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NULL-CONTROL AND MEASURABLE SETS ∗
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Abstract. We prove the interior and boundary null-controllability of some parabolic evolutions with
controls acting over measurable sets.
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1. Introduction

The control for evolution equations aims to drive the solution to a prescribed state starting from a certain
initial condition. One acts on the equation through a source term, a so-called distributed control, or through a
boundary condition. To achieve general results one wishes for the control to only act in part of the domain or
its boundary and to have as much latitude as possible in the choice of the control region: location, size, shape.

Here, we focus on the heat equation in a smooth and bounded domain Ω in Rn for a time interval (0, T ),
T > 0 and for a distributed control f we consider⎧⎪⎨⎪⎩

�u − ∂tu = f(x, t)χω(x), in Ω × (0, T ),
u = 0, on ∂Ω × [0, T ],
u(0) = u0, in Ω.

(1.1)

Here, ω ⊂ Ω is an interior control region. The null controllability of this equation, i.e., the existence for any u0

in L2(Ω) of a control f in L2(ω × (0, T )) with

‖f‖L2(ω×(0,T )) ≤ N‖u0‖L2(Ω), (1.2)

such that u(T ) = 0, was proved in [16] by means of local Carleman estimates for the elliptic operator �+∂2
y over

Ω×R. A second approach based on global Carleman estimates for the backward parabolic operator �+∂t [10],
also led to the null controllability of the heat equation. The first approach has been used for the treatment

Keywords and phrases. Null-controllability.

∗ The authors are supported by the grants MTM2004-03029 and MTM2011-24054.
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Politécnica de Donostia-San Sebastián, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain. jone.apraiz@ehu.es
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of time-independent parabolic operators associated to self-adjoint elliptic operators, while the second allows to
address time-dependent non-selfadjoint parabolic operators and semi-linear evolutions.

The method introduced in [16] was further extended to study thermoelasticity [17], thermoelastic plates [4]
and semigroups generated by fractional orders of elliptic operators [20]. It has also been used to prove null
controllability in the case of non smooth coefficients [5, 26]. The method of [16] has also be extended to treat
some non-selfadjoint cases, e.g. non symmetric systems [15] and all 1-dimensional time-independent parabolic
equations [2].

In the above works, the control region ω is always assumed to contain an open ball. Also, the cost of
controllability (the smallest constant N found for the inequality (1.2)) depends on this fact. The reason for
these is that the main technique used in the arguments, Carleman inequalities, requires to construct suitable
Carleman weights: a role for functions which requires smoothness (at least C2) and to have the extreme values
in proper regions associated to the control region ω, the larger body Ω and possibly the value of T > 0. The
construction of such functions seems to be not possible, when ω does not contain a ball.

Motivated by these facts Puel and Zuazua raised the question wether the null controllability of the heat
equation is possible when the control region is a measurable set. A positive partial answer to this question was
explained by the second author at the June 2008 meeting Control of Physical Systems and Partial Differential
Equations held at the Institute Henri Poincaré. Here, we give a formal account of the results.

Theorem 1.1. Let n ≥ 2. Then, �−∂t is null-controllable at all positive times, with distributed controls acting
over a measurable set ω ⊂ Ω with positive Lebesgue measure, when

� = ∇ · (A(x)∇· ) + V (x),

is a self-adjoint elliptic operator, the coefficients matrix A is smooth in Ω, V is bounded in Ω and both are
real-analytic in an open neighborhood of ω. The same holds when n = 1,

� =
1

ρ(x)
[∂x (a(x)∂x ) + b(x)∂x + c(x)]

and a, b, c and ρ are measurable functions in Ω = (0, 1).

In regard to boundary null controllability, i.e., the existence for any u0 in L2(Ω) of a control h in L2(γ×(0, T ))
with

‖h‖L2(γ×(0,T )) ≤ N‖u0‖L2(Ω), (1.3)

such that the solution to ⎧⎪⎨⎪⎩
�u − ∂tu = 0, in Ω × (0, T ),
u = h(x, t)χγ(x), on ∂Ω × [0, T ],
u(0) = u0, in Ω,

(1.4)

verifies u(T ) ≡ 0, we have the following result.

Theorem 1.2. Let n ≥ 2. Then, �− ∂t is null-controllable at all times T > 0 with boundary controls acting
over a measurable set γ ⊂ ∂Ω with positive surface measure when

� = ∇ · (A(x)∇· ) + V (x)

is a self-adjoint elliptic operator, the coefficients matrix A is smooth in Ω, V is bounded in Ω and both are
real-analytic in an open neighborhood of γ in Ω.

The results in Theorems 1.1 and 1.2 follow from a straightforward application of the linear construction of
the control function for the systems (1.1) and (1.4) developed in [16] and the following observability inequality
or propagation of smallness estimate established in [28] (see also [23, 24]).
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Theorem 1.3. Assume that f : B2R ⊂ Rn −→ R is a real-analytic function verifying

|∂αf(x)| ≤ M |α|!
(ρR)|α| , when x ∈ B2R, α ∈ N

n, (1.5)

for some M > 0, 0 < ρ ≤ 1 and E ⊂ BR
2

is a measurable set with positive measure. Then, there are positive
constants N = N(ρ, |E|/|BR|) and θ = θ(ρ, |E|/|BR|) such that

‖f‖L∞(BR) ≤ N

(
—
∫

E

|f | dx

)θ

M1−θ.

The experts will realize that the word smooth describing the global regularity of ∂Ω, A and V (away from
the measurable sets ω and γ respectively) in Theorems 1.1 and 1.2 can be relaxed to ∂Ω is C2, A is Lipschitz
in Ω and V is bounded (See [10, 16, 17, 25]).

To simplify the exposition and to show the strength of Theorem 1.3 we give the proof of Theorems 1.1 and 1.2
under the assumptions that ∂Ω, A and V are globally real analytic. We do it because it makes more clear how the
construction algorithm of the control function in [16] and Theorem 1.3 can also be applied to prove the interior
null-controllability (Thm. 1.1) for other parabolic evolutions whose corresponding observability or spectral
inequalities (suitable Carleman inequalities) are otherwise unknown. Examples of these parabolic evolutions are
the ones associated to selfadjoint elliptic systems with unknowns u = (u1, . . . , um),

Lαu = ∂i(a
αβ
ij (x)∂ju

β), α = 1, . . . , m

with aαβ
ij = aβα

ji , for α, β = 1, . . . , m, i, j = 1, . . . , n, and with coefficients matrices verifying for some δ > 0 the
strong ellipticity condition,∑

i,j,α,β

aαβ
ij (x)ξα

i ξβ
j ≥ δ

∑
i,α

|ξα
i |2, when ξ ∈ R

nm, x ∈ R
n,

or the more general Legendre-Hadamard condition∑
i,j,α,β

aαβ
ij (x)ξiξjη

αηβ ≥ δ|ξ|2|η|2, when ξ ∈ R
n, η ∈ R

m, x ∈ R
n. (1.6)

We recall that the Lamé system of elasticity

∇ · (μ(x)
(∇u + ∇ut

))
+ ∇ (λ(x)∇ · u) ,

with μ ≥ δ, μ + λ ≥ 0 in Rn, m = n and aαβ
ij = μ(δαβδij + δiβδjα) + λδjβδαi, are examples of systems

verifying (1.6). Here, aαβ
ij , μ and λ can either be constants or real analytic functions on Ω.

It also makes clear that under such hypothesis one may replace the Carleman inequalities used in the literature
to prove the observability or propagation of smallness inequalities necessary in the process of applying the
construction algorithm in [16, 17] by a finite number of successive applications of Theorem 1.3. Of course, it
has the drawback that it requires more smoothness on the operators and on the boundary of Ω but on the
contrary, with Theorem 1.3 and the construction methods in [16,17] one can handle the null-controllability with
distributed controls of other parabolic evolutions, which as far as the authors know were unknown: like the
second order evolutions explained above or for higher order evolutions as

∂tu + (−1)m�mu, m = 2, . . . ,

with Dirichlet boundary conditions on ∂Ω, i.e., u = ∇u = · · · = ∇m−1u = 0.
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In Section 2 we give first the proofs of Theorems 1.1 and 1.2 as it is explained above. We then show how to
extend Theorem 1.1 to the evolutions (2.25) and (2.31) in Remark 2.2, while the problems we find to extend
Theorem 1.2 to these evolutions are explained in Remark 2.3 for the simpler case of parabolic systems. In
Remark 2.4 we give the proof of Theorem 1.1 when ∂Ω, A and V are globally smooth and A and V are real
analytic in a neighborhood of the measurable set ω. An outline of a proof of Theorem 1.2, when ∂Ω, A and V
are real analytic near γ and smooth elsewhere appears in Remark 2.4.

For the sake of completeness, we include a proof of Theorem 1.3 in Section 3. It is built with ideas taken
from [18,23, 28].

2. Proof of Theorems 1.1 and 1.2

We begin by setting up the formal hypothesis: first we assume there is 0 < δ ≤ 1 such that

δ|ξ|2 ≤ A(x)ξ · ξ ≤ δ−1|ξ|2, for all x ∈ Ω, ξ ∈ R
n,

Ω is a bounded domain in Rn, n ≥ 2, with a real analytic boundary and A, V are real analytic in Ω, i.e., there
are r > 0 and 0 < δ ≤ 1 such that

|∂αA(x)| + |∂αV (x)| ≤ |α|!δ−|α|−1, when x ∈ Ω, α ∈ N
n,

and for each x ∈ ∂Ω, there are a new coordinate system (where x = 0) and a real analytic function ϕ : B′
r ⊂

Rn−1 −→ R verifying

ϕ(0′) = 0, |∂αϕ(x′)| ≤ |α|!δ−|α|−1, when x′ ∈ B′
r, α ∈ N

n−1,

Br ∩ Ω = Br ∩ {(x′, xn) : x′ ∈ B′
r, xn > ϕ(x′)},

Br ∩ ∂Ω = Br ∩ {(x′, xn) : x′ ∈ B′
r, xn = ϕ(x′)}.

(2.1)

For ρ > 0, we set

Ωρ = {x ∈ Ω : d(x, ∂Ω) ≤ ρ}, Ωρ = {x ∈ Ω : d(x, ∂Ω) ≥ ρ},
Ω(ρ) = {x ∈ R

n : d(x, Ω) ≤ ρ}

and |E| denotes the Lebesgue or surface measure of a measurable set E.

Proof of Theorem 1.1. We may assume that the eigenvalues with zero Dirichlet condition for � = ∇·(A(x)∇· )+
V (x) on Ω are all positive

0 < ω2
1 < ω2

2 ≤ ω2
3 ≤ · · · ≤ ω2

j ≤ . . .

and {ej} denotes the sequence of L2(Ω)-normalized eigenfunctions,{
�ej + ω2

j ej = 0, in Ω,

ej = 0, in ∂Ω.

When ω ⊂ Ω is measurable with positive Lebesgue measure, the method in [16] shows that one can find and
L2(ω × (0, T )) control function f verifying (1.2) for the system (1.1), provided there is N = N(|ω|, Ω, r, δ) such
that the inequality

∑
ωj≤μ

a2
j + b2

j ≤ eNμ

∫ ∫
ω×[ 14 , 34 ]

∣∣∣∣∣ ∑
ωj≤μ

(
ajeωjy + bje−ωjy

)
ej

∣∣∣∣∣
2

dxdy, (2.2)
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holds for μ ≥ ω1 and all sequences a1, a2, . . . and b1, b2, . . . Set then

u(x, y) =
∑

ωj≤μ

(
ajeωjy + bje−ωjy

)
ej . (2.3)

It satisfies {
�u + ∂2

yu = 0, in Ω × R,

u = 0, on ∂Ω × R,
(2.4)

and u is real analytic in Ω × R. Moreover, given (x0, y0) in Ω × R and R ≤ 1, there are N = N(r, δ) and
ρ = ρ(r, δ), 0 < ρ ≤ 1, such that

‖∂α
x ∂β

y u‖L∞(BR(x0,y0)∩Ω×R) ≤ N(|α| + β)!
(Rρ)|α|+β

(
—
∫

B2R(x0,y0)∩Ω×R

|u|2 dxdy

) 1
2

, (2.5)

when α ∈ Nn and β ≥ 1. For the later see [21], Chapter 5, [13], Chapter 3.
The orthonormality of {ej} in Ω and (2.5) with R = 1 imply that

‖∂α
x ∂β

y u‖L∞(Ω×[−5,5]) ≤ eNμ(|α| + β)!ρ−|α|−β

⎛⎝∑
ωj≤μ

a2
j + b2

j

⎞⎠
1
2

, for α ∈ N
n, β ≥ 0, (2.6)

and there is C > 0 such that replacing the constants N and ρ in (2.6) by CN and ρ/C respectively, u has a
real analytic extension to Ω(ρ) × [−4, 4] satisfying

‖∂α
x ∂β

y u‖L∞(Ω(ρ)×[−4,4]) ≤ M(|α| + β)!(2ρ)−|α|−β , for α ∈ N
n, β ≥ 0, (2.7)

with

M = eNμ

⎛⎝∑
ωj≤μ

a2
j + b2

j

⎞⎠
1
2

. (2.8)

For (x0, y0) in Ω × [0, 1] with d(x0, ∂Ω) = ρ, we have B2ρ(x0, y0) ⊂ Ω(ρ)× [−4, 4], and if we apply Theorem 1.3
to the real analytic extension of u in B2ρ(x0, y0) with E = B ρ

4
(x0, y0), (2.7) implies that there are new constants

N = N(ρ) > 0 and 0 < θ = θ(ρ) < 1 such that

‖u‖L∞(Bρ(x0,y0)) ≤ N‖u‖θ
L∞(B ρ

4
(x0,y0))

M1−θ.

The later implies
‖u‖L∞(Ωρ×[0,1]) ≤ N‖u‖θ

L∞(Ω
3ρ
4 ×[−ρ,1+ρ])

M1−θ, (2.9)

so that from (2.7) with α = β = 0 and (2.9)

‖u‖L∞(Ω×[0,1]) ≤ N‖u‖θ

L∞(Ω
3ρ
4 ×[−1,2])

M1−θ. (2.10)

Thus, from Theorem 3 and without Carleman inequalities it is possible to bound except for the factor M all the
information on the size of u over Ω × [0, 1] by information on the size of u over Ω

3ρ
4 × [−1, 2], a region located

in the interior and away from the boundary of Ω × R.
After choosing ρ smaller and replacing ω by a smaller measurable set if it is necessary, we can assume that

ω ⊂ B ρ
4
(0), |ω|/|B ρ

4
(0)| ≥ 1

2 and B2ρ(0) ⊂ Ω
3ρ
4 , so that E = ω × (2−ρ

4 , 2+ρ
4 ) ⊂ B ρ

2
(0, 1

2 ) has positive Lebesgue
measure inside B ρ

2
(0, 1

2 ) and B2ρ(0, 1
2 ) ⊂ Ω × [0, 1]. Then, a second application of Theorem 1.3 and (2.7) gives

‖u‖L∞(Bρ(0, 12 )) ≤ N‖u‖θ
L2(ω×[ 14 , 3

4 ])M
1−θ. (2.11)
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Also, (2.7) and Theorem 1.3 with E = BR
4
(x2, y2) imply that

‖u‖L∞(BR(x1,y1)) ≤ N‖u‖θ
L∞(B R

4
(x2,y2))

M1−θ,

whenever B2R(x1, y1) ⊂ Ω × [−4, 4], (x2, y2) is in BR
4
(x1, y1) and 0 < R ≤ 1. In particular,

‖u‖L∞(BR(x1,y1)) ≤ N‖u‖θ
L∞(BR(x2,y2))

M1−θ, (2.12)

when B2R(x1, y1) ⊂ Ω × [−4, 4], (x2, y2) is in BR
4
(x1, y1) and 0 < R ≤ 1.

Because ρ is now fixed and Ω is compact there are R in (0, 1) and k ≥ 2, which depend on ρ and the geometry
of Ω, such that for any (x0, y0) in Ω

3ρ
4 × [−1, 2] there are k points (x1, y1), (x2, y2), . . . , (xk, yk) in Ω

3ρ
4 × [−1, 2]

with
B2R(xi, yi) ⊂ Ω × [−4, 4], (xi+1, yi+1) ∈ BR

4
(xi, yi), for i = 0, . . . , k − 1

and (xk, yk) = (0, 1
2 ). The later and (2.12) show that

‖u‖L∞(BR(xi,yi)) ≤ N‖u‖θ
L∞(BR(xi+1,yi+1))

M1−θ, for i = 0, . . . , k − 1, (2.13)

while the iteration of (2.13) gives

‖u‖
L∞(Ω

3ρ
4 ×[−1,2])

≤ Nk‖u‖θk

L∞(Bρ(0, 12 ))M
1−θk

. (2.14)

Combining then (2.10), (2.14) and (2.11), one finds that

‖u‖L∞(Ω×[0,1]) ≤ Nk+2‖u‖θk+2

L2(ω×[ 14 , 3
4 ])M

1−θk+2
.

Thus,
‖u‖L∞(Ω×[0,1]) ≤ N‖u‖θ

L2(ω×[ 14 , 3
4 ])M

1−θ, (2.15)

for some new N and 0 < θ < 1, which depend on ρ, |ω| and the geometry of Ω but not on u.

The fact that the inequality

e−μ

(
sinh ω1

ω1
− 1
)(

a2 + b2
) ≤ ∫ 1

0

(
aeωy + be−ωy

)2 dy,

holds, when ω1 ≤ ω ≤ μ and a, b ∈ R and the orthonormality of {ej} in L2(Ω) show that⎛⎝∑
ωj≤μ

a2
j + b2

j

⎞⎠
1
2

≤ eNμ‖u‖L2(Ω×[0,1]) ≤ eNμ|Ω| 12 ‖u‖L∞(Ω×[0,1]), (2.16)

and (2.2) follows from (2.16), (2.15) and the definition of M in (2.8).

It is shown in [2] that the null-controllability of the system (1.1) over Ω = (0, 1) with

� =
1

ρ(x)
[∂x (a(x)∂x ) + b(x)∂x + c(x)] ,

δ ≤ a(x), ρ(x) ≤ δ−1, |b(x)| + |c(x)| ≤ δ−1 , a.e. in [0, 1], (2.17)
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is equivalent to the null-controllability of the system⎧⎪⎨⎪⎩
∂2

xz − ρ(x)∂tz = fχω, 0 < x < 1 , 0 < t < T,

z(0, t) = z(1, t) = 0, 0 ≤ t ≤ T,

z(x, 0) = z0, 0 ≤ x ≤ 1,

(2.18)

where ρ is a new function verifying (2.17) and ω a new measurable set in [0, 1] with positive measure. The later
follows from the bilipschitz change of variables used in [2]. Let then, 0 < ω2

1 < ω2
2 ≤ ω2

3 ≤ · · · ≤ ω2
j ≤ . . . and

{ej} denote the sequences of eigenvalues and L2(Ω)-normalized eigenfunctions [29], Chapter VII, verifying{
e′′j + ρ(x)ω2

j ej = 0, 0 < x < 1,

ej(0) = ej(1) = 0.

From [16] it suffices to show that (2.2) holds in order to find an interior null-control f for (2.18) verifying (1.2).
Extend then ej and ρ to [−1, 1] by odd and even reflections respectively, and to all R as periodic functions of
period 2. The extended ej is in C1,1(R) and verifies e′′j + ρ(x)ωjej = 0 in R, j = 1, 2 . . . . As before, let u be
defined by (2.3), it verifies

∂2
xu + ∂y (ρ(x)∂yu) = 0, in R

2.

By Chebyshev’s inequality and defining E as(
ω ×

[
1
4
,
3
4

])
\ E =

{
(x, y) ∈ ω ×

[
1
4
,
3
4

]
: |u(x, y)|/2 > —

∫
ω×[ 14 , 3

4 ]

|u| dxdy

}
,

we have

|E| ≥ 1
2

∣∣∣∣ω ×
[
1
4
,
3
4

]∣∣∣∣ and ‖u‖L∞(E) ≤ 2 —
∫

ω×[ 14 , 3
4 ]

|u| dxdy. (2.19)

Set then uε(x, y) = u(x
ε , y

ε ), it verifies

∂2
xuε + ∂y (ρ(x/ε)∂yuε) = 0, in R

2

and let vε be the stream function of uε, i.e., the solution to⎧⎪⎨⎪⎩
∂xvε = −ρ(x

ε )∂yuε,

∂yvε = ∂xuε,

vε(0, 0) = 0.

Then, f = uε + ivε is (1/δ)-quasiregular, i.e.,

f ∈ W 1,2
loc (R2), ∂zf = ν(z)∂zf, |ν(z)| ≤ 1 − δ

1 + δ
, z ∈ C,

and by the Ahlfors-Bers representation theorem [1] (see [6] or [7]) all the (1/δ)-quasiregular mappings f in B4

can be written as
f = F ◦ Ψ,

where F = U + iV is holomorphic in B4 and Ψ : B4 −→ B4 is a (1/δ)-quasiconformal mapping, i.e., a (1/δ)-
quasiregular homeomorphism from B4 onto B4 verifying

∂zΨ = ν(z)∂zΨ, Ψ(0) = 0, Ψ(4) = 4,

N−1|z1 − z2| 1
α ≤ |Ψ(z1) − Ψ(z2)| ≤ N |z1 − z2|α, when z1, z2 ∈ B4,

(2.20)
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for some 0 < α < 1 and N ≥ 1 depending on δ. Now, εE ⊂ B2ε, and from (2.20), Ψ(εE) ⊂ BN(2ε)α . Choose
then ε so that N(2ε)α = 1

2 . Thus, Ψ(εE) ⊂ B 1
2
, uε = U ◦ Ψ ,

‖U‖L∞(B4) = ‖u‖
L∞

(
B 4

ε

)

while the L∞-interior estimates for subsolutions of elliptic equations [12], Section 8.6, the periodicity and
orthogonality of the eigenfunctions ej in L2([0, 1], ρ(x) dx), gives

‖u‖L∞(B 4
ε
) � ‖u‖L2(B 6

ε
) � e6μ/ε

⎛⎝∑
ωj≤μ

a2
j + b2

j

⎞⎠
1
2

.

Thus, U is harmonic in B4,

‖U‖L∞(B4) ≤ eNμ

⎛⎝∑
ωj≤μ

a2
j + b2

j

⎞⎠
1
2

and from (2.19)

‖U‖L∞(Ψ(εE)) ≤ 2 —
∫

ω×[ 1
4 , 34 ]

|u| dxdy. (2.21)

All together, U verifies the conditions in Theorem 1.3 in B2 with R = 1 and the universal constant 0 <
ρ ≤ 1 associated to the quantitative property of analyticity over B2 for bounded harmonic functions on B4 [9],
Chapter 2. From (2.21), (2.2) holds provided we can find a lower bound for the Lebesgue measure of Ψ(εE) ⊂ B 1

2
.

The lower bound follows from (2.19) and the following rescaled version of [3], Theorem 1:
Let Ψ : B4 −→ B4 be a (1/δ)-quasiconformal mapping with Ψ(0) = 0 and E ⊂ B4 be a measurable set. Then,

there is N = N(δ) such that
|E| 1δ /N ≤ |Ψ(E)| ≤ N |E|δ. �

Remark 2.1. Theorem 1.3 also implies the version of (2.2) appearing in [17]. For if Ω, A and V are as above
and

u(x, y) =
∑

ωj≤μ

ajeωjyej(x),

u verifies (2.5) and

‖∂α
x u( . , 0)‖L∞(Ω) ≤ M |α|!(2ρ)−|α|, for α ∈ N

n, with M = eNμ

⎛⎝∑
ωj≤μ

a2
j

⎞⎠
1
2

.

Thus, u( . , 0) has an analytic extension to a ρ-neighborhood of Ω and after a finite number of applications of
Theorem 1.3 and a suitable covering argument we get

‖u( . , 0)‖L2(Ω) ≤ N‖u( . , 0)‖θ
L2(ω)M

1−θ.

In particular, ∑
ωj≤μ

a2
j ≤ eNμ

∫
ω

∣∣∣∣∣∣
∑

ωj≤μ

ajej

∣∣∣∣∣∣
2

dx, with N = N(|ω|, Ω, r, δ).
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Proof of Theorem 1.2. Let u be defined by (2.3). From [16], one can find a boundary control h verifying (1.3)
provided there is N = N(|γ|, Ω, r, δ) such that the inequality

∑
ωj≤μ

a2
j + b2

j ≤ eNμ

∫ ∫
γ×[ 14 , 3

4 ]

∣∣∣∣∣ ∑
ωj≤μ

(
ajeωjy + bje−ωjy

) ∂ej

∂ν

∣∣∣∣∣
2

dσdy, (2.22)

holds for μ ≥ ω1 and all sequences a1, a2, . . . and b1, b2, . . . . Here, ν, σ and ∂
∂ν denote respectively the exterior

unit normal vector to Ω, the surface measure on ∂Ω and the conormal derivative for ∂2
y + � on ∂Ω × R,

∂e
∂ν = A∇e · ν. We may also assume that 0 ∈ ∂Ω, γ ⊂ B ρ

2
∩ ∂Ω, where B2ρ ∩ ∂Ω is the region above the graph

of a real analytic function, ϕ : B′
ρ ⊂ R

n−1 −→ R, as in (2.1). From [16], Section 3(2), there is N such that⎛⎝∑
ωj≤μ

a2
j + b2

j

⎞⎠
1
2

≤ eNμ

∥∥∥∥∥ ∂u

∂ν

∥∥∥∥∥
L∞(∂Ω×[−1,2])

, (2.23)

with
∂u

∂ν
=
∑

ωj≤μ

(
ajeωjy + bje−ωjy

) ∂ej

∂ν
·

From (2.6) and (2.1), there are N = N(r, δ) and ρ = ρ(r, δ) such that h(x′, y) = ∂u
∂n (x′, ϕ(x′), y) verifies

‖∂α
x′∂β

y h‖L∞(B′
2ρ×[−4,4]) ≤ M (|α| + β)!(2ρ)−|α|−β, for α ∈ N

n−1, β ∈ N,

with M as in (2.8) and provided that B2ρ ∩ ∂Ω is a coordinate chart of ∂Ω as in (2.1). This fact, a suitable
covering argument of ∂Ω and the successive iteration of a finite number of applications of the three-spheres
type inequalities associated to the obvious extension of Theorem 1.3 for real analytic functions defined over real
analytic hypersurfaces in Rn+1 (See [14], pp. 67–69 for a quantitative version of the real analyticity of composite
functions) imply that there are N = N(|γ|, r, δ) and θ = θ(|γ|, r, δ) such that∥∥∥∥∥ ∂u

∂ν

∥∥∥∥∥
L∞(∂Ω×[−1,2])

≤ N

∥∥∥∥∥ ∂u

∂ν

∥∥∥∥∥
θ

L2(γ×[ 14 , 34 ])

M1−θ. (2.24)

Finally, (2.22) follows from (2.23) and (2.24). �

Remark 2.2. The extension of Theorem 1.1 to the parabolic system⎧⎪⎨⎪⎩
∂i(a

αβ
ij ∂je

β
k) − ∂tu

α = fα(x, t)χω(x), in Ω × (0, T ), α = 1, . . . , m,

u = 0, on ∂Ω × [0, T ],
u(0) = u0, in Ω,

(2.25)

with ∂Ω as in (2.1), aαβ
ij verifying (1.6) and

|∂γaαβ
ij (x)| ≤ |γ|!δ−|γ|−1, when x ∈ Ω, γ ∈ N

n, (2.26)

for some 0 < δ ≤ 1 is now obvious: the symmetry, coerciveness and compactness of the operator L2(Ω)m −→
W 1,2

0 (Ω)m, mapping f = (f1, . . . , fm) into the unique solution u = (u1, . . . , um) to{
∂i(a

αβ
ij ∂ju

β) − Λuα = fα, in Ω, α = 1, . . . , m,

u = 0, in ∂Ω
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where Λ > 0 is sufficiently large [11], Proposition 2.1, gives the existence of a complete system {ek} in L2(Ω)m,
ek = (e1

k, . . . , em
k ), of eigenfunctions verifying{

∂i(a
αβ
ij ∂je

β
k ) + ω2

keα
k = 0, in Ω, α = 1, . . . , m,

ek = 0, in ∂Ω

with eigenvalues 0 ≤ ω1 ≤ . . . ωk ≤ . . . and limk→+∞ ωk = +∞. By separation of variables, the Green’s matrix
for the system (2.25) over Ω × R is the m × m matrix

Γ (x, y, t − s) =
+∞∑
k=1

e−ω2
k(t−s)ek(x) ⊗ ek(y). (2.27)

Moreover, the interior and boundary regularity for the elliptic system ∂2
y +∂i(a

αβ
ij ∂j ) in Ω×R, shows that (2.5)

holds for u as in (2.3) but with ek replacing ek ([11, 22], Chap. II). These and [16] suffice to find a control
function f for the system (2.25) verifying (1.2). Furthermore, if you wish to get bounds on the regularity of the
control function f , [16] shows that suffices to know that

‖ek‖Hs(Ω) ≤ Ns(1 + ωk)s, when k, s ≥ 0

and
#{k ≥ 1 : 0 ≤ ωk ≤ μ} ≤ Nμn, when μ ≥ 1, (2.28)

for some N which does not depend on μ ≥ 1. The first holds from elliptic regularity and (2.26), while (2.28)
follows from the Gaussian estimates verified by Γ ; i.e., there are N and κ [8], Corollary 4.14, such that

|Γ (x, y, t)| ≤ N(1 ∧ t)−
n
2 eΛt−κ|x−y|2/t, for x, y ∈ R

n and t > 0. (2.29)

To verify the last claim, observe that (2.27), (2.29) and the orthonormality of the eigenfunctions ek give∫
Ω

∫
Ω

|Γ (x, y, t)|2 dxdy =
∑
k≥1

e−2ω2
kt ≤ Ne2Λt|Ω|t−n

2 , (2.30)

and it suffices to choose t = 1/μ2 in (2.30) to get (2.28). In particular, the methods in [16] also generate a
control function f in C∞

0 ((0, T ), C∞(Ω)).
The null-controllability of the system⎧⎪⎨⎪⎩

∂tu + (−1)m�mu = f(x, t)χω, in Ω × (0, T ],
u = ∇u = · · · = ∇m−1u = 0, in ∂Ω × (0, T ),
u(0) = u0, in Ω,

(2.31)

m ≥ 2, is better managed with the approach in [17]: if {ej} and 0 ≤ ω2m
1 ≤ · · · ≤ ω2m

k ≤ . . . are the eigenvectors
and eigenvalues for �m in Wm,2

0 (Ω),{
(−1)m�mej − ω2m

j ej = 0, in Ω,

ej = ∇ej = · · · = ∇m−1ej = 0, in ∂Ω,

define

u(x, y) =
∑

wm
j ≤μ

ajXj(y)ej(x), with Xj(y) =

⎧⎨⎩eωjy, for m odd,

eωje
πi
2m y, for m even.
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It verifies {
∂2m

y u + �mu = 0, in Ω × R,

u = ∇u = · · · = ∇m−1u = 0, in ∂Ω × R.

Again, u verifies (2.5) [22] and from Theorem 1.3 applied to u( . , 0) as in Remark 2.1,

∑
ωm

j ≤μ

a2
j ≤ eNμ

1
m

∫
ω

∣∣∣∣∣ ∑
ωm

j ≤μ

ajej

∣∣∣∣∣
2

dx, with N = N(|ω|, Ω, r, δ, m).

From [17], the last inequality suffices to find a control f in L2(ω × (0, T )) for (2.31).

Remark 2.3. The proof of Theorem 1.2 for the scalar case is based on the bound (2.23). In the literature, it is is
obtained from (2.16) and the interpolation inequality below which has been proved with Carleman inequalities:
there are N and θ such that the inequality

‖u‖L2(Ω×[0,1]) ≤ N

∥∥∥∥∥∂u

∂ν

∥∥∥∥∥
θ

L2(∂Ω×[−1,2])

‖u‖1−θ
L2(Ω×[−3,3]),

holds when u verifies (2.4). However, the authors are not aware wether the interpolation inequality

‖u‖L2(Ω×[0,1]) ≤ N

∥∥∥∥∥∂u
∂ν

∥∥∥∥∥
θ

L2(∂Ω×[−1,2])

‖u‖1−θ
L2(Ω×[−3,3]),

with (
∂u
∂ν

)α

= aαβ
ij ∂ju

βνi, α = 1, . . . , m,

holds for solutions u to the corresponding analog elliptic system and lateral boundary conditions:{
∂i(a

αβ
ij ∂ju

β) + ∂2
yuα = 0, in Ω × R, α = 1, . . . , m,

u = 0, in ∂Ω × R.

The later explains why we can not extend the boundary null-controllability results in Theorem 1.2 to general
parabolic systems with analytic coefficients and also analytic lateral boundaries. In spite of that, the inverse
mapping theorem shows that there is ρ > 0 such that the mapping

∂Ω × (0, ρ) −→ Uρ, (Q, t)� Q + tν(Q),

is an analytic diffeomorphism onto Uρ = {x ∈ Rn \ Ω : 0 < d(x, ∂Ω) < ρ} and the null-controllability for
parabolic systems with analytic coefficients over Ω ∪ Uρ and with controls acting over ω = U 3ρ

4
\U ρ

2
has been

stablished in Remark 2.2. From these, standard arguments show that at least the parabolic system⎧⎪⎨⎪⎩
∂i(a

αβ
ij ∂je

β
k) − ∂tu

α = 0, in Ω × (0, T ), α = 1, . . . , m,

u = g on ∂Ω × [0, T ],
u(0) = u0, in Ω,

can be null-controlled with controls g acting over the full lateral boundary of Ω.
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Remark 2.4. To prove Theorem 1.1 when ∂Ω, A and V are globally smooth and A and V are only real
analytic in a neighborhood of ω, one may assume that

ω ⊂ BR
4
, |ω|/|BR| ≥ 1/2, B4R ⊂ Ω (2.32)

|∂αA(x)| + |∂αV (x)| ≤ |α|!δ−|α|−1, when x ∈ B4R, α ∈ N
n, (2.33)

for some fixed 0 < R, δ ≤ 1 and the goal is to show that (2.2) holds. The Carleman and interpolation inequalities
stablished in [16], Section 3(1). for solutions to elliptic operators with smooth coefficients and for ∂Ω smooth
show that there is N = N(A, V, Ω, R) such that the inequalities⎛⎝∑

ωj≤μ

a2
j + b2

j

⎞⎠
1
2

≤ eNμ‖u‖L∞(BR(0, 12 )), (2.34)

hold when μ ≥ ω1, for all sequences a1, a2, . . . , b1, b2, . . . and for u as in (2.3). Because u verifies

Δu + ∂2
yu = 0, in B4R

(
0,

1
2

)
and (2.33) holds, u is a local solution to an elliptic equation with local real analytic coefficients and there are
N = N(δ) and ρ = ρ(δ), 0 < ρ ≤ 1, such that

‖∂α
x ∂β

y u‖L∞(B2R(0, 1
2 )) ≤

N(|α| + β)!
(Rρ)|α|+β

(
—
∫

B4R(0, 1
2 )

|u|2 dxdy

) 1
2

, (2.35)

when α ∈ Nn and β ≥ 1. The later follows from the corresponding result for R = 1 and rescaling ([21], Chap. 5,
[13], Chap. 3). The orthonormality of {ej} in Ω and (2.35) show that

‖∂α
x ∂β

y u‖L∞(B2R(0, 12 )) ≤ M(|α| + β)!(Rρ)−|α|−β , for α ∈ N
n, β ≥ 0, (2.36)

with M as in (2.8). Finally, Theorem 1.3 in B2R(0, 1
2 ) with

E = ω ×
(

2 − R

4
,
2 + R

4

)
⊂ BR

2

(
0,

1
2

)
,

(2.36) and (2.32) show that
‖u‖L∞(BR(0, 1

2 )) ≤ N‖u‖θ
L2(ω×[ 14 , 34 ])M

1−θ, (2.37)

and (2.2) follows from (2.34), (2.37) and (2.8).
To prove Theorem 1.2 with ∂Ω, A and V real analytic near γ and smooth elsewhere, one may assume that

0 is in ∂Ω and that there are 0 < R, δ ≤ 1 and ϕ : B′
R ⊂ Rn−1 −→ R such that

γ ⊂ BR
4
∩ ∂Ω, |γ|/|BR ∩ ∂Ω| ≥ 1

2
, (2.38)

ϕ(0′) = 0, |∂αϕ(x′)| ≤ |α|!δ−|α|−1, when x′ ∈ B′
4R, α ∈ N

n−1,

|∂αA(x)| + |∂αV (x)| ≤ |α|!δ−|α|−1, when x ∈ B4R ∩ Ω, α ∈ N
n,

B4R ∩ Ω = B4R ∩ {(x′, xn) : x′ ∈ B′
4R, xn > ϕ(x′)},

B4R ∩ ∂Ω = B4R ∩ {(x′, xn) : x′ ∈ B′
4R, xn = ϕ(x′)}

(2.39)
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and the goal is to show that (2.22) holds. The Carleman and interpolation inequalities stablished in [16],
Section 3(2) for solutions to elliptic operators with smooth coefficients and with ∂Ω smooth show that there is
N = N(A, V, Ω, R) such that the inequalities⎛⎝∑

ωj≤μ

a2
j + b2

j

⎞⎠
1
2

≤ eNμ

∥∥∥∥∥∂u

∂ν

∥∥∥∥∥
L∞(BR(0, 1

2 )∩∂Ω×R)

, (2.40)

hold when μ ≥ ω1, for all sequences a1, a2, . . . , b1, b2, . . . and for u as in (2.3). Because u verifies{
Δu + ∂2

yu = 0, in B4R

(
0, 1

2

) ∩ Ω × R,

u = 0, in B4R

(
0, 1

2

) ∩ ∂Ω × R,

and (2.39) holds there are N = N(δ) and ρ = ρ(δ), 0 < ρ ≤ 1, such that

‖∂α
x ∂β

y u‖L∞(B2R(0, 1
2 )∩Ω×R) ≤

N(|α| + β)!
(Rρ)|α|+β

(
—
∫

B4R(0, 1
2 )∩Ω×R

|u|2 dxdy

) 1
2

, (2.41)

when α ∈ N
n and β ≥ 1. The later follows from the corresponding result for R = 1 and rescaling ([21], Chap. 5,

[13], Chap. 3). The orthonormality of {ej} in Ω and (2.41) show that

‖∂α
x ∂β

y u‖L∞(B2R(0, 1
2 )∩Ω×R) ≤ M(|α| + β)!(Rρ)−|α|−β , for α ∈ N

n, β ≥ 0, (2.42)

with M as in (2.8). Finally, the obvious extension of Theorem 1.3 for real analytic functions over B2R(0, 1
2 ) ∩

∂Ω × R [14], pages 67–69, with

E = γ ×
(

2 − R

4
,
2 + R

4

)
⊂ BR

2

(
0,

1
2

)
∩ ∂Ω × R,

(2.42) and (2.38) show that ∥∥∥∥∥∂u

∂ν

∥∥∥∥∥
L∞(BR(0, 1

2 )∩∂Ω×R)

≤ N

∥∥∥∥∥∂u

∂ν

∥∥∥∥∥
θ

L2(γ×[ 14 , 3
4 ])

M1−θ, (2.43)

and (2.22) follows from (2.40), (2.43) and (2.8).

3. Proof of Theorem 1.3

First we recall Hadamard’s three-circle theorem [19] and prove two Lemmas before the proof of Theorem 1.3.

Theorem 3.1. Let F be a holomorphic function of a complex variable in the ball Br2 . Then, the following is
valid for 0 < r1 ≤ r ≤ r2,

‖F‖L∞(Br) ≤ ‖F‖θ
L∞(Br1)‖F‖1−θ

L∞(Br2 ), θ =
log r2

r

log r2
r1

·

Lemma 3.2. Let f be holomorphic in B1, |f(z)| ≤ 1 in B1 and E be a measurable set in
[− 1

5 , 1
5

]
. Then, there

are N = N(|E|) and γ = γ(|E|) such that

‖f‖L∞(B 1
2
) ≤ N‖f‖γ

L∞(E).
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Proof. For n ≥ 1, there are n + 1 points with − 1
5 ≤ x0 < x1 < · · · < xn ≤ 1

5 , with xi ∈ E, i = 0, . . . , n and

xi − xi−1 ≥ |E|
n+1 , i = 1, . . . , n. For example, x0 = inf E, xi = inf

(
E ∩ [xi−1 + |E|

n+1 , 1
5 ]
)
. Let

Pn(z) =
n∑

i=0

f(xi)

∏
j �=i(z − xj)∏
j �=i(xi − xj)

·

Then,

|Pn(z)| ≤ ‖f‖L∞(E)|E|−n
n∑

i=0

(n + 1)n

i!(n − i)!
≤ ‖f‖L∞(E)

(
3
|E|
)n

, for |z| ≤ 1
2
·

By Cauchy’s formula,

|f(z) − Pn(z)| =

∣∣∣∣∣ 1
2πi

∫
|ξ|=1

f(ξ)(z − x0) . . . (z − xn)
(ξ − z)(ξ − x0) . . . (ξ − xn)

dξ

∣∣∣∣∣ ≤ 2
(

7
8

)n

, for |z| ≤ 1
2
·

The last two inequalities give

‖f‖L∞(B 1
2
) ≤ ‖f‖L∞(E)

(
3
|E|
)n

+ 2
(

7
8

)n

, for all n ≥ 1, (3.1)

and the minimization in the n-variable of the right hand side of (3.1) implies Lemma 3.2. �

Lemma 3.3. Let f be analytic in [0, 1], E be a measurable set in [0, 1] and assume there are positive constants
M and ρ such that

|f (k)(x)| ≤ Mk!(2ρ)−k, for k ≥ 0, x ∈ [0, 1]. (3.2)

Then, there are N = N(ρ, |E|) and γ = γ(ρ, |E|) such that

‖f‖L∞([0,1]) ≤ N‖f‖γ
L∞(E)M

1−γ .

Proof. (3.2) implies that f has a holomorphic extension to Dρ = ∪0≤x≤1B(x, ρ), with |f | ≤ 2M in Dρ. Write
[0, 1] as a disjoint union of 5

2ρ non-overlapping closed intervals of length 2ρ
5 . Among them there is at least one,

I = [x0 − δ
5 , x0 + δ

5 ], such that |E ∩ I| ≥ 2δ|E|
5 . Then, g(z) = f(x0 + δz)/2M is holomorphic in B1, Ex0,ρ =

ρ−1(E ∩ I − x0) is measurable in [− 1
5 , 1

5 ] with measure bounded from below by 2|E|
5 , ‖g‖L∞(Ex0,ρ) ≤ ‖f‖L∞(E)

and applying Lemma 3.2 to g, we have

‖f‖L∞(B ρ
2
(x0)) ≤ N‖f‖γ

L∞(E)M
1−γ , (3.3)

for some 0 ≤ x0 ≤ 1. By making successive iterations of Hadamard’s three-circle theorem (a finite number
which depends only ρ) with a suitable chain of three-circles contained in Dρ of radius comparable to ρ and with
centers at points in [0, 1], while recalling that on the largest ball |f | ≤ 2M , we get that

‖f‖L∞(0,1) ≤ N‖f‖θ
L∞(B ρ

2
(x0))

M1−θ, θ = θ(ρ). (3.4)

Finally, Lemma 3.3 follows from (3.4) and (3.3). �

Proof of Theorem 1.3. We may assume R = 1. Let x ∈ B 1
2
. Using spherical coordinates centered at x,

|E| ≤
∫

Sn−1
|{t ∈ [0, 1] : x + tz ∈ E}| dz,
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and there is at least one z ∈ Sn−1 with |{t ∈ [0, 1] : x + tz ∈ E}| ≥ |E|/(2ωn), with ωn the surface measure on
Sn−1. Set ϕ(t) = f(x + tz). From (1.5), ϕ satisfies (3.2), ‖ϕ‖L∞(Ez) ≤ ‖f‖L∞(E) and Lemma 3.3 gives

‖f‖L∞(B 1
2
) ≤ N‖f‖γ

L∞(E)M
1−γ . (3.5)

Finally, setting

Ẽ =

{
x ∈ E : |f(x)|/2 ≤ —

∫
E

|f | dx

}
.

Chebyshev’s inequality shows that

|Ẽ| ≥ |E|/2 , ‖f‖L∞(Ẽ) ≤ 2 —
∫

E

|f | dx,

and Theorem 1.3 follows after replacing E by Ẽ in (3.5). �
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