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A LOWER BOUND ON LOCAL ENERGY OF PARTIAL SUM
OF EIGENFUNCTIONS FOR LAPLACE-BELTRAMI OPERATORS *

Q1 Lut?

Abstract. In this paper, a lower bound is established for the local energy of partial sum of eigen-
functions for Laplace-Beltrami operators (in Riemannian manifolds with low regularity data) with
general boundary condition. This result is a consequence of a new pointwise and weighted estimate for
Laplace-Beltrami operators, a construction of some nonnegative function with arbitrary given critical
point location in the manifold, and also two interpolation results for solutions of elliptic equations with
lateral Robin boundary conditions.

Mathematics Subject Classification. 93B07.

Received October 28, 2011. Revised February 2, 2012.
Published online 11 May 2012.

1. INTRODUCTION AND MAIN RESULT

Let M be a d (d € N) dimensional connected compact C'-smooth Riemannian manifold with an C2-smooth
boundary I', and w a nonempty open subset of M. Denote by g the C'-smooth Riemannian metric tensor on
M; by Dy the Levi-Civita connection on M induced by g; by Vs, divas and Aps the gradient operator, the
divergence operator and the Laplace-Beltrami operator (on M) given by Dy, respectively; by (-,-), and | - |4
the inner product and the norm for the tangent vector of M with respect to g, respectively; by d,x the volume
element of M with respect to g; and by d,I" the volume element of I" induced by g. We refer to [3] for more
details on the notation/tool used in this paper, say Sobolev spaces on Riemannian manifold. Fix any T > 0,
and put @ = (0,7) x M and X = (0,T) x I'. Throughout this paper, we use C' = C(M,w,d, g,T) to denote a
generic positive constant, which may change from one place to another.

We define an unbounded operator A on L?(M) by

D(A)={ue H3(M): 124 4 y=0 on I'},
(4) = {ue m2(r): T2 } "
Au=—Apu, Yuée D(A),
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where v = v(x) is the unit outward normal vector of M at x € I" with respect to the metric g, 834”“ =

r
(Varu,v)g|r, both [ and [ belong to L°°(I") and satisfy [ = 1, 1 > 0 or [ = 0, [ > 0. Let {Ni}2, be the
eigenvalues of A, and {e;}{2; the corresponding eigenfunctions satisfying |e;|r2(ar) = 1. It is easy to show that
0< XA <X <...and {e;}$2, constitutes an orthonormal basis of L?(M).
One can find the following result from [4,7,9].

Theorem 1.1. If both I' and g are C*°, 1=0andl= 1, then it holds that

Z lai]? < Cecﬁ/ Z aiéi(z)

Aisr “Iai<r

2
dgz, (1.2)

for every r > 0 and every choice of the coefficients {a;}x,<, with a; €C.

This result provides a delicate lower bound estimate for the local energy of partial sum of eigenfunctions
for Laplace-Beltrami operators (in C°°-smooth Riemannian manifolds) with Dirichlet boundary condition . As
remarked in [22], the power % in the above e“V" is sharp. In terms of the control theory language, inequality
(1.2) can be viewed as an observability estimate for partial sum of eigenfunctions for operator A. Besides its
obviously independent interest, this inequality has many applications in control theory. In [7], by means of a
time iteration approach, Lebeau and Robbiano used (1.2) to obtain null controllability of the heat equation with
homogeneous Dirichlet boundary condition. In [9], inequality (1.2) was addressed by Lebeau and Zuazua, and
via which null controllability of a linear system of thermoelasticity was analyzed. Further applications of this
inequality to controllability problems can be found in [11,15,16,21]. On the other hand, in [19], Wang used (1.2)
to establish an L>-null controllability for the heat equation, and especially, via which he solved a long-standing
open problem in control theory for infinite dimensional systems, i.e., the Bang-Bang principle for time optimal
control problem for the heat equation with a locally distributed controller. His results was recently extended to
fractional order parabolic equations, see [12].

We remark that, in Theorem 1.1, both I" and ¢ are assumed to be C*°-smooth. Escauriaza pointed out that
the C>°-regularity for I" can be weakened to be C? but his proof was not published (see Rem. 1.1 in [11]). In
this paper, we shall address the sharp result in this respect and, in particularly, consider a similar problem but
with more general boundary conditions.

The main result of this paper can be stated as follows:

Theorem 1.2. The conclusion in Theorem 1.1 still holds when the additional assumptions on I, g, 1l and 1
therein are dropped.

Noting that the time iteration method developed in [7] does not depend on the boundary condition. Therefore,
using Theorem 1.2 and this method, it is easy to obtain the corresponding controllability /optimal control results
for equations with Robin boundary condition. On the other hand, Theorem 1.2 can also be employed to prove the
null/approximate controllability of forward stochastic heat equations [14], which is, to the best of the author’s
knowledge, the first controllability result for forward stochastic partial differential equations with control acts
only on the drift term.

Theorem 1.2 needs much lower regularities for both I" and ¢ than Theorem 1.1. Furthermore, Theorem 1.2
is for general Robin type boundary condition while Theorem 1.1 addresses only the homogeneous Dirichlet
boundary condition.

In [4,7,9], the authors employed a local Carleman estimate to establish Theorem 1.1. The homogeneous
Dirichlet boundary condition plays an important role in their proof. However, it seems to be quite difficult to
prove Theorem 1.2 by using the same method. Instead, in this paper, we shall use a global (in space) Carleman
estimate to overcome the difficulties introduced by the general boundary condition. On the other hand, it
deserves to point out that, although a related global Carleman estimate was established in [2] addressing
observability estimates for quite general parabolic equations, the approach therein does not seem to be able to
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provide the desired sharp estimate “e“V™ in Theorem 1.2. Indeed, in order to prove Theorem 1.2, we need
to derive first a new pointwise and weighted estimate for Laplace-Beltrami operators (see Sect. 2), and then
to prove the existence of a nonnegative function with arbitrary given critical point location in manifold M
(see Sect. 3), and also to show some interpolation results for solutions of elliptic equations with lateral Robin
boundary conditions in a cylinder (see Sects. 4 and 5).

It is considerably easier to prove Theorem 1.2 with I'=0and [ > 0 than the case with { = 1 and [ > 0. Noting
that in both cases we can use the same method to obtain the desired inequalities. Therefore in the sequel we
only prove Theorem 1.2 for the case that [ = 1 and [ > 0. The proof of this theorem will be given in Section
6. Note also that, even for the case of Dirichlet boundary condition, our method seems to be more elementary
and also self-contained than that in [4,7,9].

2. A POINTWISE AND WEIGHTED ESTIMATE FOR LAPLACE-BELTRAMI OPERATORS

In this section, we establish a pointwise weighted estimate for Laplace-Beltrami operators on a given
Riemannian manifold, which will play a key role in the sequel.

Let N be a n-dimensional (n € N) Riemannian manifold with a Cl-metric tensor b. The meaning of (-, -)s,
| |v, Vv, divy, Any and so on can be understood similarly as mentioned at the very beginning of Section 1.

Let H, H, and H, be any given C'-vector fields on N. We recall the following well-known formulas which
will be useful later (e.g. [3], Chap. 1, [5], Chap. 3).

divy(hH) = (Vxh, H)y + hdivyH, VY he€ CY(N),
VN(Hi, Ha)y = (VNHy, He)y + (VNHa, Hy)y + (VD) (Hi, Ha),

—~
o o
o =

where (Vi H;, Hj), stands for the contraction of the tensor b@Vy H;QH; (1 < i,5 < 2,i+j = 3), (Vnb)(H1, Ha)
stands for the contraction of the tensor Vyb® Hy ® Hy. Also, for any f € C1(N), we denote by Vn(Vy f) the
Hessian of f.
In the sequel, for arbitrary real function ¢ € C?(N) and arbitrary positive real numbers s and A\, we choose
functions a and @ as follows:
a=e 0=e" (2.3)

We have the following result:

Theorem 2.1. Assume v € C%(N) and put w = Ov. Then it holds that

292]ANU‘2 +D > Bi|Vwl} + Baw’ +4s)> (V(a|Vapld), Vyw), w

+ 4sX2a(Vnw, Vne)i + 4sha (Vyw, (Vi (V)] , Vvw), )b
+ 4sha (Vyw, (VD) (VNw, VNg)), — 25 a (Vb)) (VNw, VNw),VNe),, (2.4)

where

D =2s\divy [2Xa|VNe[fwV yw + s* A2V v p[fw?V v

+ 20(Vne, VNw)y Vvw — a| VNw[fV v g]
By = 25X2a|Vnpli — 2sAaAnp| V|2 — sha (V) (Vvw, Vvw), Ve),
= 25A%a|Vno|i — saO(N), (25)

2
By = 2532\ a®| Vel +253X3a3divn (Ve ViNe) — 452/\2042‘AN@‘ — 42X a? |V vpl?

=233 |Vnpli — s2a20(N\3) — s2a?O(A1).
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Remark 2.2. There exist several pointwise and weighted estimates for second order partial differential op-
erators in the literature (e.g., [1,6,10,18,20]). These estimates are quite useful in control theory and inverse
problems for partial differential equations. In [18], Theorem 2.2, one can find an estimate similar to (2.4). The
main advantage of our estimate (2.4) consists in that it is more convenient to deal with the Robin boundary
condition, as shown in the proof of Theorem 4.1.

Proof of Theorem 2.1. By the definition of v and w, we have that
Vv =Vn(@ 1 w) = wVN(G_l) + 07 'Wyw = —sM tawVye + 07 Vyw. (2.6)
Hence, by (2.1), it follows that

—0divy (Vo) = —0divy (—s\0 L awV e + 07V yw)
= —Anw + 2s0a(V e, Vw)y + sA2a|Vyeiw — s2 A2 [V npliw + shawAye. (2.7)
Put
L = —Ayw — 32)\2a2|VNg0\§w,
I = 2sAa(Vye, Vw)y + 250 %a|V iy o|iw, (2.8)
Is = —0ANv — shawAnp + s)\2a|VN<p|§w.

By (2.7)-(2.8), we see that I + Iy = Is. Hence

20,1y < |I3)% (2.9)
We estimate |I3]? first.
2
|I3]2 = ‘ — ANV — shawAyp + s)\2a\VN<p|§w‘
4
< 207 Anvl? + 452 N2 02| Anp|*w]? + 432A4a2‘VN<p‘b\w\2. (2.10)

Next, let us estimate I; Io. By (2.8), it follows that

LIy = 2s)\a (—ANw - 32)\2a2|VN<p\gw) ((V;wp, Vyw)y + )\|VNg0\gw)
= 2s)\a (—Anw — s°A?®| Vv pliw) [Vveliw (2.11)
—233)\3a3|VN<p|Z(VNg0, Vyw)pw — 2sAaAyw(V ne, Vw)p.

We need to compute the terms in the right-hand side of (2.11) one by one. By formula (2.1), we find that

25\ (—ANw — 32)\2a2|VNg0\§w) |VN@\§w = —253)\4a3|VN<p|2w2 —divy (25)\2a|VNg0\§wVNw)
+ 250 (Vi (a|Vegl?), Vyw), w + 25020V yo|2|V ywlz.
(2.12)
Further,
— 233)\3a3|VNg0\§(VN<p, Vyw)yw = —divy (s3A3a3|VNcp\gw2VNg0) + 383)\4a3\VN<p|§w2
+ A3’ divy (|[VneliVve) w?. (2.13)

Further,

—25MaAnw(Vng, Vvw)y = —divy (25Aa(Ve, Vvw)y Vvw) + 25\ a(Ve, Vvw);
+ 2sha (Vyw, VN(VNw, VNQ)s), -
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By formula (2.2),

(VNw, VN (VNw, VNy),), = (Vvw, ([VN (Vvw)], VNe), + (Vv (VNe)], Vvw), ),
+ (Vyw, (VD) (VNw, VNy)),

Noting that

2(Vyw, (VN (VNw)], VNe), ), = (VN‘VNU) j,Vth) — (VnO)(VNw, VNw), VNg),,

b

we arrive at

25 a (Vyw, VN (VNw, VNQ)p), = s\ <VN’VNU)

2
b,VN<p> —sAa ((Vnb)(VNw, VNw), VNe),
b

+ 28X (Vnw, (VN (VNe)], Vvw), ), +2s a (Vvw, (VND)(VNvw, VNe)),
= sAdivy (| Vnw[;Vine) — sA%a| Vel [Vvwly — shaAye|Vvw|;

—sAa ((Vnb) (Vvw, VNw), VNe),+2s a (Vvw, (VN (VNe)], Vvw), ),

+ 2sha (Vyw, (Vb)) (VNw, VNg)), -

Therefore it holds

— 28 aAyw(Vyp, Vyw)y, = —divy (2sA\a(Vivp, Vw)y Vyw) + 25\2a(V o, VNw)g
+ divy (sAa|Vyw[iVve) — sha (Vab)(Vvw, Vvw), Vie),
— s\a| Vol Vvwl; —shadne|Vvwl; + 2sha (Vyw, (Vi (Vae)], Vvw), ),
+ 2sAa (Vyw, (VD) (VNw, VNg)), . (2.14)

Finally, by (2.9)(2.14), we obtain (2.4). O
3. A NONNEGATIVE FUNCTION WITH AN ARBITRARY GIVEN CRITICAL POINT LOCATION
IN THE MANIFOLD

In this section, we prove the existence of a nonnegative function with an arbitrary given critical point location
in manifold M. This result is a modification of the corresponding result in [2] for flat spaces. In the sequel, this
construction will play a key role in the choice of the weight function in our global Carleman estimate.

Our result is stated as follows:

Theorem 3.1. There exists a function 1) € C*(M) such that 1 >0 in M, 1 =0 on I" and
V|2 >0, Vae M\ w, (3.1)
where wy is an arbitrary fized nonempty open subset of M such that g C w.
Proof of Theorem 3.1. We borrow some idea from [2]. Choose a function p € C?(M) such that
p>0in M, p=0and |Vap|y >0 on I. (3.2)
By the density of Morse functions in C?(M) (see [17], Chap. 1), there exists a sequence of Morse functions

{p*(x)}72, such that
p* = pin C2(M), as k — oo, (3.3)



260 Q. LU

Denote by M; = {x eM ’ Vup(z) = 0} the set of critical points of function p. Since |Vaplg > 0 on OM,
there exist a positive number & > 0 and an open set My C M such that

|Vamplg > & >0in My, MyNMy =0, I' C M. (3.4)
Let f € C*(M) such that L
f=1lonl, f=0in M\ M. (3.5)
Put ¢*(z) = p*(z) + f(z)[p(x) — p¥(x)]. By the definition of ¢*, we know
" =0onT, Vyg"=Vyp®in M\ M, (3.6)
and
V" (@) = Varp* () + f(2) [Vaup(z) — Vap® (@)] + Ve f(@) [p(e) — p* ()] - 3.7)
By (3.3), we know that there exists a k € N such that for any integer k& > k, we have
1) [Varp(e) ~ Vart (@)] + Varf (@) [ple) —p(@)] < - (38)

From (3.4), (3.7) and (3.8), for any integer k; > k, it follows that
|Varg™|, > 0 in M. (3.9)

Letting ¢(z) = ¢" (x), we know that ¢ is a Morse function satisfying |V asql, > 0 in Mo.
Denote by C'P; the set of critical points of function ¢, i.e., CP; = {w eM ’ Vug(x) = 0}. Hence C'P; is

a finite set. Assume CP; = {z1, 22, ..., T, }. Consider a sequence of functions {p’}7; C C*([0,1]; M) such
that

pl(t) EMa Vite [071}7 pl(tl)#pz(té)a thatQE [071]7t17ét2a ’i:l,...,m,
pl(1) = zi, pP(0) Ewr, i=1,...,m, (3.10)
pl(tl) 7é pj(tQ), Vi 7&]7 thth € [03 1]3

where w is a nonempty open set such that @y C wp. By (3.10), there exists a sequence of C?-vector fields
{n*}™, on M and a sequence of C>°-functions {7*}™; on M such that

dp'(t o
pdf ) @), (0,1, i=1,....m, (3.11)
suppy' C M, i=1,...,m, (3.12)
suppy! Nsuppy? = 0, Vi # j, (3.13)
Yipi(t) =1, YVt [0,1],i=1,...,m. (3.14)

Let Vi(x) = v*(z)n'(z). Consider the system of the ordinary differential equations on manifold M as follows:

{%:Wm,

20— (3.15)

Denote by S : M — M (i = 1,...,m) the operator such that S/(zo) = z(t), where z(¢) is the solution of
equation (3.15). Hence S/ (i = 1,...,m) are diffeomorphisms on M.
By (3.10), (3.11) and (3.14), we have

Sip'(0) =y, i=1,...,m. (3.16)



A LOWER BOUND ON LOCAL ENERGY 261

Put S(z) = S{toSfo...08™ and ¥(z) = ¢(S(z)). By (3.12), there exists a domain Mz C M such that I C M3
and
Si(z) =2, Vo€ M3,i=1,...,m. (3.17)

Therefore ¢ (z) = q(x), Vo € Ms. Hence ¢(z) = 0, Vo € M. Denote by C'P; the critical points of 1. Since the
mapping S is a diffeomorphism, we have

P, = {w eM ‘ S(z) € cpl}. (3.18)

By (3.13), we have _
S(p'0) =a;, i=1,...,m. (3.19)
It follows from (3.18) and (3.19) that C' P, C wp, which completes the proof. O

4. INTERPOLATION INEQUALITY I

This section is devoted to showing an interpolation result for solutions to the following elliptic equation:

{utt—i—AMu:O in Q,

4.1)
%—i—l(w)uzo on X. (

Our result reads:

Theorem 4.1. Let 0 < 7~y

<L and 2y <T' <T" <T —~. Then there exists a constant p € (0,1) such that
any solution v € H*(Q) of (4.1

) satisfies
1—p
|U‘L2(M><(T’,T”)) < C|u‘/£2(w><(%T,W))|U‘H1/(Q)~ (4.2)
This sort of interpolation estimate has already appeared in the framework of boundary control and stabiliza-
tion for hyperbolic equations (e.g. [8]) and also for inverse problems (e.g. [18]).

Proof of Theorem 4.1. We borrow some ideas from [18]. The key is to use Theorem 2.1. The proof is divided
into five steps.

Step 1. Firstly, we will explain the construction of the weight function 6 appeared in Theorem 2.1. By (3.1),

we have L
=

——— min |V¢(x)[, > 0. (4.3)
U] Lo (M) weM\wn

Without loss of generality, let us assume that 77 < T — T". Let

T T -T -2y T

a:§—2'y, ag = 5 , =g = (4.4)
It is easy to check that
T T
E—T’<a0<a<a1<§-
We choose )
T T
gD(ZL’,t) = (01 — CQ)% + a® — <t — E) +rK (45)
and )
~ T T
gD(ZL’,t) = —(61 — Cg)% + a2 — (t — 5) + K, (46)



262 Q. LU

where ¢; = a® — (% — T/)Q, e =a%— % (% — T’)2 — a3 and & is chosen to be large enough to make ¢ > 0. It is
easy to check that ¢; > cs. N

These give the functions a(z,t) = M@ G(x,t) = @D § = e5* and § = **. Tt is obvious that
0<<Z§<p,1<&§ozandl<§§9.

By the definition of «, it is easy to check that

a(~,t) > ecl)‘+)‘”, ’t _ %‘ % -1,
‘ (4.7)

—c2) A A T
a('vt) Se(cl c2)A+ Nv ‘t_ 2

Noting that equation (4.1) has only partial boundary condition. We need to reduce it into an equation with
full boundary condition. For this, let us choose a cut-off function ¢(t) € C§° (% —as, % + al) =C5° (v, T —7)
such that

0<o(t)<1, te(y,T—7),

(4.8)
(1) =1, t-%[<Z-a
Let u1 = ¢u, noticing that ¢ is independent of z, it follows by equation (4.1) that

(u1)ee + Aprur = Greu + 2¢puy in Q,

Iyws 4 |(z)uy =0 on X, (4.9)

up =0 on (M x{0HU(M x{T}).

By (4.8), we know that there is a Q¢ C @ such that

supp (u1) C Qo, (4.10)
9Qo is C2. '

Put Xy =0Q¢ N X.

Step 2. We now apply Theorem 2.1 to equation (4.9) with n =d+ 1, N = Qo, b = 1 ® g, v being replaced by
uy, @ is as (4.5) and w = Ou;.
Integrating equality (2.4) on @, we obtain that

gy 202 (ua)e + Mass | gt + oy, Dyl
> fQ B1|V yw|3d, .Tdt-l—fQ Bow?dxdt + 4s)\? fQ (VN(a|VN<p\§),VNw)bwdgxdt
+ 4s)\2 fQ a(Vyw, Vye)idgadt + 4sA fQ a(Vyw, VN (VNe)] VNw), dgadt
+ 45X [, @ (Vavw, (Vab)(Vaw, V), dgadt — 25X [, o (Varb) (Vavw, Vw), Vi), dyadt.

(4.11)

Let us estimate the right-hand side of (4.11). By Cauchy-Schwarz inequality and noting that ¢ € C?(Qy),
we have the following estimates:

45)?‘ (Vn(alViel}), Vw), w]| < C (s*Aaw? + NV yw]? + Nw|?) (4.12)
15\ o (Vyw, [V (V)] Vvw), | < Csda (9wl + fuwrf?) (4.13)
15\ |a (Vaw, (Tnb)(Vavw, V), | < Csra (IVarwl? + [unf?), (4.14)
Ao (Vb (Vavw, Vnvw), Vg, | < Csda (19wl + furf?) (4.15)
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By the definition of Bj, we have that
2 2 2 2 2
Bi|Vywly = [2sMalVneli — saON)] (IVawl]} + |w?). (4.16)
By the definition of Bs, we have that
Bow? = [25°Aa® Vol — s°a®O(N?) — s°a®O(N)*] w?. (4.17)

Recalling (4.5) for the definition of ¢ and (4.3) for the positive constant h, we conclude that there is a constant
Ao > 1 such that for any A > A\, one can find a constant sy > 1 so that for any s > sg, the following estimates
hold uniformly for (z,t) € M x (2 —a,2+a) \wo X (2 —ag,2+ ap):

{ B1|[Vyw|? — C(sha + )\204)(|VMw|3 + |we|?) > (1 — cz)2h2s/\2a(\VMw\§ + |we]?), (4.18)

Bow? — Cs?Xtaw? > (¢ — ca)*h*s3Ma?|w|?.

From (4.11) and (4.18), we conclude that

b b 2
s)\z/ o (|VMw\§ + |we|?) dyxdt + 53)\4/ 3 |lwl?dyrdt < C{ / 92’(u1)tt + AMul‘ dgyxdt —|—/ Ddyxdt
0 0 Qo

0

T T
+s>\2/ /a(\VMwI_?,+|wt|2)dgxdt+s3A4/ /angdgwdt} (4.19)
0 wo 0 wo

Step 3. We now get rid of the boundary term fQo Ddgyxdt in (4.19).

Using the divergence theorem and the boundary condition of equation (4.9), the first term in fQo Ddgzxdt
reads

)
43A2/ a|VN<p|bw 8 Lar, dt—4s)\2/ a(|Varel? + eel?) (s)\a g”y“’ w? lw)dgfdt. (4.20)
o

o

The second one is
343 3 2 2 0MP
25°A ?(|Varply + loi]*) ——wdg I'dt. (4.21)
Yo 31/

The third one is

45\ a(Viye, VNw)bw%dngt = 4s)\ a[(Vare, Vaw)g+prw] (s/\awa + 98Mu1

r'de. (4.22
o a o a a )dg dt ( )

By the boundary condition of u;, we have that afg% = —lu;. Especially, noting that ’(/J‘F = 0, we have that

Vuelr = 81‘”’1/‘F. Hence from (4.22), we get that

s\ / a(VNgo,VNw)b—adengt
Yo 81/
= / (453)\3043VM<,0|38M—901U2 — 852/\2a2\VMg0\3lw2 —1—43/\048M—<'0l2w2> dyIdt
o 87/ 31/

+432)\2/ o ‘thtwaa dyIdt — 43)\/ apwywdg ['de. (4.23)
20 Z‘D
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By integration by parts, we get that

— 4s\ aprwflurdgldt = —4sA Oapr(shapOur + 0(ur)e)lurdg I'dt
o Yo

25)\/ {)\agotlw + apylw }dgfdt. (4.24)
Yo
Therefore, we obtain that

45A/ (Vo V) 2% 4 rat
o 81/

:/ <4S3A3 3V ap\gaw 2 _ 8522202V py o] 2luw? +43Aaag”z2 2)drdt
Yo

0
+ 452)\? /2 aQ@twtwaLfdngt + /2 {232)\2042(,0%[11)2 — 25X %ap?lw? — 25 apylw? }dgfdt.
0 0

(4.25)
The fourth one is
0
—2/ s/\oz|VNw\2 M(pd rdt
o v
_ 9 A 2 2 8M%0
=— s oz(|VMw|g—|—wt)a—dngt
o v
- _2/ [ N Vargl; 5 OMP 2 _gg232y 2V o 2lw? + s2ab?|V g |2 22 el 4 rat
o ov
50
—2/ shaw? M@d I'dt. (4.26)
o v
Therefore we have
Ddgxdt = / [4°X30? (V]2 + e )w? 4+ 45°A%0® |V s Zw® + 25° A0 [y Pw®
Qo o
2,2 242 2 2 2 27 Omp
+ dshal“w” + 4s° N a” prww; — 25 alb \VMu1|g — QSAalwt] defdt
- / [45)\204|VM@\§Z(1 + sa) — 25Xl @] + 2shalpy | wid,Idt. (4.27)
Yo
Since |Varelg|r > 0, we know that there exists an s; > 0 such that for all s > s1, we have that
/ [45)\204\VM@\§Z(1 + sa0) — 2sX*ad|py|* + 2shalpy ] wdgI'dt > 0. (4.28)
Yo

Hence the right-hand side of (4.27) could be divided into two parts. The second integral is negative and has
the property we expect. We need only to deal with the first integral in the right hand side of (4.27). We now
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choose another weight function 6. By (4.5), (4.6) and noting that ¢ vanishes on I', we have the following
equalities:

oup| _ _Omp ‘
ov |z ov |lx” s

)

90‘ :ﬁ‘ ) wt‘ Z@t‘ . (4.29)
z z z z

Similar to (4.19) and (4.27), we deduce the following inequality:

G 5 ~% 2
s)\z/ a(|VM@|§+\@t|2)d9wdt+s‘3)\4/ a3@2dgxdt<c{/ 92’(u1)tt+AMu1’ dgxdt
0 Qo 0

T T
+ Ddgacdt—l—s/\2/ /&(\VM@@—I—|1ﬂt|2)dgxdt+s3/\4/ /a3w2dgxdt}, (4.30)
Qo 0 Jwo 0 Jwo

where w = 0wy and

Ddgxdt = —/ [452/\3042(\VM<,0\3 + e |H)w? + 633)\3a3|VM<p|3w2 + 45323 0|y [Pw?
Qo o
2 2 2y2 2 2 2 201 Omp
+ 4dsdaliw® + 4s* A a” prww, — 25 \VMu1|g — 23)\alwt] 8—dgfdt
v

= / [45)\2a\VM<p|gl(1 + sa) — 25X %ad|py|? — 2shalypy] widyIdt.
o

(4.31)
From (4.27) and (4.31), we know that for Vs > s1, we have that
/ (D + 5) dgzdt = —/ [85A%a|Vargl2l(1 4 sar) — 4sX?al|g|* — 4shalpy | w’dyI'dt < 0. (4.32)
Qo o
By (4.19), (4.30) and noting (4.32), we arrive at
3A2/ [0 Vsl + |y 2) + @ (Vs 2 + [@1]?)] dyedt, +53A4/ (P [wf? + 3@ [2) dyadt
Qo Qo
2 2 T
< C{/ (02 (u1) e+ Apgua| +62|(ur) e+ Apruy ) dgwdt+s3>\4/ / (a3\w\2+ v&?’\mz) dgxdt
QO 0 wo
T
+ s/\2/ / (o (Varwl? + [wi?) + @ (IV a2 + |3 ]2)] dgxdt}. (4.33)
0 wo

Step 4. We now return both w and w in (4.33) to uy. Recalling that w = fuy and w = gul, we obtain that
1
692 (\VMU1|3 + \(ul)t|2 + 52)\2a2\u1\2) < |VMw\§ + |wt|2 + $222a2w?

< CH? (\VMulg + [ (u1)e]* + 2\ |uy °) (4.34)
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and
_1 9~ \V4 ~ ~ ~ ~ ~
2 (| Mu1‘§+|(U1)t|2+32)\20[2|ul|2) < ‘K;Mw‘2+|wf|2 52A2 2w2

C
< 0O (Varua 2+ [(ur)e]? + 52220 |uy|?) - (4.35)

By the definition of «, a, 6 and 0, weknow a >a>1and 6 >0 > 1. Hence, by (4.33)—(4.35), we end up with
the following inequality:

53)\4/ @30 up|*dgzdt < C / 0>
Qo Qo

T
+ s)\z/ / af? (\VMU1|§ + [ (w1)e]?) dgxdt}. (4.36)
0 wo

2 T
Aprug + (ug)u dgxdt+s3>\4/ / agez\ul\zdgxdt

0 wo

Recalling that u; is the solution of equation (4.9), we know

2

2
< |Pru + 201y (4.37)

‘AMUI + (u1)e

Choose a cut-off function g € C§°(w) with ¢ = 1 in wg and 0 < g < 1 in w. Multiplying equation (4.9) by
g0%au, and integrating it in Qq, using integration by parts, we get

T T
/ / ab? (|VMu1\§ + |(u)e]?) dgzdt < C 52)\2/ / 02 |ur|*dgzdt —|—/ 02| priu + 2¢pus|*dyzdt | .
0 wo 0 w Qo
(4.38)
From (4.36)—(4.38), we obtain

T
53)\4/ a392\u1\2d9wdt < C’{s)\2 92\¢ttu + 2¢tut|2dgxdt + 33)\4/ /
0

@30 uy|*dgzdt 3. (4.39)
Qo 0 w

Step 5. Finally, we shall drop the weight functions in the integrands of (4.39) to get the desired result. Noting
that « satisfies (4.7) and ¢ satisfies (4.8), we have the following inequalities:

] T//
/ SN a30%uidyedt > 53)\463(61’\+’\“)625(661A+M)/ / lul*dgzdt, (4.40)
0 T JM
Ltay
02| priu + 2¢pus)*dgrdt = /T / 02| preu + 20| *dgzdt (4.41)
QO 3-&1 M
c]—c K %_a
< Ce2se( 1—c2) A+ / / (‘u|2 + |Ut‘2) dg:cdt
%—(14 M

T
5 ta1

[Tl ) dya
%Jra M

2se(c1—02)>\+>\m 2
< Ce |U‘H1(Q)?

T f R
/ /33)\4a592|u1\2dgxdt :/ /53’)\4a502\u1\2dgxdt
0 w z w

PRt

and

IN

2 A 2 c1—cotr
3 \4e3N I te1—catr) g2se (T tei—eat ’/

ol

—
/ |u|?dgzdt. (4.42)
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From (4.39)—(4.42), we obtain

T" 2
C1AF AR T2 AMLZ 4ci—catr)
St )/ / [uPdgdt < 57\t er—eatn) g2set (T 702
T M
T 9 9se(C1—C2)AFAR | o
></ /|u\ dgxdt 4+ Ce**¢ [ultg)- (4.43)
vy w

Recalling that ¢; > ¢ > 0, hence we know that 2s(e A > ezs(e(clwz)HM). Let A = Ao,

ezs(e(c1—c2)ko+m>\o) eAO(TT2+01*C2+N) o eC1>\O+K/>\O
° A38363A0(01+/€)628661>‘0+N>‘0 , k= ec1hotrAo — glci—c2)Ao+KXo ’
and (e1—c2)hotrr
e2s0(e(e17e2) R0t o)
f0= /\35383%(01+H)e2soe“”0+“0 ’
From (4.43), we know that for any e € (0, g¢], it holds
2 —ky, (2 2
[ulZ2 (e )y < €Ul T2(wx (v, 1—v)) T Ol ) (4.44)
which in turn implies that the above inequality holds for any ¢ > 0.
2p
_ 1 _ (2 oxiroay . .
Let p= 3, e = ( Iu\leQ) ~ , by inequality (4.44), we get
Iz 1—p
[l L2 o )y < ClulTa o iy 0 ¥ (0 0.1 (4.45)

5. INTERPOLATION INEQUALITY II

This section is devoted to showing another interpolation result for solutions to equation (4.1). Our result is
stated as follows:

Theorem 5.1. Let 0 < v < L. Then there exists a constant § € (0,1) such that any solution u € H*(Q)
of (4.1) satisfies

[l 11 (wx (3,7 —)) < C(0)| 2 (w) + [1(0)] 2(w) + |V ru(0)] L2 () [l 527y (5.1)
Proof of Theorem 5.1. We divide the proof into three steps.
Step 1. Let we CC w. Denote by dist ((z,t), ws x {0}) the distance from (z,t) to wy x {0}. Put N(7) = {(w, t) €

Q | dist ((x,t),ws x {0}) < 7'}. Let 0 < 71 < 72 < 73 such that N(73) C Q and N(73) N (M x {0}) C w x {0}.
Let h be an C2-function such that

3<h<4 if (z,t) € N(m),
0<h<1 if (z,t) € N(13) \ N(72),
|Varh| >0 for all(x,t) € N(73).
The construction of h is very easy. For example, we can choose a smooth function h; : R — R such that
hi <0and 3 < hi(s) <4 if0<s<7d,
0<hi(s) <1 if 72 < s <72

Then h(x,t) = hy(dist *((z,t),ws x {0})) is the desired function.
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In what follows, we shall use Theorem 2.1 (with ¢ replaced by h) to prove Theorem 5.1. For simplicity of the
notations, we still use € to denote the weight function if there is no confusion.

Denote by dpdN(73) the volume element of ON(73) in its Riemannian metric and by 7 = o(z) the unit
outward normal vector of N(13) at € ON(13) with its Riemannian metric.

For e small enough, define

N (O(N(73)) \ (w2 x {0})) 2 {z: € N(r3),dist ((z,t),0(N(73)) \ (w2 x {0})) < e}
Choose a function x € C*°(N(r3)) such that 0 < x <1 and that

_ { 1 if (x,t) € N(12),
X=1Vo if (z,t) € N(73) N N(O(N(73)) \ (w2 x {0})).

Put 4 = yu where u is the solution of equation (4.1). Then, @ satisfies the following equation:

{ ’ljtt —|— AM’& = XttU —|— 2Xtut + UAMX + Q(VMU, vMX)g iIl N(T3), (5 2)

|\Vamalg=u=0 on AN(r3)\ (w x {0}).
Apply Theorem 2.1 to equation (5.2) with b =1 ® g, v replaced by @ and w = 04.
Proceeding as in (4.12)—(4.18), similar to (4.19), and noting that h has no critical point in N(73), we obtain
that

s)\z/ o (IVawl]? + |wel?) dgadt + 33)\4/ P lwld zdt
N(73) N

(73)
gc/ 62
N(r3)

Dy = 2sAdivy [2Aa|Vnh[fwV yw + s*X2a® |V v h[jw?V v h + 20(V vk, Vvw)y Vvw — o Vvw|; Vvk] . (5.4)

2
Ut + AMTL‘ dgl'dt +/

Dydgxdt 5, (5.3)
N(r3)

where

By the divergence theorem, fN(TS) Didgxdt is the boundary term.
For the first term therein, we have

0

w
/aNm) 23|V nhlyw s didN () < © {$2a(IVarwl2 +wf) + sX3aw? bdydN ().

ON(73)

Due to the definition of w, we know

{ WlaN (rs)\(wx{0}) = Blan (rs)\ (wx [0}) = O,

va|8N(7-3)\(w><{O}) = VNﬂ|aN(Ts)\(wx{0}) =0.

Hence we know that

/ 23/\2a\VNh\§w8—1i)dbaN(T3) < C/
AN (rs) o

{s/\oz(|VMw|§ + w?) + s)\3ozw2}dgac.
wx {0}

By the same argument, we obtain the estimates for the remainder terms. Therefore, it follows that

/ Didgadt < C/ [s)\a(\VMw@ +w}) + s* A2 aPw?] dga. (5.5)
Q wx{0}
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Combining (5.3) and (5.5), we obtain that

2
Ut + AM’I_L‘ dgxdt

s)\2/ o (\VMU)E + |we|?) dgdt + 33)\4/ P lwl?dyrdt < C / 0>
N(rs) N(13) N(73)

+/ [sAa(|Varwl? + [wel?) + s°Na®|w]?] dgx}. (5.6)
wx {0}

Step 2. We now return the w in (5.6) to @. Recalling w = 0u, it is clear that

1
592 (\VMTAE + | |” + s° A% |uf?) < \VMw|!2] + we)? + 82\ 2P w?
< CO* (|Vaal2 + [w]” + s*Na®[uf) . (5.7)

From (5.6)—(5.7), and noting the first equation in (5.2), we obtain that

s/\z/ af? (|VM12|!2] + |ae|?) dgadt + 33)\4/ ?0%|ul*d xdt
N(7s3) N(7s3)
<C / 6?

N(7s)

By the definition of 4, we know that @ = u in N (7). By the definition of h, we know that

2

Xeru+2x e +udA i x +2(Varu, Varx)g

dgacdt—l—/ [s/\a(|VM1Z|3+af)+s3/\3a3ﬂz] dgx}.
wx{0}

(5.8)

{a > e and 0 > e if (x,t) € N(m1),
a<eand  <e if (x,t) € N(13) \ N(12).

By the definition of y we know that
xt =0 and Vyrx = 0if (z,t) € N(72).
Therefore we have the following inequalities:

/ X202 (IVaraf? + a]?) dyardt > sA2eP e / (IVaraf? + [4[?) dydt, (5.9)
N(73) N(71)

/ s*Aal0?udyrdt > s3A4eg>‘e2se3A/ lu?dyzdt, (5.10)
N(73) N(r1)

fo?
N(7s3)

2
Xeet 4 2xeus + uldpx + 2(Vyu, VMx)g‘ dgzdt < Ce2se / (|u\2 + |VMu|3 + \ut\z) dgxdt,
(13)
(5.11)

s3A3e12Ae25e ™ / lul?d,, (5.12)
wx {0}

IA

/ 2 Aa30?|ul?d
wx {0}

and

[ sxab (Vi +ad)dyw < x| (9aguf? + 02 dy (5.13)
wx {0} wx{0}
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From (5.8) to (5.13), we know that

sAZePhe2se” / (\VMQ\E + |we|?) dgadt + s3A1eI 250 / AN ul?d zdt
N(m1) N(r1)

< {2 / (Jul® + |VMu|!2] + |ue|?) dgzdt + §3\3e12Ag2se™ / lu?dya
N(Tg.) wX{O}

4
+ she*re?se /x{o} (IVarul? +u7) dgx}. (5.14)

Similar to (4.44), by (5.14), we obtain that there exist a § > 0 and an €y > 0 such that for any € € (0, €g], we
have

ulFn vy < €77 (|Ut(0)|2L2(w) + [ Varu(0)[ 72 + |U(0)\%2(w)) + Celulin ), (5.15)

which in turn implies that the above inequality holds for any € > 0.
Noting that 71 > 0, hence there is an open ball B C N(71). Then we know that

Wy < €7 (1O + [Taru(0)a) + [6(0) 3oy ) + Celuldn - (5.16)
5/
11 (0)] Varu(0)|? 0)|2
Put & = m and let € <1 O * le‘g( Nz )le(”)> in (5.16), we get
i)

5/
[uler () < C (e (0) By + IVaru(O) By + 1u(0)22,)) 7 lulinde,) s

< C (Jur(0)] L2y + IV aru(0)] 2wy + [u(0)|p2(w)” |U\H1(Q)

Step 3. To complete the proof, it suffices to show that the following proposition: For any given open set L CC @,
there exists a constant 0 < §” < 1 such that

Firstly, we admit this claim and continue our proof. After that, we prove this proposition.
By inequality (5.17) and (5.18), we deduce that for any given subset L CC @, we have

ful 2y < C (Jue(0)] L2w) + [V aru(0) L2y + [u(0)] 2(w)” [uli0) (5.19)

where 6 = ¢’8”. Now we choose L = w X (v,T — ) to get Theorem 5.1.

Now we prove the above proposition. Let By, By and Bs be three open balls in Q such that By CC By CC
Bs CC Q. Choose a cut-off function n € C§°(Q) such that n = 1 in Bz and 0 < nn < 1. Let y = nu. Then, y
solves

{ Yir + Amy = nuu + 200 + ulym + 2(Vau, Van)g in Q, (5.20)

[Vumyl=9=0 on 0Q.

Denote by P the center of By. Let r(x,t) = dist ?((x,t), P). Replace the above ¢ (in §) by 7. By the same
argument as the proof of Theorem 4.1, we conclude that there exists a constant 0 < § < 1 such that

[u| g1 (By) < C’\u|H1 Bl)\u|H1(Q) (5.21)
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For any ball B’ CC @, we can find a finite number m € N and two sequences of balls { B}, and {E’ A
such that

B' cc B!,
Bicc BINB™*' fori=1,...,m—1
~nCC ! or 1 R ,m R (5.22)
B" cc B",
B" =B.
By inequality (5.21), we know that there exists a sequences {5 }m, satisfying 0 < S <lfori=1,. m,
such that
5 5
|U‘H1(B') < ‘U|H1 Bty < Clu |H1 BY) \u|11ql b) < C|U‘H1 32)‘u|11ql b)
516 1616 5162...0m 1—6102...0m
< Ol il < .. < Clufli i ullide-n. (5.23)
Put 6 = 5152 ... (5~m, then we know that

For any given L CC @, we can find finite balls contained in the internal of ) to cover it. Hence from inequality
(5.24), we know that there exist a constant 0 < 6" < 1 such that (5.18) holds.

[ul i (z) < Clullys g lulindo)- (5.25)

This completes the proof of Theorem 5.1. O

6. PROOF OF THEOREM 1.2
We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. For simplicity, choose T'= 4, T" = 1 and 7" = 3 in inequalities (4.2) and (5.1). From
Theorem 4.1, we get

L 1—p
|U‘L2(M><(1,3)) < C‘U|IL2(UJX(%4_7))|U‘H1(Q) (61)
By Theorem 5.1, we obtain
lulr2(prx1,3) < C (\Ut(o)\%z(w) + | Varu(0)[Z2() + |U(0)\%2(w)) \U|H1 Q) (6.2)

where u € H?(Q) is any solution of equation (4.1).
For any {a;}, <, with a; €C, set

‘ a;e€; (63)

with w = ¢ if b = 0. Then, both the real part and the imaginary part of y are solutions of (4.1) and
Rey = Imy =0 on M x {0} . Therefore Rey and Imy satisfy inequality (6.2). For the left term of (6.2), we
dzdt = Z |Reaj|2/

have
|Rey\%2(M (1,3)) :/ / - A~ /_]
g Aj<r )\j
> |Reaj|2/ t2dt :g > |Rea;]. (6.4)

Aj<r Aj<r

5h t\/— (Reaj)e

Aj<r

v
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For the right term of (6.2), we have 0;Rey(z,0) = Z,\jgr Reaje; and

Reyl3ng) < Ce¥Y(1+71) > |Rea;” < Ce™™ Y~ [Rea,|”. (6.5)
>\j§7‘ )\jg’l‘
Therefore we get
Ho 1—pé
2
Z Rea,|> <C / ‘ Z Reajej‘ dz VT Z Rea;|? . (6.6)
)\jg’l‘ w )\jST )\jST

Hence we have

da. (6.7)

Z Rea;|* < Cecﬁ/‘ Z Reae;

)\jST « Ai<r

By the same argument, we can get

2
Z \Imaj|2 < Cecﬁ/‘ Z Imase;

Aj<r “INi<r

dz. (6.8)

From (6.7) and (6.8), we obtain

 dz. (6.9)

§:|aﬂ255CbC“i/

)\jST e

‘ E ;€4
)\ig’l‘
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