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EPITAXIALLY STRAINED ELASTIC FILMS: THE CASE OF ANISOTROPIC
SURFACE ENERGIES

Marco Bonacini
1

Abstract. In the context of a variational model for the epitaxial growth of strained elastic films, we
study the effects of the presence of anisotropic surface energies in the determination of equilibrium
configurations. We show that the threshold effect that describes the stability of flat morphologies in
the isotropic case remains valid for weak anisotropies, but is no longer present in the case of highly
anisotropic surface energies, where we show that the flat configuration is always a local minimizer
of the total energy. Following the approach of [N. Fusco and M. Morini, Equilibrium configurations
of epitaxially strained elastic films: second order minimality conditions and qualitative properties of
solutions. Preprint], we obtain these results by means of a minimality criterion based on the positivity
of the second variation.
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1. Introduction

The mechanism of epitaxial growth of an elastic film on a relatively thick substrate, in presence of a lattice
mismatch at the interface between film and substrate, is understood to be governed by the competition of two
opposing forms of energy, the bulk elastic energy and the surface energy. A proper variational formulation of the
problem, which makes use of the tools of relaxation and geometric measure theory, is proposed in [2] and in [10]:
here the film is modeled as a linear elastic solid grown on a flat substrate in a two-dimensional framework
(corresponding to three-dimensional configurations with planar symmetry); equilibrium configurations corre-
spond to minimizers of the total energy of the system, which is taken as the sum of the stored elastic energy
and the energy of the free surface of the film. Due to the presence of these two competing forms of energy,
flat morphologies become unstable after a critical value of the thickness of the film is reached: this threshold
effect, known as Asaro-Grinfeld-Tiller (AGT) instability, is discussed in [14], while in [12] the authors determine
analytically the critical threshold for the local minimality of the flat configuration using a minimality criterion
based on the positivity of the second variation of the total energy. Concerning the regularity of local minimizers
of the total energy, we refer to the recent paper [7], where it is proved that the profile of a volume constrained
local minimizer may have at most a finite number of vertical cuts or cusp points, being of class C1 away from
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these singularities (see also [10], where the model is slightly different and a stronger notion of local minimality
is considered).

In this paper we investigate the role played by the presence of anisotropy in the surface energy in determining
the resulting equilibrium configurations: while in the analysis of [12] the surface term in the total energy was
assumed to be isotropic, here we consider the free surface energy of the film to be of the form∫

Γ

ψ(ν) dH1, (1.1)

where Γ is the free profile of the film, and ψ is a convex function of the normal ν to the surface of the film (see
also [11], where a similar energy is considered in a slightly different context). The main information about the
anisotropy is carried by the Wulff shape associated with ψ (see Sect. 2), which is the set that minimizes (1.1)
under a volume constraint. We consider first the case of “weak” anisotropies, in which the surface density ψ
satisfies a strong convexity condition (see (2.3)) and the corresponding Wulff shape is a regular set. Then we
pass to the crystalline case, in which we assume that the boundary of the Wulff shape contains a horizontal
facet intersecting the y-axis.

The main findings of our analysis are the following. In the case of regular anisotropies we observe the same
qualitative behavior as in the isotropic case studied in [12]. Precisely, we show the existence of a volume threshold
such that the flat configuration is a local minimizer for the total energy if and only if the volume is below the
critical value (such a threshold is analytically determined). The situation is very different in presence of a
crystalline anisotropy: in the main result of the paper (Thm. 2.9) we show that the flat configuration is always
a strong local minimizer (see Def. 2.3) with respect to small L∞-perturbations of the free profile, no matter how
thick the film is. As in [12], these results are obtained by means of a sufficient condition for local minimality,
expressed in terms of a suitable notion of second variation of the total energy.

The paper is organized as follows. In Section 2 we fix the notations, we describe the variational model and
we state the main results. In Section 3 we compute the second variation of the total energy, and we start paving
the way to the proof of the local minimality criterion, which will be completed in Section 4. Finally, Sections 5
and 6 are devoted to the proofs of the results concerning the stability of the flat configuration in the regular
case and in the crystalline case, respectively.

2. Setting and main results

We start by describing the setting of the problem, as formulated in [2, 12].
The reference configuration of the film is modeled as the subgraph of a lower semicontinuous function with

finite pointwise total variation: given b > 0, we set

AP (0, b) := {g : R → [0,+∞) : g is lower semicontinuous and b-periodic,Var(g; 0, b) < +∞},

where

Var(g; 0, b) := sup

{
k∑
i=1

|g(xi) − g(xi−1)| : 0 < x0 < x1 < . . . < xk < b, k ∈ N

}
.

For an admissible profile g ∈ AP (0, b), we introduce the sets

Ωg := {(x, y) : x ∈ (0, b), 0 < y < g(x)},
Γg := {(x, y) : x ∈ [0, b) , g−(x) ≤ y ≤ g+(x)},
Σg := {(x, y) : x ∈ [0, b) , g(x) < g−(x), g(x) ≤ y ≤ g−(x)},

which will be referred to as the reference configuration of the film, the free profile of the film, and the set of
vertical cuts, respectively (here g+(x) = g(x+) ∨ g(x−) and g−(x) = g(x+) ∧ g(x−), where g(x+) and g(x−)
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denote the right and the left limits of g at x, respectively, which exist at every point). We consider also the
b-periodic extension of the reference configuration:

Ω#
g := {(x, y) : x ∈ R, 0 < y < g(x)}

(the sets Γ#
g , Σ#

g are defined similarly). If g is Lipschitz, we denote by ν the exterior unit normal vector to
Ωg on Γg, and by τ = ν⊥ the unit tangent vector to Γg (obtained rotating ν clockwise by π

2 ). Moreover, we
denote by divτ the tangential divergence on Γg, by ∂τ , ∂ν the tangential and normal derivative, and by Dτ , Dν

the tangential and normal gradient, respectively. Finally, for a sufficiently regular g the curvature of Γg will be
denoted by

H = divν = −
(

g′√
1 + (g′)2

)′
◦ π1 on Γg,

where π1 : R2 → R is the orthogonal projection on the x-axis.
In order to introduce the space of admissible elastic variations, we define for a given g ∈ AP (0, b)

LD#(Ωg; R2) := {v ∈ L2
loc(Ω

#
g ; R2) : v(x, y) = v(x+ b, y) for (x, y) ∈ Ω#

g , E(v)|Ωg ∈ L2(Ωg; M2×2)},

where E(v) := 1
2 (∇v + (∇v)T ) denotes the symmetrized gradient of v. We assign at the interface between

the film and the substrate a boundary Dirichlet datum, which forces the film to be strained, of the form
u0(x, 0) = (e0x + q(x), 0), where e0 > 0 and q : R → R is a b-periodic function of class C∞ (the constant e0
measures the lattice mismatch between film and substrate). Finally, let us introduce the following spaces of
admissible pairs film profile-deformation:

Y (u0; 0, b) := {(g, v) : g ∈ AP (0, b), v : Ω#
g → R

2, v − u0 ∈ LD#(Ωg; R2)},
X(u0; 0, b) := {(g, v) ∈ Y (u0; 0, b) : v(x, 0) = u0(x, 0) for all x ∈ R},
XL(u0; 0, b) := {(g, v) ∈ X(u0; 0, b) : g is Lipschitz continuous}.

We consider the following notion of convergence in Y (u0; 0, b): we say that a sequence (hn, un) tends to (h, u)
in Y iff

• supn Var(hn; 0, b) < +∞;
• dH(R2

+\Ω#
hn
,R2

+\Ω#
h ) → 0, where dH is the Hausdorff distance defined as2

dH(A,B) = inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)};

• un ⇀ u weakly in H1
loc(Ω

#
h ; R2)

(note that this implies also that hn → h in L1(0, b): see [10], Lem. 2.5). We have the following compactness
theorem (see [2, 10]):

Theorem 2.1. Assume that (hn, un) ∈ X(u0; 0, b) satisfy

sup

{∫
Ωhn

|E(un)|2 dz + Var(hn; 0, b) + |Ωhn |
}
< +∞.

Then there exists (h, u) ∈ X(u0; 0, b) such that, up to subsequences, (hn, un) → (h, u) in Y .

2Here Nε(C) denotes the ε-neighborhood of a set C, and R
2
± = {(x, y) : ±y ≥ 0}.
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We are now ready to introduce the functional on X , which is the sum of the bulk elastic energy and of the
energy of the free surface of the film. In our investigation, anisotropy is incorporated only in the surface term and
neglected in the volume energy. This reflects the observation that surface anisotropy is more considerable than
anisotropy in the elastic field. Hence we consider an elastic energy density of the form W (u) := 1

2CE(u) : E(u),
where

Cξ :=
(

(2μ+ λ)ξ11 + λξ22 2μξ12
2μξ12 (2μ+ λ)ξ22 + λξ11

)
for ξ ∈ M

2×2
sym.

Here μ and λ denote the Lamé coefficients, which are assumed to satisfy the ellipticity conditions μ > 0,
λ+ μ > 0 (note that W (u) ≥ min{μ, λ+ μ}|E(u)|2 and thus W is coercive).

We add to the elastic energy an anisotropic surface term: we consider a convex and positively homogeneous
function of degree one ψ : R2 → [0,+∞) satisfying the following condition:

m|z| ≤ ψ(z) ≤M |z| for every z ∈ R
2, (2.1)

for some positive constants m and M .
Finally, we introduce the functional

F̃ (h, u) =
∫
Ωh

W (u) dz +
∫
Γh

ψ(ν) dH1 for (h, u) ∈ XL(u0; 0, b).

The functional F̃ , originally defined only for Lipschitz admissible profiles, can be extended to the whole space
X(u0; 0, b), by relaxation: we set for (h, u) ∈ X(u0; 0, b)

F (h, u) := inf
{

lim inf
n→∞ F̃ (hn, un) : (hn, un) ∈ XL(u0; 0, b), |Ωhn | = |Ωh|, (hn, un) → (h, u) in Y

}
.

The following theorem provides an explicit representation of the relaxed functional.

Theorem 2.2. Let σ = ψ(1, 0) + ψ(−1, 0). The following representation formula for F holds:

F (h, u) =
∫
Ωh

W (u) dz +
∫
Γh

ψ(νh) dH1 + σH1(Σh) (2.2)

where νh is the generalized outer normal to Ω#
h ∪ R2

− at the points of its reduced boundary (which coincides, in
the strip [0, b) × R, with Γh up to an H1-negligible set).

The proof can be obtained arguing as in [10], Theorem 2.8 and [2], Lemma 2.1, using Reshetnyak’s lower
semicontinuity and continuity theorems (see [1], Thms. 2.38 and 2.39) to treat the presence of anisotropy in the
surface term (we refer also to the recent works [3, 6] for related relaxation results in higher dimension).

We now define the notions of local minimizer, critical pair and flat configuration.

Definition 2.3. We say that (h, u) ∈ X(u0; 0, b) is a b-periodic local minimizer for the functional F if there
exists δ > 0 such that

F (h, u) ≤ F (g, v)

for all (g, v) ∈ X(u0; 0, b) with |Ωg| = |Ωh| and ‖g− h‖∞ < δ; if the inequality is strict when g �= h, we say that
(h, u) is an isolated b-periodic local minimizer.

We will first study the situation in which the anisotropy is regular. Precisely, we make the following additional
assumptions on the anisotropy ψ:

(R1) ψ is of class C3 away from the origin;
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(R2) the following strong convexity condition holds: for every v ∈ S1

∇2ψ(v)[w,w] > c0 |w|2 for all w ⊥ v, (2.3)

for some constant c0 > 0.

The results of Sections 3–5 are obtained under these hypotheses. We note for later use that by homogeneity

∇2ψ(v)[v] = 0 for every v ∈ R
2\{0}. (2.4)

Definition 2.4. We say that an element (h, u) ∈ X(u0; 0, b) with h ∈ C2(R) is a critical pair for the functional
F if u minimizes the elastic energy in Ωh, that is, u satisfies the equation∫

Ωh

CE(u) : E(w) dz = 0 for every w ∈ A(Ωh), (2.5)

where
A(Ωh) := {w ∈ LD#(Ωh; R2) : w(·, 0) ≡ 0},

and the following transmission condition holds:

W (u) +Hψ = const. on Γh ∩ {y > 0}. (2.6)

Here Hψ is the anisotropic mean curvature of Γh, defined as

Hψ := div(∇ψ ◦ ν) = divτ (∇ψ ◦ ν)

(the second equality follows from Dν[ν] = 0).

Remark 2.5. The definition of critical pair is motivated by the Euler-Lagrange equation satisfied by a suffi-
ciently regular (local) minimizer of F (see the formula for the first variation of F deduced in Step 1 of the proof
of Theorem 3.1). Assuming more regularity in the anisotropy, we can apply standard results to deduce further
regularity of a critical pair. In particular, if h > 0 and Γh is of class C1,α for all α ∈ (0, 1/2), then equation (2.5)
(which is a linear elliptic system satisfying the Legendre-Hadamard condition) implies that u ∈ C1,α(Ωh) for
all α ∈ (0, 1/2) (see [12], Prop. 8.9). Moreover, if both ψ and u0 are of class C∞ (analytic, respectively), and
equation (2.6) holds in the distributional sense, then (h, u) is of class C∞ (analytic, respectively) by the results
contained in [15], Section 4.2. Observe that condition (2.3) is exactly the assumption needed in the regularity
result of [15].

Remark 2.6. We will make repeated use of the following explicit formula for the anisotropic mean curvature:

Hψ(x, h(x)) =
(
∂1ψ(−h′(x), 1)

)′
. (2.7)

Indeed, from condition (2.4) it follows that ∇2ψ(−h′, 1)[(−h′, 1)] = 0, which in turn implies ∂2
12ψ(−h′, 1) =

∂2
11ψ(−h′, 1)h′; hence

Hψ = divτ (∇ψ ◦ ν) = ∂τ (∇ψ ◦ ν) · τ
= − h′′

1 + h′2
[
∂2
11ψ(−h′, 1) + h′∂2

12ψ(−h′, 1)
]
◦ π1

= −
(
h′′ ∂2

11ψ(−h′, 1)
)
◦ π1,

which is (2.7).
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Definition 2.7. The flat configuration corresponding to a given volume d > 0 and a boundary Dirichlet datum
u0(x, 0) = (e0x, 0), e0 > 0, is the pair (db , ve0 ) with

ve0(x, y) := e0

(
x,

−λ
2μ+ λ

y

)
. (2.8)

Notice that the flat configuration is a critical pair for F .

In Sections 3 and 4 we will prove a local minimality criterion for the functional F expressed in terms of the
positivity of its second variation. The result will be established by implementing, in our anisotropic framework,
the general strategy described in [12] to deal with the isotropic case. From this we will be able to deduce, in
Section 5, a stability property for the flat configuration, showing that the qualitative results obtained in [12]
hold also in the case of regular anisotropies: in particular we have a volume threshold of minimality, which can
be determined analitically in terms of the Grinfeld function K, defined for y ≥ 0 by

K(y) := max
n∈N

1
n
J(ny), J(y) :=

y + (3 − 4νp) sinh y cosh y
4(1 − νp)2 + y2 + (3 − 4νp) sinh2 y

,

where νp = λ
2(λ+μ) (the function K is strictly increasing and continuous, K(y) ≤ Cy for some positive constant

C, and limy→+∞K(y) = 1: see [12], Cor. 5.3). Precisely, we show:

Theorem 2.8. For any b > 0 and e0 > 0, let d(b, e0) ∈ (0,+∞] be defined as d(b, e0) = +∞ if 0 < b ≤
π
4

(2μ+λ) ∂2
11ψ(0,1)

e20μ(μ+λ)
, and as the solution to

K

(
2πd(b, e0)

b2

)
=
π

4
(2μ+ λ) ∂2

11ψ(0, 1)
e20 μ (μ+ λ)

1
b

otherwise. Then the flat configuration (db , ve0) is an isolated b-periodic local minimizer for F if 0 < d < d(b, e0),
in the sense of Definition 2.3.

The threshold d(b, e0) is critical: indeed, for d > d(b, e0) there exists a sequence (gn, vn) ∈ X(u0; 0, b) such
that |Ωgn | = d, ‖gn − d

b ‖∞ ≤ 1
n and F (gn, vn) < F (db , ve0 ).

We are now ready to state the main contribution of this note. As announced in the introduction, we will
show that if we consider a less regular anisotropic surface density, whose Wulff shape has a flat facet parallel to
the x-axis, we have a different qualitative behavior concerning the stability of the flat configuration. We recall
(see [8, 9, 16]) that the Wulff shape associated to a function ψ : S1 → (0,+∞) is the convex set

Wψ = {z ∈ R
2 : z · v ≤ ψ(v) for every v ∈ S

1}, (2.9)

which coincides with the unique minimizer (up to translations) of the “anisotropic isoperimetric problem”

min
{∫

∂∗E
ψ(νE) dH1 : E ⊂ R

2 has finite perimeter, |E| = |Wψ|
}
.

Viceversa, every compact convex set K containing a neighborhood of the origin is the Wulff set associated with
the convex function

ψK(v) = sup{z · v : z ∈ K}. (2.10)

Let us consider an anisotropy ψc : R2 → [0,+∞) satisfying the following assumptions:

(C1) ψc is a positively 1-homogeneous and convex function;
(C2) the associated Wulff shape Wψc contains a neighborhood of the origin;
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(C3) the boundary of Wψc contains a horizontal facet, precisely, a segment of the form L = {|x| ≤ a1, y = a2}
for some positive reals a1, a2.

Setting σc = ψc(1, 0) + ψc(−1, 0), we consider the associated functional defined on X(u0; 0, b) as

Fc(h, u) =
∫
Ωh

W (u) dz +
∫
Γh

ψc(νh) dH1 + σcH1(Σh).

The main result of the paper, which is proved in Section 6, is concerned with the stability of the flat configuration
and shows that the presence of an horizontal facet in the Wulff shape eliminates the AGT instability. Precisely,
we have:

Theorem 2.9. Given any b > 0, d > 0, e0 > 0, the flat configuration (db , ve0) corresponding to the volume
d and the boundary Dirichlet datum u0(x, 0) = (e0x, 0) is an isolated b-periodic local minimizer for Fc, in the
sense of Definition 2.3.

3. Second variation and W 2,∞
local minimality

In this section, following [12], we introduce a suitable notion of second variation of the functional F along
volume preserving deformations, in terms of which we will be able to state a local minimality criterion.

Let us assume that the anisotropy ψ satisfies conditions (R1) and (R2) of Section 2. Fix (h, u) ∈ X(u0; 0, b)
with h ∈ C∞(R), h > 0, and such that the displacement u minimizes the elastic energy in Ωh. Given φ : R → R

of class C∞, b-periodic and such that
∫ b
0 φ(x) dx = 0, define ht := h + tφ for t ∈ R and let uht be the elastic

equilibrium in Ωht . We define the second variation of F at (h, u) along the direction φ to be the value of

d2

dt2
[F (ht, uht)] |t=0.

In the following theorem we compute explicitly the second variation defined as above. Denote by νt the outer
unit normal vector to Ωht on Γht , and by Hψ

t := div (∇ψ ◦ νt) the anisotropic curvature of Γht . For any one-
parameter family of functions (gt)t we denote by ġt(x) the partial derivative with respect to t of the map
(t, x) → gt(x) (omitting the subscript when t = 0).

Theorem 3.1. Let (h, u), φ, and (ht, uht) be as above, and let ϕ be defined as ϕ := φ√
1+h′2 ◦ π1. Then the

function u̇ belongs to A(Ωh) and satisfies the equation∫
Ωh

CE(u̇) : E(w) dz =
∫
Γh

divτ (ϕCE(u)) · w dH1 for all w ∈ A(Ωh). (3.1)

Moreover, the second variation of F at (h, u) along the direction φ is given by

d2

dt2
F (ht, uht)|t=0 = −

∫
Ωh

CE(u̇) : E(u̇) dz +
∫
Γh

(∇2ψ ◦ ν)[Dτϕ,Dτϕ] dH1

+
∫
Γh

(
∂ν [W (u)] −HHψ

)
ϕ2 dH1 −

∫
Γh

(
W (u) +Hψ

)
∂τ
(
(h′ ◦ π1)ϕ2

)
dH1. (3.2)

Proof. The computation is carried out in [12], Theorem 3.2, in the case of an isotropic surface energy. The
equation solved by u̇ is deduced exactly in the same way, and also the same computation for the elastic energy
yields

d2

dt2

[∫
Ωht

W (uht) dz

]∣∣∣∣∣
t=0

= −
∫
Ωh

CE(u̇) : E(u̇) dz (3.3)

+
∫
Γh

∂ν [W (u)]ϕ2 dH1 −
∫
Γh

W (u) ∂τ
(
(h′ ◦ π1)ϕ2

)
dH1.

We are only left with the computation of the first and second derivatives of the surface energy.
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Step 1. We compute the first variation of the surface term. Using the positive 1-homogeneity of ψ, we have

d
dt

∫
Γht

ψ(νt) dH1 =
d
dt

∫ b

0

ψ(−h′t(x), 1) dx

= −
∫ b

0

∂1ψ(−h′t(x), 1)φ′(x) dx

=
∫ b

0

φ(x)Hψ
t (x, ht(x)) dx,

where the last equality follows by integration by parts and by (2.7). We remark that the first variation of the
complete functional F is

d
dt
F (ht, uht) =

∫ b

0

φ(x)
[
W (uht) +Hψ

t

]
|(x,ht(x)) dx.

Step 2. Before starting the computation of the second variation, we deduce some useful identities that will be
used in the following. Observe first that, thanks to the fact that Dν[ν] = 0, we have

Dν = Dτν = Hτ ⊗ τ on Γh. (3.4)

Moreover, for the same reason we have also D (∇ψ ◦ ν) [ν] = 0; differentiating we get

∂ν (D (∇ψ ◦ ν)) = −D (∇ψ ◦ ν)Dν,
thus

∂νH
ψ = ∂ν [div(∇ψ ◦ ν)] = ∂ν [trace (D (∇ψ ◦ ν))]

= trace [∂ν (D (∇ψ ◦ ν))] = −trace [D (∇ψ ◦ ν)Dν]
= −HHψ,

where the last equality follows using (3.4).
Differentiating with respect to t the identity

νt(x, y + tφ(x)) =
(−h′t(x), 1)√
1 + (h′t(x))2

for (x, y) ∈ Γh,

and evaluating the result at t = 0, we get

ν̇ + (φ ◦ π1) ∂2ν = −
(

φ′

1 + (h′)2
◦ π1

)
τ on Γh.

Now from this equality and from (3.4) we obtain

ν̇ = −
(

(φ ◦ π1)Hτ2 +
φ′

1 + (h′)2
◦ π1

)
τ = −Dτϕ. (3.5)

As a consequence of (2.4) we have (∇2ψ ◦ ν)[ν, ν̇] = 0, and differentiating this identity in the direction ν we
get

ν · ∂ν
(
(∇2ψ ◦ ν)[ν̇]) = −(∇2ψ ◦ ν)[ν̇, ∂νν] = 0

(recall that ∂νν = 0). Hence

Ḣψ =
∂

∂t
Hψ
t |t=0 =

∂

∂t

[
div(∇ψ ◦ νt)

]|t=0 = div
(
(∇2ψ ◦ ν)[ν̇])

= divτ
(
(∇2ψ ◦ ν)[ν̇])+ ν · ∂ν

(
(∇2ψ ◦ ν)[ν̇])

= divτ
(
(∇2ψ ◦ ν)[ν̇]) = −divτ

(
(∇2ψ ◦ ν)[Dτϕ]

)
,

where in the last equality we used (3.5).
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Step 3. We finally pass to the second variation. Differentiating the formula for the first variation of the surface
term with respect to t and evaluating at t = 0 we get

d2

dt2

[∫
Γht

ψ(νt) dH1

]∣∣∣∣∣
t=0

=
d
dt

[∫ b

0

φ(x)Hψ
t (x, ht(x)) dx

]∣∣∣∣
t=0

=
∫ b

0

φ(x)Ḣψ(x, h(x)) dx +
∫ b

0

φ(x)∇Hψ(x, h(x)) · (0, φ(x)) dx

= I1 + I2.

Changing variables in I1 and using the equality Ḣψ = −divτ
(
(∇2ψ ◦ ν)[Dτϕ]

)
on Γh we obtain

I1 = −
∫
Γh

ϕdivτ
(
(∇2ψ ◦ ν)[Dτϕ]

)
dH1 =

∫
Γh

(∇2ψ ◦ ν)[Dτϕ,Dτϕ] dH1, (3.6)

where the last equality follows by integration by parts, using the periodicity of ϕ.
For the second integral, we can decompose ∇Hψ = (∂νHψ)ν + (∂τHψ)τ , so that after a change of variables

I2 =
∫
Γh

(∂νHψ)ϕ2 dH1 +
∫
Γh

(∂τHψ)(h′ ◦ π1)ϕ2 dH1

= −
∫
Γh

HHψϕ2 dH1 −
∫
Γh

Hψ∂τ
(
(h′ ◦ π1)ϕ2

)
dH1, (3.7)

where we used the identity ∂νHψ = −HHψ satisfied on Γh and we integrated by parts in the last integral (using
again the periodicity of the functions involved).

Collecting (3.3), (3.6) and (3.7), the formula in the statement follows. �

Let us introduce the following subspace of H1(Γh):

H̃1
#(Γh) :=

{
ϕ ∈ H1(Γh) : ϕ(0, h(0)) = ϕ(b, h(b)),

∫
Γh

ϕdH1 = 0

}

(note that the function ϕ defined in the statement of Thm. 3.1 belongs to this space). Having the formula for
the second variation in hand, and observing that the last integral in (3.2) vanishes if (h, u) is a critical pair
thanks to (2.6) and to the periodicity of the functions involved, we can define the quadratic form ∂2F (h, u) :
H̃1

#(Γh) → R associated with the second variation at a critical pair (h, u) as

∂2F (h, u)[ϕ] := −
∫
Ωh

CE(vϕ) : E(vϕ) dz +
∫
Γh

(∇2ψ ◦ ν)[Dτϕ,Dτϕ] dH1 +
∫
Γh

(
∂ν [W (u)] −HHψ

)
ϕ2 dH1

for ϕ ∈ H̃1
#(Γh), where vϕ is the unique solution in A(Ωh) to∫

Ωh

CE(vϕ) : E(w) dz =
∫
Γh

divτ (ϕCE(u)) · w dH1 for every w ∈ A(Ωh). (3.8)

It is easily seen that the positive semi-definiteness of the quadratic form ∂2F (h, u) is a necessary condition for
local minimality (see [12], Cor. 3.4). On the other hand, we have the following minimality criterion (see [12],
Thm. 4.6).
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Theorem 3.2. Let the anisotropy ψ satisfy (R1) and (R2), and let (h, u) ∈ X(u0; 0, b), with h ∈ C∞(R), h > 0,
be a critical pair for F such that

∂2F (h, u)[ϕ] > 0 for every ϕ ∈ H̃1
#(Γh)\{0}. (3.9)

Then there exists δ > 0 such that for any (g, v) ∈ X(u0; 0, b), with ‖g − h‖W 2,∞(0,b) < δ, |Ωg| = |Ωh| and g �= h
we have

F (h, u) < F (g, v)

(we say that the critical pair (h, u) is an isolated W 2,∞-local minimizer for F ).

We remark that, if ψ is of class C∞, the regularity assumption on h is not restrictive (see Rem. 2.5).
The strategy developed in [12] to prove the theorem (which, in turn, borrows some ideas from [4]) can be

repeated here with some changes. We only recall what are the main steps, suggesting the modifications that are
necessary to adapt the proof to our setting.

First of all, one can show that the positiveness condition (3.9) can be equivalently formulated in terms of
the first eigenvalue of a suitable compact linear operator defined on H̃1

#(Γh). This is done by introducing the
bilinear form on H̃1

#(Γh)

(ϕ, θ)∼ :=
∫
Γh

(
∂ν [W (u)] −HHψ

)
ϕθ dH1 +

∫
Γh

(∇2ψ ◦ ν)[Dτϕ,Dτθ] dH1 (3.10)

which, if positive definite, defines an equivalent norm ‖ · ‖∼ on H̃1
#(Γh) (this can be shown using condition (2.3)

and following the lines of the proof of [4], Prop. 4.2). Then, one has the following equivalent formulation of
condition (3.9) (see [12], Prop. 3.6):

Proposition 3.3. Condition (3.9) is satisfied if and only if the bilinear form (·, ·)∼ is positive definite and the
compact monotone self-adjoint operator T : H̃1

#(Γh) → H̃1
#(Γh), defined by duality as

(Tϕ, θ)∼ :=
∫
Ωh

CE(vϕ) : E(vθ) dz =
∫
Ωh

CE(vθ) : E(vϕ) dz

for every ϕ, θ ∈ H̃1
#(Γh), satisfies λ1 := max{(Tϕ, ϕ)∼ : ‖ϕ‖∼ = 1} < 1.

The proof of this proposition relies, essentially, on the following representation formula of ∂2F (h, u) in terms of
T :

∂2F (h, u)[ϕ] = (ϕ,ϕ)∼ − (Tϕ, ϕ)∼. (3.11)

Moreover, using (3.11) it is easily seen that condition (3.9) implies the existence of a constant C > 0 such that

∂2F (h, u)[ϕ] ≥ C‖ϕ‖2
H1(Γh) for all ϕ ∈ H̃1

#(Γh). (3.12)

Having this equivalent formulation in hand, the proof of Theorem 3.2 is obtained arguing similarly to [12],
Proposition 4.5, with some natural modifications. Notice that the elliptic estimates provided by the technical
lemmas [12], Lemmas 4.1, 4.4, are valid also in our setting, because they are concerned only with the volume
term which we left unchanged. The main steps in the proof are the following.

Step 1. For g in a C2-neighborhood of h, let vg be the elastic equilibrium in Ωg and consider a diffeomorphism
Φg : Ωh → Ωg of class C2 such that Φg − Id is b-periodic in x, Φg(x, 0) = (x, 0), Φg(x, y) = (x, y+ gn(x)−h(x))
in a neighborhood of Γ h, and ‖Φg − Id‖C2(Ωh;R2) ≤ 2‖g− h‖C2([0,b]). The same elliptic estimates proved in [12],
Lemma 4.1, yield the following convergence (compare with [12], (4.21)):

‖∂νg [W (vg)] ◦ ΦgJ1Φg − ∂νh
[W (u)]‖

H
− 1

2
# (Γh)

→ 0 as ‖g − h‖C2([0,b]) → 0, (3.13)

where J1Φg denotes the 1-dimensional Jacobian of Φg on Γh.
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Step 2. Let us introduce, for g in a C2-neighborhood of h, a scalar product (·, ·)∼,g on H̃1
#(Γg) defined as

in (3.10) with h replaced by g. We claim that the positivity condition (3.9) guarantees that it is possible to
control the H1-norm on Γg in terms of the norm associated with (·, ·)∼,g, uniformly with respect to g in a
C2-neighborhood of h:

‖ϕ‖2
H1(Γg) ≤ C‖ϕ‖2

∼,g for every ϕ ∈ H̃1
#(Γg)

(here and in the following steps C denotes a generic positive constant, independent of g in a C2-neighborhood
of h, which may change from line to line). In fact, given ϕ ∈ H̃1

#(Γg), set ϕ̃ := (ϕ ◦ Φg)J1Φg; then ϕ̃ ∈ H̃1
#(Γh)

and

‖ϕ‖2
H1(Γg) =

∫
Γh

(|ϕ ◦ Φg|2 + |(∂τgϕ) ◦ Φg|2
)
J1Φg dH1

≤ (1 + δg)
∫
Γh

(
ϕ̃2 + (∂τh

ϕ̃)2
)
dH1

≤ (1 + δg)C ‖ϕ̃‖2
∼,

where in the last inequality we used (3.11) and (3.12) to deduce that

‖ϕ̃‖2
∼ ≥ ∂2F (h, u)[ϕ̃] ≥ C‖ϕ̃‖2

H1(Γh),

and δg is a constant depending only on ‖g − h‖C2([0,b]), tending to 0 as ‖g − h‖C2([0,b]) → 0.
Now, setting ah := ∂νh

[W (u)] − HHψ, ag := ∂νg [W (vg)] − HHψ
g (we denote by Hψ

g the anisotropic mean
curvature of g), we obtain from Step 1 that

‖(ag ◦ Φg)J1Φg − ah(J1Φg)2‖
H− 1

2 (Γh)
→ 0 as ‖g − h‖C2([0,b]) → 0.

Hence

‖ϕ̃‖2
∼ =

∫
Γh

(
ahϕ̃

2 + (∇2ψ ◦ νh)[Dτh
ϕ̃,Dτh

ϕ̃]
)
dH1

≤
∫
Γh

(ag ◦ Φg)(ϕ ◦ Φg)2J1Φg dH1 +
∫
Γg

(∇2ψ ◦ νg)[Dτgϕ,Dτgϕ] dH1 + δg‖ϕ‖2
H1(Γg)

+ ‖(ag ◦ Φg)J1Φg − ah(J1Φg)2‖
H− 1

2 (Γh)
‖(ϕ ◦ Φg)2‖

H
1
2 (Γh)

≤ ‖ϕ‖2
∼,g + δg‖ϕ‖2

H1(Γg) + C(1 + δg)‖(ag ◦ Φg)J1Φg − ah(J1Φg)2‖
H− 1

2 (Γh)
‖ϕ‖2

H1(Γg),

where, as before, δg tends to 0 as ‖g − h‖C2 → 0, and in the last inequality we used the estimate

‖(ϕ ◦ Φg)2‖
H

1
2 (Γh)

≤ C‖(ϕ ◦ Φg)2‖H1(Γh) ≤ C‖(ϕ ◦ Φg)‖2
H1(Γh) ≤ C(1 + δg)‖ϕ‖2

H1(Γg).

Combining the previous estimates the claim follows.

Step 3. The previous step allows us to introduce a compact linear operator Tg also on H̃1
#(Γg), as we did for T

on H̃1
#(Γh); denoting by λ1,g its first eigenvalue, one can prove, arguing exactly as in Step 3 of the proof of [12],

Proposition 4.5, that
lim sup

‖g−h‖C2→0

λ1,g ≤ λ1 < 1,

where the last inequality follows by Proposition 3.3.
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Step 4. We claim that the following estimate holds for g close to h in C2:

F (h, u) + C‖ϕg‖2
H1(Γg) ≤ F (g, vg),

where ϕg := g−h√
1+g′2

◦π1. In order to prove this estimate, we define ht := h+t(g−h) and ut as the corresponding

elastic equilibrium, and setting f(t) := F (ht, ut), we can show that a careful estimate of the second variation
combined with the previous steps yields

f ′′(t) > C(1 − λ1)‖ϕg‖2
H1(Γg) (3.14)

for g sufficiently close to h in C2. From this the claim will follow immediately, since (using f ′(0) = 0, being
(h, u) a critical pair)

F (h, u) = f(0) = f(1) −
∫ 1

0

(1 − t)f ′′(t) dt < F (g, vg) − C(1 − λ1)
2

‖ϕg‖2
H1(Γg).

In order to prove (3.14), we have by Theorem 3.1

f ′′(t) = −(Thtϕg,t, ϕg,t)∼,ht + ‖ϕg,t‖2
∼,ht

−
∫
Γht

(W (ut) +Hψ
t )∂τht

(
(h′t ◦ π1)ϕ2

g,t

)
dH1 (3.15)

where we set ϕg,t := g−h√
1+(h′

t)
2
◦π1 and Hψ

t denotes the anisotropic mean curvature of Γht . Using Steps 2, 3 and

the fact that
1
2
‖ϕg‖2

H1(Γg) ≤ ‖ϕg,t‖2
H1(Γht ) ≤ 2‖ϕg‖2

H1(Γg),

we deduce that

−(Thtϕg,t, ϕg,t)∼,ht + ‖ϕg,t‖2
∼,ht

≥ (1 − λ1,ht)‖ϕg,t‖2
∼,ht

≥ 1 − λ1

2
‖ϕg,t‖2

∼,ht

≥ C(1 − λ1)
2

‖ϕg,t‖2
H1(Γht ) ≥

C(1 − λ1)
4

‖ϕg‖2
H1(Γg) (3.16)

if ‖g−h‖C2([0,b]) is sufficiently small. Moreover, since (h, u) is a critical pair, there exists a constant Λ such that
W (u) +Hψ ≡ Λ on Γh, and it can be also shown that

sup
t∈(0,1]

‖W (ut) +Hψ
t − Λ‖L∞(Γht ) → 0 as g → h in C2. (3.17)

We then have

−
∫
Γht

(W (ut) +Hψ
t )∂τht

(
(h′t ◦ π1)ϕ2

g,t

)
dH1 = −

∫
Γht

(W (ut) +Hψ
t − Λ)∂τht

(
(h′t ◦ π1)ϕ2

g,t

)
dH1

≥ −C‖W (ut) +Hψ
t − Λ‖L∞(Γht )‖ϕg,t‖2

H1(Γht )

≥ −2C‖W (ut) +Hψ
t − Λ‖L∞(Γht )‖ϕg‖2

H1(Γg). (3.18)

Hence (3.14) follows combining (3.15), (3.16) and (3.18), taking into account (3.17).

Step 5. Finally, using the estimate proved in Step 4, one obtains theW 2,∞-local minimality by an approximation
argument, as in [12], Theorem 4.6.



THE CASE OF ANISOTROPIC SURFACE ENERGIES 179

4. Improvement of the local minimality result

The improvement of the minimality Theorem 3.2 requires a careful review of the arguments developed in [12],
Section 6, that lead to the following result.

Theorem 4.1. Let the anisotropy ψ satisfy (R1) and (R2) and let (h, u) ∈ X(u0; 0, b), with h ∈ C∞(R), h > 0,
be a critical pair for F such that condition (3.9) is satisfied. Then (h, u) is an isolated b-periodic local minimizer
for F , in the sense of Definition 2.3.

As in [12], the proof is achieved by considering a sequence of penalized minimum problems: let (gn, vn) be a
solution to

min

{
F (k, w) + Λ

∣∣|Ωk| − |Ωh|
∣∣ : (k, w) ∈ X(u0; 0, b), k ≥ h− 1

n

}
·

Assuming by contradiction that we can find a sequence of pairs (g̃n, ṽn) ∈ X(u0; 0, b) such that |Ωg̃n | = |Ωh|,
F (g̃n, ṽn) < F (h, u) and ‖g̃n−h‖ ≤ 1

n , we then have, since (g̃n, ṽn) is an admissible competitor for the penalized
problem,

F (gn, vn) ≤ F (gn, vn) + Λ
∣∣|Ωgn | − |Ωh|

∣∣ ≤ F (g̃n, ṽn) < F (h, u).

The conclusion will follow by showing, via regularity estimates, that the functions gn are converging to h in
W 2,∞, a contradiction with the W 2,∞-local minimality of (h, u) given by Theorem 3.2.

We start to carry out the previous strategy with an approximation lemma which can be easily deduced from
the second part of the proof of [2], Lemma 2.1, by means of Reshetnyak’s Continuity Theorem.

Lemma 4.2. Given any h ∈ AP (0, b) with h = h−, there exists a sequence of b-periodic and Lipschitz functions
hn ↑ h pointwise such that

lim
n→+∞

∫
Γhn

ψ(νhn) dH1 =
∫
Γh

ψ(νh) dH1.

Another preliminary result that we will need in the following is an easy consequence of condition (2.3).

Lemma 4.3. For any ξ ∈ R we have
∂2
11ψ(ξ, 1) ≥ c0

(1 + ξ2)
3
2
,

where c0 is the constant appearing in (2.3).

Proof. We split the vector (1, 0) into its components parallel and orthogonal to the direction (ξ, 1):

(1, 0) =
ξ√

1 + ξ2

(
ξ√

1 + ξ2
,

1√
1 + ξ2

)
+

(
1 − ξ2

1 + ξ2
,− ξ

1 + ξ2

)
·

From this decomposition, using (2.4), we get

∂2
11ψ(ξ, 1) = ∇2ψ(ξ, 1)

[
(1, 0), (1, 0)

]
=

1√
1 + ξ2

∇2ψ

(
ξ√

1 + ξ2
,

1√
1 + ξ2

)[(
1 − ξ2

1 + ξ2
,− ξ

1 + ξ2

)
,

(
1 − ξ2

1 + ξ2
,− ξ

1 + ξ2

)]

≥ c0√
1 + ξ2

∣∣∣∣∣
(

1 − ξ2

1 + ξ2
,− ξ

1 + ξ2

)∣∣∣∣∣
2

=
c0

(1 + ξ2)
3
2
,

which is the inequality in the statement. �
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Remark 4.4. Using the previous lemma and formula (2.7), a straightforward computation shows that the
anisotropic mean curvature of a circumference of radius ρ is bounded from below by the constant c0

ρ .

We now prove an “anisotropic version” of [12], Lemma 6.5.

Lemma 4.5. Let h ∈ C∞(R) be a b-periodic function, and let Λ0 = ‖Hψ‖L∞(Γh), where Hψ denotes the
anisotropic mean curvature of Γh. Then for any admissible profile k ∈ AP (0, b)∫

Γk

ψ(νk) dH1 + Λ0

∫ b

0

|k − h| dx ≥
∫
Γh

ψ(νh) dH1.

Proof. If k is Lipschitz, then using the 1-homogeneity and convexity of ψ we get∫
Γk

ψ(νk) dH1 −
∫
Γh

ψ(νh) dH1 =
∫ b

0

[
ψ(−k′, 1) − ψ(−h′, 1)

]
dx

≥
∫ b

0

(h′ − k′) ∂1ψ(−h′, 1) dx =
∫ b

0

|k − h| sign(k − h)Hψ(x, h(x)) dx

≥ −Λ0

∫ b

0

|k − h| dx,

where we integrated by parts using the periodicity of h, k and formula (2.7). If k ∈ AP (0, b) and Σk = ∅, then
the conclusion follows by approximation using Lemma 4.2. Finally, if Σk �= ∅, one can simply replace k with k−

(for which Σk− = ∅ and Γk− = Γk), and apply again Lemma 4.2. �

One essential point in the regularization procedure which leads to the W 2,∞ convergence is that the solutions
to the penalized problems that we will consider satisfy an inner ball condition (see also [5]):

Lemma 4.6 (uniform inner ball condition). Let h ∈ AP (0, b) ∩C2(R), Λ > 0, d > 0; let (g, v) ∈ X(u0; 0, b) be
a solution to

min
{
F (k, w) + Λ

∣∣|Ωk| − d
∣∣ : (k, w) ∈ X(u0; 0, b), k ≥ h

}
.

Then there exists ρ0 = ρ0(Λ, h) such that for every ρ < ρ0 and for every z ∈ Γg ∪ Σg there exists a ball
Bρ(z0) ⊂ Ω#

g ∪ R
2
− such that ∂Bρ(z0) ∩ (Γg ∪Σg) = {z}.

Proof. As in [12], Lemma 6.7, the proof is based on a suitable isoperimetric inequality which in our anisotropic
framework reads as follows (see [12], Lem. 6.6):

let k ∈ AP (0, b), Bρ(z0) ⊂ Ω#
k ∪R2−, and let z1 = (x1, y1), z2 = (x2, y2) be points in ∂Bρ(z0)∩(Γ#

k ∪Σ#
k )

(with x1 < x2). Let S = (x1, x2) × R, let γ be the shortest arc on ∂Bρ(z0) connecting z1 and z2 (if z1
and z2 are antipodal, the arc which stays above), let γ′ be the arc on Γ#

k ∪Σ#
k connecting z1 and z2, and

let D be the region enclosed by γ ∪ γ′. Then∫
Γ#

k ∩S
ψ(νk) dH1 + ψ(−1, 0)

(
k(x1+) − y1

)
+ ψ(1, 0)

(
k(x2−) − y2

)− ∫
γ

ψ(ν) dH1 ≥ c0
ρ
|D|, (4.1)

where c0 is the constant appearing in (2.3).
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Let us prove (4.1). Assume first that k is Lipschitz in [x1, x2]: let h be the function in (x1, x2) whose
graph coincides with γ, then arguing as in the proof of Lemma 4.5 we obtain (observe that k(x1) = h(x1),
k(x2) = h(x2), and k ≥ h)∫

Γ#
k ∩S

ψ(νk) dH1 −
∫
Γh∩S

ψ(νh) dH1 =
∫ x2

x1

[
ψ(−k′, 1) − ψ(−h′, 1)

]
dx

≥
∫ x2

x1

(h′ − k′) ∂1ψ(−h′, 1) dx =
∫ x2

x1

(k − h)
(
∂1ψ(−h′, 1)

)′ dx
≥ c0

ρ

∫ x2

x1

(k − h) dx,

which is (4.1) (in the last inequality we used Rem. 4.4). For a general k, we can proceed by approximation
using the following property: given g : [x1, x2] → R lower semicontinuous with finite total variation, there exists
a sequence of Lipschitz functions gn : [x1, x2] → R such that gn(x1) = g(x1), gn(x2) = g(x2), gn → g in
L1((x1, x2)), and∫

Γgn∩S
ψ(νgn) dH1 →

∫
Γg∩S

ψ(νg) dH1 + ψ(−1, 0)
(
g(x1+) − g(x1)

)
+ ψ(1, 0)

(
g(x2−) − g(x2)

)
.

This can be obtained from [12], Lemma 6.2, using Reshetnyak’s continuity theorem. Thus (4.1) follows.
Now the proof of the lemma can be obtained arguing exactly as in [12], Lemma 6.7, taking ρ0 <

min{c0/Λ, 1/‖h′′‖∞}. In particular, one can use (4.1) to show that, if Bρ0(z) ⊂ Ω#
g ∪ R2

−, then ∂Bρ0(z) ∩
(Γ#
g ∪Σ#

g ) is empty or consists of a single point. Then, the conclusion follows by showing that⋃{
Bρ0(z) : Bρ0(z) ⊂ Ω#

g ∪ R
2
−
}

= Ω#
g ∪ R

2
−

as in [5], Lemma 2, or [10], Proposition 3.3, Step 2. �

The following proposition contains the main regularization result which allows us to get W 2,∞-convergence
of the sequence of penalized minima.

Proposition 4.7. Let (h, u) ∈ X(u0; 0, b), h > 0, be a critical pair for F . Let Λ > Λ0 := ‖Hψ‖L∞(Γh), where
Hψ is the anisotropic mean curvature of Γh. Let (gn, vn) ∈ X(u0; 0, b) be a solution to the penalization problem

min
{
F (g, v) + Λ

∣∣|Ωg| − |Ωh|
∣∣ : (g, v) ∈ X(u0; 0, b), g ≥ h− an

}
(4.2)

where (an)n is a sequence of positive numbers converging to zero. Assume also that gn → h in L1(0, b), ∇vn ⇀
∇u in L2

loc(Ωh; R
2 × R2),

lim
n→+∞

∫
Γgn

ψ(νgn) dH1 =
∫
Γh

ψ(νh) dH1, lim
n→+∞H1(Σgn) = 0, (4.3)

and lim
n→+∞

∫
Ωgn

W (vn) dz =
∫
Ωh

W (u). (4.4)

Then gn ∈W 2,∞(0, b) for n large enough, and gn → h in W 2,∞(0, b).

Proof. We review the proof of [12], Theorem 6.9, underlining the main changes needed to treat the present
situation.

Step 1. We show that sup[0,b] |gn−h| → 0 as n→ +∞. We may assume that Γgn ∪Σgn converge in the Hausdorff
metric (up to subsequences) to some compact connected set K containing Γh. We claim that H1(K \Γh) = 0.
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In fact, the approximate normal vector νK is defined at H1-a.e. point of K, coinciding with νh on Γh, and
applying [13], Theorem 3.1, we get∫

Γh

ψ(νh) dH1 ≤
∫
K

ψ(νK) dH1 ≤ lim inf
n→+∞

∫
Γgn

ψ(νgn) dH1 +MH1(Σgn) =
∫
Γh

ψ(νh) dH1,

from which the claim immediately follows. Now, since K is the Hausdorff limit of graphs, for every x ∈ [0, b)
the section K ∩ ({x} × R) is connected; hence H1(K\Γh) = 0 implies that K = Γh. The uniform convergence
of gn to h follows using this equality, the definition of Hausdorff convergence and the continuity of h.

Step 2. We have gn ∈ C0([0, b]) and Σgn,c = ∅ for n large enough, where

Σgn,c := {(x, gn(x)) : x ∈ [0, b) , gn(x) = g−n (x), (gn)′+(x) = −(gn)
′
−(x) = +∞}

is the set of cusps. The argument relies only on the inner ball condition, proved above (Lem. 4.6), and can be
obtained repeating word for word the second step in the proof of [12], Theorem 6.9.

Step 3. We claim that gn ∈ C1([0, b]) for n large enough. In fact, using again the inner ball condition we
first obtain that gn is Lipschitz and admits left and right derivatives at every point, which are left and right
continuous respectively: this is proved in [5], Lemma 3, (notice that the second situation described in the quoted
result can be excluded thanks to the fact that Σgn ∪Σgn,c = ∅, as proved in the previous step).

From this we can also obtain the following decay estimate for vn: for all z0 ∈ Γgn there exists cn > 0, a radius
rn > 0 and an exponent αn ∈ (1/2, 1) such that∫

Br(z0)∩Ωgn

|∇vn|2 dz ≤ cnr
2αn (4.5)

for all r < rn (see [10], Thm. 3.12).
Finally, the argument which leads to the C1 regularity of gn goes as follows. It consists in showing that

the left and right tangent lines at any point z0 coincide, comparing the energy of (gn, vn) with the energy of
a suitable competitor obtained by replacing the graph of gn in a neighborhood of z0 with an affine function.
Assume by contradiction that the left and right tangent lines at a point z0 = (x0, gn(x0)) ∈ Γgn are distinct,
and form an angle θ ∈ (0, π). Extend vn out of Ωgn to a function ṽn which still satisfies the estimate∫

Br(z0)

|∇ṽn|2 dz ≤ cnr
2αn . (4.6)

For r < rn, consider the points z′r = (x′r, gn(x′r)), z′′r = (x′′r , gn(x′′r )) on Γgn ∩ ∂Br(z0) such that the arcs γ′r, γ′′r
on Γgn connecting z′r to z0, and z′′r to z0 respectively, are contained in Γgn ∩Br(z0). Let s be the affine function
whose graph connects z′r and z′′r , denote by νr, ν′r and ν′′r the upper-pointing normals to the segments [z′r, z

′′
r ],

[z′r, z0] and [z′′r , z0] respectively and define

g̃n(x) =
{
gn(x) if x ∈ [0, b)\(x′r, x

′′
r ),

max{s(x), h(x) − an} if x ∈ (x′r , x
′′
r ).

Then (g̃n, ṽn) is an admissible competitor in problem (4.2), and by the minimality of (gn, vn) we get

0 ≥ F (gn, vn) + Λ
∣∣|Ωgn | − |Ωh|

∣∣− F (g̃n, ṽn) − Λ
∣∣|Ωg̃n | − |Ωh|

∣∣
≥
∫
γ′

r∪γ′′
r

ψ(νgn) dH1 −
∫
Γg̃n∩((x′

r,x
′′
r )×R)

ψ(νg̃n) dH1 −
∫
Br(z0)

W (ṽn) dz − Λ|Ωgn�Ωg̃n |

≥ |z′r − z0|ψ(ν′r) + |z′′r − z0|ψ(ν′′r ) − |z′r − z′′r |ψ(νr)

−
∫

(x′
r,x

′′
r )∩{h>s+an}

(
ψ(−h′(x), 1) − ψ(−s′, 1)

)
dx− cnr

2αn − Λπr2, (4.7)
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where we used (4.6) and the inequality∫
γ′

r∪γ′′
r

ψ(νgn) dH1 ≥ |z′r − z0|ψ(ν′r) + |z′′r − z0|ψ(ν′′r ),

which can be deduced arguing as in the proof of Lemma 4.5.
Now, observe that |z′r − z0|ν′r + |z′′r − z0|ν′′r = |z′r − z′′r |νr; therefore, applying [11], Proposition 8.1, (notice

that the assumption (2.3) guarantees that the sublevel set {ψ ≤ 1} is strictly convex) we get

|z′r − z0|ψ(ν′r) + |z′′r − z0|ψ(ν′′r ) − |z′r − z′′r |ψ(νr) ≥ r ω(1 − ν′r · ν′′r ),

where ω : [0, 2] → [0,+∞) is a modulus of continuity. From (4.7) we deduce

r ω(1 − ν′r · ν′′r ) ≤
∫

(x′
r,x

′′
r )∩{h>s+an}

(
ψ(−h′(x), 1) − ψ(−s′, 1)

)
dx+ c′nr

2αn ,

and, in turn,
ω(1 − ν′r · ν′′r ) ≤ 2 Lip(ψ) osc(x′

r,x
′′
r )h

′ + c′nr
2αn−1,

and since αn > 1
2 and h′ is continuous, letting r → 0 we obtain ω(1 − ν′r · ν′′r ) → 0, which is a contradiction

since ν′r · ν′′r → cos θ < 1. This completes the proof of the C1 regularity of gn.

Step 4. We have gn → h in C1([0, b]). The purely geometric argument that leads to this claim relies only on
the inner ball condition, and is contained in the fourth step of the proof of [12], Theorem 6.9.

Step 5. We now prove that for all α ∈ (0, 1/2), gn → h in C1,α([0, b]), vn ∈ C1,α(Ωgn) for n large enough, and
supn ‖vn‖C1,α(Ωgn ) < +∞.

The first claim follows by a comparison argument. Fix any point z0 = (x0, gn(x0)) ∈ Γgn , r > 0, denote by
γr the open arc contained in Γgn of endpoints z0 and (x0 + r, gn(x0 + r)), and define g̃n as

g̃n(x) =
{
gn(x) if x ∈ [0, b)\(x0, x0 + r),
max{s(x), h(x) − an} if x ∈ (x0, x0 + r),

where s is the affine function whose graph connects z0 and (x0 + r, gn(x0 + r)). Then, comparing the energies
of gn and g̃n (as we did in Step 3), one can see that inequality (6.8) in [12] becomes in our case∫ x0+r

x0

ψ(−g′n, 1) dx−
∫ x0+r

x0

ψ(−s′, 1) dx ≤ c′r2σ. (4.8)

Now, observe that for every a, b there exists a point ξ in the interval [a ∧ b, a ∨ b] such that

ψ(b, 1) − ψ(a, 1) = ∂1ψ(a, 1) (b− a) +
1
2
∂2
11ψ(ξ, 1) (b− a)2

≥ ∂1ψ(a, 1) (b− a) +
c0(b− a)2

2(1 + ξ2)3/2

≥ ∂1ψ(a, 1) (b− a) +
c0(b − a)2

2(1 + max{a2, b2})3/2 (4.9)

(in the first inequality we used Lem. 4.3). Applying (4.9) with a = − 1
r

∫ x0+r

x0
g′n dx and b = −g′n(x), integrating

in (x0, x0 + r) and using (4.8), we get

c0
2(1 +M2

1 )3/2
1
r

∫ x0+r

x0

(
g′n(x)−

1
r

∫ x0+r

x0

g′n ds

)2

dx ≤ 1
r

∫ x0+r

x0

ψ(−g′n, 1) dx− 1
r

∫ x0+r

x0

ψ(−s′, 1) dx ≤ c′r2σ−1.
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From this inequality, arguing as in Step 5 of the proof of [12], Theorem 6.9, it follows that the sequence (gn)n
is equibounded in C1,σ− 1

2 ([0, b]) for all σ ∈ (1/2, 1), thus proving the first claim. The other claims are obtained
using standard elliptic estimates (see [12], Prop. 8.9).

Step 6. The conclusion (gn → h in W 2,∞(0, b)) follows using the Euler-Lagrange equation (2.6) satisfied by a
critical pair.

In fact, setting Kn = {x ∈ [0, b] : gn(x) = h(x) − an} and assuming without loss of generality that An =
(0, b) \Kn is not empty, it is easily seen that g′n(x) = h′(x) for every x ∈ Kn, while for x ∈ An the following
Euler-Lagrange equations are satisfied by gn and h respectively:(

∂1ψ(−g′n(x), 1)
)′ = −W (vn)(x, gn(x)) + λn,(

∂1ψ(−h′(x), 1)
)′ = −W (u)(x, h(x)) + λ,

for some Lagrange multipliers λn, λ (the first equation follows by the minimality of (gn, vn), the second one by
the fact that (h, u) is a critical pair: see (2.6)). Observe that, thanks to the results contained in [1], Section 7.7,
g′n is a Lipschitz function for all n. Now using the fact that the anisotropic mean curvature is expressed as
a derivative (see (2.7)), we first deduce from the previous equations that, splitting An into the union of its
connected components (αi,n, βi,n),

λn|An| −
∫
An

W (vn)(x, gn(x)) dx =
∑
i

∫ βi,n

αi,n

(
∂1ψ(−g′n(x), 1)

)′ dx
=
∑
i

(
∂1ψ(−g′n(βi,n), 1) − ∂1ψ(−g′n(αi,n), 1)

)
=
∑
i

(
∂1ψ(−h′(βi,n), 1) − ∂1ψ(−h′(αi,n), 1)

)
=
∫
An

(
∂1ψ(−h′(x), 1)

)′ dx = λ|An| −
∫
An

W (u)(x, h(x)) dx,

which, in turn, gives

λn − λ =
1

|An|
∫
An

[
W (vn)(x, gn(x)) −W (u)(x, h(x))

]
dx.

From assumption (4.4) and Step 5 one can deduce that W (vn)(·, gn(·)) → W (u)(·, h(·)) uniformly in [0, b],
hence we conclude that λn → λ. Now the Euler-Lagrange equations, the convergence λn → λ and the uniform
convergence of W (vn)(·, gn(·)) to W (u)(·, h(·)) imply(

∂1ψ(−g′n(x), 1)
)′ → (

∂1ψ(−h′(x), 1)
)′ uniformly in [0, b].

Finally, from this we deduce that g′′n → h′′ in L∞(0, b), since

‖g′′n − h′′‖L∞(0,b) =

∥∥∥∥∥
(
∂1ψ(−g′n, 1)

)′
∂2
11ψ(−g′n, 1)

−
(
∂1ψ(−h′, 1)

)′
∂2
11ψ(−h′, 1)

∥∥∥∥∥
L∞(0,b)

→ 0

(using the fact that the denominators are uniformly bounded away from 0 by Lem. 4.3). This concludes the
proof of the proposition. �

Proof of Theorem 4.1. By contradiction, let (g̃n, ṽn) ∈ X(u0; 0, b), with |Ωg̃n | = |Ωh|, be such that 0 < ‖g̃n −
h‖L∞(0,b) ≤ 1

n and
F (g̃n, ṽn) ≤ F (h, u). (4.10)
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Fix Λ > max{Λ0,W0}, where Λ0 is defined in Proposition 4.7 and

W0 =
1
b

∫ b

0

W (U0(x, y)) dx, U0(x, y) = u0(x, 0) + e0

(
0,

−λ
2μ+ λ

y

)
(notice that W0 is finite since u0 is Lipschitz), and let (gn, vn) be a solution to the minimum problem

min

{
F (g, v) + Λ

∣∣|Ωg| − |Ωh|
∣∣ : (g, v) ∈ X(u0; 0, b), g ≥ h− 1

n

}
; (4.11)

then
F (gn, vn) ≤ F (gn, vn) + Λ

∣∣|Ωgn | − |Ωh|
∣∣ ≤ F (g̃n, ṽn) ≤ F (h, u). (4.12)

We claim that (gn, vn) → (h, u) in Y , up to subsequences. In fact, by (4.12) we have a uniform bound∫
Ωgn

|E(vn)|2 dz + Var(gn; 0, b) + |Ωgn | ≤ C

(the bound on the variation of gn follows using condition (2.1), which gives a uniform bound on H1(Γgn)), so

that by Theorem 2.1 we have (gn, vn)
Y→ (k, v) ∈ X(u0; 0, b) up to subsequences. Taken any (g, w) ∈ X(u0; 0, b)

with g ≥ h (it is an admissible competitor for all the penalized problems) we have, by the l.s.c. of F with respect
to the convergence in Y and the minimality of (gn, vn),

F (k, v) + Λ
∣∣|Ωk| − |Ωh|

∣∣ ≤ lim inf
n→+∞

(
F (gn, vn) + Λ

∣∣|Ωgn | − |Ωh|
∣∣) ≤ F (g, w) + Λ

∣∣|Ωg| − |Ωh|
∣∣. (4.13)

From the previous inequality with (g, w) = (h, v) we get, since k ≥ h,∫
Γk

ψ(νk) dH1 + Λ

∫ b

0

|k − h| ≤
∫
Γh

ψ(νh) dH1,

from which it follows k = h by Lemma 4.5 (using Λ > Λ0), and in turn v = u. Thus the claim is proved.
Moreover, using again (4.13) with (g, w) = (h, u), combined with the l.s.c. of the volume energy and of the

map g → ∫
Γg
ψ(νg) dH1 with respect to the convergence in Y (the second one follows from Reshetnyak’s lower

semicontinuity theorem), we deduce that conditions (4.3) and (4.4) hold. By Proposition 4.7 we can conclude
that gn → h in W 2,∞(0, b).

We now deal with the volume constraint. Suppose first by contradiction that |Ωgn | < |Ωh|. In this case,
consider the competitor (ḡn, v̄n), where ḡn = gn + (|Ωh| − |Ωgn |)/b and

v̄n(x, y) =

{
U0(x, y) if 0 ≤ y < (|Ωh| − |Ωgn |)/b,
vn

(
x, y − |Ωh|−|Ωgn |

b

)
+ e0

(
0, −λ(|Ωh|−|Ωgn |)

b(2μ+λ)

)
if y ≥ (|Ωh| − |Ωgn |)/b,

for (x, y) ∈ Ωḡn : then

F (ḡn, v̄n) + Λ
∣∣|Ωḡn | − |Ωh|

∣∣−F (gn, vn) − Λ
∣∣|Ωgn | − |Ωh|

∣∣= (|Ωh| − |Ωgn |
)
(W0 − Λ) < 0

(since Λ > W0), which contradicts the minimality of (gn, vn).
Thus, |Ωgn | ≥ |Ωh| for every n. We define ĝn := gn − (|Ωgn | − |Ωh|)/b, so that

|Ωĝn | = |Ωh|, ĝn → g in W 2,∞(0, b), and F (ĝn, vn) ≤ F (h, u).

From the isolated W 2,∞-minimality of (h, u) (given by Thm. 3.2) we get (ĝn, vn) = (h, u) for n large. By (4.12)
this implies that F (gn, vn) = F (g̃n, ṽn) = F (h, u) for n large, thus the pair (g̃n, ṽn) is a solution to the minimum
problem (4.11). Hence, the previous compactness argument applied now to the sequence (g̃n, ṽn) instead of
(gn, vn) leads to g̃n → h in W 2,∞, which contradicts (4.10) since (h, u) is an isolated W 2,∞-local minimizer. �
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5. Stability of the flat configuration

Now we come to the study of the stability of the flat configuration (db , ve0 ). We start by noticing that we can
consider without loss of generality variations in the subspace

H̃1
0 (Γd/b) := {ϕ ∈ H̃1

#(Γd/b) : ϕ(0, d/b) = ϕ(b, d/b) = 0},
(see [12], Rem. 4.8); in turn, this space can be identified with

H̃1
0 (0, b) :=

{
ϕ ∈ H1(0, b) : ϕ(0) = ϕ(b) = 0,

∫ b

0

ϕ = 0

}
.

Observe moreover that the quadratic form associated with the second variation of the functional F at the flat
configuration is given by

∂2F (d/b, ve0) [ϕ] = −
∫

(0,b)×(0, d
b )

CE(vϕ) : E(vϕ) dz + ∂2
11ψ(0, 1)

∫ b

0

ϕ′2(x) dx

for all ϕ ∈ H̃1
0 (0, b), where vϕ ∈ A(Ωd/b) is the solution to∫

(0,b)×(0, d
b )

CE(vϕ) : E(w) dz = τ

∫ b

0

ϕ′(x)w1(x, d/b) dx for every w = (w1, w2) ∈ A(Ωd/b)

with τ = 4μ(μ+λ)e0
2μ+λ . Observe that, by Lemma 4.3, the coefficient ∂2

11ψ(0, 1) is strictly positive.

Proof of Theorem 2.8. Arguing as in the proof of [12], Theorem 5.1, we get an explicit expression of the second
variation in terms of the Fourier coefficients of ϕ, namely

∂2F (d/b, ve0)[ϕ] =
∑
n∈Z

n2ϕnϕ−n

[
∂2
11ψ(0, 1) − τ2(1 − νp)bJ(2πnd/b2)

2πμn

]
, (5.1)

where the ϕn’s are the Fourier coefficients of ϕ in (0, b). Now by definition of K

sup
n∈Z

τ2(1 − νp)bJ(2πnd/b2)
2πμn

≷ ∂2
11ψ(0, 1) ⇐⇒ K

(
2πd
b2

)
≷ π

4
(2μ+ λ)∂2

11ψ(0, 1)
e20μ(μ+ λ)

1
b
,

which implies by (5.1)

∂2F (d/b, ve0)[ϕ] > 0 ∀ϕ ∈ H̃1
0 (0, b) ⇐⇒ K

(
2πd
b2

)
<
π

4
(2μ+ λ)∂2

11ψ(0, 1)
e20μ(μ+ λ)

1
b
,

K

(
2πd
b2

)
>
π

4
(2μ+ λ)∂2

11ψ(0, 1)
e20μ(μ+ λ)

1
b

=⇒ ∂2F (d/b, ve0)[ϕ] < 0 for some ϕ ∈ H̃1
0 (0, b) .

Then the conclusion follows by Theorem 4.1. �

Remark 5.1. It can be interesting to study what can be said, in this anisotropic contest, about the issue
of the global minimality of the flat configuration, that is, whether (db , ve0) minimizes F among all b-periodic
competitors satisfying the same volume constraint. One can check that the corresponding result proved in the
first part of [12], Theorem 2.11, can be extended to anisotropic functionals (under the assumptions (R1)–(R2)
on ψ), with no particular changes in the proof: precisely, we have that for every b > 0 and e0 > 0 there exists
dglob(b, e0) ∈ (0, d(b, e0)] such that the flat configuration (db , ve0) is a b-periodic global minimizer if and only if
d ≤ dglob(b, e0), and it is the unique global minimizer if d < dglob.
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6. The crystalline case

This section is devoted to the proof of the main result of the paper, Theorem 2.9, which deals with the
stability of the flat configuration in the crystalline case. Let ψc be a crystalline anisotropy satisfying conditions
(C1)–(C3) of Section 2. The strategy will be the following. First of all, we show that we do not lose in generality
if we prove the theorem for crystalline anisotropies of a particular form (namely, whose Wulff shape is a rectangle
with sides parallel to the coordinate axes). Then, we conclude using an approximation argument combined with
the results obtained in the previous sections for the regular case.

Proof of Theorem 2.9. We divide the proof into three steps.

Step 1. From the assumptions on ψc it follows that we can find 0 < b1 ≤ a1, b2 > 0 such that the rectangle
R = {(x, y) : |x| ≤ b1,−b2 ≤ y ≤ a2} is contained in the Wulff shape Wψc . Denote by ψR the function whose
Wulff shape is R, given by

ψR(ν1, ν2) =
{
b1|ν1| + a2|ν2| if ν2 ≥ 0,
b1|ν1| + b2|ν2| if ν2 < 0,

(see Eq. (2.10)), and by FR the functional corresponding to this anisotropic surface density. Note that, since
R ⊂Wψc , by (2.10) it follows immediately that ψR ≤ ψc; moreover

ψR(0, 1) = a2 = ψc(0, 1) (6.1)

(concerning the second equality see, for instance, [8], Prop. 3.5 (iv)).

Step 2. We introduce a family of “approximating” functionals, defined as follows. We consider, for ε > 0, the
family of anisotropic surface densities ψε(x, y) = b1

√
ε2y2 + x2 + (a2 − b1ε)|y|, and the associated functionals

Fε(h, u) =
∫
Ωh

W (u) dz +
∫
Γh

ψε(νh) dH1 + 2b1 H1(Σh).

The functions ψε converge monotonically as ε → 0+ to ψR in R × [0,+∞): indeed, it is sufficient to observe
that for (x, y) ∈ R × [0,+∞)

ψε(x, y) = b1
√
ε2y2 + x2 + (a2 − b1ε)y

=
b21x

2

b1
√
ε2y2 + x2 + b1εy

+ a2y ↗ b1|x| + a2y = ψR(x, y). (6.2)

From a geometrical point of view, this means that the Wulff shapes associated with the functions ψε are
converging monotonically from the interior to the corresponding one associated with ψR in the upper half-plane
(see Fig. 1).

Consider now the functionals F̂ε corresponding to the regular surface densities ψ̂ε(x, y) = b1
√
ε2y2 + x2; the

functions ψ̂ε satisfy all the assumptions considered in the regular case: in particular, condition (2.3) follows
after some computations from the formula

∇2ψ̂ε(v)[w,w] =
b1√

v2
1 + ε2v2

2

[
(w2

1 + ε2w2
2) −

(v1w1 + ε2v2w2)2

v2
1 + ε2v2

2

]
,

where v = (v1, v2) and w = (w1, w2). The general analysis developed in the first part of the paper applies to
the functional F̂ε: in particular, since ∂2

11ψ̂ε(0, 1) = b1
ε , from Theorem 2.8 it follows that, given any b > 0 and

e0 > 0, there exists ε0 = ε0(b, e0) > 0 such that if 0 < ε ≤ ε0 the flat configuration (db , ve0) is an isolated
L∞-local minimizer for F̂ε for every volume d > 0. The same is true also for Fε, since the energies Fε and F̂ε
differ only by a constant value: Fε = F̂ε + (a2 − b1ε)b.
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O b1−b1

a2

−a2

Figure 1. The Wulff shape corresponding to the anisotropy ψε is an approximation from the
interior of the symmetric rectangle R0 = {|x| ≤ b1, |y| ≤ a2}. To construct the Wulff shape
associated with a function ψ, consider at every point ψ(ν)ν, ν ∈ S1, of the polar plot of ψ (the
bold curve in the figure), the line orthogonal to the radius vector and passing through that
point: the Wulff shape is the intersection of all the halfplanes containing the origin and whose
boundary is one of these lines (see (2.9)).

Step 3. Given b > 0, d > 0, e0 > 0, let ε0 = ε0(b, e0) be as above, and let δ > 0 be such that the flat configuration
minimizes the energy Fε0 among all competitors satisfying the volume constraint whose L∞ distance from the
flat configuration is less than δ.

Then, for all (g, v) ∈ X(u0; 0, b) such that |Ωg| = d and 0 < ‖g − d
b‖∞ < δ we have, using condition (6.1),

Fc

(
d

b
, ve0

)
=
∫
Ωd/b

W (ve0 ) dz + b ψc(0, 1) =
∫
Ωd/b

W (ve0 ) dz + b ψR(0, 1)

= FR

(
d

b
, ve0

)
= Fε0

(
d

b
, ve0

)
< Fε0 (g, v) ≤ FR(g, v) ≤ Fc(g, v)

where the first inequality follows from the local minimality of the flat configuration for Fε0 , the second one is
a straight consequence of (6.2) and the last one follows using ψR ≤ ψc. From the previous chain of inequalities
the conclusion follows. �

Remark 6.1. Concerning the global minimality of the flat configuration in the crystalline case, an argument
similar to the one used in the previous proof combined with the result stated in Remark 5.1 shows that, for
every b > 0 and e0 > 0, the flat configuration (db , ve0) is a global minimizer if the volume d is sufficiently small.

Remark 6.2. A natural question arising from the previous analysis is whether in the crystalline case the flat
configuration is always a global minimizer. This is in fact not true, at least if the interval of periodicity is
sufficiently large. Indeed, we first recall that in [12], Proposition 2.12, was proved that, for b sufficiently large,
the threshold of global minimality is strictly smaller than the threshold of local minimality. The same comparison
argument used to prove that result shows that, if ψR is an anisotropy whose associated Wulff shape is a rectangle
(as in Step 1 of the proof of Theorem 2.9), then for every s > 0 there exists b > 0 such that one can construct a
b-periodic competitor (g, v) whose energy is strictly below the energy of the flat configuration (s, ve0 ): indeed, it
is sufficient to observe that the surface energy corresponding to ψR coincides, up to constant factors, with the
isotropic surface energy when evaluated on the flat configuration and on the competitor constructed in the proof
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of [12], Proposition 2.12. Finally, the same is true for a general anisotropy ψc satisfying assumptions (C1)–(C3):
in fact, one can always find a rectangle R containing the associated Wulff shape whose upper side contains the
horizontal facet, in such a way that

ψR(0, 1) = ψc(0, 1), ψc ≤ ψR,

hence Fc(g, v) ≤ FR(g, v) < FR(s, ve0) = Fc(s, ve0 ).
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