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HAMILTON-JACOBI EQUATIONS AND TWO-PERSON ZERO-SUM
DIFFERENTIAL GAMES WITH UNBOUNDED CONTROLS*

HonG Qrul? AND JIONGMIN YONG?

Abstract. A two-person zero-sum differential game with unbounded controls is considered. Under
proper coercivity conditions, the upper and lower value functions are characterized as the unique vis-
cosity solutions to the corresponding upper and lower Hamilton-Jacobi-Isaacs equations, respectively.
Consequently, when the Isaacs’ condition is satisfied, the upper and lower value functions coincide, lead-
ing to the existence of the value function of the differential game. Due to the unboundedness of the con-
trols, the corresponding upper and lower Hamiltonians grow super linearly in the gradient of the upper
and lower value functions, respectively. A uniqueness theorem of viscosity solution to Hamilton—Jacobi
equations involving such kind of Hamiltonian is proved, without relying on the convexity/concavity of
the Hamiltonian. Also, it is shown that the assumed coercivity conditions guaranteeing the finiteness
of the upper and lower value functions are sharp in some sense.
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1. INTRODUCTION

Let us begin with the following control system:

i) = fs.y(s) m(s)ua(s), s € (LT, m
y(t) = .

where f:[0,7] x R" x Uy x Uz — R"™ is a given map. In the above, y(-) is the state trajectory taking values in

R"™, and (u1(-),u2(+)) is the control pair taken from the set U7 [t, T'] x Us?[t,T] of admissible controls, defined

by the following;:

1
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with U; being a closed subset of R and with some o; > 1. We point out that U; and Us are allowed to be
unbounded, and they could even be R™" and R™?, respectively. Hereafter, we suppress R™" in ||u;(-)|| oi ¢, 7;mm1)
for notational simplicity and this will not cause confusion. The performance functional associated with (1.1) is
the following:

T
J(t zrur (), us() = / 95, y(s),wr(s), us(s))ds + h(y(T)), (1.2)

with ¢ : [0,7] x R" x Uy x Uy — R and h: R" — R being some given maps.

The above setting can be used to describe a two-person zero-sum differential game: Player 1 wants to select
a control ui(-) € U7'[t,T] so that the functional (1.2) is minimized and Player 2 wants to select a control
ug(+) € U3?[t,T] so that the functional (1.2) is maximized. Therefore, J(¢,x;ui(-),us(-)) is a cost functional
for Player 1 and a payoff functional for Player 2, respectively. If Us is a singleton, the above is reduced to a
standard optimal control problem.

Under some mild conditions, for any initial pair (t,x) € [0,7] x R" and control pair (ui(+),ua(-)) € U7 [t, T] x
Us?[t, T, the state equation (1.1) admits a unique solution y(-) = y(-;t,x,u1(-),uz(-)), and the performance
functional J(t, z;ui(-),uz(-)) is well-defined. By adopting the notion of Elliott-Kalton strategies [11], we can
define the upper and lower value functions V= : [0,T] x R™ — R (see Sect. 3 for details). Further, when V*(-, )
are differentiable, they should satisfy the following upper and lower Hamilton-Jacobi-Isaacs (HJI, for short)
equations, respectively:

{ Vti(t,x) + H*(t,z,VE(t,x)) =0, (t,z) € [0,T] x R", (13)

VE(T,z) = h(x), z € R",

where H* (t,x,p) are the so-called upper and lower Hamiltonians defined by the following, respectively:

H*(t,z,p) = inf, sup o, ft, z ur,u)) +g(t, x, ur, usg)l,
{ ( ) ur€ly SUPy, e, (P, f( 1, u2) ) +9( 1, u2)] (t.p) € [0.T] X R" x R".  (1.4)

Hi(taxap) = Supu2eU2 infuleUl [<p, f(taxaula'LLQ) > +g(t,x,u1,u2)] )

When the sets U; and U, are bounded, the above differential game is well-understood [12,17]: under reasonable
conditions, the upper and lower value functions V*(-,-) are the unique viscosity solutions to the corresponding
upper and lower HJI equations, respectively. Consequently, in the case that the following Isaacs condition:

HT(t,z,p) = H (t,z,p), V(t,z,p) € [0,7] x R" x R", (1.5)

holds, the upper and lower value functions coincide and the two-person zero-sum differential game admits the
value function
V(t,z)=V*t(t,x) =V (t,x), (t,z) € [0,T] x R". (1.6)

For comparison purposes, let us now take a closer look at the properties that the upper and lower value
functions V*(-,-) and the upper and lower Hamiltonians H*(-,-,-) have, under classical assumptions. To this
end, let us recall the following classical assumption:

(B) Functions f : [0, T]xR"xU; xUs — R", g: [0,T] xR" xU; xUs — R, and h : R" — R are continuous.
There exists a constant L > 0 and a continuous function w : [0,00) x [0, 00) — [0, 00), increasing in each of its
arguments and w(r,0) = 0 for all » > 0, such that for all ¢,s € [0,T], z,y € R", (u1,u2) € Uy x Us,

F(t @ un,u2) = f(s,y, w1, u2)| < Lz —y| + w(lz] v Iyl [t — s]),
g(t,w,u1,u) — g(s,yur, u2)| < w(lz] V Iyl o =yl + [t — s]),
h(z) = h(y)| < w(|z| v Iyl |z = yl),

f(t,0,ur,u2)| + [g(£, 0, ur, uz)| + [A(0)] < L,

(1.7)

where |2[ V [y = max{|z], |y|}.
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Condition (1.7) implies that the continuity and the growth of (t,z) — (f(t, z,u1,us2), g(t,x,u1,us)) are
uniform in (uy,us) € Uy X Us. This essentially will be the case if U; and Uy are bounded (or compact metric
spaces). Let us state the following proposition.

Proposition 1.1. Under assumption (B), one has the following:

(i) The upper and lower value functions VE(-,-) are well-defined continuous functions. Moreover, they are the
unique viscosity solutions to the upper and lower HJI equations (1.3), respectively. In particular, if Isaacs’
condition (1.5) holds, the upper and lower value functions coincide.

(ii) The upper and lower Hamiltonians H*(-,-,-) satisfy the following: for all t € [0,T), z,y,p,q € R",

{ |H*(t,2,p) — HE(t,y,q)| < L1+ |z])|p — gl + w (|| V [yl, |z — y]), 18)

|H*(t,2,p)| < L1+ [2])[p| + L + w(|z], 2]).

Condition (1.8) plays an important role in the proof of the uniqueness of viscosity solution to HJI equations
(1.3) [5,16]. Note that, in particular, (1.8) implies that p — H¥(¢,z,p) is at most of linear growth.

Unfortunately, the above property (1.8) fails, in general, when the control domains Uy and/or Us is unbounded.
To make this more convincing, let us look at a one-dimensional linear-quadratic (LQ, for short) optimal control
problem (which amounts to saying that U; = R and Uz = {0}). Consider the state equation

y(s) =y(s) +uls),  selt,T],

with a quadratic cost functional

J(t, wsu() =

T
; Vt (19 + u(=)?)ds + [u(T)?

Then the Hamiltonian is

] + [ul? P
2

3 T

u€R
Thus, p — H(t,x,p) is of quadratic growth and (1.8) fails.

Optimal control problems with unbounded control domains were studied in [2, 8]. Uniqueness of viscosity
solution to the corresponding Hamilton-Jacobi-Bellman equation was proved by some arguments relying on
the convexity/concavity of the corresponding Hamiltonian with respect to p. Recently, the above results were
substantially extended to stochastic optimal control problems [10] for which the Hamiltonian is convex in the
gradient of the value function. On the other hand, as an extension of [24], two-person zero-sum differential
games with (only) one player having unbounded control were studied in [21]. Some nonlinear H,, problems can
also be treated as such kind of differential games [20,22]. Further, stochastic two-person zero-sum differential
games were studied in [9] with one player having unbounded control and with the two players’ controls being
separated both in the state equation and the performance functional.

The main purpose of this paper is to study two-person zero-sum differential games with both players having
unbounded controls, and the controls of two players are not necessarily separated. One motivation comes from
the problem of what we call the affine-quadratic (AQ, for short) two-person zero-sum differential games, by
which we mean that the right hand side of the state equation is affine in the controls, and the integrand
of the performance functional is quadratic in the controls (see Sect. 2). This is a natural generalization of the
classical LQ problems. For general two-person zero-sum differential games with (both players having) unbounded
controls, under some mild coercivity conditions, the upper and lower Hamiltonians H* (¢, z, p) are proved to
be well-defined, continuous, and locally Lipschitz in p. Therefore, the upper and lower HJI equations can be
formulated. Then we will establish the uniqueness of viscosity solutions to a general first order Hamilton—Jacobi
equation which includes our upper and lower HJI equations of the differential game. Comparing with a relevant
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result found in [6], the conditions we assumed here are a little different from theirs and we present a detailed
proof for reader’s convenience. By assuming a little stronger coercivity conditions, together with some additional
conditions (guaranteeing the well-posedness of the state equation, etc.), we show that the upper and lower value
functions can be well-defined and are continuous. Combining the above results, one obtains a characterization of
the upper and lower value functions of the differential game as the unique viscosity solutions to the corresponding
upper and lower HJI equations. Then if in addition, the Isaacs’ condition holds, the upper and lower value
functions coincide which yields the existence of the value function of the differential game.

We would like to mention here that due to the unboundedness of the controls, the continuity of the upper
and lower value functions V*(¢, ) in t is quite subtle. To prove that, we need to establish a modified principle
of optimality and fully use the coercivity conditions. It is interesting to indicate that the assumed coercivity
conditions that ensuring the finiteness of the upper and lower value functions are actually sharp in some sense,
which was illustrated by a one-dimensional LQ situation.

For some other relevant works in the literature, we would like to mention [1,13-15, 19, 25], and references
cited therein.

The rest of the paper is organized as follows. In Section 2, we make some brief observations on an AQ two-
person differential game, for which we have a situation that the Isaacs’ condition holds and the upper and lower
Hamiltonians H* (¢, x,p) are quadratic in p but may be neither convex nor concave. Section 3 is devoted to a
study of upper and lower Hamiltonians. The uniqueness of viscosity solutions to a class of HJ equations will
be proved in Section 4. In Section 5, we will show that under certain conditions, the upper and lower value
functions are well-defined and continuous. Finally, in Section 6, we show that the assumed coercivity conditions
ensuring the upper and lower value functions to be well-defined are sharp in some sense.

2. AN AFFINE-QUADRATIC TWO-PERSON DIFFERENTIAL GAME

To better understand two-person zero-sum differential games with unbounded controls, in this section, we
look at a nontrivial special case which is a main motivation of this paper. Consider the following state equation:

{ 9(s) = A(s,y(s)) + Bi(s,y(s))ui(s) + Ba(s,y(s))ua(s),  se€lt,T],
y(t) =z,

for some suitable matrix valued functions A(-,-), B1(-, ), and Ba(-,-). The state y(-) takes values in R" and the
control u;(-) takes values in U; = R™ (i = 1,2). The performance functional is given by

(2.1)

J(t €, u1 / % <R1(8, y(s))ul(s)’ ul(s) >

+(5(s,9(s))u ()uz(S))—%<Rz(8,y(8))uz(8),u2(8)>
+(01(5,5(5)), ur(s) ) + (02(s, y(s)), ua(s) )] ds + G(y(T)), (2.2)

for some scalar functions Q(-,-) and G(-), some vector valued functions 6;(-,-) and 62(-,-), and some matrix
valued functions Ry (-,-), Ra(:,+), and S(-,-). Note that the right hand side of the state equation is affine in the
controls uq () and ua(+), and the integrand in the performance functional is up to quadratic in uq () and wua(+).
Therefore, we refer to such a problem as an affine-quadratic (AQ, for short) two-person zero-sum differential
game. We also note that due to the presence of the term (S(s,y(s))ui(s),uz(s)), controls u;i(-) and wus(-)
cannot be completely separated. Let us now introduce the following basic hypotheses concerning the above AQ
two-person zero-sum differential game.
(AQ1) The maps

A0, T]x R" - R", B;:[0,T]xR" —-R"™, By:[0,T] x R" — R"*™,

are continuous.
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(AQ2) The maps

Q:[0,T]xR"—=R, G:R"—=R, R;:[0,T]xR"—S8", Ry:[0,T] xR" — 8§™=,
S0, T x R — R™*™ 0, :(0,T] x R" - R™, 65:[0,7] x R" — R™
are continuous (where 8™ stands for the set of all (m x m) symmetric matrices), and Ry (¢, z) and Ra(t,x) are

positive definite for all (¢,z) € [0,7] x R".
With the above hypotheses, we let

1
]H(ta Z,p,u, u?) = <pa A(t, 1') + Bl (t, 1’)%1 + BQ(t, 1’)162 > +Q(t, 1') + 5 <R1 (t, ZL’)’LLl, Uy >

+ (S(t,z)ur,us ) —= ( Ro(t, x)uo,us ) + {O1(t,x),ur ) + (O2(t, ), uz ) . (2.3)

N | —

Our result concerning the above-defined function is the following proposition.

Ri(t,x) S(t,x)T

Proposition 2.1. Let (AQ1)-(AQ2) hold. Then the matriz S(t,7) —Ra(t.x) is invertible, and

H(t,l‘,p, ul,ug) = % <R (t,x)(ul — ﬂl),ul — ﬂ1>+ (S(t,ac)(ul — 121),112 — ’ljz>

<R2(t .T)(UQ — 122), Uy — U2 > —|—Q0(t, .T,p), (24)
U1 o Ri(t,x) S(t,x)T Bi(t,x)Tp+0:(t,x) (25)
uy)  \ S(t,x) —Rolt,z)™') \Ba(t,2)Tp+ba(t,2)) '

QO(t’wap) = Q(t,l’) + <p,A(t,x)>
B % (Bl(t,x)Tp n 91(t,x)>T (Rl(t,x) S(t,z)T ) ! (Bl(t,x)Tp + 91(t,x)> | o0

B2(ta x)Tp + 02(t’ 1') S(ta x) _RQ(t’ 1') B2(ta x)Tp + 02(t’ 1')

Further, (41, us2) given by (2.5) is the unique saddle point of (u1,us) — H(t, x, p, u1, uz), namely,

where

and

]H(tvl'vpaﬂlal@) < ]I'I(t,.’ﬂ,p,ﬂl,ﬂg) < ]H(tvl'vpaulaﬂZ)a V(ul,u2) € Ul X U23 (27)
and consequently, the Isaacs’ condition is satisfied:

H*(t,z,p) = inf sup H(t,z,p,u1,uz) = sup inf H(t,x,p,ui,uz)
w1 €UL yyeUs ua €U, W1€UL

= H (t,2,p) = Qo(t,z,p), V(t,z,p) € [0,T] x R" x R". (2.8)
Proof. For simplicity of notation, let us suppress (¢, z) below. We may write

1 1
H(p, u1,u2) = 3 (Ri(u1 — @1),uy — @y )+ (S(ur — @), us — @2>—§ (Ra(ug — a2), ug — 2 ) +Qo,

with %, %o, and Q¢ undetermined. Then
1
(p, A)+Q + (B p+61,u1 )+ (BIp+0a,us (Riup,uy) + <SU1,U2>—§ (Roug,uz)

1
I+3
1
5<R2U2,U2> (Ryti1,ur)

1
=H(p,u1,uz) = B (Riug,ur) + (Sui,uz) —

1
— (ST, ur ) — (Sty,u2) + ( Rotiz, uz ) + <R >+<5ﬂ1,ﬂ2>—§<R2ﬂ2,ﬂ2>+Qo-
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Hence, we must have
BTp+ 6, = —Ritiy — ST, BIp + 6y = —Siuy + Raiia,
(p,A)4+Q = 5 (Ritiy, 1y ) + (St Uz ) —5 ( Raliz, Uz ) +Qo.

Consequently, from the first two equations in (2.9), we have
Ry ST\ (w1 Blfp+6:
(35 () )
Note that

O L Y ! (—1)™ det(Ry ) det(Ry + SR;1ST) # 0
€ =de = (=1)"de et(Ro + SRy .
2 0 —(Rz + SR;IST) ! ? !

Ry ST\ . . . . .
Thus, is invertible, which yields
S —Ry

i R, ST\ ' [(BTp+6,
U B S —Ry ng-l—gg .
Then from the last equality in (2.9), one has
T
1 (U1 Ry ST i
- 7A + 2 <_1>
- marsa- () (45

BTp+0,\" [Ry ST\ ' [BTp+6,
BTp+ 6, S —Ry Bfp+6,)’

(R2(ug — t2),up — 2 ) +Qo < Qo = H(p, Uy, uz)

= <p7A>+Q_

| —

proving (3.5). Now, we see that

1
]I—I(paﬂlvUQ) = _5
S <R1(u1 _al)aul —121>+Q0(t,1‘,p) :H(p,Uh’aQ),

N =

which means that (@, u2) is a saddle point of H(¢,z, p, u1, u2). Then the Isaacs condition (2.8) follows easily.
Finally, since Ry and Ry are positive definite, the saddle point must be unique. O

We see that in the current case, p — H7T(t,2,p) is quadratic, and is neither convex nor concave in general.
As a matter of fact, the Hessian HX (t,z,p) of H*(t,z,p) is given by the following:

T -1
H:I: (t ) 1 Bl(tax)T Rl (tax) S(tvx)T Bl(tax)T
r,p)=—= .
e 2\Bu(t,2)") \ S(t,2) ~Ra(t,x)) \Ba(t,z)"
which is indefinite in general.

We have seen from the above that in order the upper and lower Hamiltonians to be well-defined, the only
crucial assumption that we made is the positive definiteness of the matrix-valued maps Ri(-,-) and Ra(-,-).
Whereas, in order to study the AQ two-person zero-sum differential games, we need a little stronger hypotheses.
For example, in order the state equation to be well-posed, we need the right hand side of the state equation

is Lipschitz continuous in the state variable, for any given pair of controls, etc. We will look at the general
situation a little later.
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3. UPPER AND LOWER HAMILTONIANS

In this section, we will carefully look at the upper and lower Hamiltonians associated with general two-
person zero-sum differential games with unbounded controls. First of all, we introduce the following standing
assumptions.

(HO) For i = 1,2, the set U; C R™ is closed and
0eU;, i=1,2 (3.1)

The time horizon T' > 0 is fixed.

Note that both U; and Uy could be unbounded and may even be equal to R and IR"™?, respectively.
Condition (3.1) is for convenience. We may make a translation of the control domains and make corresponding
changes in the control systems and performance functional to achieve this.

Inspired by the AQ two-person zero-sum differential games, let us now introduce the following assumptions
for the involved functions f and g in the state equation (1.1) and the performance functional (1.2). We denote

(x) = VTF 2P,

(H1) Map f:[0,T] x R" x Uy x Uy — R" is continuous and there are constants oq,02 > 0 such that

|t @, ug,u2)| < L((@) +|ur]™ + |ug|7?), V(t, z,ur,uz) € [0,7] x R" x Uy X Us. (3.2)

(H2) Map ¢: [0,7] x R" x U; x Uz — R is continuous and there exist constants L, ¢, p1,p2 > 0 and p > 1
such that

cluq | —L((x)“ + \u2|”2) < gtz ur,ug) < L((x)“ + \ul\pl) — clug|?? V(t, x,u1,uz) € [0, T] x R" x Uy X Us.

(3.3)
Further, we introduce the following compatibility condition which will be crucial below.
(H3) The constants o1, 02, p1, p2 in (H1)—(H2) satisty the following:
i < pi, 1=1,2. (3.4)

It is not hard to see that the above (H1)-(H3) includes the AQ two-person zero-sum differential game
described in the previous section as a special case. Now, we let

H(t, z,p,u1,u2) = (p, f(t,x,u1,u2)) +g(t, z,u1, uz), (t,x,u1,u2) € [0, T] x R" x Uy x Us. (3.5)

Then the upper and lower Hamiltonians are defined as follows:

H*(t,z,p) = infy, ey, sup H(t, z, p,ui, us)
o e T el U (ta,p) €10,T] x R x R, (3.6)
H (t7 1'7]7) = Sup1/,2€U2 1nfu1€U1 H(ta Zr,p,ui, UQ),
provided the involved infimum and supremum exist. Note that the upper and lower Hamiltonians are nothing
to do with the function h(-) (appears as the terminal cost/payoff in (1.2)). The main result of this section is the
following.
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Proposition 3.1. Under (H1)-(H3), the upper and lower Hamitonians H*(-,-,-) are well-defined and contin-
uous. Moreover, there are constants C > 0, \j,v; >0, (i =1,2,...,k) such that

—L(z) "L () |p|-Clp|7=7 < H*(t,2,p) < L{z)"+L{z)[p|+Clp|7=~"2,¥(t, z,p) € [0, THR"xR", (3.7)

and

kS

|H*=(t,2,p) — H*(t,2,q)] Z

) “p—q|,Y(t,z) € [0,T] x R", p,q € R". (3.8)

To prove the above, we will use the followmg lemma.

Lemma 3.2. Let 0 < o < p and ¢, N > 0. Let

O(r) = Nr? —cr?, r € [0, 00).
Then
B 07 NP\ r=7
ré?fi)g(r) = rrg[%?;]e(r) =0(r)=(p—o0) < e ) , (3.9)
with .
oN\ 7

r — e . .].

- o
Proof. From

0(0) =0, lim 6(r) = —oo,
we see that the maximum of (-) on [0, 00) is achieved at some point 7 € (0, 00). Set
0=0(r)=Nor® ! —cpr\™1.

Then

which implies that the maximum is achieved at 7 given by (3.10), and

max 0(r) = max 0(r) = 0(F) = N (&)f’—% . (&)#

r€[0,00) re(0,7] cp

o _pP o
(i)” _c<£>” e G A
cp cp cr7 pr—e

This proves our conclusion. O

Proof of Proposition 3.1. Let us look at H*(t,z,p) carefully (H ™ (t,z,p) can be treated similarly). First, by

our assumption, we have

H(t, 2, p, ur, uz) < Iplf(t w1, u2)| + gt 2, ur, uz) < L((@) +Hua|™ + u2|7)pl + L((2) " + [ua|**) = clua|
— L({z) " + (@) pl + ol [ur [ + fea]) + Lol [ual®® — clual?, (3.11)

and

[f (t x,uy, ug)|+g(t, z, ur, uz)
L((z) + |U1|"1 + Jug|”?) Ip| — L({x) " + |ua]??) + clu|*?
—L((z @) |pl+Ip| [u2] 72 +[uz|??) — Lp| [ua|"* +c|ua [ (3.12)

H(t,l’,p, Uy, UQ) Z ‘
> —
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Noting o1 < p1, from (3.11), we see that for any fixed (¢,z,p,u;) € [0,7] x R" x R" x Uy, the map ug —
H(t, z,p,u1,us) is coercive from above. Consequently, since Us is closed, for any given (¢,x,p,u1) € [0,7T] %
R"™ x R" x Uy, there exists a tg = u2(t, x, p,u1) € Us such that

H+(t,x,p,U1) = Ssup H(t,l’,p, Ul,’UQ) - sup H(t,l’,p, u15u2) - H(taxap7u17a2)
u2 €U u2 €Uz, |uz|<|uz]

< L((@) " + (@) [pl + [pl [u| ™ + ua|*) + Lip| |52] > — cltia] >

, . o2 L\p| P2\ pa2—o2
<L((@) ") [pl+Ip| [ua | +ua ) + (p2 — 02) (2,)’(’7@)
2

P2
< L((@) "+ (@) [pl =+ [pl [ + ua|*) + Kalp| 7=z, (3.13)

where .

002 [P\ e

o=t ()™

Here, we have used Lemma 3.2. On the other hand, from (3.12), for any (¢, z,p,u1) € [0,T7] x R" x R" x Uy,
we have

H+(tvl'7pa ’LL1) = Sup H(t?xapauhUQ) > ]H:(tvl'vpa u1,0) > _L(<x>H + <$> ‘p|) - L‘p| "LL1|O-1 +C|u1|p1' (314)
uz€U>

By Young’s inequality, we have

— Pi
P Kifple, =12,

. c
Lip| [ui|”" < §|Uz
for some absolute constants K; (depending on L, ¢, p;, o; only), which leads to

5 Kilpleoe,  i=1,2. (3.15)

Pi S c|ui

P — Lp| |u;

c
ol
Hence, combining the first inequality in (3.13) and (3.14), we obtain
c -
Sl < clml” = Lip|[aa]°* + Kalpl 772
— P2
SL({z) "+ () |pl+|p| [ur]™ +|ua|?) —=HT(t, 2, u1) + Ka|p| r2=72
_ P2 ~
<2L((2) " + (2) Ipl + [pl lwa]™) + (L = o) [w|™* + Ka|p| =72 = Ky(|, |pl, [ual). (3.16)

The above implies that for any compact set G C [0,7] x R" x R" x Uy, there exists a compact set sz(G) C Us,
depending on G, such that

HJr(t,.’E,p,ul) = SlAlp ]I—I(tvxvpa U1,’LL2), V(tvxvpa ul) €G.
uz€U2(G)

Hence, H*(-,,-,-) is continuous. Next, from (3.14), noting o1 < p1, we have that for any fixed (¢,z,p) €
[0,7] x R" x R", the map u; — H*'(t,z,p,u1) is coercive from below. Therefore, using the continuity of
H*(-, -+, ), one can find a @ = 4y (t,z,p) such that (note (3.15))

H"(t,z,p) = inf sup H(t,z,p,us,uz) = inf HT(t,z,p,us) =H'(t,z,p,u1)

u1€UL 4y cUs u1 €U
> inf H(t.o,p.u,0) > inf { = L((2) " + () |pl) = Llp| ua|” +clur [}

> —L({z)" + () |pl) — Kalp|77. (3.17)
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This means that H (¢, z,p) is well-defined for all (¢,z,p) € [0,7] x R" x R", and it is locally bounded from
below. Also, from (3.13), we obtain

H"(t,z,p) = inf sup H(t,z,p,ui,us) < sup H(t, z,p,0,uz) = H' (¢, z,p,0)
u1 €Uy us €U us €U

P2
< L({z)"+ (z)|p|) + Kalp|r2—7=. (3.18)
This proves (3.7) for H* (-, ).
Next, we want to get the local Lipschitz continuity of the map p — H™(t,z,p). To this end, we first let
C — Pl P2 n
Ui(|z|, [p|) = {Ul clU; | §\U1|p1 < 2L(<33>“ +(x) |pD + Ki|p|Pi—o1 4+ Ko|p|72==2 + 1}7 Vz,p € R",
which, for any given z,p € R", is a compact set. Clearly, for any uy € Uy \ U1(|z], |p|), one has (note (3.15))
c A s _p2
C‘U1|p1 — L\p| ‘U1|01 Z §|U1|p1 — Kl‘p|01—1”1 > 2L(<JJ>H + <.T> \p|) —|—K2|p‘/’2—202 + 1.
Thus, for such a uy, by (3.14) and (3.18),
HE(t 2, pun) > —L({@) " + (@) [pl) — Lip| [us|™ + clua |

> L((2) "+ (o) lpl) + Kalpl 5% +12 HH (La,p) + 1= inf o (tz,p,u) + 1. (3.19)
ul 1

Hence,

inf HT(t, z,p,u inf HY(t, z, p,ur). 3.20
u1 €U ( p 1) w1 €U (|z],]|p]) ( 4 1) ( )

Now, for any u; € Ui(|z], |p|), by (3.16), we have
lus|> < Ko (|al, [pl, [ur]) < Koalal, lp), (3:21)

for some Ks(|z|, |p|). Hence, if we let

c ~
Ua(jal.Ipl) = {u2 € Uz |5 | wal < Ra(jal,Ip]) } .
which is a compact set (for any given z,p € R"™), then for any (¢,z,p) € [0,7] x R" x R",

H(t,z,p) = inf sup H(z,p, w1, us). (3.22)
w1 €UL([2],1p]) uycUs (|2),|p])

This implies that H (-, -, -) is continuous. Next, we look at some estimates. By definition, for any uy € Uy (|z|, |p|),
we have

P11 P2
furler < C{ (@) 7+ () pl + p| 77 + p|772 |

Therefore,

o

o S P2 ) py
a7 < { () + () pl + [pl 7+ [p|7 )

aim o1 o1 21 71p2
< C{ (z) 71 4 (x) o1 |p|er + |p|Pi=o1 + |p|ritez=) }

Also, by (3.16), one has

|ag]?” < C ) |pl + [pl |7 + [und |t + [p| 72772 "2}

2)# -+ (@) ol + Ipl 777 + |p|mm )

a1k 21 21 9 T1P2
{ |p‘ —+ |:< > 011 + <x> ﬂi ‘p| ﬂi + ‘p|/)1—101 —+ |p‘/’1(/’2—02)j| |p‘
+(

o o o1+ o
2} |pl + (z) 7t |p| + (2) 7t |p| 7 + [p|Fioe + |p| 7o + \p|m<p§"_%,2>+1}_ (3.23)
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Hence,

"'2

im o1, o1t
jaalo < O () (o) ol + () T Jpl + () T p| 55 - [pl 27T o+ [pl 72753 o [pf s+ )

o2(o1+p1)

<o{(a) B + (@) Fpl + (o) T IR 4 (2) HE )

+‘ (ﬂ20_1”) 72 7192 4 %2
p|0201 1 -|-‘p|02 2—'—‘p|/’1(02 2) Tp2 %,

Consequently, for any (¢,z) € [0,7] x R", p,q € R" and u; € U;(|z|,|p| V |q]) (¢ = 1,2), we have (without loss
of generality, let |¢| < [p])
|H(t,l’,p, Ul,UQ) - H(t7x7Qa ulaUZ)‘ S ‘p - q‘ |f(taxaulau2)‘ S L( <$> +|U1‘01 + ‘u2‘02)‘p - q‘
<C{{@)+{a) W + () B+ (2) |+ () B pl P

192K

+ ‘p| p1(:1<71 + |p‘ p2i202 + ‘p| pl(cr:lz,izaz) —|—‘p|92(221:;1101) -|-<x> p1p2 ‘p| pz

o2(01+p1)

—|—<1’>%‘p| p1P2 —|—|p‘01(/’2 02)Jr }‘p q‘

12 »
)" Ip

ECZ<.Z‘>>\"’(

i=1

—ql. (3.24)

Due to the fact that the infimum and supremum in (3.22) can be taken on compact sets, we can prove the
continuity of (¢,z) — HY(t,z,p). O

A similar result as above can be proved under some much weaker conditions. In fact, we can relax (H1)—(H2)
to the following.

(H1)* Map f: [0,T]xR" xU; x Uz — IR" is continuous and there are constants o1, 02 > 0 and po, g1, 2 € R
such that

|f(t 2, ur,ug)| S L((z) ™0 4+ (2) " |ug |7 + () " |ug|™?), V(t,z,u1,uz) € [0,T] x R" x Uy x Us.  (3.25)

(H2)* Map g : [0,7] x R" x Uy x Uy — R is continuous and there exist constants L, ¢, p1,p2 > 0 and
fio, fi1, fi2 € R such that

c(x) M u|P = L((z) 0 + (2) "2[us|?) < g(t, x,ur,uz) < L({@) " 4 (2) M ua|*) — e (x) "2 |us|?,
V(t, z,ur,us) € [0,T] x R" x Uy x Uy, (3.26)

The following result can be proved in the same way as Proposition 3.1.

Proposition 3.3 (*). Under (H1)*~(H2)* and (H3), the upper and lower Hamitonians H*(-,-,-) are well-
defined and continuous. Moreover, there are constants C >0, v; >0, and \; € R (i = 1,2,...,k) such that

H1P1—H10]1

—L<x>ﬁo—L<x>“°‘p|—C<x> p1—01 |p‘ﬁ1p*101 SHi(t7x7p)

H2p2 —[202

< L{x) 4 L{w)rlp|+C (z) e [p|mea,
V(t,z,p) €0,T] x R" x R",  (3.27)

and

S

HEtn) ~ ) SO (o

) ‘Ip —ql, Y(t,z) € 10,T] x R", p,q € R". (3.28)




HJ EQUATIONS WITH UNBOUNDED CONTROLS 415

We point out that different from Proposition 3.1, there are more terms in (3.28) than in (3.8), and the
expressions of \; and v; are a little more complicated. In fact, instead of (3.24) we can prove the following: (for
notational simplicity, we let |¢| < |pl|))

[H(t, 2, p,u1,u2) — Ht, 2, q,u1,u2)| < |p— gl |f(t, 2, u1,u2)| < L({2)* + () " ua|™ + (@) **|uz|7) Ip — gl
< Of ()04 ()oY g () R () SR
+ (o B T o () R e
) g ) T (g e
+<x>u2+7“2(“1 BN e T
B R N
+ (o SRS e
[ () e A s 5
+ ()P R R |t e
(e RS fp - g
16
=0 () (vl v Ial)”
i=1

Note that (3.24) is a special case of the above with:
po =1, fio =p, p1 = p2 =1 = piz = 0.
4. UNIQUENESS OF VISCOSITY SOLUTION

Consider the following HJ inequalities:

Vi(t,x) + H(t,z, Vi (t,z)) > 0, (t,z) €10,7] x R", (4.1)

V(T,z) < h(x), x € R, '
and

Vi(t,x) + H(t,z, Vi (t,z)) <0, (t,z) €10,7] x R", (42)

V(T,z) > h(x), x € R, '
as well as the following HJ equation:

Vit ) + H(t,x, Vo(t,2)) =0, (t,z) € [0,T] x R, (43)

V(T,z) = h(x), x e R™ '

We recall the following definition.
Definition 4.1.

(i) A continuous function V (-, -) is called a viscosity sub-solution of (4.1) if

V(T,z) < h(x), Vo € R,
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and for any continuous differentiable function ¢(-,-), if (to,x0) € [0,7) x R™ is a local maximum of
(t,x) — V(t,z) — p(t,z), then

‘pt(tO, .’E()) + H(to, o, @z(to, 1’0)) = 0.
(ii) A continuous function V (-, ) is called a viscosity super-solution of (4.2) if
V(T,z) > h(x), Vo e R,

and for any continuous differentiable function ¢(-,-), if (to,x0) € [0,7) x R"™ is a local minimum of
(t,x) — V(t,x) — ¢(t, ), then

<Pt(thxO) + H(than ‘pz(tvao)) <0.

(iii) A continuous function V(-,-) is called a wiscosity solution of (4.3) if it is a viscosity sub-solution of (4.1)
and a viscosity super-solution of (4.2).

The following lemma is taken from [6].

Lemma 4.2. Suppose H : [0,T] x R" x R" — R is continuous. Let V(-,-) and YA/(7 -) be a wviscosity sub- and
super-solutions of (4.1) and (4.2), respectively. Then

W(t,z,y)=V(t,z)—V(ty), (ta,y) €0,T]xR* x R
18 a viscosity sub-solution of the following:

Wi(t,z,y) + H(t,x, Wi (t,z,y)) — H(t,y, —Wa(t,z,y)) >0, (t,z,y) € [0,T] x R" x R",
W(T,z,y) <0, (z,y) e R" x R".

Now for HJ equation (4.3), we assume the following.
(HJ) The maps H : [0,7] x R" x R™ — R and h : R™ — R are continuous and there are constants Ky > 0,
w>1,and A\, >0 (0 =1,2,... k) with

and a continuous function w : [0,00)% — [0, 00) with property w(r, s,0) = 0, such that

|H (t,z,p) — H(t,y,p)| < w(lz] +[yl, \pl lz—yl), vtelo,T], z,y,p e R", (4.5)
|H(t,2,p) = H(t,,q)] < Ko Y0y (@) ( )" Wt € [0,T], ,p,q € R", '

and
[h(@) = hy)| < Ko((z) v (y))" |z —yl,  VayeR" (4.6)

Our main result of this section is the following.

Theorem 4.3. Let (HJ) hold. Suppose V (-,-) and XA/(, -) are the viscosity sub- and super-solution of (4.1) and
(4.2), respectively. Moreover, let

V(t,2) = V(t,y)|, [V (t2) = Vi) < K(z) Vv (y))" e —yl, Vte[0,T], 2,y € R", (4.7)

for some K > 0. Then
Vit,x) < V(t x), V(t,z) € [0,T] x R". (4.8)

A similar result as above was proved in [7], with most technical details omitted. Our conditions are a little
different from those assumed in [7]. For readers’ convenience, we provide a detailed proof here.
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Proof. Suppose (t,z) € [0,T) x R" such that

Let Cp, 5 > 0 be undetermined. Define

Q=Q(Co,7) = {(t,2) € [0, T x R" | () < () colt=0+7Y,

and
G = G(Co,B) = {(ta,y) € [0.T] x R" x R" | (t,2), (t.) € Q}.
Now, for § > 0 small, define

1

1/J(t,x) = wco,é(t’w) = {%eco(tt)] ’ = e% [IOg g;;JrC'o(fft)].
Then _
P(t,z) =1, W(T,z) = [%eCo(tT)] ’ 7
and ot -
o(t, z(t, x
wt(t,l‘):—f, ’(/)w(t,x): (5<x>2 .

For any (¢,7) € Q, we have
(z) < <E>eﬁ+Co(t*5) < <:E>eﬁ+Co(T*E).

Thus, Q is bounded and G is compact. We introduce

5 |z —yl? T
gp(tvl'vy) = V(t,]}) - V(tvy) - T - U¢(tal‘) - T _ T (taxay) S G7
where € > 0 small and - o
oo VED) - V()
3
Clearly, R
U(t,z,z)=V({t,z) - V({#t,z)—0—0>30—20=0>0. (4.9)

Since ¥(-,-, ) is continuous on the compact set G, we may let (o, 2o, %0) € G be a maximum of ¥(-, -, -) over G.
By the optimality of (¢g, o, yo), we have

U(T—fo)

V(to, z0) = V (to, 20) — 0 (o, x0) — ——

- w(t03x071'0) S ¢(t0>$0»y0)
2
~ o —
=V (to, o) — V(to,y0) — lzo —wol”
which implies
\1‘0 - yo|2 - > p—1
fSV(to,l‘o)—V(to,yO)SK(<$0>V<ZJO>) lzo — yol-

Thus,
u—1
|zo — yo| < K(<$0>V<y0>)l €.

Now, if tg = T, then
(o), {yo) < (z)e T,
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Hence,
(T, 20,0) = hzo) — (o) — Z2= 208 o1 0) < Ko ((0) v (30))* o — o
< KoK ((z0) V(o) )z(ﬂil)&? < KoK (&) 2D 2u=DIB+Co(T=D],

Thus, for € > 0 small enough, the following holds:
U(T,xo,y0) <o <W(t,z
which means that ¢ty € [0,T"). Next, we note that for (¢, x)

logﬂ+00(f—t):5, and 0<t<T,

(z)

;&) < W(to, o, Yo),
€ (6Q) N [(0,T) x R"], one has

which implies
Y(t,x) = et — 00, § — 0, uniformly in (t,2) € (0Q) N [(0,T) x R"]. (4.10)
This implies that for 6 > 0 small (only depending on ),
(to, zo,y0) € GU[{0} x R™ x R"].

By Lemma 4.2, we have
2(xo — o) 2(yo — x0)
Ogo—wt(thxO) T—_+H thanf—’_o—wm(thxO) - H t07y07_7

e
2(350 - yo)
€

2(3505— yo)>

g
= U¢t(t0,l‘0) - T——t_ + H (than + U¢m(t0ax0)) - H (t07$0a

2(xo — 2(xo —
+H(t07$0,7( 05 yo)> —H<t0,9077( 05 yo))

k

o 2|zo— v
<obnlto o)~ 77 + Ko Y o) (A ofunto, o)) ol o, z0)
i=1

2|To — Yo
w (150 + [wol, %7 |z — yo|)

k

< ~00lta,m0) = 377 + oK 3 (0} (26 () v (10))*

i—1
2|zo — Yo
w <330 + lyol, %» |zo — ol | -

Note that (to,z0,v0) = (to.c; To.e,Y0.c) € G(Co,B) (a fixed compact set). Let € — 0 along a suitable sequence,
we have |z — yo,.| — 0. For notational simplicity, we denote (fo., %0, Y0,e) — (to, %o, %0). In the above, by
canceling o, and then send ¢ — 0 and o — 0, one obtains (canceling o)

1 01/)(150,1’0) v ’l/}(t(),x())
+ d(xo) ) ] 6 (o)

1 vi
< Coy( t07330 KOZ 20) M (2K (o)1) + ¥(to, o)

T—t 3 (20}
_{Co — Ko ;(QK)Vq <1‘0 > >\1+(/¢—1)u1_1}w
k
_{OO — Ko ;(QK)W}M =—(Co - [?O)M.

Thus, by taking Cy > f(o, we obtain a contradiction, proving our conclusion. O
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We now make some comments on the uniqueness/non-uniqueness of viscosity solutions. First of all, let us
look at the following example which is adopted from [4, 5],

Example 4.4. It is known that there are two different bounded strictly increasing continuous differentiable

functions f; : R — R (i = 1,2) such that

b(x) = fi(fi ') = f5(f3 ' (=), zeR
Further, if we define
X'(t;xo) = filt + [ H(w0)), tER

then X1(-;2) and X?(-;z0) are two different solutions to the following initial value problem:

%X(t;xo) = b(X(t;xo)), t e ]R,
X (0;20) = xo.
By defining
Vit,x) = h(XYT — t;x)), (t,z) € 10,T] x R,

we obtain two different viscosity solutions to the following HJ equation:

{ Vi(t, ) +b(2)Vi(t,2) =0,  (t,z) €[0,T] x R, (4.11)

V(T,z) = h(x), z € R.

Therefore, the viscosity solution to the above HJ equation is not unique in the set of continuous functions.
However, we note that in the current case,

H(t,z,p) = b(x)p, (t,x,p) € [0,T] x R x R.
Thus,
|H(t,ﬂf,p) - H(taxaQN S C|p - Q|a Vt S [OaT}v x,p,q c Rv

which means that (4.5) holds with &k = 1, Ay = 11 = 0. Hence, for any p > 1, as long as (4.6) holds, viscosity
solution to (4.11) is unique in the class of continuous functions satisfying (4.7).
Example 4.5. Consider

—2? — azVy(x) + Vi (z)|* = 0, r € R,
with @ > 0. Thus,

H(l’,p) = _l‘z_a’xp_'_va (l‘,p) EIR’2'
Then let

V(x) = \z?, z € R.
We should have
0=—1-2a\+ 4\

Hence,

20+ V402 +16  a+va®+4
8 B 4
Therefore, there are two solutions to the HJ equation:

atvar+4 ,
—=x
4 )

A:

VE(z) = z e R.
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Both of these solutions are analytic. Note that

|H (z,p) — H(z,q)| < (alz] +2(]p|VIdl)) lp—al,  2.p.qeR,
and

VE(z) = VE@Y)| <

e VA () v ()l — ol

Thus, in our terminology, u = 2, k = 2 with
)\1:0, 1/1:1, )\2:0, 1/2:1.

Consequently,
Ai+ (p—1y; =1, i=1,2.

This means that although (4.4) is satisfied, the corresponding HJ equation has more than one viscosity solution.
This example shows that stationary problems are different from evolution problems, as far as the uniqueness of
viscosity solution is concerned.

5. UPPER AND LOWER VALUE FUNCTIONS

In this section, we are going to define the upper and lower value functions via the so-called Elliott—Kalton
strategies. Some basic properties of upper and lower value functions will be established carefully.

5.1. State trajectories and Elliott—Kalton strategies

Let us introduce the following hypotheses which are strengthened versions of (H1)-(H3).
(H1) Map f:[0,7] x R" x Uy x Uy — R" satisfies (H1). Moreover, for some o, i1, iz,

f(t @ ur,uz) = f(t g un,uz)] < [(Co)v{y) )™ + () vy )™ ™+ ((2) v () Juzl 2] |2 =yl
V(t,ul,ug) S [O,T} x Up x Us, x,y € Rn, (51)

and
(f(t, @, ur,ua) — f(t,y, ur,ua),x —y) < Llx —y|2,V(t, ur,us) € [0,T] x Uy x Us, x,y € R™. (5.2)

We note that condition (5.1) implies the local Lipschitz continuity of the map x +— f(¢,z,u1,us), with the
Lipschtiz constant possibly depending on |uy|”* and |uz|?2. This is the case if we are considering AQ two-person
zero-sum differential games (see Sect. 2). On the other hand, condition (5.2) will be used to establish the local
Lipschitz continuity of the upper and lower value functions, with the Lipschitz constant being of polynomial
order of (z)V (y). It is important that the right hand side of (5.2) is independent of (u1,u2); Otherwise, the
Lipschitz constant of the upper and lower value functions will be some exponential function of (z )V (y), for
which we do not know if the uniqueness of viscosity solution to the corresponding HJI equation holds. By the
way, we point out that (5.2) does not imply the local Lipschitz continuity of the map = — f(t,x,u1,us). For
example, f(z) = z7, with z € R.

(H2) Map g : [0,T] x R" x Uy x Us — R satisfies (H2). Moreover,

p1(p—1) p2(n—1)

|g(t7$7u17u2)_g(tvyau17u2)|S |:(<l.>\/<y>)/‘_1_‘_‘u1| ! +‘u2‘ " \x—y\,
V(t,ul,ug) S [O,T} x Uy x Us, x,y € R™. (53)

Also, map h : R" — IR is continuous and

{|h<w>—h<y><L(<w>v<y>)“%:—y, Va,y € R",
|h(0)] < L.
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Further, the compatibility hypothesis (H3) is now replaced by the following:
(H3)' The constants oy, 02, p1, p2, ¢ appear in (H1)'—(H2)’ satisfy the following:

ot < piy 1=1,2. (5.5)
Let us first present the following Gronwall type inequality.

Lemma 5.1. Let 0,a,5: [t,T] — Ry and 6y > 0 satisfy

0(s)? < 62 + /ts [04(7“)9(7“)2 + ﬁ(r)@(r)]dr, s€t,T). (5.6)

Then

T

1 S
0(s) < ez e «Mdrg 4 5effa<f>d7 / B(rydr,  se[t,T). (5.7)
t
Proof. First, by the usual Gronwall’s inequality, we have

O(s)?> < el aMdrg2 / el oM 3o (r)dr < el @(MdTe2 4 ol a(r)dr / B(r)0(r)dr = O(s).
t

t

Then q
1 1 1 1T 1 7
el i -3 i -3 ft a(r)dr < = ft a(r)dr
= \/B(S) = 56(5)H6(s) = 56(s) el “B()0(s) < Sl 2i7p()
Consequently,
LT 1 r s
(s) < V/BTs) < o (g 4 Ll ot / Brydr,  sc ],
t
proving our conclusion. O

We now prove the following result concerning the state trajectories.

Proposition 5.2. Let (H1)' hold. Then, for any (t,x) € [0,T) x R™, (u1(-), uz(-)) € U7 [t, T| x U352 [t, T], state
equation (1.1) admits a unique solution y(-) =y(-;t, z,u1(:),u2(:)) = yr..(-). Moreover, there exists a constant
Coy > 0 only depends on L, T,t such that

(nale)) < Co{ @)+ [ () + i)}, se T, 6.8
t

)~ 2l < Co )= 0+ [ ()" + fa(™)arf, s €71 (59)

t

and fO’I“ (Ea f) € [OvT] x R" with t € [taTL and yf,:i(') = y(‘;afaul(.),uﬁ('))

9ee(9) ~ v (3)] < Co {Ja =2+ ()= )+ [ (D7 + fus(r)f2)dr}, se 6T (5.10)
Proof. First, under (H1)', for any (¢,2) € [0,T) x R", and any (u1(:),u2(:)) € U7 [t, T] x U3*[t, T, the map
y— f(s,y,u1(s),ua(s)) is locally Lipschitz continuous. Thus, state equation (1.1) admits a unique local solution

y() =y(st, @, ur (), ua(+)). Next, by (5.2), we have

<fE,f(t,£L’,U1,U2)> = <£L’,f(t,$,U1,’LL2) - f(tao,ulaHQ) > + <:E,f(t,0,u1,u2)>
< Llw? + Lz (L + [u1]7 + [u2|?),  Y(t,z,u1,u2) € [0,T] x R" x Uy x Us.



422 H. QIU AND J. YONG

Thus,

(y(s)) ?+2

2 = (x) /ts<y(7"),f(r,y(r),ul(r)M(r))>d7”
< <x>2+2[L(<y<r>>2+<y<r>> (14 [ur (D] + Jus(r)]72)) dr.

Then, it follows from Lemma 5.1 that

(y(s)) < T (z) 4L TD /t (1 Jur ()7 + uz(r)[2)dr.

This implies that the solution y(-) of the state equation (1.1) globally exists on [t,T] and (5.8) holds. Also, we
have

ly(s) —z|* = 2/: (y(r) =z, fry(r),ua(r),uz(r)) ) dr
<2 [ (1lote) = af + () = . S0 () 2))
< 2L /ts (ly(r) — 2 + [y(r) — 2| ((2) +ui (7)|" + Juz(r)|7?)) dr.

Thus, by Lemma 5.2 again, we obtain (5.9).
Now, for any (t,z),(t,z) € [0,7] x R", with 0 < ¢t <t < T, denote y; () = y(-;t, 2, ui(-),u2(-)), and
yiz() = y( 16, Z,ur(-), u2(-)). Then for s € [¢,T], we have

[Yt.2 () = yez(5)|* = \yt,x(f)—fcl2+2/ (Y2 () =iz (r), f (1, yee (r), ur (r), ua (r) = f(r, vz (r), ua (r), uz(r)) ) dr

S
t
S
< 101e® — 2 2L [ 1) = o) P
T
Thus, it follows from the Gronwall’s inequality that

[Ye.a(s) = yea(9)] < P |yo (D) — 2 < "7 (o — 2|+ |ysa (F) — )

< Ls=D) {|az — 7| + LT ({az)(f— t) + /ttu1(7")|‘”dr + /ttuz(r)|"2dr> }

sc{x—x|+<x><t‘—t>+/t (Jer ()] +|u2<r>”2>dr}.

This completes the proof. O

From the above proposition, together with (H2)’, we see that for any u;(-) € U [t,T] (which is smaller
than U [t,T]), i = 1,2, the performance functional J (¢, z;u1(-), ua(-)) is well-defined. Let us now introduce the
following definition which is a modification of the notion introduced in [11].

Definition 5.3. A map «a; : Us[t,T] — UF[t,T] is called an Elliott-Kalton (E-K, for short) strategy for
Player 1 if it is non-anticipating, namely, for any us(+), u2(-) € Us[t, T], and any # € [t,T],
crluz()(s) = n[m()](s), e s € 1],

provided
uy(s) = uy(s), a.e. s € [t,1].
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The set of all E-K strategies for Player 1 is denoted by A;[t, T]. An E-K strategy oo : Us[t,T] — UP[t, T)] for
Player 2 can be defined similarly. The set of all E-K strategies for Player 2 is denoted by Asx[t, T7].

Note that as far as the state equation is concerned, one could define an E-K strategy a; for Player I as a
map ay : Uy [t,T] — U [t, T]. Whereas, as far as the performance functional is concerned, one might have to
restrictively define oy : US?[t, T] — UL [t, T]. We note that the numbers oy, 02, p1, p2 appeared in (H1)'—(H2)’
might not be the “optimal” ones, in some sense (for example, o1 and o2 might be larger than necessary, and
p1 and py could be smaller than they should be, and so on). Our above definition is somehow “universal”. The
domain UL[t,T] of o is large enough to cover possible us(+) in some larger space than U3?*[t, T], and the co-
domain U5°[t, T] is large enough so that the integrability of aq[us(-)] is ensured and the supremum will remain
the same due to the density of U°[t, T in U [t, T]. In what follows, we simply denote

Uilt, T) =US[LT],  i=1,2.
Recall that 0 € U; (i = 1,2). For later convenience, we hereafter let u{(-) € U[t,T] and u3(:) € Us[t, T] be
defined by
ul(s) =0, ud(s) =0, Vs e [t, T,
and let of € A;[t,T] be the E-K strategy that
Afua()](s) =0, Vs € [t,T], ua() €Up[t,T).

We call such an of the zero E-K strategy for Player 1. Similarly, we define zero E-K strategy o € Ax[t, T for

Player 2.
Now, we define
VE(t,x) = sup oot J(t; w50 (), azfur (1)),
QzeAQ[t,T] uy(-)EUL|E, N
V-(t,z) = inf sup  J(t, ;00 [ua ()], ua(-)). (t,z) €[0,T] x R", (5.11)

a1 €A [taT] u2(~)€Z/I2 [t,T]

which are called upper and lower value functions of our two-person zero-sum differential game.

5.2. Upper and lower value functions, and principle of optimality

We now introduce the following notations: for r > 0,

T
Z/{Z[t,T,T] = {uz € MZ[th} ‘ / |UZ(S) Pids < T} P 1= 172a
t

and
At T:r) = {oq UL T) > W[ Tsr) | g € Al[t,T]},

Aot T:v) = {a2 ULET) — Uslt, T | o € Ag[t,T}}.

We point out that although the upper and lower value functions are formally defined in (5.11), there seems to
be no guarantee that they are well-defined. The following result states that under suitable conditions, V*(-, )
are indeed well-defined.

Theorem 5.4. Let (H1)'~(H3)" hold. Then the upper and lower value functions V=(-,-) are well-defined and
there exists a constant C' > 0 such that

VE(t, )| < C(x)H, (t,z) € [0,T] x R™. (5.12)
Moreover,
V*¥(t,z) = sup inf J(t, x5 ui (), asur (1)),
a2 €A [t, TN (Jz])] w1 (D EUL L TN (J2])] (5.13)
V= (t,z) = inf sup J(t, x; on[ua ()], ua(+)), :

ar €A [t TN ([2D)] g (1) €U [t, T;N(|2])]
where N(|z|) = C (x)*, for some constant C > 0.
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Proof. First of all, for any (¢,2) € [0,7] x R" and u1(-) € Uy[t, T, by Proposition 5.2, we have

(4(s)) < oo{<w>+/t u1<r>|“1dr} < Co o)+l O }-
Then
T
J(t, 21 (),0) = / a(5,9(s),11(s), 0)ds + h(y(T))
tT
z/t clur ()7 — L {y(s)) "] ds — L {y(T))#

> [ et (e[ o ar) ] as - 268 (1)1 )

T
> _C (@) = Cllur ()] m+/ clun(s)|7 ds.
t

Since (note pu > 1)

T H T
a5 (/ u1<r>|“1dr> <@ =00 [ G

we obtain (taking into account oyp < p1)

T ¢ T
J(t 2w (-),0) > ~C (a) +/t lclur ()] = Clui ()] ds > —C () + —/t fur (5|1 ds > ~C () .

2
(5.14)
Consequently,
V*t(t,x su inf J(t, xu (), asfui(4)]) > inf J(t,zu1(-), a5[ur(M)]) > —=C (x) M.
()= s ot JGnOeanO)z w6 0,uO) 2 ~Cl)
Likewise, for any ua(-) € Us[t, T], we have
T
I(t.:0.0a()) = [ 9(5.9().0,ua(s))ds + hy(T)) < C ()~ (5.15)
t
Thus,
VHi(ta) = sup inf It aun(),cefur()]) £ sup It zsui(), eo[uf()]) < C ()t

a2€A2[0,T] ui (-)EUL[E,T] as €A, T

Similar results also hold for the lower value function V = (-, -). Therefore, we obtain that V*(t, z) are well-defined
for all (t,2) € [0,T] x R™ and (5.12) holds.
Next, for the constant C' > 0 appearing in (5.12), we set

N(r) = ?M)".

Then for any ui(-) € Ur[t, T] \ Usr[t,T; N(|z])], from (5.14), we see that

¢ T
J(twyun (), aglua ()]) = =C (@) " + §/t lur(s)|”rds > C (@) "

>VT(t,z) = su inf J(t, zy;up(+), asfui(+)]).
N (t,2) OCQEAQI)[t,T]ul(')Eul[taT] ( 1), a2l ()
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Thus,
V¥(t,z) = su inf J(t, s ur(c), aslui(+)]). 5.16
(t,2) wr At 1] w1 (U BTN (fa)) (&, ziun (), a2l () (5.16)

Consequently, from (5.15), for any uy(-) € Uy[t, T; N(|z|)], we have

—C{z)P<VT(t,z) < sup  J(t2;ur(e), azur()])
s €A, T]

T c T
<Cloy+C [ s =5 [ ol pds

T
<Coyrraet (@) = 5 [ a1 as
This implies that
C T ~
5 laaln Ol as < C oy, Vur() €6 TN (e (517)

with C' = 2C (C'+1) > 0 being another absolute constant. Hence, if we replace the original N (r) by the following:

NG ==

(r)r,
and let

T
*AQ[t»T;T] = {QQ € AQ[taT} ‘ /t |a2[u1(-)](s)|p2ds < N(x)} )

then the first relation in (5.13) holds.
The second relation in (5.13) can be proved similarly. O

Next, we want to establish a modified Bellman’s principle of optimality. To this end, for any (¢,z) € [0,T) xR"
and ¢ € (¢, T, let

ui[t,t‘;r]z{ux-)eui[ti]| / Jus) ds} =12,

and
{Al[t,f;r} ={a1 UL, T) = Uh[t,5;r] | o € Au[t, T},

Aot Bir] = {oo ULt T] = Us[t, T;r] | a2 € As[t, T} .
It is clear that

1=1,2.

)

Thus, from the proof of Theorem 5.4, we see that for a suitable choice of N(-), say, N(r) = C(1 + r*) for some
large C' > 0, the following holds:

Vit z) = sup inf J(t, x;u (), asfui (4)]),
( ) an €A [t 5N (|z])] v (D EULE TN (|2])] ( 1( ) 2[ 1( )]) (5 18)
V=(t,x) = inf sup J(t, z; aq[ua(4)], ua(+)). ‘

1
1 €AL[EN([2])] wy (1) elda [t,5 N (|2]))]

We now state the following modified Bellman’s principle of optimality.
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Theorem 5.5. Let (H1)—(H3)' hold. Let (t,z) € [0,T) x R" and t € (¢,T]. Let N : [0,00) — [0,00) be a
nondecreasing continuous function such that (5.18) holds. Then

| {/t 9(s,y(s), ur(s), azfur ()](s))ds + V+(t_,y(f))} ; (5.19)

Vt(t,z) = sup inf
n € Aa[t,£;N(|z])] wr () EUL[L BN (|])

and

Vo(tz) = : {/t/g(s,y(S),al[uQ(-)}(S),uz(S))ds + V(t,y(ﬂ)} : (5.20)

inf sup
ar €AL[6EN([2D)] g (1) €U [t, 6N (2]

We note that if in (5.19) and (5.20), A;[t, ¢; N(|z|)] and U;[t,t; N(|x])] are replaced by A;[t, T] and U;[t, T,
respectively, the result is standard and the proof is routine. However, in the above case, some careful modification
is necessary. For readers’ convenience, we provide a proof in Appendix A.

We point out that our modified principle of optimality will play an essential role in the next subsection.

5.3. Continuity of upper and lower value functions

In this subsection, we are going to establish the continuity of the upper and lower value functions. Let us
state the main results now.

Theorem 5.6. Let (H1)'—(H3)" hold. Then VE(-,-) are continuous. Moreover, there exists a constant C' > 0
and a nondecreasing continuous function N : [0,00) — [0,00) such that the following estimates hold:

VE(t2) - VEGD)| < C((2) V() e -2l te[0,T), n,z R, (5.21)

and
P1—91 /\P2702

VE ) - VEE )| < N2t -1 77 2%, w,ie[0,T], = € R™ (5.22)

Proof. We will only prove the conclusions for VT (-, -). The conclusions for V7 (-, -) can be proved similarly.
First, let 0 <¢ < T, 2,7 € R", and let N(r) = C (r)# for some C > 0, such that (5.13) holds. Take

w () €UP LT N(ja| v |2)],  az € AR [T N(|a| v |2])]. (5.23)

Denote uz(+) = azuy(+)]. Then

/tT s (1) dr < C (/tT s ()

Making use of Proposition 5.1, we have

94
Tip

mdr> T co(ovie))F <ola)vi

8l
~
~.
|
—
o

T
Ye,2(s); ye.z(s)] < Co [<fﬂ> V<f?>+/t (lua (MI7 + ua(r)|7) dr| < C((z)v(2)),  seltT],

and
[Yt,2(8) — ye.z(s)| < Colz — 7, s€t,T).
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Consequently,
[ J(t @3 ua (), uz(t) — J (8 Zrua (), uz ()]

T
< /t 19, ye,2(s), ur(s), ua(s)) = (s, yra(s), uls))lds + [P(ye,2(T)) = h(ye,z(T))]

p1(p—=1) p2(n—1)

T
< / L () V (s (90))" " Jua ()57 + Jua(s) 57 ) o) = e (s)lds

+ L ((yt,2(T)) vV (y2,3(T) >)”71 Yt,(T) — y1,2(T)]

T e T o
<C{(<w>v<ot~>)“1+(/t u1<s>|mds> +</ |U2(8)”2d8> }|w—ot~|

<C((z)v(z)) -2

Since the above estimate is uniform in (u;(-), a2) satisfying (5.23), we obtain (5.21) for V*(,-).
We now prove the continuity in ¢. From the modified principle of optimality, we see that for any € > 0, there
exists an o5 € At, t; N(Jz|)] such that

VIi(tz) —e< inf | {/t 9(s,y(s), ur (), a5[ua ()](s))ds + V+(t_7y(ﬂ)}

w1 (-)EUL[t, 5N (Jz])

: /t 9(s,y(5), 0, a5 [ui ())(s))ds + V(£ y(F)

< / L ((y(s))* = clasfud())(s)172) ds + V* (,2) + [VHE y(D) - V* (E,2)
S/t L{y(s)) ds + VT (t,x) + |V (t,y(t) - VT(t )|

By Proposition 5.2, we have (denote u5(-) = a5[uj(-)])

2

o
P2

ly(t) —a| < C <C (m)(t—t)+</t |u;(s)ﬂ2ds> (—t) ="

<x><f—t>+/t [ (s) |2 ds

| |

<C[(@)E-t)+ N(z)(E-0"5="]

Also,
ly(s)] < Co

(z)+ / |u;<s>“2ds] <N(zl), sl

Hence, by the proved (5.21), we obtain

pP2—092

VE(Ey(@) = V(L) < N2l V [y(@)]y(E) — 2| < N(j2])(E—t) 7=

Consequently,

which yields
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On the other hand,

VTt x) > inf | {/t/g(s, y(s),ui(s),0)ds + V+(t_,y(f))} .

wy () EUL[t,T;N(|x|)

Hence, for any € > 0, there exists a u§(-) € U [t,T; N(|z|)] such that

VHta) +e > / o(5,9(s), 15 (), 0)ds + V* (7, y(D))

z—/t L<y<s>>“ds+c/t [ ()| ds + V(£ ) — [V (E y(B) — V*H(E )

> —[ L{y(s)) ds + V*H(E ) — VHEy(E) — VFH(E ).

<c|(a)F-1) (/ s (s ”1ds> (-2

<C(z)E-t)+ N(z)(E- "7,

Now, in the current case, we have

y(@) -2l < C <x><f—t>+/t [0S (5)[ ds

Also,
ly(s)l < Co

/ [ug(s "1d51 < N(|z]), s € [t,1].

Hence, by the proved (5.21), we obtain

P17

VE(Ey@) = V()] < Nzl v y@)]y(#) — =] < N(lz)(E—1) =

Consequently, o

Vi(ta) = Vi(ta) = -N(2))f —t) 7 —e,
which yields

VE(tx) - VH(Ea) > —N(z|)(f—t) 7
Hence, we obtain the estimate (5.22) for V(- ). O

5.4. Characterization of the upper and lower value functions

Having the above preparations, we are now at the position to characterize the upper and the lower value
functions of our differential game. Recall that in order Theorem 4.3 applies, we need the conditions (4.4)-
(4.6) (for the maps H(-,-,-) and h(-) stated in (HJ) hold, and the upper and lower value functions have to
be Lipschitz continuous in a particular form (see (4.7)). It is clear that the only thing that we need is the
compatibility condition (4.4) for the numbers \;, v; appeared in (3.24) with the parameter i appeared in (H2)
and (H2)". Let us now look at what we need here. From (3.24) (which is for the upper value function V7 (-,-)
only), and the similar set of conditions for lower value function V= (-, -), we should require:

a1 o2 g (umlon o 1 (n=1oz -

p = p2 — p1—o1 — pa—o2 —

(n=oips ~ 1 (p=1o2p1 1,

p1(p2—0o2) — 7 p2(p1—o1) —

g10244 (p—1)o1 1)01 o102/ (p—1)oy

P1LP2 + = 1 P1pP2 + P2 = 1 (5'24)
g1o2 4 (p— 1)02(01+p1) <1, o109 4 (p—=1)o1(o2+4p2) <1,

P1pP2 P1pP2 P1pP2 P1pP2

(u—1)o102 (p—1)o2 (p—1)o109 (u—1)o1

p1(p2—0o2) + p2 =1, p2(p1—0o1) + p1 <1l

We now have the following proposition.
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Proposition 5.7. Let

Then all the inequalities in (5.24) hold.
Proof. First of all, we have that
Pi Pi— 04

Thus, under (5.25), the last two inequalities in the first line of (5.24) hold. Next, by the above equivalence and
p=1,

(n—=Vorps _ (n=1)p2
pi(pe —o2) = plp2 —o2) ~

and
(n—=Vozpr _ (n=1)ps
p2(pr —o1) = plpr —o1) ~
Thus, the inequalities in the second line of (5.24) hold. Now, for the third line, we have

-1 -1
awoape | (=1 ﬂ+u:ﬂ§1,

P1P2 P1 P1 P1 P1

and
g2

q1o24t (p—1)og <% (b—1)o2 _ poy <1
P1p2 P2 P2 P2 P2

This shows that the inequalities in the third line of (5.24) hold. We now look at the fourth line. It is seen that

0109 " (/J — 1)02(0’1 +,01) < 0109 " (,u— 1)0’2(0'1 +/~L01) _ ,u2010'2

= < ]-7
P1P2 P1P2 P1P2 P1P2 P1P2

and
0102 (b= Voi(o2 + p2) _ 0109 n (n—1V)o1(o2 + o) _ p*or0
P1P2 P1P2 Top1p2 P1P2 P1P2
Finally, for the fifth line, we have (making use of the inequalities in the second line of (5.24))

<1

(1= Voo (n=1)o> —@{(”_1)01p2+p—1} < @by

p1(p2 — 02) p2 p2 L pi(p2 —02) p2
and
(= Yoros  (p=1or _ o1 {(u— L)oapi g 1} < T
p2(p1 — 1) p1 p1 [ p2(p1 —o1) p1
This completes the proof. O

With the above result, we have the following theorem.

Theorem 5.8. Let (H1)'—(H3)" hold. Then VE(-,-) are the unique viscosity solution to the upper and lower
HJI equations (1.3), respectively. Further, if the Isaacs’ condition holds:

H*(t,z,p) = H (t,x,p), V(t,z,p) € [0,7] x R" x R", (5.26)

then
Vit z) =V (t ), Y(t,z) € [0,T] x R". (5.27)
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6. REMARKS ON THE EXISTENCE OF VISCOSITY SOLUTIONS TO HJ EQUATIONS

We have seen that under (H1)—(H3), the upper and lower Hamiltonians can be well-defined and the corre-
sponding upper and lower HJI equations can be well-formulated. Moreover, we have proved the uniqueness of the
viscosity solutions to the upper and lower HJI equations within a suitable class of locally Lipschitz continuous
functions. On the other hand, we have introduced a little stronger hypotheses (H1)'~(H3)" to obtain the upper
and lower value functions V*(-,-) being well-defined so that the corresponding upper and lower HJI equations
have viscosity solutions. In another word, weaker conditions ensure the uniqueness of viscosity solutions to the
upper and lower HJI equations, and stronger conditions seem to be needed for the existence. There are some
general existence results of viscosity solutions for the first order HJ equations in the literature, see [3,7,14,18,23].
A natural question is whether the conditions that we assumed for the existence of viscosity solutions are sharp
(or close to be necessary). In this section, we present a simple situation which tells us that our conditions are
sharp in some sense.

We consider the following one-dimensional controlled linear system:

{y(s) = Ay(s) + Biui(s) + Baua(s), s € [t,T], (6.1)

y(t) =z,

with the performance functional:
T
J(t, wsui (), uz(t)) = / [Qy(5)? + Riua(s)® — Raua(s)?] ds + Gy(T)?, (6.2)
t

where A, By, Ba, A, R1, R, G € R. We assume that
Rl,RQ > 0. (63)
Note that in the current case,
0‘120'2:1’ M:p1:p2:2.

Thus,
Mo = Pi, 1=1,2,

which violates (5.5). In the current case, we have
H*(t,z,p) = H(t,z,p) = iunlfsqlg) [pf(t, x,ur, uz) + g(t, x, ug, us)]
= Apz + Qz? + iq?lf [Rlu% + pBiuy] — 115121" [Rgug — pBaus]
= Apz + Qa* + (4B—R%2 = %) P2 (6.4)
Consequently, the upper and lower HJI equation have the same form:
{ Vit o) + AaVe(t,2) + Qo + (F — L) Valt,0)? =0, (o) € [0,TI xR,

(6.5)
V(T,z) = Ga?, z € R.

If the above HJI equation has a viscosity solution, by the uniqueness, the solution has to be of the following
form:

V(t,z) =p(t)z*,  (t,z) €[0,T] xR, (6.6)
where p(+) is the solution to the following Riccati equation:
: By B} 2 _
{p<t> +24p(t) + Q+ (B - ) p(t)? =0, e[0T, 67
p(T) =G.

In another word, the solvability of (6.5) is equivalent to that of (6.7).
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Our claim is that Riccati equation (6.7) is not always solvable for any 7' > 0. To state our result in a relatively
neat way, let us rewrite equation (6.7) as follows:

p+oap+Bp*+v=0,
6.8
{pm:g, (6.8)
with ) )
B2 B
a=24, p==2-2L =Q, g=G.
R} R

Note that 3 could be positive, negative, or zero. We have the following result.

Proposition 6.1. Riccati equation (6.8) admits a solution on [0,T] for any T > 0 if and only if one of the
following holds:

o =48y >0, 2Bg+a—+/a2—48y<0. (6.9)
The proof is elementary and straightforward. For reader’s convenience, we provide a proof in the appendix.
It is clear that there are a lot of cases for which the Riccati equation is not solvable. For example,

o = ﬁ = ’y = 17
which violates (6.9). Also, the case
a=0, ﬁ:_la y=1 g=-2

which also violates (6.9). For the above two cases, Riccati equation (6.8) does not have a global solution on [0, T']
for some T' > 0. Correspondingly we have some two-person zero-sum differential game with unbounded controls
for which the coercivity condition (5.5) fails and the upper and lower value functions could not be defined on
the whole time interval [0,7], or equivalently, the corresponding upper/lower HJI equation have no viscosity
solutions on [0, T.

Acknowledgements. The authors would like to thank the referee for informing the authors several important references in
the field, especially some most recent papers. Also, some comments made by Professor Y. Hu (of University of Rennes 1,
France) on the previous version are really appreciated.

APPENDIX A

Proof of Theorem 5.4. We only prove (5.19). The other can be proved similarly. Since N(|z|) and ¢ are fixed,
for notational simplicity, we denote below that

U =UtEN(2))], As = As[t, N (Ja])].

Denote the right hand side of (5.19) by V*(t,z). For any € > 0, there exists an a5 € Ay such that

Vi(te)—e < inf {/t 9(s,y(s), ur(s), agfur(-)](s))ds + V+(t_,y(f))} :

u1(~)61/11
By the definition of V't (¢,y(t)), there exists an a5 € As[t, T] such that

O EEE S (STOR ORI THO)

Now, we define an extension a5 € Ax[t, T of a§ € As[t, T] as follows: For any w4 () € Ui [t, T,
a5fui()](s), s € [t,1),

a5[ur()](s) = {ag [ul(')|[i,T]](S)’ se L]
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Since a5 € Aj, we have ) )

/tt @ [ur (4)](s)[*ds = /tt |5 [ur ()] (s)[2ds < N(|a]).
This means that a3 € .Zg. Consequently,

VIi(te) > inf  J(t 25w (), 5fui()])
ul(-)elxh

- e { | a9t O)(s)s + J(t‘,y<f>;u1<~>|[ma;[m(-)hm)}

>t { [ atssm@.05mOe)ds + | inf J(t,ym;mc),as[al(-»}

> inf_ { / g(s,y<s>,u1<s>,a;w)](s))ds+v+<t,y<f>>}—e>?+<t,x>—2a

ul(')eul

Since € > 0 is arbitrary, we obtain
VT(t,x) <V*T(t, ).

On the other hand, for any € > 0, there exists an a5 € A, such that

VT(t,x) —e< inf  J(t,z;u1(), a5fui()])-
u1(~)€M1

Also, by definition of V+ (t,2),

~

Vi(t,x) > inf {/t 9(8,y(é‘),ul(S)ﬂZ[Ul(')](S))ds+V+(t_,y(t_))}~

Ul (')Eul

Thus, there exists a u$(-) € U; such that

Vit a) +e > /t 9(s,y(s),ui(s), a5 [ui()](s))ds + VT (£, y(D)).

Now, for any () € Uy [t, T], define a particular extension u;(-) € Ui[t, T] by the following:
- _Jus(s), set
“1<5)—{a1(s), self

Namely, we patch u$(+) to @1(-) on [t,1). Since

N

I

/t [ (s)|P ds = / 5 ()P ds < N(Jz]),

we see that @1 (-) € Uy. Next, we define a restriction a5 € A[f, T] of a§ € Ay, as follows:

For such an a5, we have
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Hence, there exists a @§(-) € Uy[t, T] such that

VIt y(0) +e > J(ty(0), a5 (), a5ai()).

Then we further let

Again, @5(-) € Uy, and therefore,

VH(t.a) +e > /t 9(s,y(s), ui(s), a5[ui()](s))ds + V7 (£, y(D)

> /t 9(s,y(s), ui(s), as[ui(-)](s))ds + J(t, y(t), ui ("), a3(ui(-)]) —e

= J(t,2;05( ), 05@i()]) —e > inf J(t@u(), 05l ()]) —e 2 VI(t @) — 2.
uy (-)EUL[E,T]

Since € > 0 is arbitrary, we obtain
V() > V().

This completes the proof.

Proof of Proposition 6.1. Recall that we are considering the following Riccati equation:

p+ap+ Bp*+7=0,
p(T) =g.

Case 1. § = 0. The Riccati equation reads

prap+y=0,
p(T) =g

This is an initial value problem for a linear equation, which admits a unique global solution p(-) on [0, T].

Case 2. § # 0. Then Riccati equation reads

2 2
p+0 {(p—l— %) + e ] =0,
p(T) =g
Let
e eal

K= ——————>0.
28]

There are three subcases.
Subscase 1. a® — 43y = 0. The Riccati equation becomes
) 2
{p+ﬁ<p+ %) =0,
p(T) =g.

Therefore, in the case
289 +a =0,

433



434 H. QIU AND J. YONG

we have that p(t) = —g5 is the (unique) global solution on [0, 7]. Now, let

289+ a # 0.

Then we have dp

7&2 = —/Bdt,

(p+ ﬁ)
which leads to ) ) ) ) T
O+ g+2 —BT-1)= ﬁ_ﬁ(Qggia)( —
p 283 g 23 g T«

Thus,

«@ 2689+ «

P = =35 T 3= BBy + T 1)’

which is well-defined on [0, T7] if and only if
2—(28g+a)(T —1) #0, te[0,T].

This is equivalent to the following:
(289 + a)T < 2.

The above is true for all 7' > 0 if and only if
269+ a < 0.

Subcase 2. o® — 483~ < 0. The Riccati equation is

« 2 2
(“%) o

dp
(p+25)% + 12

p+p =0.

Hence,

= _ﬁdta

which results in

%tan’1 E <p(t) + %)} =—0t+C.

By the terminal condition,

C’:ﬁT—i—%tan_l {% <g+ %)} :
Consequently,
tan ™! [% (p(t) + ;)} = kB(T —t) + tan™* [% (g + %)] :
Then

p(t) = 2& -I-Htan{/{ﬁ(T —t) + tan~! (2529};;&) } '

The above is well-defined for ¢ € [0, 7] if and only if

™ 1289+« 0
_Z ¢ i e T < =
2< an o + rf3 <2,

which is true for all 7' > 0 if and only if g = 0.
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Subcase 3. o> — 43y > 0. The Riccati equation becomes
o \2
2
— | - =0.
@*w) “]

(289 4+ o — 260)(28g + o + 2k3) = 45> <g+%—/{) <g+%+/€> =0,

p+p

If

then one of the following

p(t)E—%:l:n, t € [0,T],

is the unique global solution to the Riccati equation. We now let

(2089 + a — 260)(20g + a + 2k0) = 43> <g+g—f@) (g—i—g%-f@) # 0.

20 20
Then d
p
—— = —(dt.
b P
Hence,
1 In M =-Bt+C,
26 |p(t)+ 55 +kK
which implies
p(t) + % -h —2Kk0t
e . = O ;
p(t) + 55+~
with N
C— eQmBTg—’_ 25 e2nﬁT25g+a — 268
g+a5+k 269+ a+ 2k
Then N
p(t) +35— K _ 2nBT—t) 289 + o — 2k
p(t)-l-%-i—/{ 2069 + a + 2k
Consequently,
o _ owp(r—1) 289 + o — 2K0 a
)+ — — k= ST T () + —
pt)+55—r=e 330+ arang |PW T a5 TF

Thus, p(-) globally exists on [0,T] if and only if

GQK/ﬁ(T—t) Qﬁg +a— 2/{5
269 + a + 2k0

—140, Vtelo,T],
which is equivalent to

Y(t) = 2T (20 + o — 2683) — (289 + a+ 2k6) #0, Vi € [0,T).
Since 9’ (¢) does not change sign on [0, 7], the above is equivalent to the following:

0 < (0)(T) = [T (2Bg + o — 26B) — (289 + o + 263)] (—4KB),

which is equivalent to
[ez”“ﬁT(Qﬁg +a—2k0)— (209 +a+ 2/{5)] 8 < 0.

435
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Note when (A.1) holds, the above it true. In the case 8 > 0, the above reads
2T (239 4+ o — 2k3) < 2Bg + o + 2k,

which is true for all T' > 0 if and only if
2689 +a —2k5 < 0. (A.2)

Finally, if 8 < 0, then
0 < e®PT(28g 4+ o — 2kf) — (289 + o + 2K)3)
= e T (—2|Blg + o+ 26]8]) — (=2[Blg + o — 2r]5))
— e 2T [ (218lg — a — 2618]) + 1T (21Blg — o+ 261])]
which is true for all T' > 0 if and only if
0 <2|8lg — o+ 2x[8] = —(269 + o — 2x|3]).

Thus,
2089 + a — 2|6 < 0.

which has the same form as (A.2). This completes the proof. O
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