one can get binding or not. It is an important issue to determine in which parameter
range binding occurs [6, 7, 10, 13].

The approximations made in the construction of Fröhlich’s and Pekar’s models reduce their applicability
to situations where the N -polaron is spread over a region of space much larger than the characteristic size of
the underlying crystal. One then speaks of large polarons. In [14] we have introduced a new polaron model by
coupling the energy functional for electrons in the vacuum to a microscopic model of quantum crystals with
defects introduced in [2,3]. Unlike in Fröhlich and Pekar theories we take the crystal explicitly into account and
make no assumption on the size of the electron. Our approach thus qualifies for the description of both small
and large polarons. The model takes the following form (for one electron):

Eeff [ψ] =
1
2

∫
R3

|∇ψ(x)|2 dx+
∫

R3
V 0

per(x)|ψ(x)|2 dx+ Fcrys

[|ψ|2]. (1.2)

Here V 0
per is the (periodic) electric potential generated by the unperturbed crystal, which is felt by any particle

added to the system. The nonlinear effective energy Fcrys represents the interaction energy between the electrons
and the crystal. It is defined using a reduced Hartree–Fock theory for the response of the electrons of the crystal
to a charge defect. The state of the Fermi sea of the perturbed crystal is given by a one-body density matrix γ,
that is a non-negative self-adjoint operator on L2(R3). As in [2, 3], we write

γ = γ0
per +Q (1.3)

where γ0
per is the density matrix of the periodic unperturbed crystal and Q is the local deformation induced by

the charge defect |ψ|2. The effective energy Fcrys then takes the form

Fcrys

[|ψ|2] = inf
−γ0

per≤Q≤1−γ0
per

(∫
R3

∫
R3

ρQ(x)|ψ(y)|2
|x− y| dxdy + Fcrys[Q]

)
. (1.4)

Three main ingredients enter in (1.4):

• Electrons are fermions and must thus satisfy the Pauli exclusion principle, which gives in the formalism
of density matrices the constraint 0 ≤ γ ≤ 1 as operators. This justifies the constraint on admissible
perturbations Q imposed in (1.4).



ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL 631

• The electrons forming the polaron interact with the perturbation they induce in the Fermi sea. This is taken
into account by the first term in (1.4) where ρQ is the charge density associated with Q, given formally by
ρQ(x) = Q(x, x) (we use the same notation for the operator Q and its kernel).

• Generating a deformation of the Fermi sea has an energetic cost, represented by the functional Fcrys in (1.4).
The somewhat complicated definition of this functional will be recalled below. It was derived in [2].

More details on how we arrived at the form above can be found in the introduction of [14]. Let us mention
that this model only takes into account the displacement of the electrons of the crystal and neglects that of the
nuclei. This is arguably an important restriction, but our model already captures important physical properties
of the polaron, and on the other hand this is all we can treat from a mathematical point of view at present.

In this paper we will show that a (single) polaron described by the energy functional (1.4) always binds. The
case of N -polarons is more sophisticated, as now the effective attraction resulting from the polarization of the
crystal has to overcome the electronic repulsion. The energy functional corresponding to (1.2) in the case of the
N -polaron is given by

Eeff [Ψ ] =
∫

R3N

⎛⎝1
2

N∑
j=1

∣∣∇xjΨ(x1, ..., xN )
∣∣2 +

∑
1≤k<�≤N

|Ψ(x1, ..., xN )|2
|xk − x�|

⎞⎠dx1 · · ·dxN +
∫

R3
V 0

perρΨ +Fcrys[ρΨ ]

(1.5)

where ρΨ is the usual density of charge associated with the many-body wave function Ψ whose definition is
recalled in (2.16) below.

In fact, our model (1.2) is closely related to Pekar’s functional. We proved in [14] that Pekar’s theory can be
recovered from (1.2) in a macroscopic limit where the characteristic size of the underlying crystal goes to 0. Let
us emphasize that our macroscopic limit is completely different from the strong coupling limit of the Fröhlich
polaron, which leads to the same Pekar energy [17]. It is also associated with a somewhat different physics. In
the Fröhlich model, the crystal is polar and it is the deformation of the lattice that binds the polaron, whereas in
our case the crystal is initially non polar and only the delocalized Fermi sea gets polarized. The nuclear lattice
is not allowed to be deformed in our simplified model.

In addition to clarifying the physics entering the Pekar model, the macroscopic limit argument also gives
some interesting insight on the model (1.2), in particular, regarding the question of the existence of binding.
Indeed, it is known [13] that Pekar’s functional has a ground state in some range of parameters. We deduced
in [14] that sequences of approximate minimizers for (1.5) converge in the macroscopic limit to a ground state
of the Pekar functional, thus showing that our model at least accounts for the binding of large polarons in this
regime. In this paper, we want to derive conditions ensuring that there is binding in the case of small polarons
where the macroscopic limit argument and the link to Pekar’s theory are irrelevant.

Quite generally, for many-body quantum systems, the existence of bound states of N particles depends on the
validity of so-called binding inequalities. If E(N) denotes the infimum energy of some physical system containing
N particles, a ground state containing N particles exists when

E(N) < min
k=1...N

E(N − k) + E∞(k) (1.6)

where E∞(N) denotes the energy of the same N particle system, but with all particles ‘sent to infinity’. For
example, for atoms or molecules comprising N electrons, E(N) includes the contribution of the electric potential
generated by the fixed nuclei, while E∞(N) does not. Particles ‘at infinity’ no longer see the attraction of
the nuclei. Note the formal similarity between inequalities (1.6) and those appearing in Lions’ concentration
compactness principle [18,19], an important mathematical tool used in nonlinear analysis. The major difference
is that the former are quantized and thus more difficult to relate to one another. See [13] for a more precise
discussion of this connection.
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It is not difficult to discuss on physical grounds why inequalities (1.6) are sufficient for the existence of bound
states. Indeed, (1.6) says that sending particles to infinity is not favorable from an energetic point of view. In
mathematical terms, the inequalities (1.6) avoid the lack of compactness at infinity of minimizing sequences.
The existence of a ground state then follows from the local compactness of the model under consideration.
Nevertheless, the mathematical proof that inequalities of the type (1.6) are sufficient for the existence of bound
states of N -particles is highly non-trivial because the problems E(N), E(N − k) and E∞(k) are set in different
Hilbert spaces. In the case of atoms and molecules, the fact that inequalities of the form (1.6) imply the existence
of bound states is the content of the famous HVZ theorem, first proved independently in [12, 26, 27].

In this paper we prove an HVZ-type theorem for our polaron functional (1.5) when N ≥ 2. We have to face
two difficulties. First the functional is invariant under the action of arbitrarily large translations (those leaving
invariant the periodic lattice of the crystal), so the energy functional does not change when particles are sent
to infinity. The correct binding inequalities therefore take the form

E(N) < min
k=1...N−1

E(N − k) + E(k). (1.7)

Second, the energy contains the highly nonlinear term Fcrys[ρΨ ]. We are thus faced with the combination of the
difficulties associated with many-body theory and those inherent to nonlinear problems. A general technique
has been introduced in [13] to tackle these questions. Our purpose in this paper is to explain how one can deal
with the model (1.5) using the method of [13]. Our main task will be to control the behavior of the (highly
nonlinear) effective polarization energy Fcrys.

In this paper we are not able to show the validity of the binding inequalities (1.7) in full generality for N ≥ 2,
as this will highly depend on the microscopic structure of the crystal and of the number N of electrons. It
should be noticed that, when it occurs, binding is presumably only due to a correlation effect, since in general
the effective attraction is weaker than the Coulomb repulsion (see Lemma 1.1 in [14]). In the Pekar case, this
was explained using Van Der Waals forces in Section 5.3 of [13].

2. Statement of the main results

2.1. The mean-field crystal

We begin by recalling the precise definition of the crystal functional entering in (1.2). More details can be
found in [2, 3, 14].

We fix an L -periodic density of charge μ0
per for the classical nuclei of the crystal, with L a discrete subgroup

of R3. It is enough for our purpose to assume that μ0
per is a locally-finite non-negative measure, such that∫

Γ
μ0

per = Z ∈ N, where Γ = R3/L is the unit cell.
In reduced Hartree–Fock theory, the state of the electrons in the crystal is described by a one-particle density

matrix, which is a self-adjoint operator γ : L2(R3) → L2(R3) such that 0 ≤ γ ≤ 1 (in the sense of operators).
When no external field is applied to the system, the electrons arrange in a periodic configuration γ = γ0

per,
which is a solution of the reduced Hartree–Fock equations3⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ0
per = �(−∞,εF)

(−Δ/2 + V 0
per

)
,

−ΔV 0
per = 4π

(
ργ0

per
− μ0

per

)
,∫

Γ

ργ0
per

=
∫

Γ

μ0
per = Z.

(2.1)

Here ρA denotes the density of the operator A which is formally given by ρA(x) = A(x, x) when A is locally
trace–class. Also, �(−∞,εF)(H) denotes the spectral projector of H onto the interval (−∞, εF). The real number
εF in (2.1) is called the Fermi level. It is also the Lagrange multiplier used to impose the constraint that the

3Sometimes called Hartree equations in the physics literature.
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system must be locally neutral (third equation in (2.1)). The unique solution to the self-consistent equation (2.1)
is found by minimizing the so-called reduced Hartree–Fock energy functional [2, 5].

We are working in atomic units with the mass m and the charge e of the electrons of the crystal set to
m = e = 1. Also we neglect their spin for simplicity (reinserting the spin in our model is straightforward).

By Bloch-Floquet theory (see Chap. XIII, Sect. 16 of [? ]), the spectrum of the L -periodic Schrödinger
operator

H0
per = −1

2
Δ+ V 0

per(x)

is composed of bands. When there is a gap between the Zth and the (Z+1)st bands, the crystal is an insulator
and εF can be any arbitrary number in the gap. As in [2], in the whole paper we will assume that the host
crystal is an insulator.

Assumption 2.1 (The host crystal is an insulator).
The periodic Schrödinger operator H0

per has a gap between its Zth and (Z + 1)st bands, and we fix any chemical
potential εF in the corresponding gap.

When the quantum crystal is submitted to an external field, the Fermi sea polarizes. The method used in [2]
to define the energetic cost of such a polarization relies on the following idea. The energetic cost to move the
electrons from γ0

per to γ is defined as the (formal) difference between the (infinite) reduced Hartree–Fock energies
of γ and of γ0

per. Denoting by

D(f, g) :=
∫∫

R3×R3

f(x)g(y)
|x− y| dxdy = 4π

∫
R3

f̂(k)ĝ(k)
|k|2 dk (2.2)

the Coulomb interaction (where f̂ denotes the Fourier transform of f), one arrives at the functional

Fcrys[Q] := Tr0
(
(H0

per − εF)Q
)

+
1
2
D(ρQ, ρQ) (2.3)

where Tr0 denotes a generalized trace, see (2.6) and (2.9) below. For convenience we also denote

Fcrys[ρ,Q] := Tr0
(
(H0

per − εF)Q
)

+
1
2
D(ρQ, ρQ) +D(ρ, ρQ). (2.4)

The functional setting in which the terms of these equations make sense is defined as follows. Any operator Q
satisfying the constraint

−γ0
per ≤ Q ≤ 1 − γ0

per (2.5)

is decomposed as
Q = Q−− +Q−+ +Q++ +Q+− (2.6)

where Q−− = γ0
perQγ

0
per, Q−+ = γ0

perQ
(
1 − γ0

per

)
, and so on. It is proved in [2] that for Q satisfying (2.5) and

ν ∈ L1(R3) ∩ L2(R3), Fcrys[ν,Q] is finite if and only if Q is in the function space

Q =
{
Q ∈ S2

∣∣∣Q = Q∗, |∇|Q ∈ S2, Q++, Q−− ∈ S1, |∇|Q++|∇|, |∇|Q−−|∇| ∈ S1
}

(2.7)

that we equip with its natural norm

‖Q‖Q = ‖Q‖S2 + ‖Q++‖S1 + ‖Q−−‖S1 + ‖|∇|Q‖S2 + ‖|∇|Q++|∇|‖S1 + ‖|∇|Q−−|∇|‖S1 . (2.8)

The symbols S1 and S2 denote the Schatten classes of trace–class and Hilbert–Schmidt operators on L2(R3)
respectively (see [24, 25], Chap. 6, Sect. 6). For operators in Q, the kinetic energy in (2.3) is defined as

Tr0(H0
per − εF)Q = Tr

(
|H0

per − εF|1/2
(
Q++ −Q−−)|H0

per − εF|1/2
)
, (2.9)
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see [2]. More generally, one can define the generalized trace as

Tr0Q = TrQ++ + TrQ−− (2.10)

when Q++ and Q−− are trace–class. Note that Tr0 differs from the usual trace Tr, the operators in Q not
being trace–class in general. They nevertheless have an unambiguously defined density ρQ ∈ L1

loc(R
3) (see [2],

Proposition 1). It belongs to L2(R3) and to the Coulomb space

C =
{
ρ
∣∣∣D(ρ, ρ)1/2 <∞

}
(2.11)

and it holds by definition

Tr0(V Q) =
∫

R3
V ρQ (2.12)

for any V ∈ C′.
Having defined in (2.3) the total energetic cost to go from γ0

per to γ0
per+Q, we can give a sense to the energetic

response of the crystal to an external density ν. The state of the Fermi sea is obtained by solving the following
minimization problem

Fcrys[ν] = inf
−γ0

per≤Q≤1−γ0
per

(
D(ν, ρQ) + Fcrys[Q]

)
. (2.13)

As shown in [2], for any ν ∈ L1(R3) ∩ L2(R3), this minimization problem has at least one solution in Q. The
corresponding density ρQ is in L2(R3) but in general it has long range oscillations which are not integrable at
infinity [4].

2.2. The small polaron

To our crystal we now add N quantum particles, which are by assumption distinguishable from those of the
crystal. In reality they are electrons having the same mass m = 1 as those of the crystal, but we want to keep m
arbitrary to emphasize that in our model the additional particles behave differently from those of the crystal.
This will also allow us to compare with the results we have obtained in [14].

The total energy of the system now includes the term Fcrys[ν] with ν = |ψ|2 (polaron) or ν = ρΨ (N -polaron).
For the single polaron, the energy is given by

E [ψ] =
∫

R3

(
1

2m
|∇ψ(x)|2 + V 0

per(x)|ψ(x)|2
)

dx+ Fcrys

[|ψ|2]. (2.14)

For the N -polaron with N ≥ 2 it reads

E [Ψ ] =
∫

R3N

⎛⎝ 1
2m

N∑
j=1

∣∣∇xjΨ(x1, ..., xN )
∣∣2 +

∑
1≤k<�≤N

|Ψ(x1, ..., xN )|2
|xk − x�|

⎞⎠dx1 · · · dxN

+
∫

R3
V 0

per(x)ρΨ (x) dx + Fcrys[ρΨ ]. (2.15)

As we think that there is no possible confusion, we do not emphasize the particle number N in our notation of
the energy E . The density ρΨ is defined as

ρΨ (x) = N

∫
R3(N−1)

|Ψ(x, x2, . . . , xN )|2 dx2 . . . dxN . (2.16)

The corresponding ground state energies read

E(1) := inf
{
E [ψ], ψ ∈ H1(R3),

∫
R3

|ψ|2 = 1
}

(2.17)
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and

E(N) := inf
{
E [Ψ ], Ψ ∈ H1(R3N ), Ψ fermionic,

∫
R3N

|Ψ |2 = 1
}
. (2.18)

Here by ‘fermionic’ we mean antisymmetric under particle exchange:

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = −Ψ(x1, . . . , xj , . . . , xi, . . . , xN ) for any i 
= j (2.19)

as is appropriate for electrons. Recall that we have neglected the spin for simplicity.
We now state our main results. In the single polaron case we are able to show the existence of a bound state.

Theorem 2.2 (Existence of small polarons).
For N = 1, we have

E(1) < Eper := inf σ
(
− 1

2m
Δ+ V 0

per

)
. (2.20)

There are always minimizers for E(1) and all the minimizing sequences converge to a minimizer for E(1)
strongly in H1(R3), up to extraction of a subsequence and up to translations.

Inequality (2.20) expresses the fact that binding is energetically favorable: the right-hand side is the energy
an electron would have in absence of binding.

In the N -polaron case we can give necessary and sufficient conditions for the compactness of minimizing
sequences.

Theorem 2.3 (HVZ for small N-polarons).
For N ≥ 2, the following assertions are equivalent:

1. One has
E(N) < E(N − k) + E(k) for all k = 1, . . . , N − 1. (2.21)

2. Up to translation and extraction of a subsequence, all the minimizing sequences for E(N) converge to a
minimizer for E(N) strongly in H1(R3N ).

Remark 2.4. For this result, the fermionic nature of the particles inserted into the crystal is not essential. The
same theorem holds if they are replaced by bosons, i.e. the wave function Ψ is supposed to be symmetric under
particle exchange.

As discussed in the introduction, this theorem is rather natural from a physical point of view. It is not expected
that the conditions (2.21) hold in general. As in Pekar’s theory, one should expect the existence of minimizers
to depend on the choice of parameters entering the functional (in our case only the periodic distribution μ0

per of
the nuclei). Testing the validity of these inequalities is a challenging task that would require more knowledge on
the properties of the crystal model than we presently have. In particular, the decay at infinity of the minimizers
of the crystal model should be investigated.

In [14] we have considered a macroscopic regime where the mass m of the polarons tend to zero. In this
limit m → 0 the ground state energy Em(N) converges to Pekar’s energy involving the macroscopic dielectric
constant εM of the crystal defined in [4] (up to a simple oscillatory factor, see [14] for details). It was shown
in [13] that the binding inequalities are satisfied in Pekar’s theory when εM is large enough. We conclude that
in this case they will also be satisfied for m small enough and therefore minimizers do exist in this case.

The rest of the paper is devoted to the proof of Theorem 2.3. One of us has considered in Section 5 of [13] a
general class of nonlinear many-body problems of the form

∫
R3N

⎛⎝1
2

N∑
j=1

∣∣∇xjΨ(x1, ..., xN )
∣∣2 +

∑
1≤k<�≤N

|Ψ(x1, ..., xN )|2W (xk − xl)

⎞⎠ dx1 · · · dxN + F [ρΨ ]



636 M. LEWIN AND N. ROUGERIE

and provided sufficient assumptions on the interaction potential W and the non linearity F under which a
HVZ type result similar to Theorem 2.3 holds. The assumptions on W include the Coulomb interaction we
are concerned with in this paper but, unfortunately, our crystal functional Fcrys does not seem to satisfy all
the properties imposed on F in [13]. Also the presence of the periodic potential V 0

per adds a new difficulty.
Nevertheless the general strategy of [13] still applies and our goal in this paper is to explain how to overcome
the difficulties associated with Fcrys.

Section 3 gathers some important properties of the crystal functional that are to be used in the proofs of
Theorems 2.2 and 2.3, presented in Sections 4 and 5 respectively.

3. Properties of the crystal energy

In this section we roughly speaking prove that Fcrys satisfies Assumptions (A1) to (A5) of [13], Section 5. We
are only able to prove a little less, but the properties we do prove are sufficient for the proof of Theorem 2.3 as
we explain in Section 5.

We start in Section 3.1 with almost immediate consequences of the definition of Fcrys, and devote Section 3.3
to the more involved fact that our crystal functional satisfies a ‘decoupling at infinity’ property. The proof of
this property requires some facts about localization operators that we gather in Section 3.2.

3.1. Concavity, subcriticality and translation invariance

The following is the equivalent of Assumptions (A4) and (A5) in [13], Section 5.

Lemma 3.1 (Concavity).
Fcrys is concave on {ρ ∈ C, ρ ≥ 0}. Moreover it is strictly concave at the origin:

Fcrys[tρ] > tFcrys[ρ] (3.1)

for all ρ ∈ C \ {0}, ρ ≥ 0 and all 0 < t < 1.

Proof. The functional Fcrys[ρ,Q] defined in (2.4) is linear in ρ. As by definition

Fcrys[ρ] = inf
{Fcrys[ρ,Q],−γ0

per ≤ Q ≤ 1 − γ0
per

}
,

it is clearly a concave functional of ρ. As for the strict concavity we note that

Fcrys[tρ,Q] = Tr0
((
H0

per − εF
)
Q
)

+
1
2
D(ρQ, ρQ) + tD(ρ, ρQ) > tFcrys[ρ,Q] ≥ tFcrys[ρ]

for all 0 < t < 1 by positivity of the kinetic and Coulomb energies. Taking for Q the minimizer corresponding
to tρ which is known to exist by [2, 4] proves (3.1). �

The next lemma will be useful to prove that minimizing sequences for our polaron model are bounded in
H1(R3N ). It is the equivalent of Assumption (A3) in [13], Section 5.

Lemma 3.2 (Subcriticality).
The functional Fcrys is locally uniformly continuous on L6/5. More precisely, we have∣∣Fcrys[ρ] − Fcrys[ρ′]

∣∣ ≤ C ‖ρ− ρ′‖2
L6/5 (3.2)

for a universal constant C > 0. Moreover, for every ε > 0, we have

0 > Fcrys[|ϕ|2] ≥ −ε
∫

R3
|∇ϕ|2 − C

ε

(∫
R3

|ϕ|2
)3

(3.3)

for all ϕ ∈ H1(R3).
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Proof. For any ρ ∈ L6/5 and any Q ∈ Q we can complete the square in the electrostatic terms of Fcrys[ρ,Q]
and obtain

Fcrys[ρ,Q] = Tr0
((
H0

per − εF
)
Q
)

+
1
2
D(ρQ + ρ, ρQ + ρ) − 1

2
D(ρ, ρ) ≥ −1

2
D(ρ, ρ).

Taking the infimum with respect to Q and applying this with ρ = |ϕ|2 immediately yields

Fcrys[|ϕ|2] ≥ −1
2
D(|ϕ|2, |ϕ|2) ≥ −C ||ϕ||4L12/5

by the Hardy–Littlewood–Sobolev inequality ([16], Theorem 4.3). Using now the Sobolev and Hölder inequalities
we get as stated

||ϕ||4L12/5 ≤ ||ϕ||L6 ||ϕ||3L2 ≤ ε

∫
R3

|∇ϕ|2 +
C

ε

(∫
R3

|ϕ|2
)3

.

Then, replacing ρ by ρ− ρ′ we also have

Fcrys[ρ− ρ′, Q] ≥ −1
2
D(ρ− ρ′, ρ− ρ′).

Choosing now for Q a minimizer of Fcrys[ρ,Q] we deduce

Fcrys[ρ] − Fcrys[ρ′] ≥ −1
2
D(ρ− ρ′, ρ− ρ′).

Without loss of generality we can assume that the left-hand side is negative. We conclude that there exists a
constant such that ∣∣Fcrys[ρ] − Fcrys[ρ′]

∣∣ ≤ C ‖ρ− ρ′‖2
L6/5

using the Hardy–Littlewood–Sobolev inequality again. �

Finally, we note that our functional is invariant under the action of the translations of the periodic lattice L .
Note that in [13], full translation invariance is assumed (see Ass. (A2)). However, what is really used in the
proof of the results there is the invariance under the action of arbitrarily large translations.

Lemma 3.3 (Translation invariance).
For any ρ ∈ L6/5 and any translation τ ∈ L of the periodic lattice,

Fcrys[ρ (· + τ )] = Fcrys[ρ]. (3.4)

Proof. We denote byQ a minimizer of Fcrys[ρ,Q]. Clearly ρQ(·+τ ) = ρU∗
τ QUτ where Uτ is the unitary translation

operator acting on L2(R3) and defined by Uτf = f(· − τ ). We deduce

Fcrys[ρ(· + τ )] ≤ Fcrys[ρ(· + τ ), τ ∗Qτ ] = Tr0
(
τ
(
H0

per − εF
)
τ ∗Q

)
+

1
2
D(ρ, ρQ) −D(ρ, ρQ) = Fcrys[ρ]

by translation invariance of the Coulomb interaction and the fact that H0
per commutes with the translations of

the lattice L . Exchanging the roles of ρ(· + τ ) and ρ and applying the same argument proves that there must
be equality. �
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3.2. Some localization properties

In order to prove that the crystal energy of two distant clusters of mass decouples we will need a localization
procedure. Due to the constraint (2.5), it is convenient to use a specific localization method for Qn, as noted
first in [2, 11]. We here provide several new facts about this procedure that will be useful in the next section.

We introduce a smooth partition of unity χ2 + η2 = 1 such that χ = 1 on the ball B(0, 1) and χ = 0 outside
of the ball B(0, 2). Similarly, η = 1 on R3 \B(0, 2) and η = 0 on B(0, 1). We also require that ∇χ and ∇η are
bounded functions. Then we introduce χR(x) := χ(x/R) and ηR(x) = η(x/R). We define the two localization
operators

XR = γ0
perχRγ

0
per +

(
γ0
per

)⊥
χR

(
γ0
per

)⊥
YR = γ0

perηRγ
0
per +

(
γ0
per

)⊥
ηR

(
γ0
per

)⊥
(3.5)

that have the virtue of commuting with the spectral projectors γ0
per and

(
γ0
per

)⊥ = 1 − γ0
per. Note that in [2],

the choice XR =
√

1 − Y 2
R is made. Here we change a bit the strategy and we only have

X2
R + Y 2

R ≤ 1.

The following lemma, whose lengthy proof shall be detailed in the Appendix, says that X2
R + Y 2

R ≈ 1 for large
R, in a sufficiently strong sense for our practical purposes, see Section 3.3.

Lemma 3.4 (Properties of the localization operators XR and YR).
There exists a universal constant C > 0 such that

||XRQXR||Q + ||YRQYR||Q + ||ρXRQXR ||L2∩C + ||ρYRQYR ||L2∩C ≤ C ||Q||Q , (3.6)

∣∣∣Tr0(H0
per − εF)Q− Tr0(H0

per − εF)XRQXR − Tr0(H0
per − εF)YRQYR

∣∣∣ ≤ C

R2
||Q||Q , (3.7)

and
||ρQ − ρXRQXR − ρYRQYR ||L2∩C ≤ C

R
||Q||Q (3.8)

for all Q ∈ Q and all R ≥ 1.

Remark that the IMS formula implies

H0
per − εF = χR

(
H0

per − εF
)
χR + ηR

(
H0

per − εF
)
ηR − 1

2
|∇χR|2 − 1

2
|∇ηR|2

where the last two error terms can be estimated in the operator norm by R−2(||∇χ||2L∞ + ||∇η||2L∞)/2. Our
bound (3.7) is a similar estimate valid for the modified localization operators XR and YR. In the same spirit,
remark that

ρQ = χ2
RρQ + η2

RρQ = ρχRQχR + ρηRQηR

and therefore the estimate (3.8) on the density quantifies the error when the localization operators XR and YR

are used in place of χR and ηR.
As noticed first in [11], the main advantage of the localization operators XR and YR is that they preserve the

constraint (2.5). Simply, using that

XRγ
0
perXR = γ0

perχRγ
0
perχRγ

0
per ≤ γ0

per(χR)2γ0
per ≤ γ0

per

and the similar estimate XR

(
γ0
per

)⊥
XR ≤ (

γ0
per

)⊥, we see that when −γ0
per ≤ Q ≤ 1 − γ0

per, then

−γ0
per ≤ −XRγ

0
perXR ≤ XRQXR ≤ XR

(
γ0
per

)⊥
XR ≤ (

γ0
per

)⊥
(3.9)

and the same is true for YRQYR.
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This is in fact a particular case of an algebraic property which does not seem to have been noticed before,
that we state as Lemma 3.5 below. It will be very useful when constructing trial states for the crystal functional.

Lemma 3.5 (Adding states using localization).
Let Π be an orthogonal projector on a Hilbert space H, and χ, η two self-adjoint operators on H such that
χ2 + η2 ≤ 1. We introduce the corresponding localization operators

X = ΠχΠ + (1 −Π)χ(1 −Π) and Y = ΠηΠ + (1 −Π)η(1 −Π).

Let Q,Q′ two self-adjoint operators such that −Π ≤ Q,Q′ ≤ 1 −Π. Then we have

−Π ≤ XQX + Y Q′Y ≤ 1 −Π (3.10)

as well.

Proof. Since X and Y are self-adjoint we have

−XΠX − Y ΠY ≤ XQX + Y Q′Y ≤ X(1 −Π)X + Y (1 −Π)Y.

The lemma follows from the estimate

XΠX + Y ΠY = ΠχΠχΠ +ΠηΠηΠ ≤ Π
(
χ2 + η2

)
Π ≤ Π

and the equivalent one with Π replaced by 1 −Π . We have used that Π ≤ 1 and χ, η are self-adjoint to get
ΠχΠχΠ ≤ Πχ2Π and ΠηΠηΠ ≤ Πη2Π . �

It will be important in the sequel to know that weak convergence of a sequence (Qn) in Q implies strong
local compactness, that is strong compactness of (XQnX) where X is defined similarly as above, starting from
a compactly supported function χ.

Lemma 3.6 (Strong local compactness for bounded sequences in Q).
Let (Qn) be a bounded sequence in Q such that Qn ⇀ Q weakly in Q. Then χQnχ → χQχ strongly in the
trace–class S1, for every function χ ∈ L∞(R3) of compact support. In particular, ρQn → ρQ weakly in L2 ∩ C
and strongly in L1

loc.
Writing X = γ0

perχγ
0
per +(1−γ0

per)χ(1−γ0
per), we also have XQnX → XQX strongly in S1 and thus ρXQnX →

ρXQX strongly in L1.

We will use the following local compactness criterion in Schatten classes. Its standard proof is omitted.

Lemma 3.7 (Local compactness in Schatten spaces).
Let Sp be the class of compact operators A of some Hilbert space H such that (Tr(|A|p))1/p

< +∞, with the
convention that S∞ denotes the class of compact operators.

• If An ⇀ A weakly-∗ in S1 and K,K ′ ∈ S∞ then KAnK
′ → KAK ′ strongly in S1.

• If An ⇀ A weakly in Sr, K ∈ Sp and K ′ ∈ Sq then KAnK
′ → KAK ′ strongly in Ss with 1/s =

1/p+ 1/q + 1/r.

Proof of Lemma 3.6. We know from Proposition 1 in [2] that ρQn ⇀ ρQ weakly in L2∩C. Only the strong local
convergence is new. We write as usual

Qn = Q++
n +Q−+

n +Q+−
n +Q−−

n (3.11)

and consider only the first two terms, the other two being dealt with in a similar way. We have

χQ++
n χ =

{
χ (−Δ+ 1)−1/2

}{
(−Δ+ 1)1/2Q++

n (−Δ+ 1)1/2
}{

(−Δ+ 1)−1/2 χ
}
.
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The operator χ(−Δ + 1)−1/2 is compact and (−Δ + 1)1/2Q++
n (−Δ + 1)1/2 converges towards (−Δ +

1)1/2Q++(−Δ + 1)1/2 weakly-∗ in S1 by assumption. By Lemma 3.7 we deduce that χQ++
n χ → χQ++χ

strongly in S1.
We argue similarly for the off diagonal terms, writing this time

χQ+−
n χ =

{
χ (−Δ+ 1)−1/2

}{
(−Δ+ 1)1/2

Q+−
n

}{
γ0
perχ

}
.

Again the operator χ(−Δ+ 1)−1/2 is compact and we can write

γ0
perχ = γ0

per(H
0
per + μ) (H0

per + μ)−1 (1 −Δ) (1 −Δ)−1χ.

Here μ is a large enough constant such that H0
per ≥ −μ/2. The operator γ0

per(H
0
per + μ) is bounded by the

functional calculus. Also, (H0
per + μ)−1 (1 −Δ) is bounded by Lemma 1 in [2]. Finally, (1 −Δ)−1χ ∈ S2. Thus

γ0
perχ ∈ S2. Since (−Δ+ 1)1/2Q+−

n ⇀ (−Δ+ 1)1/2Q+− weakly in S2 by assumption, we deduce by Lemma 3.7
again, that χQ+−

n χ→ χQ+−χ strongly in S1.
We have proved that χQnχ → χQχ strongly in S1, but ρχQnχ = χ2ρQn , so we deduce that ρQn → ρQ

strongly in L1
loc.

For the second part of the statement we simply write

XQnX=

(
γ0
per

)⊥
χQ++

n χ
(
γ0
per

)⊥
+ γ0

perχQ
−−
n χγ0

per +
(
γ0
per

)⊥
χQ+−

n χγ0
per + γ0

perχQ
−+
n χ

(
γ0
per

)⊥
and use the strong convergence of each term shown above. �

One can prove that if ρ ∈ C then χ2
Rρ→ ρ strongly in C when R → ∞. In the same spirit, we have

Lemma 3.8 (Approximation using localization).
With XR and YR defined as above and Q ∈ Q,

XRQXR → Q, YRQYR → 0 strongly in Q when R → ∞. (3.12)

In particular ρXRQXR → ρQ and ρYRQYR → 0 strongly in L2 ∩ C.

Proof. Using (3.6) and an ε/2 argument, it suffices to prove this for a finite rank operator Q (such operators
are known to be dense in Q, see Corollary 3 in [2]). In this case the statement just follows from the facts that
XR → 1 and YR → 0 strongly, which is a consequence of the convergence χR → 1 and ηR → 0. The convergence
of ρXRQXR and ρYRQYR follows by continuity of the map Q ∈ Q 
→ ρQ ∈ L2 ∩ C. �

3.3. Decoupling at infinity

Here we provide the most crucial ingredient of the proof of Theorem 2.3, namely the fact that the crystal
energy of the sum of two distant pieces of mass is almost the sum of the energies of these pieces. This is the
content of the following proposition, which is the equivalent of assumption (A3) in [13]. Note however that we
prove much less than what is stated there. Fortunately, the proof of Theorem 25 in [13] does not actually require
such a strong assumption as (A3), as we will show in Section 5 below.

Proposition 3.9 (Decoupling at infinity).
Let (ρn) be a bounded sequence in the Coulomb space C such that ρn ⇀ ρ weakly. Then

lim
n→∞

(
Fcrys[ρn] − Fcrys[ρ] − Fcrys[ρn − ρ]

)
= 0. (3.13)

In the above, one should think of ρn as being constituted of two clusters of mass, ρ and ρn−ρ, whose “supports”
are infinitely far away in the limit n → ∞. This is mathematically materialized by the weak convergence to
0 of ρn − ρ. The proposition then says that the total energy is the sum of the energy of the pieces, up to a
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small error. Proving (3.13) is a difficult task because of the long range behavior of the response of the crystal:
it is known [4] that the polarization ρQ of the Fermi sea has long range oscillations that are not integrable at
infinity. The oscillations generated by ρ are seen by ρn − ρ (and conversely) but, fortunately, they contribute a
small amount to the total energy, which is controlled by the Coulomb norm and not the L1 norm.

Assumption (A3) in [13] is a little different from (3.13). There it was assumed that ρn = ρ1
n + ρ2

n where ρ1
n

and ρ2
n are bounded in L6/5 and that the distance between their supports goes to infinity, with no assumption

on the size of these supports. In Proposition 3.9 it is implicit that one of the two clusters of mass has a support
of bounded size and is approximated by its weak limit ρ. This additional assumption is harmless for our purpose
because we are dealing with a locally compact problem.

In the course of the Proof of Proposition 3.9 we will establish the following, which we believe is of independent
interest. It gives the weak continuity of the (a priori multi-valued) map ρn 
→ Qn = argmin Fcrys[ρn, ·].
Corollary 3.10 (A weak continuity result for Fcrys).
Let (ρn) be a bounded sequence in the Coulomb space C such that ρn ⇀ ρ weakly and Qn be any minimizer of
Fcrys[ρn, ·]. Then, up to extraction of a subsequence, Qn ⇀ Q weakly in Q where Q minimizes Fcrys[ρ, ·].

We now present the

Proof of Proposition 3.9. We begin with the difficult part, that is the proof of the lower bound corresponding
to (3.13).
Step 1. Lower bound.

We denote by Qn a minimizer for Q 
→ Fcrys[ρn, Q]. Corollary 2 in [2] states that the energy functional
Fcrys[ρn, Q] controls the norm ‖Q‖Q:

0 ≥ Fcrys[ρn, Qn] ≥ C ‖Qn‖Q − 1
2
D(ρn, ρn).

The upper bound is obtained by taking a trial state Q ≡ 0. Using that ρn is bounded in C, hence that D(ρn, ρn)
is bounded, we deduce that the sequence (Qn) is bounded in Q. Up to extraction of a subsequence, we can
assume that Qn ⇀ Q and, by Lemma 3.6, that ρQn → ρQ weakly in L2 ∩ C and strongly in L1

loc.
We now consider localization operators XR and YR as described in the preceding section and use them to

write the energy as the sum of the energy of XRQnXR and that of YRQnYR, modulo errors terms. In our proof
R is fixed and will go to infinity only in the end, after we have taken the limit n→ ∞.

Using that ρn and ρQn are bounded in C and that Qn is bounded in Q, we get from the estimate (3.8)

D(ρQn , ρn) = D(ρQn , ρ) +D(ρQn , ρn − ρ)
= D(ρQ, ρ) +D(ρQn − ρQ, ρ) +D(ρXRQnXR , ρn − ρ) +D(ρYRQnYR , ρn − ρ) + εn(R)
= D(ρQ, ρ) +D(ρXRQnXR , ρn − ρ) +D(ρYRQnYR , ρn − ρ) + o(1) + εn(R)

where we have used that ρQn ⇀ ρQ weakly in C and where εn(R) denotes a generic quantity satisfying

lim sup
n→∞

|εn(R)| ≤ C

R
. (3.14)

Also o(1) goes to 0 when n→ ∞ andR stays fixed. Since ρXRQnXR → ρXRQXR strongly in L1(R3) by Lemma 3.6,
and it is a bounded sequence in L2(R3) by (3.6), it must converge strongly in C by the Hardy–Littlewood–Sobolev
inequality. So we conclude that D(ρXRQnXR , ρn − ρ) → 0 as n→ ∞, hence that

D(ρQn , ρn) = D(ρQ, ρ) +D(ρYRQnYR , ρn − ρ) + o(1) + εn(R). (3.15)

Arguing exactly the same, we can conclude that

D(ρQn , ρQn) = D(ρXRQnXR + ρYRQnYR , ρXRQnXR + ρYRQnYR) + εn(R)
= D(ρXRQXR , ρXRQXR) + 2D(ρXRQXR , ρYRQYR) +D(ρYRQnYR , ρYRQnYR) + o(1) + εn(R).
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If we use these estimates on the electrostatic terms and (3.7) to deal with the kinetic energy, we arrive at

Fcrys[ρn] = Fcrys[ρn, Qn]
= Tr0(H0

per − εF)XRQnXR + Tr0(H0
per − εF)YRQnYR +D(ρQ, ρ) +D(ρYRQnYR , ρn − ρ)

+
1
2
D(ρXRQXR , ρXRQXR) +D(ρXRQXR , ρYRQYR) +

1
2
D(ρYRQnYR , ρYRQnYR) + εn(R) + o(1)

≥ Tr0(H0
per − εF)XRQnXR + Fcrys[ρn − ρ] +D(ρQ, ρ)

+
1
2
D(ρXRQXR , ρXRQXR) +D(ρXRQXR , ρYRQYR) + εn(R) + o(1)

where we have used that YRQnYR is an admissible trial state for Fcrys[ρn − ρ,Q] by Lemma 3.5. Passing to the
liminf and using Fatou’s lemma yields

lim inf
n→∞ (Fcrys[ρn] − Fcrys[ρn − ρ]) ≥ Tr0(H0

per − εF)XRQXR +D(ρQ, ρ)

+
1
2
D(ρXRQXR , ρXRQXR) +D(ρXRQXR , ρYRQYR) − C

R
.

We have ρXRQXR → ρQ and ρYRQYR → 0 strongly in C ∩L2, as R → ∞ by Lemma 3.8. So, using Fatou’s lemma
again for the kinetic energy term and taking the limit R → ∞, we arrive at the result

lim inf
n→∞ (Fcrys[ρn] − Fcrys[ρn − ρ]) ≥ Tr0(H0

per − εF)Q+D(ρQ, ρ) +
1
2
D(ρQ, ρQ) ≥ Fcrys[ρ], (3.16)

which is the lower bound corresponding to (3.13).

Step 2. proof of Corollary 3.10 with ρ ≡ 0.
We pick a sequence ρn ⇀ 0 and denote by (Qn) the corresponding sequence of minimizers. Since (ρn) is

bounded in C, (Qn) is bounded in Q and, up to extraction, converges weakly to some Q ∈ Q, which implies
that ρQn ⇀ ρQ weakly in C. We prove here that Q ≡ 0.

Thanks to the lower bound part of (3.13) we have just proved, we write

−1
2
D(ρQ, ρQ) + Fcrys[ρn] + o(1) ≤ Fcrys[−ρQ] + Fcrys[ρn] + o(1) ≤ Fcrys[ρn − ρQ] ≤ Fcrys[ρn] −D(ρQ, ρQn),

using Qn as a trial state for Fcrys[ρn − ρQ] and the simple lower bound Fcrys[ν,Q] ≥ − 1
2D(ν, ν). Taking the

limit n→ ∞ we therefore obtain D(ρQ, ρQ) = 0, which implies Q = 0 by (3.16).

Step 3. Upper bound. We now construct a trial state for Fcrys[ρn] to obtain the upper bound part of (3.13). In
previous works [2, 11], the special structure of the set of admissible states was used (see the Appendix of [11]).
We propose here a new method based on Lemma 3.5.

Let Q and Qn be two minimizers for, respectively, the problems Fcrys[ρ] and Fcrys[ρn − ρ]. Recall that they
must satisfy the constraint −γ0

per ≤ Q,Qn ≤ 1 − γ0
per and that, using Step 2, Qn ⇀ 0. Let χR be a localization

function of compact support as before, and ηR =
√

1 − χ2
R. Consider the trial state (we use the notation of

Lemma 3.8 with Π = γ0
per)

Qn,R := XRQXR + YRQnYR.

We have −γ0
per ≤ Qn,R ≤ 1 − γ0

per, by Lemma 3.5, and thus

Fcrys[ρn] ≤ Fcrys[ρn, Qn,R].

We use that XRQnXR and YRQYR both satisfy the constraint (2.5), hence that their kinetic energy is non-
negative

Tr0
((
H0

per − εF
)
XRQnXR

) ≥ 0.
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So we have for instance

Tr0
((
H0

per − εF
)
YRQnYR

) ≤ Tr0
((
H0

per − εF
)
XRQnXR

)
+ Tr0

((
H0

per − εF
)
YRQnYR

)
≤ Tr0

((
H0

per − εF
)
Qn

)
+

C

R2

by (3.7). We thus get

Tr0
((
H0

per − εF
)
Qn,R

) ≤ Tr0
((
H0

per − εF
)
Qn

)
+ Tr0

((
H0

per − εF
)
Q
)

+
C

R2
·

For the electrostatic terms we argue as in Step 1, using that ρXRQnXR → 0 strongly in C and ρYRQnYR ⇀ 0
weakly in C as n→ ∞, for fixed R:

D(ρn, ρQn,R) = D(ρ, ρXRQXR) +D(ρn − ρ, ρYRQnYR) +D(ρn − ρ, ρXRQXR) +D(ρ, ρYRQnYR)

= D(ρ, ρXRQXR) +D(ρn − ρ, ρQn) −D(ρn − ρ, ρXRQnXR) + o(1) + εn(R)
= D(ρ, ρXRQXR) +D(ρn − ρ, ρQn) + o(1) + εn(R)

where we have used (3.8) again. Similarly

D(ρQn,R , ρQn,R) = D(ρXRQXR , ρXRQXR) +D(ρYRQnYR , ρYRQnYR) + 2D(ρXRQXR , ρYRQnYR)
= D(ρXRQXR , ρXRQXR) +D(ρQn , ρQn) + o(1) + εn(R)

since Qn ⇀ 0 and

D(ρYRQnYR , ρYRQnYR) = D(ρQn , ρQn) − 2D(ρXRQnXR , ρQn) +D(ρXRQnXR , ρXRQnXR) + εn(R)
= D(ρQn , ρQn) + o(1) + εn(R).

Recalling that ρXRQXR → ρQ strongly in C when R → ∞, we can finally take first the limit n → ∞ and then
the limit R→ ∞ to conclude

lim sup
n→∞

(Fcrys[ρn] − Fcrys[ρ] − Fcrys[ρn − ρ]) ≤ 0

and the Proof of Proposition 3.9 is complete.

Step 4. End of the proof of Corollary 3.10.
Let (ρn) be any sequence such that ρn ⇀ ρ weakly in C, and Qn be any associated sequence of minimizers for

Fcrys[ρn, ·]. Extracting a subsequence we may assume that Qn ⇀ Q in Q. Coming back to the lower bound (3.16)
obtained in Step 1 and using (3.13), we see that

Fcrys[ρ] = lim
n→∞

(
Fcrys[ρn] − Fcrys[ρn − ρ]

)
≥ Fcrys[ρ,Q] ≥ Fcrys[ρ].

This shows that Q minimizes Fcrys[ρ, ·] and concludes the proof of Corollary 3.10. �

4. Existence of polarons: Proof of Theorem 2.2

Before turning to the more complicated case of N particles for which we have to adapt Theorem 25 in [13], we
deal with the simpler one-particle case. The proof that a minimizer always exists for one particle follows from
usual techniques of nonlinear analysis. In this context the most difficult is to verify the one-particle binding
inequality (2.20), which we do first.
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Step 1. Proof of the one-particle binding inequality.

The aim of this first step is to prove the following important

Lemma 4.1 (One-particle binding).
We have

E(1) < Eper := inf σ
(
− Δ

2m
+ V 0

per

)
. (4.1)

Proof. Let uper denote the first L -periodic eigenfunction of −Δ/(2m) + V 0
per, which is a solution of(

− Δ

2m
+ V 0

per

)
uper = Eper uper. (4.2)

We assume that uper is normalized,
∫

Γ
|uper|2 = 1 where Γ is the unit cell of L . Since uper ∈ H2

per(Γ ), we have
also νper := |uper|2 ∈ H2

per(Γ ). The Fourier coefficients (ν̂per(k))k∈L ∗ thus satisfy (|k|2ν̂per(k))k∈L ∗ ∈ �2(L ∗)
and consequently belong to �1(L ∗): ∑

k∈L ∗
|ν̂per(k)| <∞. (4.3)

Here L ∗ is the dual lattice of L , whose unit cell will be denoted by Γ ∗. We can write

|uper(x)|2 =
1

|Γ ∗|
∑

k∈L ∗
ν̂per(k) eik·x

Consider now a fixed function χ ∈ C∞
c (R3) such that

∫ |χ|2 = 1, and define the following test function for
the variational problem E(1):

ψλ := uper(x)χλ(x), with χλ(x) := λ−3/2χ
(x
λ

)
· (4.4)

The corresponding density is

|ψλ(x)|2 := |uper(x)|2 |χλ(x)|2 =
1

|Γ ∗|
∑

k∈L ∗
ν̂per(k) eik·x |χλ(x)|2 . (4.5)

Remark that

D
(|χλ|2eik·, |χλ|2eik·) = 4πλ−3

∫
R3

∣∣∣|̂χ|2(p)∣∣∣2
|p/λ+ k|2 dp ∼

λ→∞
4π

λ3|k|2
∫

R3

∣∣∣|̂χ|2(p)∣∣∣2 dp

for any k ∈ L ∗ \ {0}. Using (4.3) and the fact that uper is normalized, we deduce that

∣∣∣∣|ψλ|2 − |χλ|2
∣∣∣∣
C = O

(
1

λ3/2

)
·

Similarly, the normalization factor is∫
R3

|uper(x)|2|χλ(x)|2 dx =
1

(2π)3/2

∑
k∈L ∗

ν̂per(k) |̂χ|2(λk) = 1 +O

(
1
λp

)
for all p ∈ N. Of course, we have by scaling

D
(|χλ|2, |χλ|2

)
=

1
λ
D
(|χ|2, |χ|2) .
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We deduce from all this that

Fcrys

[ |ψλ|2∫
R3 |ψλ|2

]
= Fcrys

[|χλ|2
]
+O

(
1

λ3/2

)
by (3.2). In Theorem 1.4 of [14] we have studied in detail the behavior of the crystal energy when the external
density is very spread out. We have proved that

Fcrys

[|χλ|2
]

= Fcrys

[
λ−3|χ(·/λ)|2] =

1
λ
FP

εM

[|χ|2] + o

(
1
λ

)
(4.6)

where FP
εM

is Pekar’s effective interaction energy

FP
εM

[ρ] := 2π
∫

R3
|ρ̂(p)|2

(
1

pT εMp
− 1

|p|2
)

dp.

Since εM > 1, we have FP
εM

[ρ] < 0 for all ρ. So the exact (first order) behavior of the crystal energy for our trial
state is

Fcrys

[ |ψλ|2∫
R3 |ψλ|2

]
=
FP

εM

[|χ|2]
λ

+ oλ→∞

(
1
λ

)
.

The two other terms in the energy E are easier to handle. A simple computation based on the equation (4.2) of
uper shows that ∫

R3

1
2m

|∇ψλ|2 + V 0
per|ψλ|2 = Eper

∫
R3

|ψλ|2 +
1

2m

∫
R3

|uper|2|∇χλ|2

(see Lem. 2.2 in [14]). Of course,∫
R3

|uper|2|∇χλ|2 ≤ C

∫
R3

|∇χλ|2 =
C

λ2

∫
R3

|∇χ|2

since uper ∈ H2
per ⊂ L∞(R3). As a conclusion we have shown that

E
⎛⎝ ψλ√∫

R3 |ψλ|2

⎞⎠ = Eper +
FP

εM

[|χ|2]
λ

+ oλ→∞

(
1
λ

)
.

Since FP
εM

[|χ|2] < 0, the inequality (4.1) follows. �

Remark 4.2. Note that the proof of the above lemma actually uses a construction reminiscent of a large
polaron: the trial state (4.4) describes a particle extended over a region much larger than the lattice spacing, in
the spirit of [14]. This is of course only a trial state argument, and the ground state, when it exists, lives itself
on a smaller scale.

Step 2. Compactness of minimizing sequences and existence of a minimizer for N = 1.

We now turn to the proof of the other statements in Theorem 2.3 dealing with the one-particle case E(1).
Let (ψn) be a minimizing sequence for E(1). Since 0 ≥ Fcrys[|ψ|2] ≥ −D(|ψ|2, |ψ|2)/2, it is easy to see that

(ψn) is bounded in H1(R3). We define the largest mass that subsequences can have up to translations by

M := sup
{∫

R3
|ψ|2 : ∃(xk) ⊂ R

3, ψnk
(· − xk) ⇀ ψ weakly in H1(R3)

}
.

We know [18] that M = 0 if and only if ψn → 0 strongly in Lp(R3) for all 2 < p < 6, a phenomenon that
is usually called vanishing. But if this is the case, we get

∣∣∣∣|ψn|2
∣∣∣∣
C → 0 by the Hardy–Littlewood–Sobolev
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inequality, and therefore Fcrys[|ψn|2] → 0 by (3.2). We then get E(1) ≥ Eper := inf σ(H0
per) which is impossible

by Lemma 4.1. Thus M > 0.
Since M > 0 we can find a subsequence (denoted the same for simplicity), such that ψn(·−xn) ⇀ ψ 
= 0. We

can of course write xn = kn + yn where kn ∈ L and yn ∈ Γ . Extracting subsequences again we get yn → y ∈ Γ ,
the unit cell of the lattice L . Therefore ψn(·−kn) ⇀ ψ(·+y) 
= 0. Since our energy functional is invariant under
the translations of L , the new sequence ψn(· − kn) is again a minimizing sequence. Without loss of generality
we can thus assume that ψn ⇀ ψ 
= 0. Now, if we can prove that

∫
R3 |ψ|2 = 1, we will get strong convergence in

L2 and it is then standard to upgrade this to strong convergence in H1. We argue by contradiction and assume
that 0 <

∫
R3 |ψ|2 < 1.

We will now show that the energy decouples into two pieces. Since ψn ⇀ ψ in H1(R3) we may assume that
|ψn|2 ⇀ |ψ|2 in C. We then use that, by (3.13) in Proposition 3.9,

Fcrys[|ψn|2] ≥ Fcrys[|ψ|2] + Fcrys[|ψn|2 − |ψ|2] + o(1).

Note that
|ψn|2 − |ψ|2 − |ψn − ψ|2 = 2�ψ(ψn − ψ) → 0

strongly in L1(R3) (we use here that ψn → ψ strongly in L2
loc and an ε/2 argument), hence in L6/5(R3) by

interpolation. Thus

lim
n→∞

∣∣∣∣Fcrys[|ψn|2 − |ψ|2] − Fcrys[|ψn − ψ|2]
∣∣∣∣ = 0

by (3.2) in Lemma 3.2, and we arrive at

Fcrys[|ψn|2] ≥ Fcrys[|ψ|2] + Fcrys[|ψn − ψ|2] + o(1).

On the other hand, it is clear from the weak convergence ψn ⇀ ψ in H1(R3) (and from the fact that the form
domain of −Δ/(2m) + V 0

per is H1(R3)), that〈
ψn,

(
− Δ

2m
+ V 0

per

)
ψn

〉
=
〈
ψ,

(
− Δ

2m
+ V 0

per

)
ψ

〉
+
〈

(ψn − ψ),
(
− Δ

2m
+ V 0

per

)
(ψn − ψ)

〉
+ o(1).

Hence we have shown that
E [ψn] ≥ E [ψ] + E [ψn − ψ] + o(1).

Now we use that Fcrys is concave to infer

Fcrys

[|ψn − ψ|2] ≥ (∫
R3

|ψn − ψ|2
)
Fcrys

[ |ψn − ψ|2∫
R3 |ψn − ψ|2

]
,

leading to

E [ψn] ≥ E [ψ] +
(∫

R3
|ψn − ψ|2

)
E
⎡⎣ ψn − ψ√∫

R3 |ψn − ψ|2

⎤⎦ + o(1)

≥ E [ψ] +
(∫

R3
|ψn − ψ|2

)
E(1) + o(1).

Passing to the limit n→ ∞, we find

E(1) ≥ E [ψ] +
(

1 −
∫

R3
|ψ|2

)
E(1).
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It is now time to use the strict concavity at the origin (3.1)

Fcrys

[|ψ|2] > (∫
R3

|ψ|2
)
Fcrys

[ |ψ|2∫
R3 |ψ|2

]
,

which yields

E [ψ] >
(∫

R3
|ψ|2

)
E
⎡⎣ ψ√∫

R3 |ψ|2

⎤⎦ ≥
(∫

R3
|ψ|2

)
E(1).

Therefore we have proved that E(1) > E(1) which is a contradiction, unless
∫

R3 |ψ|2 = 1. This concludes the
proof in the case of one particle.

5. Binding of N-polarons: Proof of Theorem 2.3

We now turn to the case of N ≥ 2. With the input of Section 3, the proof more or less follows that of
Theorem 25 in [13]. We nevertheless sketch the main steps for the convenience of the reader.

We will denote

H(N) :=
N∑

j=1

(
−Δj

2m
+ V 0

per(xj)
)

+
∑
i<j

1
|xi − xj | .

In order to relate problems with different particle numbers to one another, it is crucial to introduce the anti-
symmetric truncated Fock space

F≤N =
N⊕

n=0

n∧
i=1

L2(R3)

where
∧

is the antisymmetric tensor product and we use the convention
∧0

i=1 L
2(R3) = C. A state on F≤N is

an operator Γ ∈ S1(F≤N ) with Tr(Γ ) = 1. In the sequel we restrict ourselves to states commuting with the
number operator

N =
N⊕

n=0

n.

This means (see [13], Remark 7) that they take the form

Γ = G00 ⊕ . . .⊕GNN (5.1)

with Gii ∈ S1
(∧n

i=1 L
2(R3)

)
. We denote by

H =
N⊕

n=0

H(n)

the many-body second-quantized Hamiltonian. To any state Γ are associated a density ρΓ ∈ L1(R3), one-body
density matrix [Γ ]1,1 ∈ S1(L2(R3)) and two-body density matrix [Γ ]2,2 ∈ S1(L2(R3) × L2(R3)) (see [13],
Sect. 1). We can extend the energy to Fock space as

E [Γ ] = TrF≤N (HΓ ) + Fcrys[ρΓ ]
= TrL2(R3)

((−Δ+ V 0
per

)
[Γ ]1,1

)
+ TrL2(R3)×L2(R3)

(
W [Γ ]2,2

)
+ Fcrys[ρΓ ]

where W acts on L2(R3) × L2(R3) as the multiplication by |x − y|−1. For a pure state Γ = 0 ⊕ . . . ⊕ |Ψ〉 〈Ψ |
with Ψ ∈ L2(R3N ) one can check that E [Γ ] = E [Ψ ]. More generally, for a state of the form (5.1), we have

E [Γ ] =
N∑

n=1

Tr∧n
1 L2(R3) (H(n)Gnn) + Fcrys

[
N∑

n=1

ρGnn

]
.
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Step 1. Large binding inequality.

We claim that
E(N) ≤ E(N − k) + E(k) for all k = 1, . . . , N − 1. (5.2)

To see this, we consider the following trial state:

ΨN
R := ΨN−k ∧ Ψk (.−Rτ ) (5.3)

where (ΨN−k) and (Ψk) are compactly supported fixed trial states for E(N − k) and E(k) respectively, τ ∈ L
is a lattice translation and R ∈ N is large enough for ρΨN−k and ρΨk (.−Rτ ) to have disjoint supports. The
symbol ∧ denotes the antisymmetric tensor product. We first take the limit R→ ∞ to obtain

E(N) ≤ E [ΨN−k] + E [Ψk]. (5.4)

Optimizing then with respect to ΨN−k and Ψk concludes the proof of (5.2). To see that (5.4) holds, we note
that by construction

ρΨN
R

= ρΨN−k + ρΨk (.−Rτ )

for large enough R, thus we can use Proposition 3.9 and take the limit R → ∞ with R ∈ N to obtain

lim
R→∞

Fcrys[ρΨN
R

] = Fcrys[ρΨN−k ] + Fcrys[ρΨk ].

The other terms in the energy can be treated as usual to obtain (5.4).
Note that the argument here also proves by contradiction that item 2 of Theorem 2.3 implies item 1. If there

is equality in (5.2), we can choose ΨN−k
n and Ψk

n minimizing sequences for E(N − k) and E(k) respectively
and, taking Rn → ∞ very fast, we obtain a minimizing sequence for E(N) that is not precompact, even up to
translations because some mass is lost at infinity.

Step 2. Absence of vanishing.

We consider a minimizing sequence (Ψn) for E(N) and denote by Γn = 0 ⊕ . . . . . .⊕ |Ψn〉 〈Ψn| the associated
state in the truncated antisymmetric Fock space. It is easy to see, using in particular Lemma 3.2 that (Ψn)
is bounded in H1(R3N ). As in the one-body case treated before, we define a criterion for the vanishing of the
minimizing sequence. We use the concept of geometric convergence (see Sect. 2 in [13] for the definition). We
look at the the mass of the possible geometric limits, up to translations and extraction, of (Γn)

M := sup
{
Tr (NΓ ) , ∃vk ⊂ R

3, vkΓnk
v∗

k ⇀g Γ
}

where we recall that N is the number operator in Fock space. As explained in [13], Lemma 24, if M = 0 then
ρΨn → 0 strongly in Lp(R3) for all 1 < p < 3. Using then Lemma 3.2 we obtain Fcrys[ρΨn ] → 0 and therefore

E(N) = lim
n→∞ E [Ψn] ≥ inf σ

(
H̃(N)

)
= NEper

where

H̃(N) :=
N∑

j=1

(
−Δj

2m
+ V 0

per(xj)
)

=
N∑

j=1

(
H0

per

)
xi
. (5.5)

Note that, by induction on N , (5.2) implies E(N) ≤ NE(1). We have already seen in (4.1) above that E(1) <
inf σ

(
H0

per

)
. Hence we reach a contradiction and conclude that M > 0.
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Step 3. Decoupling via localization.

Since M > 0 (and arguing as in the previous section) we have, up to the extraction of a subsequence,
vnΓnv∗

n ⇀g Γ with Tr(NΓ ) > 0 and where (vn) ⊂ L is a sequence of lattice translations. Using the invariance
of the energy, Lemma 3.3, we can thus assume that our minimizing sequence satisfies

Γn ⇀g Γ (5.6)

with Tr(NΓ ) > 0. Also we have √
ρΓn ⇀

√
ρΓ weakly in H1(R3) and strongly in L2

loc. Also ρΓn ⇀ ρΓ in the
Coulomb space C and we immediately deduce by (3.13) that

Fcrys[ρΓn ] ≥ Fcrys[ρΓ ] + Fcrys[ρΓn − ρΓ ] + o(1).

We now pick a sequence of radii Rn → ∞ and define smooth localization functions χRn and ηRn such that
χ2

Rn
+ η2

Rn
= 1, supp(χRn) ⊂ B(0, 2Rn) and supp(χRn) ⊂ R3 \ B(0, 3Rn). For any bounded operator B (in

particular the multiplication by a function χ) on L2(R3) such that 0 ≤ BB∗ ≤ 1 we will denote by (Γ )B the
B-localization of a state Γ , as defined in [13], Section 3. Of importance to us will be the following properties of
localization:

ρΓχ = χ2ρΓ

[Γχ]1,1 = χ[Γ ]1,1χ

[Γχ]2,2 = χ⊗ χ [Γ ]2,2χ⊗ χ. (5.7)

Also, for a state of the form (5.1), writing

(Γ )χRn
= G

χRn
0 ⊕ . . .⊕G

χRn

N , (Γ )ηRn
= G

ηRn
0 ⊕ . . .⊕G

ηRn

N ,

the condition χ2
Rn

+ η2
Rn

= 1 implies the relation

Tr
(
G

χRn

j

)
= Tr

(
G

ηRn

N−j

)
. (5.8)

Using concentration functions as in Step 4 of the proof of [13], Theorem 25 we have, extracting a further
subsequence if necessary

(Γn)χRn
→ Γ strongly in S1

(F≤N
)

(5.9)

and
(χRn)2ρΓn → ρΓ strongly in Lp(R3) for all 2 ≤ p < 3. (5.10)

Using (3.2), this can be used to prove that

Fcrys [ρΓn − ρΓ ] = Fcrys

[
(ηRn)2ρΓn

]
+ o(1).

Thus
Fcrys [ρΓn ] ≥ Fcrys [ρΓ ] + Fcrys

[
ρ(Γn)ηRn

]
+ o(1).

We have seen that the nonlinear energy Fcrys decouples. The other terms are treated following [13]. For the
one-particle part we use the IMS formula

Δ = χRnΔχRn + ηRnΔηRn + |∇χRn |2 + |∇ηRn |2
to obtain (we use (5.7))

Tr
((

− Δ

2m
+ V 0

per

)
[Γn](1,1)

)
≥ Tr

(
χRn

(
− Δ

2m
+ V 0

per

)
χRn [Γn](1,1)

)
+ Tr

(
ηRn

(
− Δ

2m
+ V 0

per

)
ηRn [Γn](1,1)

)
− CN

R2
n

= Tr
((

− Δ

2m
+ V 0

per

)
[(Γn)χRn

](1,1)

)
+ Tr

((
− Δ

2m
+ V 0

per

)
[(Γn)ηRn

](1,1)

)
− CN

R2
n

·
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The Coulomb interaction is treated exactly as in [13] and we conclude

〈Ψn, H(N)Ψn〉 ≥ Tr
(
H(Γn)χRn

)
+ Tr

(
H(Γn)ηRn

)
+ o(1).

Using Fatou’s lemma as well as the strong convergence of (χRn)2ρΓn , we finally get

E [Ψn] ≥ E [Γ ] + E [(Γn)ηRn

]
+ o(1). (5.11)

which is the desired decoupling of the energy.

Step 4. Conclusion.

The rest of the argument follows exactly [13]. Writing the geometric limit of Γn

Γ = G00 ⊕ . . .⊕GNN ,

and using the concavity of Fcrys, the fundamental relation (5.8) as well as the convergence (5.9), we arrive at

E(N) ≥
N∑

j=0

Tr(Gjj) (E(j) + E(N − j)) .

Assuming the strict binding inequalities (2.21), this is possible only when G11 = . . . = GN−1N−1 = 0. Hence
we necessarily have GNN 
= 0, otherwise we would obtain a contradiction with the fact that Tr(NΓ ) > 0.

To conclude, it is then enough to prove that G00 = 0, which is an easy consequence of the strict concavity (3.1)
of Fcrys (see Step 5 of the proof of Theorem 25 in [13] for details). We deduce that Tr(GNN ) = 1 = Tr(|Ψn〉 〈Ψn|),
hence that the weak-∗ convergence of |Ψn〉 〈Ψn| in S1(L2(R3))to GNN is actually strong because no mass is lost
in the weak limit. As GNN = |Ψ〉 〈Ψ | where Ψ is the weak limit of Ψn, we conclude that Ψn converges to Ψ
strongly in L2(R3). The convergence in H1(R3) follows by standard arguments.

Appendix A. Proof of Lemma 3.4

We follow ideas of [2]. In the sequel we assume that Q is finite rank, very smooth and decays fast enough,
in order to justify the calculations. The conclusions for general Q then follow by density, using Lemma 2 and
Corollary 3 in [2].

Proof of (3.6): uniform bounds in Q
The argument is the same for the terms involving XR and those involving YR, we thus discuss only the

former. Recalling the definition (2.7) of the space Q and the fact that |H0
per − εF|−1/2 (1 −Δ)1/2 is uniformly

bounded in operator norm (Lemma 1 in [2]), our task is to estimate the terms
(
XRQXR)±∓|H0

per − εF|1/2 in
the Hilbert–Schmidt norm and |H0

per − εF|1/2
(
XRQXR)±±|H0

per − εF|1/2 in the trace norm. We write(
XRQXR)+−|H0

per − εF|1/2 =
(
γ0
per

)⊥
χRQ

+−χRγ
0
per|H0

per − εF|1/2

=
(
γ0
per

)⊥
χRQ

+−|H0
per − εF|1/2χRγ

0
per

+
(
γ0
per

)⊥
χRQ

+−|H0
per − εF|1/2|H0

per − εF|−1/2
[
χR, |H0

per − εF|1/2
]
γ0
per

and deduce ∣∣∣∣∣∣(XRQXR)+−|H0
per − εF|1/2

∣∣∣∣∣∣
S2

≤ C
∣∣∣∣∣∣Q+−|H0

per − εF|1/2
∣∣∣∣∣∣

S2
≤ C ||Q||Q

using that ||χR||L∞ = 1 and that∣∣∣∣∣∣|H0
per − εF|−1/2

[
χR, |H0

per − εF|1/2
]∣∣∣∣∣∣ = O(R−1)
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as shown in the proof of Lemma 11 in [2]. With similar computations, using that |H0
per − εF|1/2Q++|H0

per −
εF|1/2 ∈ S1 we obtain ∣∣∣∣∣∣|H0

per − εF|1/2
(
XRQXR)++|H0

per − εF|1/2
∣∣∣∣∣∣

S1
≤ C ||Q||Q .

The terms involving (XRQXR)++ and (XRQXR)−+ are estimated in exactly the same way. Finally, it was
shown in Proposition 1 of [2] that the map Q ∈ Q 
→ ρQ ∈ L2∩C is continuous, hence the estimates on ρXRQXR

and ρYRQYR also follow.

Proof of (3.8): localization of the density

We argue by duality, noting that∫
R3

(
ρQ − ρXRQXR − ρYRQYR

)
V = Tr

(
Q(V −XRV XR − YRV YR)

)
.

Inspired by the IMS formula, we now use that

V =
1
2
(1 −X2

R − Y 2
R)V +

1
2
V (1 −X2

R − Y 2
R) +

X2
R + Y 2

R

2
V + V

X2
R + Y 2

R

2

=
1
2
(1 −X2

R − Y 2
R)V +

1
2
V (1 −X2

R − Y 2
R) +XRV XR + YRV YR +

1
2
[XR, [XR, V ]] +

1
2
[YR, [YR, V ]]. (A.1)

The idea here is that X2
R + Y 2

R � χ2
R + η2

R = 1 which, unfortunately, is only true in the operator norm.
We start with the estimate on Tr(Q(1−X2

R −Y 2
R)V ) (the second term is treated in the same way). We write

as usual Q = Q++ +Q−− +Q−+ +Q+− and estimate each term separately. Recall that XR and YR commute
with γ0

per, so we get for instance

Tr(Q+−(1 −X2
R − Y 2

R)V ) = Tr(Q+−(1 −X2
R − Y 2

R)γ0
perV

(
γ0
per

)⊥
) = Tr(Q+−(1 −X2

R − Y 2
R)[γ0

per, V ]).

A bound from Lemma 5 in [2] tells us that, if V = V1 + V2 with V1 ∈ Ḣ1(R3) and V2 ∈ L2(R3),∣∣∣∣[γ0
per, V ]

∣∣∣∣
S2 ≤ C(||∇V1||L2 + ||V2||L2).

We thus get

|Tr(Q+−(1 −X2
R − Y 2

R)V )| ≤ C
∣∣∣∣1 −X2

R − Y 2
R

∣∣∣∣ ∣∣∣∣Q+−∣∣∣∣
S2 (||∇V1||L2 + ||V2||L2).

Finally recall that∣∣∣∣1 −X2
R − Y 2

R

∣∣∣∣ =
∣∣∣∣χ2

R −X2
R + η2

R − Y 2
R

∣∣∣∣ ≤ ∣∣∣∣χ2
R −X2

R

∣∣∣∣ +
∣∣∣∣η2

R − Y 2
R

∣∣∣∣ ≤ CR−1

because
χ2

R −X2
R = χ2

R − γ0
perχRγ

0
perχRγ

0
per − (γ0

per)
⊥χR(γ0

per)
⊥χR(γ0

per)
⊥

and the commutator [γ0
per, χR] is known to be of order O(R−1) in operator norm by Lemma 10 in [2]. The term

involving YR and ηR is treated in the same way. Therefore we have proved that

|Tr(Q+−(1 −X2
R − Y 2

R)V )| ≤ CR−1
∣∣∣∣Q+−∣∣∣∣

S2 (||∇V1||L2 + ||V2||L2).

For Q−−, we do not have a commutator but we can use the trace–class norm. We write

Tr(Q−−(1 −X2
R − Y 2

R)V ) = Tr(Q−−(1 −X2
R − Y 2

R)γ0
perV γ

0
per)
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and estimate ∣∣∣∣γ0
perV γ

0
per

∣∣∣∣ ≤ ∣∣∣∣γ0
per|H0

per − εF|
∣∣∣∣ ∣∣∣∣|H0

per − εF|−1(1 −Δ)
∣∣∣∣ ∣∣∣∣(1 −Δ)−1V

∣∣∣∣
≤ C

∣∣∣∣(1 −Δ)−1V
∣∣∣∣ ≤ C(||V1||L6 + ||V1||L2).

We have used the fact that γ0
per|H0

per − εF| is a bounded operator: H0
per is bounded from below and γ0

per =

�(−∞,εF)(H0
per). That

∣∣γ0
per − εF

∣∣−1 (1 −Δ) is also bounded is shown in [2], Lemma 1. For the last step we used
the Kato–Seiler–Simon inequality (Theorem 4.1 in [25])

‖f(−i∇)g(x)‖Sp ≤ (2π)−3/p ‖f‖Lp ‖g‖Lp (A.2)

for p ≥ 2. We thus obtain

|Tr(Q−−(1 −X2
R − Y 2

R)V )| ≤ CR−1
∣∣∣∣Q−−∣∣∣∣

S1 (||∇V1||L2 + ||V2||L2)

as expected. In all these estimates the kinetic energy was not useful. For Q++ we have to use it. We start with

|Tr(Q++(1 −X2
R − Y 2

R)V1)| ≤
∣∣∣∣∣∣|H0

per − εF|1/2Q++
∣∣∣∣∣∣

S1

∣∣∣∣1 −X2
R − Y 2

R

∣∣∣∣ ∣∣∣∣∣∣V1|H0
per − εF|−1/2

∣∣∣∣∣∣
≤ CR−1

∣∣∣∣∣∣|H0
per − εF|1/2Q++

∣∣∣∣∣∣
S1

||∇V1||L2 .

This time we have used that, by Lemma 1 in [2] and (A.2) again,∣∣∣∣∣∣V1|H0
per − εF|−1/2

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣V1(1 −Δ)−1/2
∣∣∣∣∣∣

S6

∣∣∣∣∣∣(1 −Δ)1/2|H0
per − εF|−1/2

∣∣∣∣∣∣ ≤ C ||V1||L6 ≤ C ||∇V1||L2 .

The last bound is the Sobolev inequality. For V2 we have to use the full kinetic energy:

Tr(Q++(1 −X2
R − Y 2

R)V2)

= Tr(|H0
per − εF|1/2Q++|H0

per − εF|1/2(1 −X2
R − Y 2

R)|H0
per − εF|−1/2V2|H0

per − εF|−1/2)

− Tr(|H0
per − εF|1/2Q++|H0

per − εF|1/2
[|H0

per − εF|−1/2, X2
R + Y 2

R

]
V2|H0

per − εF|−1/2)

The first term is treated exactly like for V1 whereas for the second term one has to use that∣∣∣∣∣∣[|H0
per − εF|−1/2, X2

R + Y 2
R

] |H0
per − εF|1/2

∣∣∣∣∣∣ =
∣∣∣∣∣∣|H0

per − εF|−1/2
[|H0

per − εF|1/2, X2
R + Y 2

R

]∣∣∣∣∣∣ = O(R−1)

which is proved as in [2], Lemma 11.
Let us now turn to the double commutators in (A.1). We claim that

||[XR, [XR, V ]]||S2 ≤ CR−1(||∇V1||L2 + ||V2||L2).

To see this we use that γ0
per +

(
γ0
per

)⊥ = 1 and [V, χR] = 0 to compute

[XR, V ] = γ0
perχR[γ0

per, V ] + [γ0
per, V ]χRγ

0
per − (γ0

per)
⊥χR[γ0

per, V ] − [γ0
per, V ]χR(γ0

per)
⊥.

We can then write
γ0
perχR[γ0

per, V ] = γ0
perχRγ

0
per[γ

0
per, V ] + [γ0

per, χR](γ0
per)

⊥[γ0
per, V ].

Noting that γ0
perχRγ

0
per commutes with XR, we get

[XR, [XR, V ]] = γ0
perχRγ

0
per

[
XR, [γ0

per, V ]
]
+
[
XR, [γ0

per, χR](γ0
per)

⊥[γ0
per, V ]

]
+ similar terms.
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In the second term of the right side the last commutator is not useful and we can simply bound∣∣∣∣[XR, [γ0
per, χR](γ0

per)
⊥[γ0

per, V ]
]∣∣∣∣

S2 ≤ 2 ||XR||
∣∣∣∣[γ0

per, χR]
∣∣∣∣ ∣∣∣∣[γ0

per, V ]
∣∣∣∣

S2 ≤ CR−1
∣∣∣∣[γ0

per, V ]
∣∣∣∣

S2

where we have used ||XR|| ≤ 1 and
∣∣∣∣∣∣(γ0

per

)⊥∣∣∣∣∣∣ ≤ 1. So our last task is to show that∣∣∣∣[XR, [γ0
per, V ]

]∣∣∣∣
S2 ≤ CR−1(||∇V1||L2 + ||V2||L2).

To prove this estimate we express the double commutator as[
XR, [γ0

per, V ]
]

= γ0
per

[
[χR, γ

0
per], V

]
(γ0

per)
⊥ + (γ0

per)
⊥[[χR, γ

0
per], V

]
γ0
per. (A.3)

To see that (A.3) holds, note that since XR commutes with γ0
per,

γ0
per

[
XR, [γ0

per, V ]
]
γ0
per =

[
XR, γ

0
per[γ

0
per, V ]γ0

per

]
= 0

because γ0
per[γ

0
per, V ]γ0

per = (γ0
per)

2V γ0
per − γ0

perV (γ0
per)

2 = 0. The argument is the same for
(γ0

per)
⊥[XR, [γ0

per, V ]
]
(γ0

per)
⊥. We deduce that the double commutator is purely off-diagonal,[

XR, [γ0
per, V ]

]
= γ0

per

[
XR, [γ0

per, V ]
]
(γ0

per)
⊥ + (γ0

per)
⊥[XR, [γ0

per, V ]
]
γ0
per.

Now we compute (using again that [XR, γ
0
per] = 0 and γ0

per +
(
γ0
per

)⊥ = 1)

γ0
per

[
XR, [γ0

per, V ]
]
(γ0

per)
⊥ = γ0

per

[
XR, γ

0
per[γ

0
per, V ](γ0

per)
⊥](γ0

per)
⊥

= γ0
per

[
XR, γ

0
perV (γ0

per)
⊥](γ0

per)
⊥

= γ0
per

[
XR, V

]
(γ0

per)
⊥

= γ0
perχRγ

0
perV (γ0

per)
⊥ − γ0

perV (γ0
per)

⊥χR(γ0
per)

⊥

= γ0
per[χR, γ

0
per]V (γ0

per)
⊥ − γ0

perV [(γ0
per)

⊥, χR](γ0
per)

⊥

= γ0
per[χR, γ

0
per]V (γ0

per)
⊥ − γ0

perV [χR, γ
0
per](γ

0
per)

⊥

= γ0
per

[
[χR, γ

0
per], V

]
(γ0

per)
⊥.

This proves (A.3).
Now

[
[χR, γ

0
per], V

]
is estimated as usual by expressing γ0

per using Cauchy’s formula:

γ0
per = − 1

2iπ

∮
C

dz
H0

per − z

where C is a curve enclosing the spectrum of H0
per below εF. The formula[

(z −A)−1, B
]

= (z −A)−1[A,B](z −A)−1 (A.4)

then leads to (with the standard notation p = −i∇)

[χR, γ
0
per] =

1
2π

∮
dz

1
H0

per − z

(
p · ∇χR + ∇χR · p) 1

H0
per − z

·

So we get for instance

[χR, γ
0
per]V2 =

1
2π

∮
dz

1
H0

per − z

(
2p · ∇χR + iΔχR

) 1
H0

per − z
V2.
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Using (A.2) and the fact that ‖∇χR‖L∞ = O(R−1) and ‖ΔχR‖L∞ = O(R−2), we easily get∣∣∣∣[χR, γ
0
per]V2

∣∣∣∣
S2 ≤ CR−1 ||V2||L2 .

We argue the same when V2 is on the left.
For V1 we need the commutator:

[
[χR, γ

0
per], V1

]
=

1
2π

∮
dz

1
H0

per − z

(
p · ∇χR + ∇χR · p) [ 1

H0
per − z

, V1

]
− i

π

∮
dz

1
H0

per − z
∇χR · ∇V1

1
H0

per − z

+
1
2π

∮
dz

[
1

H0
per − z

, V1

] (
p · ∇χR + ∇χR · p) 1

H0
per − z

and we argue as before. For the commutator on the last line we use (A.4) to write[
1

H0
per − z

, V1

]
=

1
H0

per − z
[−Δ,V1]

1
H0

per − z

and follow arguments from [2], Lemma 5.
All in all, we have shown that for V = V1 + V2

|Tr
(
Q(V −XRV XR − YRV YR)

)| ≤ CR−1 ||Q||Q
( ||∇V1||L2 + ||V2||L2

)
which, by duality, precisely proves (3.8).

Proof of (3.7): localization of the kinetic energy

We first remark that

(χ2
R)−− = γ0

perχR

(
γ0
per + (γ0

per)
⊥)χRγ

0
per = (X2

R)−− + [γ0
per, χR](γ0

per)
⊥[χR, γ

0
per]

and a similar equality for (χ2
R)++. Since by construction

X2
R =

(
X2

R

)++
+
(
X2

R

)−−

this yields

(χ2
R)−− + (χ2

R)++ = X2
R − [γ0

per, χR]2 and (η2
R)−− + (η2

R)++ = Y 2
R − [γ0

per, ηR]2.

From this we deduce that

Tr0(H0
per − εF)Q = Tr(H0

per − εF)(Q++ +Q−−)

= Tr
(χ2

R + η2
R)(H0

per − εF) + (H0
per − εF)(χ2

R + η2
R)

2
(Q++ +Q−−)

= Tr
(X2

R + Y 2
R)(H0

per − εF) + (H0
per − εF)(X2

R + Y 2
R)

2
(Q++ +Q−−)

− Tr
[γ0

per, χR]2(H0
per − εF) + (H0

per − εF)[γ0
per, χR]2

2
(Q++ +Q−−)

− Tr
[γ0

per, ηR]2(H0
per − εF) + (H0

per − εF)[γ0
per, ηR]2

2
(Q++ +Q−−)
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hence that

Tr0(H0
per − εF)Q− Tr0(H0

per − εF)XRQXR − Tr0(H0
per − εF)YRQYR

=
1
2

Tr
(
[XR, [XR, H

0
per]] + [YR, [YR, H

0
per]]

)
(Q++ +Q−−)

− 1
2

Tr
(
[γ0

per, χR]2(H0
per − εF) + (H0

per − εF)[γ0
per, χR]2

)
(Q++ +Q−−)

− 1
2

Tr
(
[γ0

per, ηR]2(H0
per − εF) + (H0

per − εF)[γ0
per, ηR]2

)
(Q++ +Q−−).

We conclude that∣∣Tr0(H0
per − εF)Q −Tr0(H0

per − εF)XRQXR − Tr0(H0
per − εF)YRQYR

∣∣
≤ C ||Q||Q

( ∣∣∣∣∣∣|H0
per − εF|−1/2[XR, [XR, H

0
per]]|H0

per − εF|−1/2
∣∣∣∣∣∣

+
∣∣∣∣∣∣|H0

per − εF|−1/2[YR, [YR, H
0
per]]|H0

per − εF|−1/2
∣∣∣∣∣∣

+
∣∣∣∣∣∣[γ0

per, χR]2|H0
per − εF|1/2

∣∣∣∣∣∣ +
∣∣∣∣∣∣[γ0

per, ηR]2|H0
per − εF|1/2

∣∣∣∣∣∣ ).
For the last term we recall from [2], Lemma 10, that∣∣∣∣[γ0

per, ηR]
∣∣∣∣ ≤ CR−1

and note that the same proof can be employed to show that∣∣∣∣∣∣[γ0
per, ηR]|H0

per − εF|1/2
∣∣∣∣∣∣ ≤ CR−1.

The second to last term is treated similarly. For the double commutators, a computation shows that

[XR, [XR, H
0
per]] = (γ0

per)
⊥
(
[χR, γ

0
per] [χR, Δ] + [χR, Δ] [χR, γ

0
per] + |∇χR|2

)
(γ0

per)
⊥

− γ0
per

(
[χR, γ

0
per] [χR, Δ] + [χR, Δ] [χR, γ

0
per] + |∇χR|2

)
γ0
per.

We have [χR, Δ] = (ΔχR) + 2i∇χ · p with p = −i∇. Using then that p|H0
per − εF|−1/2 is bounded and the fact

that
∣∣∣∣[χR, γ

0
per]

∣∣∣∣ = O(R−1), we conclude similarly as before that∣∣∣∣∣∣|H0
per − εF|−1/2[XR, [XR, H

0
per]]|H0

per − εF|−1/2
∣∣∣∣∣∣ = O

(
1
R2

)
·

The term involving YR is treated similarly. This ends the proof of Lemma 3.4.
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