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A HAMILTON-JACOBI APPROACH TO JUNCTION PROBLEMS
AND APPLICATION TO TRAFFIC FLOWS ∗
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Abstract. This paper is concerned with the study of a model case of first order Hamilton-Jacobi
equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique
common point. The main result is a comparison principle. We also prove existence and stability of
solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity
of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new.
They are applied to the study of some models arising in traffic flows. The techniques developed in the
present article provide new powerful tools for the analysis of such problems.
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1. Introduction

In this paper we are interested in Hamilton-Jacobi (HJ) equations posed on a one dimensional domain
containing one single singularity. This is a special case of a more general setting where HJ equations are posed
in domains that are unions of submanifolds whose dimensions are different [8]. An intermediate setting is the
study of HJ equations on networks, see in particular [1]. We will restrict ourselves to a very simple network:
the union of a finite numbers of half-lines of the plane with a single common point. Such a domain is referred
to as a junction and the common point is called the junction point. We point out that getting a comparison
principle is the most difficult part in such a study; it is obtained in [1] for similar special networks (bounded
star-shaped ones). Our motivation comes from traffic flows. For this reason, it is natural to impose different
dynamics on each branch of the junction. Consequently, the resulting Hamiltonian is by nature discontinuous
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Figure 1. A junction.

at the junction point. Together with the singularity of the domain, this is the major technical difficulty to
overcome. The analysis relies on the complete study of some minimal action (or metric) related to the optimal
control interpretation of the equation [16, 33]. We prove in particular that this minimal action is semi-concave
by computing it.

We first present the problem and the main results in details. Then we recall existing results and compare
them with ours.

1.1. Setting of the problem

In this subsection, the analytical problem is introduced in details. We first define the junction, then the space
of functions on the junction and finally the Hamilton-Jacobi equation.

The junction. Let us consider N ≥ 1 different unit vectors ei ∈ R
2 for i = 1, . . . , N . We define the branches

Ji = [0,+∞) · ei, J∗
i = Ji \ {0} , i = 1, . . . , N

and the junction (see Fig. 1)
J =

⋃
i=1,...,N

Ji.

The origin x = 0 is called the junction point. It is also useful to write J∗ = J \ {0}. For a time T > 0, we also
define

JT = (0, T )× J.

The reader can remark that we chose to embed the junction in a two-dimensional Euclidean space. But we could
also have considered an abstract junction, or we could have embedded it for instance in a higher dimensional
Euclidean space. We made such a choice for the sake of clarity.

Space of functions. For a function u : JT → R, we denote by ui the restriction of u to (0, T ) × Ji. Then we
define the natural space of functions on the junction

C1
∗(JT ) =

{
u ∈ C(JT ), ui ∈ C1((0, T ) × Ji) for i = 1, . . . , N

}
.

In particular for u ∈ C1∗(JT ) and x = xiei with xi ≥ 0, we define

ut(t, x) =
∂ui

∂t
(t, xiei) and ui

x(t, x) =
∂ui

∂xi
(t, xiei).

Then we set {
ux(t, x) = ui

x(t, x) if x �= 0,
ux(t, 0) = (uj

x(t, 0))j=1,...,N if x = 0.
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HJ equation on the junction. We are interested in continuous functions u : [0, T )×J → R which are viscosity
solutions (see Def. 3.2) on JT of

ut +H(x, ux) = 0 (1.1)

submitted to an initial condition
u(0, x) = u0(x), x ∈ J. (1.2)

Because of the optimal control problem we have in mind (see Sect. 1.1 below), we restrict ourselves to the
simplest case of discontinuous Hamiltonians; precisely, we consider

H(x, p) =
{
Hi(p) for p ∈ R if x ∈ J∗

i

maxi=1,...,N H−
i (pi) for p = (p1, . . . , pN ) ∈ R

N if x = 0

where Hi are convex functions whose Legendre-Fenchel transform is denoted by Li. We recall that

Hi(p) = L∗
i (p) = sup

q∈R

(pq − Li(q))

and
Hi = L∗

i . (1.3)

We also consider
H−

i (pi) = sup
q≤0

(piq − Li(q)) . (1.4)

Therefore equation (1.1) can be rewritten as follows{
ui

t +Hi(ui
x) = 0 on (0, T )× J∗

i for i = 1, . . . , N,
ut + maxi=1,...,N H−

i (ui
x) = 0 on (0, T )× {0} . (1.5)

The optimal control framework. In this paragraph, we give an optimal control interpretation [4, 7, 26] of
the Hamilton-Jacobi equation. We define the set of admissible controls at a point x ∈ J by

A(x) =
{

Rei0 if x ∈ J∗
i0
,⋃

i=1,...,N R
+ei if x = 0.

For (s, y), (t, x) ∈ [0, T ] × J with s ≤ t (the case s = t being trivial and forcing y = x), we define the set of
admissible trajectories from (s, y) to (t, x) by

A(s, y; t, x) =

⎧⎨
⎩X ∈ W 1,1([s, t]; R2) :

∣∣∣∣∣∣
X(τ) ∈ J for all τ ∈ (s, t),
Ẋ(τ) ∈ A(X(τ)) for a.e. τ ∈ (s, t)
X(s) = y and X(t) = x

⎫⎬
⎭ . (1.6)

For P = pei ∈ A(x) with p ∈ R, we define the Lagrangian on the junction

L(x, P ) =
{
Li(p) if x ∈ J∗

i
L0(p) if x = 0 (1.7)

with
L0(p) = min

j=1,...,N
Lj(p).

The reader can be surprised by the definition of L(x, P ) for x = 0. In fact, if one considers only trajectories
that do not stay at the junction point, then the ones staying at 0 are approximated by those staying very close
to 0 on a branch i ∈ I0 and moving “slowly” (Ẋ � 0).
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1.2. Main results

We make the following assumptions:

(A0) The initial data u0 is Lipschitz continuous.
(A1) There exists a constant γ > 0, and for all i = 1, . . . , N , there exists C2(R) functions Li satisfying

L′′
i ≥ γ > 0, such that (1.3) and (1.4) hold.

Theorem 1.1 (existence and uniqueness). Assume (A0)–(A1) and let T > 0. Then there exists a unique
viscosity solution u of (1.1)–(1.2) on JT in the sense of Definition 3.2, satisfying for some constant CT > 0

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ JT .

Moreover the function u is Lipschitz continuous with respect to (t, x) on JT .

On one hand, we will see below that the existence of a solution can be obtained with Perron’s method under
weaker assumptions than (A1) (see Thm. A.2). On the other hand, we are able to get uniqueness of the solution
only under assumption (A1) and this is a consequence of the following result:

Theorem 1.2 (comparison principle). Assume (A0)–(A1). Let T > 0 and let u (resp. v) be a sub-solution
(resp. a super-solution) of (1.1)–(1.2) on JT in the sense of Definition 3.2. We also assume that there exists a
constant CT > 0 such that for all (t, x) ∈ JT

u(t, x) ≤ CT (1 + |x|) (resp. v(t, x) ≥ −CT (1 + |x|)) .
Then we have u ≤ v on JT .

In order to prove this strong uniqueness result, we will use in an essential way the value function associated
to the optimal control problem described in Section 1.1: for t ≥ 0,

uoc(t, x) = inf
y∈J, X∈A(0,y;t,x)

{
u0(y) +

∫ t

0

L(X(τ), Ẋ(τ))dτ
}

(1.8)

where L is defined in (1.7) and A(0, y; t, x) is defined in (1.6).

Theorem 1.3 (optimal control representation of the solution). Assume (A0)–(A1) and let T > 0. The unique
solution given by Theorem 1.1 is u = uoc with uoc given in (1.8). Moreover, we have the following Hopf-Lax
representation formula

uoc(t, x) = inf
y∈J

{u0(y) + D (0, y; t, x)} (1.9)

with

D(0, y; t, x) = inf
X∈A(0,y;t,x)

{∫ t

0

L(X(τ), Ẋ(τ))dτ
}
.

The comparison principle is obtained by combining

• a super-optimality principle for super-solutions v, which implies v ≥ uoc;
• a direct comparison result with sub-solutions u, which gives uoc ≥ u.

We finally have the following result which shed light on the role of the junction condition (see the second line
of (1.5)).

Theorem 1.4 (comparison with continuous solutions outside the junction point). Assume (A0)–(A1) and let
T > 0. Let u ∈ C([0, T ) × J) be such that u(0, ·) = u0 and for each i ∈ {1, . . . , N}, the restriction ui of u to
(0, T ) × Ji is a classical viscosity solution of

ui
t +Hi(ui

x) = 0 on (0, T ) × J∗
i .

Then u is a sub-solution of (1.1)–(1.2) on JT in the sense of Definition 3.2, and u ≤ uoc.
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An immediate consequence of Theorem 1.4 is the fact that the optimal control solution uoc is the maximal
continuous function which is a viscosity solution on each open branch.

We apply in Section 2 our HJ approach to describe traffic flows on a junction. In particular, we recover
the well-known junction conditions of Lebacque (see [22]) or equivalently those for the Riemann solver at the
junction as in the book of Garavello and Piccoli [17]; see also [18].

1.3. Comments

We already mentioned that the main difficulties we have to overcome in order to get our main results are on
one hand the singular geometry of the domain and on the other hand the discontinuity of the Hamiltonian.

Discontinuity. Several papers in the literature deal with HJB equations with discontinuous coefficients; see
for instance [6, 9, 12, 13, 28, 34, 37–39]. Note that in these works the optimal trajectories do cross the regions
of discontinuities (i.e. the junction in the present paper) only on a set of time of measure zero. In the present
paper, the optimal trajectories can remain on the junction during some time intervals, and the results cited
above do not apply then to the problem studied here.

On the other hand, the analysis of scalar conservation laws with discontinuous flux functions has been
extensively studied, we refer to [3, 10, 32] and references therein. We also point out that a uniqueness result is
proved in R in the framework corresponding a junction with two branches [21]. To the best of our knowledge, in
the case of junctions with more than two branches, there are no uniqueness result. Moreover, the link between
HJB equations and conservation laws with discontinuous has been seldom investigated [29].

The main differences between the study in [1] and the one carried out in the present paper lie in the fact
that in [1] the Lagrangian can depend on x and is continuous with respect to this variable, while we consider
a Lagrangian which is constant in x on each branch but can be discontinuous (with respect to x) at the
junction. We point out that we cannot extend directly our approach to Lagrangians depending on x since we
use extensively the representation formula “à la Hopf-Lax”. In order to generalize results in this direction, the
semi-concavity of the “fundamental solution” D should be proved without relying on explicit computations.
This question is very interesting but is out of the scope of the present paper.
Networks. It is by now well known that the study of traffic flows on networks is an important motivation
that give rise to several difficulties related to scalar conservation laws with discontinuous coefficients. This topic
has been widely studied by many authors, see for instance [10, 15, 17] and the references therein.

However, the study of HJB equations on networks has been considered very recently; the reader is referred
to [11,31] where Eikonal equations are considered. A more general framework was also studied in [1,2] where a
definition of viscosity solutions on networks, similar to Definition 3.2, has been introduced.

It would be interesting to extend the results of the present paper to more general networks but the obstacle
is the same than the one to be overcome if one wants to deal with Lagrangians depending on x: for a general
network, the complete study of the fundamental solution is probably out of reach. This is the reason why we only
consider the very specific case of a junction in order to be able to overcome the difficulty of the discontinuity of
the Lagrangian.
The optimal control interpretation. As explained above, the comparison principle is proved by using in
an essential way the optimal control interpretation of the Hamilton-Jacobi equation. The use of representation
formulas and/or optimality principles is classical in the study of Hamilton-Jacobi equations [19, 20, 27, 35, 36].
More specifically, it is also known that a “metric” interpretation of the Hamilton-Jacobi equation is fruitful [33].
Such an interpretation plays a central role in the weak KAM theory [16].

As far as our problem is concerned, we are not able to prove uniqueness of viscosity solutions by using
the classical techniques of doubling variable. The idea used here is based on the equivalence between the
viscosity super-solution and the super-optimality principle (also known as weak-invariance principle), and by
using representation formulas for the viscosity sub-solutions. This representation seems to be new for HJB
equations with discontinuous coefficients, see for instance [14].
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We would like next to be a bit more precise. The technical core of the paper lies in Theorem 4.2. This result
implies that the function

D(s, y; t, x) = (t− s)D0

(
y

t− s
,
x

t− s

)

is semi-concave with respect to (t, x) and (s, y) and, if there are at least two branches (N ≥ 2), that D satisfies{ Dt +H(x,Dx) = 0,
−Ds +H(y,−Dy) = 0

(in a weak sense made precise in the statement of Thm. 4.2). In the case where the Lagrangians coincide at
the junction point (L1(0) = . . . = LN(0)), it turns out that the restriction Dji

0 (y, x) of D0 to Jj × Ji belongs
to C1(Jj × Ji) and is convex. A more general case is considered in this paper: Lagrangians can differ at the
junction point and in this case, the functions Dji

0 are not convex nor C1 anymore for some (i, j). Let us point
out here that the assumptions on the Hamiltonian Hi, and in particular the fact that it does not depend on the
space variable x, plays a crucial role to establish the properties satisfied by the minimal action function D.

Generalization and open problems. Eventually, we briefly mention natural generalizations of our results
and some important open problems. First of all, it would be natural to extend the results of this paper to more
general setting where the Hamiltonians Hi depend on the space variable x. Moreover, it would be interesting to
consider general networks with several junction points. Dealing with non-convex and non-coercive Hamiltonians
is quite challenging and would require first to have a direct proof of the comparison principle which does not need
to go through the interpretation of the viscosity solution as the value function of an optimal control problem.

Organization of the article

Section 2 is devoted to the application of our results to some traffic flow problems. In particular, the HJ
equation is derived and the junction condition is interpreted. In Section 3, the definition of (viscosity) solutions
is made precise. In Section 4, the first important properties of optimal trajectories are given. Section 5 is
devoted to the proof of the main results of the paper. In particular, the comparison principle is derived by
proving a super-optimality principle and by comparing sub-solutions with the solution given by the optimal
control interpretation of the equation. Section 6 is devoted to the proof of the technical core of the paper,
namely the existence of test functions for the minimal action associated with the optimal control interpretation.

Notation

Distance and coordinates in the junction. We denote by d the geodesic distance defined on J by

d(x, y) =
{ |x− y| if x, y belong to the same branch Ji for some i,
|x| + |y| if x, y do not belong to the same branch.

For x ∈ J , B(x, r) denotes the (open) ball centered at x of radius r. We also consider balls B((t, x), r) centered
at (t, x) ∈ (0,+∞) × J of radius r > 0. For x ∈ J , let us define the index i(x) of the branch where x lies.
Precisely we set:

i(x) =
{
i0 if x ∈ J∗

i0 ,
0 if x = 0.

Up to reordering the indices, we assume that there exists an index k0 ∈ {1, . . . , N} such that

L0(0) = L1(0) = · · · = Lk0(0) < Lk0+1(0) ≤ · · · ≤ LN (0). (1.10)

We also set
I0 = {1, . . . , k0} and IN = {1, . . . , N} .
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Figure 2. A traffic junction.

Functions defined in J2. For a function ϕ defined on J × J , we call ϕij its restriction to Ji × Jj . Then we
define the space

C1
∗(J2) =

{
ϕ ∈ C(J2), ϕij ∈ C1(Ji × Jj) for all i, j ∈ IN

}
.

We also call for x = xiei with xi ≥ 0 and y = yjej with yj ≥ 0

∂i
xϕ(x, y) =

∂

∂xi
ϕij(xiei, y) and ∂j

yϕ(x, y) =
∂

∂yj
ϕij(x, yjej)

and

∂xϕ(x, y) =

{
∂i

xϕ(x, y) if x ∈ J∗
i ,(

∂i
xϕ(x, y)

)
i=1,...,N

if x = 0

and similarly

∂yϕ(x, y) =

{
∂j

yϕ(x, y) if y ∈ J∗
j ,(

∂j
yϕ(x, y)

)
j=1,...,N

if y = 0.

We also set {
x∂xϕ(x, y) = xi∂

i
xϕ(x, y) if x ∈ Ji,

y∂yϕ(x, y) = yj∂
j
yϕ(x, y) if y ∈ Jj .

2. Application to the modeling of traffic flows

In this section we present the derivation of the Hamilton-Jacobi formulation of traffic on a junction. We also
discuss the meaning of our junction condition in this framework and relate it to known results.

2.1. Primitive of the densities of cars

We consider a junction (represented in Fig. 2) with m ≥ 1 incoming roads (labeled by the index i = 1, . . . ,m)
and n ≥ 1 outgoing roads (labeled by j = m + 1, . . . ,m + n = N). This means that the cars move on the
incoming roads in the direction of the junction and then have to choose to go on one of the n outgoing roads.
We assume that the proportion of cars coming from the branch i = 1, . . . ,m is a fixed number γi > 0 (which
may be not realistic for m ≥ 2), and that the proportion of cars going on each branch j ∈ {m+ 1, . . . ,m+ n}
is also a fixed number γj > 0. We also assume the obvious relations (for conservation of cars)∑

i=1,...,m

γi = 1 and
∑

j=m+1,...,m+n

γj = 1.

We denote by ρk(t,X) ≥ 0 the car density at time t and at the position X on the branch k. In particular, we
assume that the traffic is described on each branch k by a flux function fk : R → R. We assume

each function fk is concave and has a unique maximum value at ρ = ρk
c > 0. (2.1)
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The typical example of such flux function is given by the LWR model (Lighthill and Whitham [25] and
Richards [30]), with

f(ρ) = ρv(ρ) with the velocity v(ρ) = Vmax(1 − ρ/ρmax) (2.2)

where Vmax and ρmax are respectively the maximal velocity and the maximal car density in the model). In this
model the critical car density ρc where f is maximal, is equal to 1

2ρmax.
We assume that the car densities are solution of non linear transport equations:{

ρi
t + (f i(ρi))X = 0, X < 0, for i = 1, . . . ,m
ρj

t + (f j(ρj))X = 0, X > 0, for j = m+ 1, . . . ,m+ n
(2.3)

where we assume that the junction point is located at the origin X = 0.
We do not precise yet the junction condition at X = 0, and we now proceed formally to deduce the Hamilton-

Jacobi model of such a junction. For a function g, that will be defined precisely later, let us consider the functions{
U i(t,X) = g(t) + 1

γi

∫X

0 ρi(t, Y ) dY, X < 0, for i = 1, . . . ,m,
U j(t,X) = g(t) + 1

γj

∫X

0 ρj(t, Y ) dY, X > 0, for j = m+ 1, . . . ,m+ n.
(2.4)

Then we can compute formally for j = m+ 1, . . . ,m+ n

U j
t = g′(t) +

1
γj

∫ X

0

ρj
t (t, Y ) dY

= g′(t) − 1
γj

∫ X

0

(f j(ρj(t, Y )))X dY

= − 1
γj
f j(ρj(t,X)) + g′(t) +

1
γj
f j(ρj(t, 0+)).

This shows that for j = m+ 1, . . . ,m+ n

U j
t +

1
γj
f j(γjU

j
X) = hj(t) (2.5)

where
hj(t) := g′(t) +

1
γj
f j(ρj(t, 0+)).

Remark that we can show similarly that (2.5) is still true for the index j replaced by i = 1, . . . ,m with

hi(t) = g′(t) +
1
γi
f i(ρi(t, 0−)).

In particular, this shows (at least when the quantities in (2.5) are well defined) that we can choose g such that
the total flux −g′(t) is given by

−g′(t) =
∑

i=1,...,m

f i(ρi(t, 0−)) (2.6)

and then we have
hk(t) ≡ 0 for i = 1, . . . ,m+ n

if and only if {
f i(ρi(t, 0−)) = γi(−g′(t)) for i = 1, . . . ,m
f j(ρj(t, 0+)) = γj(−g′(t)) for j = m+ 1, . . . ,m+ n

(2.7)
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which is exactly the expected condition which says that the proportion of incoming cars going in the junction
from the branch i is γi and the proportion of cars getting out of the junction which choose to go on the branch
j is γj.

Let us notice that if we choose the initial condition g(0) = 0, then we deduce from (2.6) that we have for
l = 1, . . . ,m+ n

−U l(t, 0) = −g(t) =
∫ t

0

∑
i=1,...,m

f i(ρi(τ, 0−)) dτ

which shows that −U l(t, 0) can be interpreted as the total quantity of cars passing through the junction point
X = 0 during the time interval [0, t). As a consequence, the quantity −U l

t(t, 0) can also be interpreted as the
instantaneous flux of cars passing through the junction point.

We now give a further interpretation of the problem in the special case m = 1. In the special case m = 1,
imagine for a moment, that we come back to a discrete description of the traffic, where each car of label k has
a position xk(t) with the ordering xk(t) < xk+1(t) < 0. We can be interested in the label k of the car xk(t) ≤ 0
which is the closest to the junction point X = 0. Let us call it K(t). We can normalize the initial data such
that K(0) = 0. Then the quantity of cars that have passed through the junction point X = 0 during the time
interval [0, t) is equal to −K(t), which is the exact discrete analogue of the continuous quantity −U1(t, 0).

On the other hand the number of cars between the positions a = xA(t) and b = xB(t) is obviously equal to
B−A, and its continuous analogue on the branch i = m = 1 with γ1 = 1, is

∫ b

a ρ
1(t,X) dX = U1(t, b)−U1(t, a).

This shows that U1(t,X) can be interpreted as the exact continuous analogue of the discrete labeling of the
cars moving in the traffic.

This interpretation is also meaningful on the “exit” branches, i.e. for j ∈ {m+ 1, . . . ,m+ n}. Indeed, for
such j’s, U j(t,X) is the continuous analogue of the discrete label of the car that have decided to choose the
branch j and which is at time t close to the position X > 0.

2.2. Getting the Hamilton-Jacobi equations

We now set {
ui(t,X) = −U i(t,−X), X > 0, for i = 1, . . . ,m

uj(t,X) = −U j(t,X), X > 0, for j = m+ 1, . . . ,m+ n
(2.8)

and we define the convex Hamiltonians{
Hi(p) = − 1

γi f
i(γip) for i = 1, . . . ,m

Hj(p) = − 1
γj f

j(−γjp) for j = m+ 1, . . . ,m+ n.
(2.9)

Then we deduce from (2.5) that we have

uk
t +Hk(uk

X) = 0, X > 0, for k = 1, . . . ,m+ n (2.10)

with equality of the functions at the origin, i.e.

uk(t, 0) = u(t, 0) for any k ∈ {1, . . . ,m+ n} .
Notice that for the choice Vmax = 1 = ρmax in (2.2), we get with fk(ρ) = f(ρ) = ρ(1 − ρ) for all k ∈ IN , that⎧⎪⎪⎨

⎪⎪⎩
Lref(q) = 1

4 (1 + q)2

Li(q) = 1
γiLref(q) for i = 1, . . . ,m

Lj(q) = 1
γjLref(−q) for j = m+ 1, . . . ,m+ n.

In particular this shows that the Lk(0) are not all the same, even in the simplest case.
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2.3. The junction condition and its interpretation

A junction condition is still needed so that the solution of (2.10) be uniquely defined. Indeed, at first glance,
one may think that ut(t, 0) is equal to −g′(t) which is given by (2.6) (where we have assumed (2.7)). The point
is that this condition can not be satisfied for every time. One way to be convinced oneself of that fact is to
consider the case m = n = 1 with f1 = f2 = f . Then, we look at solutions u of the Hamilton-Jacobi equation in
R with the artificial junction. We can simply associate with it the classical conservation law on the whole real
line. We can then consider a single shock moving with constant velocity for the conservation law. When this
shock will pass through the junction point (let us say at time t0), this will mean that ut(t0, ·) is discontinuous
in space at the junction point. In particular the formal computations of Section 2.1 are no longer valid at that
time t0, even if they are valid for t �= t0. For a general problem, one may expect that our formal computations
are only valid for almost every time (even if it is not clear for us).

In view of Theorem 1.4, if we restrict our attention to continuous solutions u, then we will have u ≤ uoc

where uoc is the solution associated to the optimal control problem. This shows in particular that we have

u(t, 0) ≤ uoc(t, 0)

which means (in view of (2.8) and the interpretation of −U l given in Sect. 2.1) that we have a universal bound
on the total amount of cars passing through the junction point during the time interval [0, t). If we assume
moreover that this amount of cars is maximal, then we can choose (and indeed have to choose) u = uoc and the
natural junction condition is then

ut(t, 0) + max
k=1,...,N

H−
k (uk

X(t, 0+)) = 0 (2.11)

with
H−

k (p) = sup
q≤0

(pq − Lk(q)) and Lk(p) = sup
q∈R

(pq −Hk(q)) .

Using our assumption (2.1) on the functions fk, let us define for k = 1, . . . , N the Demand functions

fk
D(p) =

{
fk(p) for p ≤ ρk

c

fk(ρk
c ) for p ≥ ρk

c

and the Supply functions

fk
S(p) =

{
fk(ρk

c ) for p ≤ ρk
c

fk(p) for p ≥ ρk
c .

From assumption (2.1) on the functions fk, we deduce that{
H−

i (p) = − 1
γi f

i
D(γip), for i = 1, . . . ,m

H−
j (p) = − 1

γj f
j
S(−γjp), for j = m+ 1, . . . ,m+ n = N.

Condition (2.11) means that

−U1
t (t, 0) = ut(t, 0) = min

k=1,...,N
−H−

k (uk
X(t, 0+))

= min
(

min
i=1,...,m

1
γi
f i

D(ρi(t, 0−)), min
j=m+1,...,m+n

1
γj
f j

S(ρj(t, 0+))
)
. (2.12)

Notice that from (2.7), it is natural to compare

1
γi
f i(ρi(t, 0−)) and

1
γj
f j(ρj(t, 0+)).
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Then condition (2.12) is nothing else that the Demand and Supply condition of Lebacque, which claims that
the passing flux is equal to the minimum between the Demand and the Supply, as it is defined in [23] (at least
in the case m = 1).

In the special case m = 1, it is explained in [24] that this condition (2.12) is also equivalent to the condition
defining the Riemann solver at the junction point in the book of Garavello and Piccoli [17]. Let us notice that
this condition is also related to the Bardos et al. [5] boundary condition.

3. Viscosity solutions

In this section, we consider a weaker assumption than (A1). We introduce the following assumption:
(A1’) For each i ∈ IN ,

• the function Hi : R → R is continuous and lim|p|→+∞Hi(p) = +∞;
• there exists pi

0 ∈ R such that Hi is non-increasing on (−∞, pi
0] and non-decreasing on [pi

0,+∞);

When (A1’) holds true, the function H−
i is defined by H−

i (p) = infq≤0Hi(p + q). We now make the following
useful remark whose proof is left to the reader.

Lemma 3.1. Assumption (A1) implies Assumption (A1’).

Next we give equivalent definitions of viscosity solutions for (1.1). We give a first definition where the junction
condition is satisfied in “the classical sense”; we then prove that it is equivalent to impose it in “the generalized
sense”. It is essential if one expects solutions to be stable.

We give a first definition of viscosity solutions for (1.1) in terms of test functions by imposing the junction
condition in the classical sense. We recall the definition of the upper and lower semi-continuous envelopes u∗

and u∗ of a function u : [0, T )× J :

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 3.2 (viscosity solutions). A function u : [0, T ) × J → R is a sub-solution (resp. super-solution) of
(1.1) on JT if it is upper semi-continuous (resp. lower semi-continuous) and if for any φ ∈ C1

∗ (JT ) such that
u ≤ φ in B(P, r) for some P = (t, x) ∈ JT , r > 0 and such that u = φ at P ∈ JT , we have

φt(t, x) +H(x, φx(t, x)) ≤ 0 (resp. ≥ 0),

that is to say

• if x ∈ J∗
i , then

φt(t, x) +Hi(φx(t, x)) ≤ 0 (resp. ≥ 0);

• if x = 0, then
φt(t, 0) + max

i∈IN

H−
i (φi

x(t, 0)) ≤ 0 (resp. ≥ 0). (3.1)

A function u : [0, T )× J → R is a sub-solution (resp. super-solution) of (1.1)–(1.2) on JT if it is a sub-solution
(resp. super-solution) of (1.1) on JT and moreover satisfies u(0, ·) ≤ u0 (resp. u(0, ·) ≥ u0).

A function u : [0, T )×J → R is a (viscosity) solution of (1.1) (resp. (1.1)–(1.2)) on JT if u∗ is a sub-solution
and u∗ is a super-solution of (1.1) (resp. (1.1)–(1.2)) on JT .

As mentioned above, the following proposition is important in order to get discontinuous stability results for
the viscosity solutions of Definition 3.2.

Proposition 3.3 (equivalence with relaxed junction conditions). Assume (A1’). A function u : JT → R is a
sub-solution (resp. super-solution) of (1.1) on JT if and only if for any function φ ∈ C1

∗ (JT ) such that u ≤ φ
in JT and u = φ at (t, x) ∈ JT ,
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• if x ∈ J∗
i , then

φt(t, x) +Hi(φx(t, x)) ≤ 0 (resp. ≥ 0);

• if x = 0, then either there exists i ∈ IN such that

φt(t, 0) +Hi(φx(t, 0)) ≤ 0 (resp. ≥ 0)

or (3.1) holds true.

Proof of Proposition 3.3. We classically reduce to the case where the ball B(P, r) is replaced with JT .
The “if” part is clear. Let us prove the “only if” one. We distinguish the sub-solution case and the super-

solution one. We start with the super-solutions case since it is slightly easier.

Case 1: super-solution case. We consider a test function φ ∈ C1
∗ (JT ) such that u ≥ φ in JT and u = φ

at (t0, x0). There is nothing to prove if x0 �= 0, so we assume x0 = 0. We have to prove that φt(t0, 0) +
supi∈IN

H−
i (φi

x(t0, 0)) ≥ 0. We argue by contradiction and we assume that

φt(t0, 0) + sup
i∈IN

H−
i (φi

x(t0, 0)) < 0. (3.2)

Then it is easy to see that there exists a function φ̃ ∈ C1∗(JT ) such that φ ≥ φ̃ with equality at the point
(t0, 0) and such that

φ̃i
x(t0, 0) = min(φi

x(t0, 0), pi
0) and φ̃t(t0, 0) = φt(t0, 0). (3.3)

Notice that
H−

i (φ̃i
x(t0, 0)) ≤ Hi(φ̃i

x(t0, 0)) ≤ H−
i (φi

x(t0, 0)). (3.4)

The first inequality is straightforward. To check the second inequality, we have to distinguish two cases. Either
we have φ̃i

x(t0, 0) < φi
x(t0, 0), and then φ̃i

x(t0, 0) = pi
0 and we use the fact that the minimum of H−

i is Hi(pi
0). Or

φ̃i
x(t0, 0) = φi

x(t0, 0) and then this common value belongs to the interval (−∞, pi
0] on which we have Hi = H−

i .
Since u ≥ φ̃ in JT and u = φ̃ at (t0, 0), we conclude that either

φ̃t(t0, 0) + sup
i∈IN

H−
i (φ̃i

x(t0, 0)) ≥ 0

or there exists i ∈ IN such that
φ̃t(t0, 0) +Hi(φ̃i

x(t0, 0)) ≥ 0.

In view of (3.3) and (3.4), we obtain a contradiction with (3.2).

Case 2: sub-solution case. We consider a function φ ∈ C1(JT ) such that u ≤ φ in JT and u = φ at
(t0, x0). There is nothing to prove if x0 �= 0 and we thus assume x0 = 0. We have to prove that φt(t0, 0) +
supi∈IN

H−
i (φi

x(t0, 0)) ≤ 0. We argue by contradiction and we assume that

φt(t0, 0) + sup
i∈IN

H−
i (φi

x(t0, 0)) > 0. (3.5)

In order to construct a test function φ̃, we first consider Ī1 ⊂ IN the set of j’s such that

H−
j (φj

x(t0, 0)) < sup
i∈IN

H−
i (φi

x(t0, 0)).

Since Hj is coercive, there exists qj ≥ pj
0 such that Hj(qj) = supi∈IN

H−
i (φi

x(t0, 0)).
We next consider a test function φ̃ ∈ C1

∗ (JT ) such that φ ≤ φ̃ with equality at (t0, 0) and such that

φ̃i
x(t0, 0) =

{
max(φi

x(t0, 0), qi) if i ∈ Ī1,
φi

x(t0, 0) if not, and φ̃t(t0, 0) = φt(t0, 0). (3.6)
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Notice that for all j ∈ IN ,

Hj(φ̃j
x(t0, 0)) ≥ sup

i∈IN

H−
i (φ̃i

x(t0, 0)) = sup
i∈IN

H−
i (φi

x(t0, 0)) (3.7)

where for the inequality, we have in particular used the fact that Hj is non-decreasing on [pj
0,+∞).

Since u ≤ φ̃ in JT and u = φ̃ at (t0, 0), we conclude that either

φ̃t(t0, 0) + sup
i∈IN

H−
i (φ̃i

x(t0, 0)) ≤ 0

or there exists j ∈ IN such that
φ̃t(t0, 0) +Hj(φ̃j

x(t0, 0)) ≤ 0.

In view of (3.6) and (3.7), we obtain a contradiction with (3.5). This ends the proof of the proposition. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. Let us consider a function φ ∈ C1
∗(JT ) such that u ≤ φ with equality at (t0, 0) with

t0 ∈ (0, T ). Modifying φ if necessary, we can always assume that the supremum of u− φ is strict (and reached
at (t0, 0)). For η = (η1, . . . , ηN ) ∈ (R+)N , we set

Mη = sup
(t,x=xjej)∈JT

(
u(t, x) − φ(t, x) − ηj

|xj |
)
·

Because u is continuous at (t0, 0), we get for η ∈ (R+
∗ )N that{

Mη →M0 = 0
(tη, xη) → (t0, 0)

∣∣∣∣ as soon as one of the component ηi0 → 0. (3.8)

where (tη, xη) ∈ JT is a point where the supremum in Mη is reached.
Moreover given the components ηj > 0 for j ∈ IN \ {i0}, we can use (3.8) in order to find ηi0 > 0 small

enough to ensure that xη ∈ J∗
i0

. Then we have in particular the following sub-solution viscosity inequality at
that point (tη, xη):

φt +Hi0

(
φx − ηi0

|xη|2
)

≤ 0.

Therefore passing to the limit ηi0 → 0, we get

φt +H−
i0

(φi0
x ) ≤ 0 at (t0, 0).

Because this is true for any i0 ∈ IN , we finally get the sub-solution viscosity inequality at the junction:

φt + max
i∈IN

H−
i (φi

x) ≤ 0 at (t0, 0).

Now the fact that u ≤ uoc follows from the comparison principle. This ends the proof of the theorem. �

4. The minimal action

We already mentioned that the optimal control solution of the Hamilton-Jacobi equation defined by (1.8)
plays a central role in our analysis. We remark that for x ∈ J and t > 0,

uoc(t, x) = inf
y∈J

{u0(y) + D(0, y; t, x)} (4.1)
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where

D(0, y; t, x) = min
X∈A(0,y;t,x)

∫ t

0

L(X(τ), Ẋ(τ))dτ.

More generally, keeping in mind the weak KAM theory, we define the so-called minimal action D : {(s, y, t, x) ∈
([0,∞) × J)2, s < t} → R by

D(s, y; t, x) = inf
X∈A(s,y;t,x)

∫ t

s

L(X(τ), Ẋ(τ))dτ. (4.2)

It is convenient to extend D to {s = t}. We do so by setting

D(t, y, t, x) =

{
0 if y = x,

+∞ if y �= x.

Remark 4.1 (dynamic programming principle). Under assumptions (A0)–(A1), it is possible (and easy) to
prove the following dynamic programming principle: for all x ∈ J and s ∈ [0, t],

uoc(t, x) = inf
y∈J

{uoc(s, y) + D(s, y; t, x)} .

Notice that a super-optimality principle will be proved in Proposition 5.1.

The following result can be considered as the core of our analysis. The most important part of the following
theorem is the fact that the minimal action is semi-concave with respect to (t, x) (resp. (s, y)).

Theorem 4.2 (key inequalities for D). D is finite, continuous in {(s, y; t, x) : 0 < s < t, x, y ∈ J} and lower
semi-continuous in {(s, y; t, x) : 0 < s ≤ t, x, y ∈ J}. Moreover, for all (s0, y0) and (t0, x0) ∈ (0, T )× J , s0 < t0,
there exist two functions φ, ψ ∈ C1∗ (JT ) and r > 0 such that

• φ ≥ D(s0, y0; ·, ·) on a ball B(P0, r) with equality at P0 = (t0, x0) and

φt +H(x0, φx) ≥ 0 at (t0, x0); (4.3)

• ψ ≥ D(·, ·; t0, x0) on a ball B(Q0, r) with equality at Q0 = (s0, y0) and

{−ψs +H(y0,−ψy) ≤ 0 at (s0, y0) if N ≥ 2,
−ψs +H1(−ψy) ≤ 0 at (s0, y0) if N = 1. (4.4)

Moreover, for all R > 0, there exists a constant CR > 0 such that we have

d(y0, x0) ≤ R =⇒ |φx(t0, x0)| + |ψy(s0, y0)| ≤ CR. (4.5)

Remark 4.3. As we shall see when proving this result, we can even require equalities instead of inequalities in
(4.3) and (4.4).

Since the proof of Theorem 4.2 is lengthy and technical, we postpone it until Section 6. When proving the main
results of our paper in the next section, we also need the following lower bound on D. We remark that this
bound ensures in particular that it is finite.
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Lemma 4.4. Assume (A1). Then

D(s, y; t, x) ≥ γ

4(t− s)
d(y, x)2 − C0(t− s)

where C0 : = max(0,−L0(0) + γ2
0
γ ), γ appears in (A1), γ0 = maxi∈IN |L′

i(0)| and L0(0) is chosen as in (1.10).
Moreover,

D(s, x; t, x) ≤ L0(0)(t− s).

In particular, if (tn, xn) → (t, x), then D(tn, xn; t, xn) → 0 as n→ ∞.

Proof of Lemma 4.4. We only prove the first inequality since the remaining of the statement is elementary. We
have

Li(p) ≥ γ

2
p2 + L′

i(0)p+ Li(0) ≥ γ

2
p2 − γ0|p| + L0(0) ≥ γ

4
p2 + L0(0) − γ2

0

γ
·

This shows that
Li(p) ≥ γ

4
p2 − C0. (4.6)

Thus we can write for X(·) ∈ A(s, y; t, x),∫ t

s

L(X(τ), Ẋ(τ)) dτ ≥ −C0(t− s) +
γ

4

∫ t

s

(Ẋ(τ))2 dτ.

Then Jensen’s inequality allows us to conclude. �

5. Proofs of the main results

In this section, we investigate the uniqueness of the solution of (1.1)–(1.2). In particular, we will show that
the solution constructed by Perron’s method coincide with the function uoc coming from the associated optimal
control problem.

5.1. super-solutions and super-optimality

In this subsection, we will show that a super-solution satisfies a super-optimality principle. For the sake of
clarity, we first give a formal argument to understand this claim. We consider the auxiliary function, for s ≤ t,

Ut,x(s) = inf
y∈J

{u(s, y) + D(s, y; t, x)} (5.1)

and we are going to explain formally that it is non-decreasing with respect to s as soon as u is a super-solution
of (1.1). We call this property a super-optimality principle. Notice that this is strongly related to the fact that
the quantity Ut,x(s) is constant in s if u is equal to the optimal control solution uoc.

Assume that the infimum defining U is attained for some ȳ ∈ J . Then we write

U ′
t,x(s) = ∂su(s, ȳ) + ∂sD(s, ȳ; t, x)

∂xu(s, ȳ) = −∂yD(s, ȳ; t, x).

Moreover assuming D to be smooth (which is not the case), we formally get from (4.4) the fact that
∂sD(s, ȳ; t, x) ≥ H(ȳ,−∂yD(s̄, ȳ; t, x)) (at least in the case N ≥ 2). Hence

U ′
t,x(s) ≥ ∂su(s, ȳ) +H(ȳ, ∂xu(s, ȳ)) ≥ 0.

We thus conclude that Ut,x is non-decreasing if u is a super-solution of (1.1). We now give a precise statement
and a rigorous proof.
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Proposition 5.1 (super-optimality of super-solutions). Assume (A1). Let u : [0, T )×J → R be a super-solution
of (1.1) on JT such that there exists σ > 0 such that for all (t, x) ∈ JT ,

u(t, x) ≥ −σ(1 + d(x, 0)). (5.2)

Then for all (t, x) ∈ JT and s ∈ (0, t],

u(t, x) ≥ inf
y∈J

{u(s, y) + D(s, y; t, x)}. (5.3)

Assume moreover (A0) and that u is a super-solution of (1.1)–(1.2) on JT . Then we have u ≥ uoc on [0, T )×J .

Proof of Proposition 5.1. The proof proceeds in several steps.

Step 1: preliminary. Notice first that from (6.7), we get

u(s, y) + D(s, y; t, x) ≥ γ

4(t− s)
d(y, x)2 − C0(t− s) − σ(1 + |y|).

Using the lower semi-continuity of D, we see that the infimum in y of this function is then reached for bounded
y’s. Moreover by lower semi-continuity of the map (s, y; t, x) �→ u(s, y) + D(s, y; t, x), we deduce in particular
that the map (s; t, x) �→ Ut,x(s) (and then also s �→ Ut,x(s)) is lower semi-continuous.

Step 2: the map s �→ Ut,x(s) is non-decreasing. We are going to prove that for s ∈ (0, t), U ′
t,x(s) ≥ 0 in the

viscosity sense. We consider a test function ϕ touching Ut,x from below at s̄ ∈ (0, t). There exists ȳ such that

Ut,x(s̄) = u(s̄, ȳ) + D(s̄, ȳ; t, x).

We deduce from the definition of Ut,x that

ϕ(s) −D(s, y; t, x) − [ϕ(s̄) −D(s̄, ȳ; t, x)] ≤ u(s, y) − u(s̄, ȳ).

By Theorem 4.2, there exists a test function ψ such that ψ ≥ D(·, ·; t, x) on a ball B(Q̄, r) with equality
at Q̄ = (s̄, ȳ). Hence, we can rewrite the previous inequality by replacing D with ψ. We then obtain that
(s, y) �→ ϕ(s)−ψ(s, y) is a test function touching u at (s̄, ȳ) from below. Since u is a super-solution of (1.1), we
have in the cases N ≥ 2 or N = 1 and ȳ �= 0

ϕ′(s̄) ≥ ψs(s̄, ȳ) −H(ȳ,−∂yψ(s̄, ȳ)) ≥ 0

and in the case N = 1 and ȳ = 0

ϕ′(s̄) ≥ ψs(s̄, ȳ) −H−
1 (−∂yψ(s̄, ȳ)) ≥ ψs(s̄, ȳ) −H1(−∂yψ(s̄, ȳ)) ≥ 0

where we used the properties of the function ψ given by Theorem 4.2.

Step 3: conclusion. Let us define for (t, x) ∈ JT the following kind of lower semi-continuous envelope (for the
past in time)

u(t, x) = lim inf{u(tn, xn) : (tn, xn) → (t, x), tn < t}.
Let us notice that we have

u∗ = u∗ = u on JT . (5.4)

Given a point (t, x) ∈ JT , let us consider a sequence (tn, xn) → (t, x) such that

u(t, x) = lim
n→+∞u(tn, xn).
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Using Lemma 4.4, we have for any s < tn < t

Ut,xn(s) ≤ Ut,xn(tn) ≤ u(tn, xn) + D(tn, xn, t, xn) → u(t, x).

Therefore from the lower semi-continuity of U , we get

Ut,x(s) ≤ u(t, x).

Again from the lower semi-continuity of the map (t, x) �→ Ut,x(s), we get passing to the lower semi-continuous
envelopes in (t, x):

Ut,x(s) ≤ u∗(t, x) = u(t, x)

where we have used (5.4). This shows (5.3) for 0 < s < t. This is still true for s = t by definition of D. The
proof is now complete. �

5.2. Comparison with sub-solutions

Proposition 5.2 (comparison with sub-solutions). Let u : JT → R be a sub-solution of (1.1)–(1.2) on JT , such
that there exists σ > 0 such that for all (t, x) ∈ JT ,

u(t, x) ≤ σ(1 + d(x, 0)). (5.5)

Then we have u ≤ uoc on JT .

In order to prove Proposition 5.2, we first state and prove two lemmas.

Lemma 5.3. Assume (A0)–(A1). Then the function uoc defined in (1.8) satisfies

|uoc(t, x) − u0(x)| ≤ Ct.

Proof of Lemma 5.3. We first get a bound from below. Using (6.7), we deduce (denoting by Lu0 the Lipschitz
constant for u0):

u0(y) + D(s, y; t, x) ≥ u0(x) +
γ

4t
(d(y, x))2 − C0t− Lu0d(y, x)

≥ u0(x) − C2t

with

−C2 = inf
a∈[0,+∞)

{
γ

4
a2 − C0 − Lu0a

}
> −∞.

This implies that
uoc(x) ≥ u0(x) − C2t.

We next get a bound from above. We have

uoc(x) ≤ u0(x) + D(0, x; t, x) ≤ u0(x) +Mt

with
M = sup

i∈IN

Li(0).

This ends the proof of the lemma. �

Lemma 5.4. Assume (A0)–(A1). Let u : [0, T ) × J → R be a sub-solution of (1.1)–(1.2) on JT , satisfying
(5.5). Then there exists a constant C > 0 such that

u(t, x) ≤ u0(x) + Ct for all (t, x) ∈ JT . (5.6)
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Proof of Lemma 5.4. Using the Lipschitz regularity of u0, we can easily consider a smooth approximation uη
0 of

u0 such that uη
0 ≥ u0 and |uη

0 − u0|L∞(J) → 0 as η → 0. Then consider the following supremum for η, α > 0

Nη,α = sup
(t,x)∈[0,T )×J

{
u(t, x) − uη

0(x) − Ct− αd(x, 0)2 − η

T − t

}
·

We claim that Nη,α ≤ 0 for some C large enough independent on η, α > 0 small enough. The lemma will be
obtained by letting α and η go to 0. We argue by contradiction and assume that Nη,α > 0. Thanks to (5.5), the
supremum Nη,α is attained for some (t, x) ∈ [0, T )× J . If t = 0, we have Nη,α ≤ 0. Therefore t > 0 and we can
use the fact that u is a sub-solution to obtain for x = xiei

η

T 2
+ C − max

j∈IN

Lj(0) ≤ η

T 2
+ C +H(x, ∂xu

η
0(x) + 2αxi) ≤ 0

where we have used assumption (A1) to estimate H from below. Notice that we have also made use of a slight
abuse of notation in the case x = 0. Choosing C = maxj∈IN |Lj(0)| allows us to conclude to a contradiction.
This ends the proof of Lemma 5.4. �

We now turn to the proof of Proposition 5.2.

Proof of Proposition 5.2. The proof proceeds in several steps.

Step 1: preliminaries. Let us consider

M = sup
(t,x)∈[0,T )×J

{u(t, x) − uoc(t, x)} .

From Lemmas 5.3 and 5.4, we deduce that we have M ≤ 2CT < +∞. We want to prove that M ≤ 0.
To this end, we perform the usual corrections considering the following supremum for η, α > 0

Mη,α = sup
(t,x)∈[0,T )×J

{
u(t, x) − uoc(t, x) − αd(x, 0)2 − η

T − t

}
·

As it is proved classically, we also have that Mη,α →Mη,0 as α→ 0 where

Mη,0 = sup
(t,x)∈[0,T )×J

{
u(t, x) − uoc(t, x) − η

T − t

}
·

We argue by contradiction by assuming that M > 0 and then Mη,0 ≥ M/2 > 0 for η > 0 small enough and
fixed for the rest of the proof.

Step 2: reduction to t̄ > 0. Notice that the supremum Mη,α is achieved for points (t̄, x̄) ∈ [0, T )× J . Using
again Lemmas 5.3 and 5.4, we also deduce that

M/2 < Mη,0 ≤Mη,α + oα(1) ≤ 2Ct̄

and hence t̄ ≥ M
4C > 0 for α small enough.

Step 3: a priori bounds. Using the argument of Step 1 of the proof of Proposition 5.1, we see that there
exists ȳ ∈ J such that

uoc(t̄, x̄) = u0(ȳ) + D(0, ȳ; t̄, x̄).

Therefore we can rewrite Mη,α as

Mη,α = sup
0≤t<T,x,y∈J

{
u(t, x) − u0(y) −D(0, y; t, x) − αd(x, 0)2 − η

T − t

}
,
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and the supremum is achieved for (t̄, x̄, ȳ) ∈ (0, T )× J2. Notice that this supremum looks like the classical one
for proving the comparison principle for viscosity solutions, with the usual penalization term (y−x)2/ε replaced
here by the function D(0, y; t, x).

In view of the bound (6.7) from below on D and (5.6), we derive from Mη,α > 0 that

η

T − t̄
+ αd(x̄, 0)2 +

γ

4t̄
d(ȳ, x̄)2 ≤ C0t̄+ Ct̄+ Lu0d(ȳ, x̄)

where Lu0 denotes the Lipschitz constant of u0. We conclude that there exists CT such that

αd(x̄, 0)2 ≤ CT and d(ȳ, x̄) ≤ CT (5.7)

where CT depends on T , C0,C, Lu0 and γ.

Step 4: getting the viscosity inequality. Since t̄ > 0, we have in particular that

u(t, x) −
(
D(0, ȳ; t, x) + αd(x, 0)2 +

η

T − t

)
≤ u(t̄, x̄) −

(
D(0, ȳ; t̄, x̄) + αd(x̄, 0)2 +

η

T − t̄

)
·

By Theorem 4.2, there exists a test function φ such that φ ≥ D(0, ȳ; ·, ·) on a ball B(P̄ , r) with equality
at P̄ = (t̄, x̄). Hence, we can rewrite the previous inequality by replacing D with φ. We then obtain that
(t, x) �→ φ(t, x)+αd(x, 0)2 + η

T−t touches u from above at (t̄, x̄) with t̄ > 0. We use next that u is a sub-solution
of (1.1) and get for x̄ = x̄iei

η

T 2
+ φt(t̄, x̄) +H(x̄, φx(t̄, x̄) + 2αx̄i) ≤ 0

where we have made use of a slight abuse of notation in the case x̄ = 0. On the other hand, we have

φt(t̄, x̄) +H(x̄, φx(t̄, x̄)) ≥ 0

therefore
η

T 2
+H(x̄, φx(t̄, x̄) + 2αx̄i) −H(x̄, φx(t̄, x̄)) ≤ 0.

On the one hand, from (5.7), we have 0 ≤ αxi ≤
√
αCT . On the other hand, we can use (5.7) and (4.5) in order

to conclude that
|φx(t̄, x̄)| ≤ C̄

for some constant C̄ which does not depend on α. We can now use the fact that the Hamiltonians are locally
Lipschitz continuous in order to get the desired contradiction for α small enough. This ends the proof of the
proposition. �

5.3. Proof of the main results

In this subsection, we prove the main results announced in the introduction.

Proof of Theorem 1.2. We simply apply Propositions 5.1 and 5.2 and get u ≤ uoc ≤ v which implies the
result. �

In order to prove Theorem 1.1, we should first prove that solutions are Lipschitz continuous.

Lemma 5.5. Assume (A0)–(A1). Let u be a solution of (1.1)–(1.2) on JT . Then u is Lipschitz continuous
with respect to (t, x) on JT .
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Proof of Lemma 5.5. We first recall (see Lem. 3.1) that (A1) implies (A1’). We know that the solution u = u∗

given by Theorem A.2 satisfies for some constant C > 0 and all (t, x) ∈ JT ,

|u(t, x) − u0(x)| ≤ Ct.

From the comparison principle (Thm. 1.2), we deduce that u = u∗ ≤ u∗ and then the solution u = u∗ = u∗ is
continuous.

For h0 > 0 small (with h0 < T ), we now consider h ∈ (0, h0) and

v(t, x) = u(t+ h, x) − sup
x∈J

(u(h, x) − u0(x)).

This new function satisfies in particular v(0, x) ≤ u0(x). Therefore v is a sub-solution of (1.1)–(1.2) on JT−h0 .
We thus conclude from the comparison principle that v(t, x) ≤ u(t, x), which implies

u(t+ h, x) ≤ u(t, x) + Ch for all (t, x) ∈ JT−h0 .

Arguing similarly, we can prove that u(t+ h, x) ≥ u(t, x) −Ch. Because h0 can be chosen arbitrarily small, we
conclude that u is Lipschitz continuous with respect to time on the whole JT .

Since u is a viscosity solution of (1.1), it satisfies in particular (in the viscosity sense) for each i ∈ IN :

Hi(ux) ≤ C on (0, T )× J∗
i .

This implies that there exists a constant C̃ such that (in the viscosity sense)

|ux| ≤ C̃ on (0, T )× J∗.

This implies that u is Lipschitz continuous with respect to the space variable. This ends the proof of the
lemma. �

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The uniqueness of the solution follows from Theorem 1.2. The existence is obtained
thanks to the optimal control interpretation (uoc is a solution). The Lipschitz regularity was proved in Lemma 5.5
above. The proof of Theorem 1.1 is now complete. �

Proof of Theorem 1.3. The fact that the solution is equal to uoc follows from Propositions 5.1 and 5.2. The
representation formula (1.9) follows from (4.1). �

6. A complete study of the minimal action

6.1. Reduction of the study

We start this section with the following remark: the analysis can be reduced to the case (s, t) = (0, 1).
Precisely, using the fact that the Hamiltonian does not depend on time and is positively homogeneous with
respect to the state, the reader can check that a change of variables in time yields the following

Lemma 6.1. For all x, y ∈ J and s < t, we have

D(s, y; t, x) = (t− s)D
(

0,
y

t− s
; 1,

x

t− s

)
· (6.1)

This is the reason why we consider the reduced minimal action D0 : J2 → R defined by

D0(y, x) = D(0, y; 1, x).

Thanks to the previous observation, it is enough to prove the following theorem in order to get Theorem 4.2.
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Theorem 6.2 (key equalities for D0). Let us assume (A1). Then for all y, x ∈ J , the D0(y, x) is finite. It
is continuous in J2 and for all y, x ∈ J , there exists a function ϕ0 ∈ C1∗ (J2) such that ϕ0 ≥ D0 on J2,
ϕ0(y, x) = D0(y, x) and we have

if x �= 0: (ϕ0 − x∂xϕ0 − y∂yϕ0)(y, x) +H(x, ∂xϕ0(y, x)) = 0 (6.2)
if x = 0: (ϕ0 − x∂xϕ0 − y∂yϕ0)(y, 0) + sup

i∈IN

H−
i (∂i

xϕ0(y, 0)) = 0 (6.3)

and if y �= 0,
(ϕ0 − x∂xϕ0 − y∂yϕ0)(y, x) +H(y,−∂yϕ0(y, x)) = 0 (6.4)

and if y = 0, {
(ϕ0 − x∂xϕ0 − y∂yϕ0)(0, x) + supj∈IN

H−
j (−∂j

yϕ0(0, x)) = 0 if N ≥ 2,

(ϕ0 − x∂xϕ0 − y∂yϕ0)(0, x) +H1(−∂j
yϕ0(0, x)) = 0 if N = 1.

(6.5)

Moreover, for all R > 0, there exists CR > 0 such that for all x, y ∈ J ,

d(y, x) ≤ R ⇒ |∂xϕ0(y, x)| + |∂yϕ0(y, x)| ≤ CR. (6.6)

Remark 6.3. If I0 = IN , then we have D0 ∈ C1∗(J2). This good case corresponds to the case where all the
Li(0)’s are equal.

We can interpret Lemma 4.4 as follows.

Lemma 6.4. Assume (A1). Then
D0(y;x) ≥ γ

4
d(y, x)2 − C0 (6.7)

where constants are made precise in Lemma 4.4.

6.2. Piecewise linear trajectories

We are going to see that the infimum defining the minimal action can be computed among piecewise linear
trajectories, and more precisely among trajectories that are linear as long as they do not reach the junction
point. This is a consequence of the fact that the Hamiltonians do not depend on x and are convex (through
Jensen’s inequality).

In order to state a precise statement, we first introduce that optimal curves are of two types: either they
reach the junction point, or they stay in a branch and are straight lines. This is the reason why we introduce
first the action associated with straight line trajectories

Dstraight(y, x) =

⎧⎨
⎩
Li (xi − yi) if (y, x) ∈ J2

i \ {(0, 0)},
L0(0) if y = 0 = x,
+∞ otherwise

and the action associated with piecewise linear trajectories passing through the junction point

Djunction(y, x) = inf
0≤τ1≤τ2≤1

{E1(τ1, y) + E2(τ2, x)}

where

E1(τ1, y) =

⎧⎪⎨
⎪⎩
τ1Lj

(
− yj

τ1

)
− τ1L0(0) for y = yjej �= 0, τ1 �= 0

0 for y = 0
+∞ for τ1 = 0, y �= 0

and

E2(τ2, x) =

⎧⎪⎨
⎪⎩

(1 − τ2)Li

(
xi

1−τ2

)
+ τ2L0(0), for x = xiei �= 0, τ2 �= 1

L0(0) for x = 0
+∞ for τ2 = 1, x �= 0.
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Remark 6.5. By defining the Ei’s in such a way, we treat the degenerate cases: x = 0 or y = 0. Indeed, τ1
(resp. τ2) measures how long it takes to the trajectory to reach the junction point (resp. the final point x) from
the starting point y (resp. the junction point).

The following facts will be used several times.

Lemma 6.6. The function E1 (resp. E2) is continuous in (0, 1] × J∗ (resp. in [0, 1) × J∗).

Lemma 6.7. The function Ei, i = 1, 2 are lower semi-continuous in [0, 1]× J .

Proof. Consider the function defined for (τ, y) ∈ [0, 1] × J by

g(τ, y) =

⎧⎨
⎩
τLi(− yi

τ ) if y = yiei �= 0, τ �= 0
τL0(0) if y = 0
+∞ if y �= 0, τ = 0.

From the inequality for τ > 0 (consequence of (4.6)):

g(τ, y) ≥ γ

4
|y|2
τ

− C0τ,

we deduce that g is lower semi-continuous. Consequently, the map E1 is lower semi-continuous. We proceed
similarly for E2. �

We first show the main lemma of this subsection.

Lemma 6.8. The infimum defining the reduced minimal action D0 can be computed among piecewise linear
trajectories; more precisely, for all x, y ∈ J ,

D0(y, x) = min (Dstraight(y, x),Djunction(y, x)) .

Proof. We write with obvious notation D0(y, x) = infX∈A0(y,x) E(X). In order to prove the lemma, it is enough
to consider a curve X ∈ A0(y, x) and prove that

E(X) ≥ min(Dstraight(y, x),Djunction(y, x)).

To do so, we first remark that the uniform convexity of Li implies that for all p0 ∈ R, we have

Li(p) ≥ Li(p0) + L′
i(p0)(p− p0) +

γ

2
(p− p0)2. (6.8)

We now consider an admissible trajectory X : [0, 1] → J and we treat different cases.

Case A: X((t1, t2)) ⊂ J∗
i . We assume that a curve X stays in one of the branch J∗

i on the time interval (t1, t2)
with t1 < t2. In such a case, we consider the curve X̃ with same end points X(t1) and X(t2) in Ji but linear.
If p0 ∈ R is such that p0ei = ˙̃X(τ) for τ ∈ (t1, t2) and pei = Ẋ(τ), we deduce from (6.8) that∫ t2

t1

L(X(τ), Ẋ(τ))dτ ≥
∫ t2

t1

L(X̃(τ), ˙̃X(τ))dτ +
γ

2

∫ t2

t1

|Ẋ(τ) − ˙̃X(τ)|2dτ. (6.9)

Case B: X([t1, t2]) ⊂ Ji with X(t1) = X(t2) = 0. In that case, let us set X̃(τ) = 0 for τ ∈ [t1, t2]. Using (6.8)
with p0 = 0 and the definition of L0 as a minimum of the Lj’s (see (1.10)), we get that

Li(p) ≥ L0(0) + L′
i(0)p+

γ

2
p2

from what we deduce that (6.9) still holds true.
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Case C: the general case. By assumption, we have X ∈ A0(y;x) ⊂ C([0, 1]). We then distinguish two cases.
Either 0 �∈ X([0, 1]), and then we define X̃ as in Case A. In this case, (6.9) implies that

E(X) ≥ Dstraight(y, x).

Or 0 ∈ X([0, 1]), and then we call [τ1, τ2] ⊂ [s, t] the largest interval such that X(τ1) = 0 = X(τ2), and define
X̃ as follows: it is linear between 0 and τ1, and reaches 0 at τ1; it stays at 0 in (τ1, τ2); then it is linear in (τ2, 1)
and reaches x at t = 1. Using again the continuity of X , we can find a decomposition of [τ1, τ2] as a disjoint
union of intervals Ik (with an at most countable union)

[τ1, τ2] =
⋃
k

Ik

such that for each k, X(Ik) ⊂ Jik
for some ik ∈ IN and X = 0 on ∂Ik. Using Case A or Case B on each segment

Ik, we deduce that
E(X) ≥ Djunction(y, x). �

6.3. Continuity of the (reduced) minimal action

Lemma 6.9 (continuity of Djunction). The function Djunction is continuous in J2.

Proof. We first prove that Djunction is lower semi-continuous. We know from Lemma 6.7 that the function

G(τ1, τ2; y;x) = E1(τ1, y) + E2(τ2, x)

is lower semi-continuous for y, x ∈ J and 0 ≤ τ1 ≤ τ2 ≤ 1. Therefore the function

Djunction(y;x) = inf
0≤τ1≤τ2≤1

G(τ1, τ2; y, x)

is also lower semi-continuous (since the infimum is taken over a compact set). Besides, the infimum is in fact a
minimum.

We now prove that Djunction is upper semi-continuous at any point (y, x). Consider first (τ1, τ2) ∈ [0, 1]2 such
that

Djunction(y, x) = E1(τ1, y) + E2(τ2, x).

Given any sequence (yk, xk) → (y, x), we want to show that

Djunction(yk, xk) ≤ Djunction(y, x) + ok(1). (6.10)

We use
Djunction(yk, xk) ≤ E1(τk

1 , y
k) + E2(τk

2 , x
k)

with an appropriate choice of (τk
1 , τ

k
2 ).

Case 1: y ∈ J∗
j , x ∈ J∗

i . In this case, we choose (τk
1 , τ

k
2 ) = (τ1, τ2) ∈ (0, 1)2 and we use Lemma 6.6 in order to

get
E1(τk

1 , y
k) → E1(τ1, y)

and
E2(τk

2 , x
k) → E2(τ2, x).

Hence we conclude that (6.10) holds true.
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Case 2: y = 0, x ∈ J∗
i . We choose (τk

1 , τ
k
2 ) = (|yk|,max(τ2, |yk|)) ∈ [0, 1)2. We still have τk

2 → τ2 and we can
use Lemma 6.6 in order to get

E2(τk
2 , x

k) → E2(τ2, x).

We also have (if yk ∈ Jj)

E1(τk
1 , y

k) ≤ |yk|Lj

(
− yk

j

|yk|

)
− |yk|L0(0) → 0 = E1(τ1, 0). (6.11)

Hence we conclude that (6.10) holds true.

Case 3: y ∈ J∗
j , x = 0. We choose (τk

1 , τ
k
2 ) = (min(τ1, 1 − |xk|), 1 − |xk|) ∈ (0, 1]2 We still have τk

1 → τ1 and
then

E1(τk
1 , y

k) → E1(τ1, y)

(since E1 is continuous in (0, 1]× J∗). We also have (if xk ∈ Ji)

E2(τk
2 , x

k) ≤ |xk|Li

(
xk

i

|xk|
)

+ (1 − |xk|)L0(0) → L0(0) = E2(τ2, 0). (6.12)

Hence we conclude that (6.10) holds true.

Case 4: y = 0, x = 0. We choose (τk
1 , τ

k
2 ) = (|yk|, 1 − |xk|) ∈ [0, 1) × (0, 1]. We deduce (6.10) from (6.11) and

(6.12). �

Lemma 6.10. The function D0 is continuous in J2.

Proof. Since Dstraight is lower semi-continuous, we can use Lemmas 6.8 and 6.9 in order to conclude that D0 is
lower semi-continuous.

Consider (y, x) ∈ ∂(Ji × Ji) \ {(0, 0)}. Then either x = 0 or y = 0. Moreover for y = yiei and x = xiei,

Djunction(y, x) ≤
{E1(1, y) + E2(1, x) if xi = 0
E1(0, y) + E2(0, x) if yi = 0

}
≤ Li (xi − yi) .

Therefore for each i ∈ IN , we have for (y, x) ∈ ∂(Ji × Ji),

Djunction(y, x) ≤ Dstraight(y, x).

Therefore we have with y = yiei, x = xiei

D0(y, x) =

⎧⎪⎨
⎪⎩

min(Djunction(y, x), Li(xi − yi)) if (y, x) ∈ Ji × Ji

Djunction(y, x) if (y, x) ∈ ∂(Ji × Ji)
Djunction(y, x) otherwise.

(6.13)

This implies that D0 is continuous in J2. �

6.4. Study of Djunction

In view of (6.13), we see that the study of D0 can now be reduced to the study of Djunction. The function
Djunction is defined as a minimum over a triangle {(τ1, τ2) ∈ [0, 1]2 : τ1 ≤ τ2}. We will see below that Djunction is
defined implicitly when the constraint τ1 ≤ τ2 is active (Dimplicit) or defined explicitly if not (Dlinear). In other
words, it will be linear “as long as” trajectories stay some time (τ2 − τ1 > 0) at the junction point.

We first define for (y, x) ∈ J2,

Dimplicit(y, x) = inf
0≤τ≤1

{E1(τ, y) + E2(τ, x)} . (6.14)

The continuity of Dimplicit will be used later on.
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Lemma 6.11 (continuity of Dji
implicit). The restrictions Dji

implicit of Dimplicit are continuous in (Jj ×Ji)\{(0, 0)}
and continuous at (0, 0) if j ∈ I0 or i ∈ I0.

Proof of Lemma 6.11. From Lemma 6.7, we deduce that Dji
implicit is lower semi-continuous on Jj × Ji. We now

show that Dji
implicit is upper semi-continuous at any point (y, x) ∈ (Jj × Ji) \ {(0, 0)} and also at (0, 0) if j ∈ I0

or i ∈ I0. We first consider τ ∈ [0, 1] such that

Dji
implicit(y, x) = E1(τ, y) + E2(τ, x) with 0 ≤ τ ≤ 1.

For any sequence (yk, xk) → (y, x) with (yk, xk) ∈ Jj × Ji, we want to show that

Dji
implicit(y

k, xk) ≤ Dji
implicit(y, x) + ok(1). (6.15)

Arguing as in Lemma 6.9, we use

Dji
implicit(y

k, xk) ≤ E1(τk, yk) + E2(τk, xk)

and we choose τk as follows
if y ∈ J∗

j , x ∈ J∗
i : τk = τ ∈ (0, 1),

if y = 0, x ∈ J∗
i : τk = |yk| ∈ [0, 1),

if y ∈ J∗
j , x = 0 : τk = 1 − |xk| ∈ (0, 1],

if x = 0, j ∈ I0 : τk = 1 − |xk| ∈ (0, 1],
if y = 0, x = 0, i ∈ I0 : τk = |yk| ∈ [0, 1).

This ends the proof of the lemma. �

We next define for (y, x) ∈ Jj × J i

Dji
linear(y, x) = −L′

j(ξ
−
j )y + L′

i(ξ
+
i )x+ L0(0) (6.16)

where ξ±l are defined thanks to the following function (for l ∈ IN )

Kl(ξ) = Ll(ξ) − ξL′
l(ξ) − L0(0).

Precisely, ξ±l = (K±
l )−1(0) �= 0 when l /∈ I0 (see Lem. 6.17 below). We will see that Kl plays an important role

in the analysis of Djunction. In particular, it allows us to define, when i /∈ I0 and j /∈ I0, the following convex
subset (triangle) of Jj × Ji:

Δji =

{
(y, x) ∈ Jj × Ji,

x

ξ+i
− y

ξ−j
< 1

}
.

It is convenient to set Δji = ∅ if i ∈ I0 or j ∈ I0. We next state a series of lemmas before proving them.

Lemma 6.12 (link between Djunction,Dlinear,Dimplicit).

Dji
junction(y, x) =

{Dji
linear(y, x) if (y, x) ∈ Δji

Dji
implicit(y, x) if (y, x) ∈ (Jj × Ji) \Δji.

(6.17)

Lemma 6.13 (the equations in the interior). The functions Dji
junction, Dji

linear and Dji
implicit are convex and C1

in J∗
j × J∗

i and, if D̃ is one of them, it satisfies for (y, x) ∈ J∗
j × J∗

i{ D̃(y, x) − x∂xD̃(y, x) − y∂yD̃(y, x) +Hi(∂xD̃(y, x)) = 0,
D̃(y, x) − x∂xD̃(y, x) − y∂yD̃(y, x) +Hj(−∂yD̃(y, x)) = 0.

(6.18)



154 C. IMBERT ET AL.

Lemma 6.14 (study of Dimplicit). For (y, x) ∈ J∗
j × J∗

i , there exists a unique τ = T (y, x) ∈ (0, 1) such that

Dji
implicit(y, x) = E1(τ, y) + E2(τ, x).

Moreover, {
∂xDji

implicit(y, x) = L′
i (ξx) with ξx = x

1−T (y,x) ,

∂yDji
implicit(y, x) = −L′

j (ξy) with ξy = − y
T (y,x) ·

Lemma 6.15 (study of T ). For (y, x) ∈ (Jj × Ji) \ {(0, 0)}, there is a unique τ = T (y, x) ∈ [0, 1] such that

Dji
implicit(y, x) = E1(τ, y) + E2(τ, x).

Moreover T ∈ C(Jj × Ji \ {(0, 0)}) and

T (y, x) =

⎧⎪⎨
⎪⎩

max
(
0, 1 − x

ξ+
i

)
if (y, x) ∈ ({0} × J∗

i ) \Δji,

min
(

1,− y

ξ−
j

)
if (y, x) ∈ (J∗

j × {0}) \Δji.

Lemma 6.16 (Dji
junction at the boundary). Then we have Dji

junction ∈ C1(Jj × Ji) with
{
∂xDji

junction(y, x) = L′
i (ξx)

∂yDji
junction(y, x) = −L′

j (ξy)
(6.19)

where ξy ≤ 0 ≤ ξx satisfy

(ξx, ξy) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(max(x, ξ+i ), (K−
j )−1(Ki(ξx))) if (y, x) ∈ ({0} × Ji) \Δji

(ξ+i , ξ
−
j ) if (y, x) ∈ ({0} × Ji) ∩Δji

((K+
i )−1(Kj(ξy)),−max(y,−ξ−j )) if (y, x) ∈ (Jj × {0}) \Δji

(ξ+i , ξ
−
j ) if (y, x) ∈ (Jj × {0}) ∩Δji.

(6.20)

Moreover we have {
Dji

junction(0, x) = x
ξx

(Li(ξx) − L0(0)) + L0(0) for x ∈ J∗
i

Dji
junction(y, 0) = − y

ξy
(Lj(ξy) − L0(0)) + L0(0) for y ∈ J∗

j

(6.21)

and

Dji
junction(x, y) − x∂xDji

junction(x, y) − y∂yDji
junction(x, y)

=
{
L0(0) +Ki(max(x, ξ+i )) if (y, x) ∈ {0} × Ji,
L0(0) +Kj(−max(y,−ξ−j )) if (y, x) ∈ Jj × {0} . (6.22)

Before proving these lemmas, the reader can check the following useful properties of the function Kl that will
be used in their proofs.

Lemma 6.17 (properties of Kl). Assume (A1). Then for any l ∈ IN , we have

K ′
l(ξ) ≥ γ|ξ| for ξ ∈ (−∞, 0),

K ′
l(ξ) ≤ −γ|ξ| for ξ ∈ (0,+∞).

We define (K−
l )−1 as the inverse of the function Kl restricted to (−∞, 0], and (K+

l )−1 as the inverse of the
function Kl restricted to [0,+∞). We set

ξ±l = (K±
l )−1(0).



A HAMILTON-JACOBI APPROACH TO JUNCTION PROBLEMS AND APPLICATION TO TRAFFIC FLOWS 155

Then we have

±ξ±l = 0 if l ∈ I0,

±ξ±l > 0 if l ∈ IN \I0.

Moreover we have
Kl(ξ) = −Hl(L′

l(ξ)) − L0(0). (6.23)

Proof of Lemmas 6.12–6.14. The proof proceeds in several steps.

Step 1: first study of Dji
junction. Let us define

G(τ1, τ2, y, x) = E1(τ1, y) + E2(τ2, x).

For τ1, τ2 ∈ (0, 1), and setting
ξy = −y

τ 1
, ξx =

x

1 − τ2
(6.24)

and Vy = (ξy, 0, 1, 0) and Vx = (0, ξx, 0, 1), we compute

D2G(τ1, τ2, y, x) =
L′′

j (ξy)
τ1

V T
y Vy +

L′′
i (ξx)

1 − τ2
V T

x Vx ≥ 0.

Therefore G is in particular convex on (0, 1)× (0, 1)×J∗
j ×J∗

i . Because G is in particular lower semi-continuous
on [0, 1]× [0, 1] × J∗

j × J∗
i , and

G(0, τ2, y, x) = +∞ = G(τ1, 1, y, x) for (y, x) ∈ J∗
j × J∗

i , (6.25)

we deduce that
Dji

junction(y, x) = inf
0<τ1≤τ2<1

G(τ1, τ2, y, x) for (y, x) ∈ J∗
j × J∗

i .

This implies that Dji
junction is also convex in J∗

j × J∗
i . Notice that in particular

D2
τ1τ1

G(τ1, τ2, y, x) =
y2

τ3
1

L′′
j (ξy) > 0

and

D2
τ2τ2

G(τ1, τ2, y, x) =
x2

(1 − τ2)3
L′′

i (ξx) > 0.

The map (τ1, τ2) �→ G(τ1, τ2, y, x) is then strictly convex on the convex set{
(τ1, τ2) ∈ (0, 1)2, τ1 ≤ τ2

}
.

Therefore using again (6.25) and the lower semi-continuity of G, we deduce that it has a unique minimum that
we denote by (τ1, τ2) satisfying 0 < τ1 ≤ τ2 < 1.

Step 2: study of Dji
implicit. Let us consider the following function

e(τ, y, x) = G(τ, τ, y, x).

For τ ∈ (0, 1), setting
ξy = −y

τ
, ξx =

x

1 − τ
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and proceeding similarly as in Step 1, we can deduce that

Dji
implicit(y, x) = inf

τ∈(0,1)
e(τ, y, x) for (y, x) ∈ J∗

j × J∗
i

and that Dji
implicit is also convex on J∗

j × J∗
i . We can also deduce that the map τ �→ e(τ, y, x) is strictly convex

on (0, 1) for (y, x) ∈ J∗
j × J∗

i and that it has a unique minimum that we denote by τ ∈ (0, 1) such that

Dji
implicit(y, x) = e(τ, y, x).

Using the derivative with respect to τ , we see that τ is characterized by the equation

F = 0 with F (τ, y, x) := Kj

(
−y
τ

)
−Ki

(
x

1 − τ

)
· (6.26)

Moreover
∂τF (τ, y, x) = D2

ττe(τ, y, x) > 0.

Using the regularityC2 of Ll given in assumption (A1), we see that the unique solution τ = T (y, x) of F (τ, y, x) =
0 is continuously differentiable with respect to (y, x). Therefore we deduce that Dji

implicit ∈ C1(J∗
j × J∗

i ).
We have

Dji
implicit(y, x) = E1(T (y, x), y) + E2(T (y, x), x), (6.27)

∂yDji
implicit(y, x) = (∂yE1)(T (y, x), y) = −L′

j(ξy), (6.28)

∂xDji
implicit(y, x) = (∂xE2)(T (y, x), x) = L′

i(ξx). (6.29)

Writing τ for T (y, x), and using the optimality condition (6.26), we get

(Dji
implicit − x∂xDji

implicit − y∂yDji
implicit)(y, x) = τKj

(
−y
τ

)
+ (1 − τ)Ki

(
x

1 − τ

)
+ L0(0)

= Kj

(
−y
τ

)
+ L0(0) = −Hj

(
L′

j

(
−y
τ

))
= −Hj

(
−∂yDji

implicit(y, x)
)

= Ki

(
x

1 − τ

)
+ L0(0) = −Hi

(
L′

i

(
x

1 − τ

))
= −Hi(∂xDji

implicit(y, x))

where we have used (6.23) in the second and in the fourth line. Hence Dji
implicit satisfies (6.18) on J∗

j × J∗
i .

Step 3: further study of Dji
junction. We concluded at the end of Step 1 that for (y, x) ∈ J∗

j × J∗
i we have

Dji
junction(y, x) = E1(τ1, y) + E2(τ2, x)

with 0 < τ1 ≤ τ2 < 1. Then we can distinguish two cases.

Case 1: τ1 < τ2. In that case this implies that

∂τ1E1(τ1, y) = 0, ∂τ2E2(τ2, x) = 0

which can be written as
Kj(ξy) = 0, Ki(ξx) = 0 (6.30)

with ξy ≤ 0 ≤ ξx defined in (6.24).
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Using Lemma 6.17, we conclude that (6.30) holds true if and only ifKj(0) > 0 andKi(0) > 0; i.e. j, i ∈ IN \I0.
In this case we have ξy = ξ−j and ξx = ξ+i and then

τ1 = − y

ξ−j
, τ2 = 1 − x

ξ+i
· (6.31)

Moreover, we have in this case Dji
junction(y, x) = Dji

linear(y, x).
Using Legendre-Fenchel’s equality together with Kj(ξ−j ) = 0 and Ki(ξ+i ) = 0, we have

Dji
linear(y, x) − y∂yDji

linear(y, x) − x∂xDji
linear(y, x) = L0(0), (6.32)

and

Hi(∂xDji
linear(y, x)) = Hi(L′

i(ξ
+
i )) = ξ+i L

′
i(ξ

+
i ) − Li(ξ+i ) = −L0(0),

Hj(−∂yDji
linear(y, x)) = Hj(L′

j(ξ
−
j )) = ξ−j L

′
j(ξ

−
j ) − Lj(ξ−j ) = −L0(0).

Hence Dji
linear satisfies (6.18) on J∗

j × J∗
i .

Finally we deduce from (6.31) that the condition: 0 < τ1 < τ2 < 1 is equivalent to (y, x) ∈ Δji ∩ (J∗)2 and
then by continuity of Dji

junction and Dji
linear, we get

Dji
junction = Dji

linear on Δji.

Case 2: τ1 = τ2. If for (y, x) ∈ J∗
j × J∗

i we have

Dji
junction(y, x) = E1(τ1, y) + E2(τ2, x)

with τ1 = τ2, then we have seen that (y, x) ∈ (J∗
j × J∗

i ) \ Δji and Dji
junction(y, x) = Dji

implicit(y, x). From
Lemma 6.11, we also have that Dji

implicit ∈ C(Jj × Ji) if j ∈ I0 or i ∈ I0 and in that case Δji = ∅. On the other
hand, we have Dji

implicit ∈ C((Jj × Ji) \ {(0, 0)}) if j, i ∈ IN \ I0 with {(0, 0)} ∈ Δij in that case. Therefore in all
cases we have

Dji
implicit ∈ C((Jj × Ji) \Δji).

Now from the continuity of Djunction, we deduce that

Dji
junction = Dji

implicit on (Jj × Ji)\Δji.

Step 4: on the boundary (∂Δji)∩(J∗)2. We already know that Djunction is continuous, therefore if j, i ∈ IN\I0:

Dji
linear = Dji

implicit on

{
(y, x) ∈ Jj × Ji,

x

ξ+i
− y

ξ−j
= 1

}
.

On the other hand, recall that (y, x) ∈ J∗
j × J∗

i , the real τ ∈ (0, 1) is characterized by (6.26), i.e.

Kj (ξy) = Ki (ξx) with ξy = −y
τ
, ξx =

x

1 − τ
· (6.33)

Notice that if we choose
τ = − y

ξ−j
we deduce from x

ξ+
i

− y

ξ−
j

= 1 that

ξy = ξ−j and ξx = ξ+i (6.34)

which are obvious solutions of (6.33). Therefore we conclude that this is the solution. Using (6.28)–(6.29) and
the expression of Dji

linear, (6.34) implies the equality of the gradients of Dji
linear and Dji

implicit on the boundary
(∂Δji) ∩ (J∗)2. Finally this shows that Dji

junction ∈ C1(J∗
j × J∗

i ). This ends the proof of the lemmas. �
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Proof of Lemma 6.15. The proof proceeds in several steps.

Continuity of T . We set for (τ, y, x) ∈ [0, 1]× Jj × Ji

e(τ, y, x) = E1(τ, y) + E2(τ, x).

From Proposition 6.12, we already know that there exists a unique τ ∈ [0, 1] such that

Dji
implicit(y, x) = e(τ, y, x) if (y, x) ∈ J∗

j × J∗
i .

On the other hand, we have

e(τ, y, x) =

{
(1 − τ)Li

(
x

1−τ

)
+ τL0(0) if (y, x) ∈ {0} × J∗

i (case 1),
τLj

(− y
τ

)
+ (1 − τ)L0(0) if (y, x) ∈ J∗

j × {0} (case 2).
(6.35)

Notice that in Cases 1 and 2, there is a unique τ ∈ [0, 1] such that

Dji
implicit(y, x) = e(τ, y, x) (6.36)

and τ ∈ [0, 1) in case 1, τ ∈ (0, 1] in case 2. Then the continuity of τ = T (y, x) in (Jj × Ji) \ {(0, 0)} follows
from the lower semi-continuity of e on [0, 1] × Jj × Ji and the uniqueness of τ such that (6.36) holds.

Computation of T . We distinguish cases.

Case 1: (y, x) ∈ ({0} × J∗
i ) \Δji. Notice that we have

∂τe(τ, 0, x) = −Ki(ξx) with ξx =
x

1 − τ
·

If x ≥ ξ+i , then ∂τe(τ, 0, x) ≥ 0 and T (0, x) = 0.
If x < ξ+i , then ξx = ξ+i is a solution of ∂τe(τ, 0, x) = −Ki(ξx) = 0 and T (0, x) = 1 − x

ξ+
i

.

Case 2: (y, x) ∈ (J∗
j × {0}) \Δji. Notice that we have

∂τe(τ, y, 0) = Kj(ξy) with ξy = −y
τ
·

If y ≥ −ξ−j , then ∂τe(τ, y, 0) ≤ 0 and T (y, 0) = 1.
If y < −ξ−j , then ξy = ξ−j is a solution of ∂τe(τ, y, 0) = Kj(ξy) = 0 and T (y, 0) = − y

ξ−
j

. This ends the proof

of the lemma. �

Proof of Lemma 6.16. The proof proceeds in several steps.

Step 1: continuity. From Proposition 6.12, we already know that Dji
junction ∈ C1((J∗

j × J∗
i ) ∪Δji) and (6.19)

holds true with {
ξx = x

1−τ , ξy = − y
τ if (y, x) ∈ (J∗

j × J∗
i ) \Δji

ξx = ξ+i , ξy = ξ−j if (y, x) ∈ Δji

where τ = T (y, x) in the first line. Therefore, in order to prove that Dji
junction ∈ C1(Jj × Ji), it is sufficient to

prove that if (y, x) ∈ (∂(Jj × Ji)) \Δji = (({0} × Ji) × (Jj × {0})) \Δji, and if (yk, xk) ∈ (J∗
j × J∗

i ) \Δji is a
sequence of points such that (yk, xk) → (y, x), then we have with τk = T (yk, xk)

−y
k

τk
→ ξy and

xk

1 − τk
→ ξx (6.37)
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where (ξy, ξx) is given by (6.20). Let us recall that τk is characterized by the equation

Kj

(
−y

k

τk

)
= Ki

(
xk

1 − τk

)
· (6.38)

We will assume (up to extract a subsequence) that τk → τ0 for some limit τ0 ∈ [0, 1]. Because we have
|xk|2 + |yk|2 ≤ R2, it is easy to deduce from (6.38), that there exists a constant CR such that∣∣∣∣−yk

τk

∣∣∣∣+
∣∣∣∣ xk

1 − τk

∣∣∣∣ ≤ CR. (6.39)

This can be proved by contradiction, distinguishing the cases τ0 = 0, τ0 = 1 and τ0 ∈ (0, 1). Up to extract a
subsequence, we can then pass to the limit in (6.38) and get

Kj (ξy) = Ki (ξx) with ξy ≤ 0 ≤ ξx. (6.40)

In the following cases, we now identify one of the two quantities ξy or ξx, the other one being determined by
(6.40).

Case 1: (y, x) ∈ ({0} × J∗
i ) \Δji. From Lemma 6.15, we know that τ0 = max

(
0, 1 − x

ξ+
i

)
, and then

ξx = max(x, ξ+i ), ξy = (K−
j )−1(Ki(ξx))

and from (6.35), we get
Dji

junction(0, x) =
x

ξx
(Li(ξx) − L0(0)) + L0(0). (6.41)

Case 2: (y, x) ∈ (J∗
j × {0}) \Δji. From Lemma 6.15, we know that τ0 = min

(
1,− y

ξ−
j

)
, and then

−ξy = max(y,−ξ−j ), ξx = (K+
i )−1(Kj(ξy))

and from (6.35), we get
Dji

junction(y, 0) = − y

ξy
(Lj(ξy) − L0(0)) + L0(0). (6.42)

Case 3: (y, x) ∈ {(0, 0)} \ Δji. This case only occurs if j ∈ I0 or i ∈ I0. Moreover at least one of the two
quantities − yk

τk and xk

1−τk tends to zero.
If ξy = 0, then Ki(ξx) = Kj(0) and hence

ξy = 0 =⇒ Li(0) ≥ Lj(0) = L0(0).

If ξx = 0, then Kj(ξy) = Ki(0) and hence

ξx = 0 =⇒ Lj(0) ≥ Li(0) = L0(0).

This implies that ⎧⎨
⎩
ξx = ξ+i = 0, ξy = ξ−j < 0, if Li(0) = L0(0) < Lj(0),
ξx = ξ+i > 0, ξy = ξ−j = 0, if Li(0) > Lj(0) = L0(0),
ξx = ξ+i = 0, ξy = ξ−j = 0, if Li(0) = Lj(0) = L0(0).

By the uniqueness of the limit, this finally shows that Dji
junction ∈ C1(Jj × Ji) and (6.20) holds.

Step 2: checking (6.35) and (6.22). From (6.41) and (6.42), we deduce (6.35) on ((J∗
j ×{0})∪({0}×J∗

i ))\Δji.
From Dji

junction = Dji
linear on Δji, we deduce that (6.35) is also true on ((J∗

j × {0}) ∪ ({0} × J∗
i )) ∩Δji.

Then (6.22) follows from a simple computation for (y, x) �= (0, 0). This is still true for (y, x) = 0, because
Dji

junction is C1. This ends the proof of the lemma. �



160 C. IMBERT ET AL.

xy
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0

y ∈ Ji

x ∈ Jj

j �= i

y x
0

1

y ∈ Ji

x ∈ Ji

Figure 3. i ∈ I0 or j ∈ I0: trajectories never stay at the junction point.

6.5. Study of Dstraight

The following lemma will be used below. Since it is elementary, its proof is omitted.

Lemma 6.18 (properties of Dji
straight). For j = i ∈ IN , we have for (y, x) ∈ Jj × Ji with (y, x) �= (0, 0) if

j = i ∈ IN \ I0:

Dji
straight(y, x) − x∂xDji

straight(y, x) − y∂yDji
straight(y, x) = L0(0) +Ki(x − y)

= −Hi(∂xDji
straight(y, x)) −Hj(−∂yDji

straight(y, x))

and
∂xDji

straight(y, x) = L′
i(x− y), ∂yDji

straight(y, x) = −L′
j(x− y).

6.6. Proof of Theorem 6.2

We are now in position to prove Theorem 6.2. We prove several lemmas successively.

Lemma 6.19 (properties of Dji
0 ). For (y, x) ∈ Jj × Ji, we have

Dji
0 (y, x) =

⎧⎨
⎩
Li(x− y) if i = j ∈ I0,

Dji
junction(y, x) if i �= j,

min(Dji
junction(y, x), Li(x− y)) if i = j ∈ IN \ I0.

In particular Dji
0 ∈ C1(Jj × Ji) in the first two cases.

Lemma 6.20 (singularities of the gradient of D0). In the case i = j ∈ IN \ I0, we have

Dji
0 (y, x) =

{Dji
linear in a neighborhood of (∂(Jj × Ji)) ∩Δji,

Li(x− y) in a neighborhood of (∂(Jj × Ji)) \Δji;
(6.43)

moreover, in this case there exists a curve Γ ji such that Dji
0 ∈ C1((Jj × Ji) \ (Γ ji ∪ {Yj , Xi})). This curve

connects Yj = (−ξ−j , 0) and Xi = (0, ξ+i ) and is contained in (J∗
j × J∗

i ) ∩Δji

The results of these two lemmas are illustrated in Figures 3 and 4.
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j �= i

y x
0

1

y ∈ Ji

x ∈ Jiy x
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D j↪ilinear = D j↪istraight

Figure 4. i, j ∈ IN \ I0: trajectories do stay at the junction point if (y, x) ∼ (0, 0).

Proof of Lemma 6.19. We only have to treat the case i = j. The convexity of Li implies that for τ ∈ (0, 1):

e(τ, y, x) = τLi

(
−y
τ

)
+ (1 − τ)Li

(
x

1 − τ

)
≥ Li(x− y).

Therefore for (y, x) ∈ J∗
j × J∗

i with j = i, we have

Dji
implicit(y, x) = inf

0<τ<1
e(τ, y, x) ≥ Li(x − y).

When i = j ∈ I0, we have Dji
junction(y, x) = Dji

implicit(y, x), and then

Dji
junction(y, x) ≥ Li(x− y) = Dji

straight(y, x) = Dji
0 (y, x)

for (y, x) ∈ J∗
j × J∗

i and then also for (y, x) ∈ Jj × Ji, by continuity of the functions. �

Proof of Lemma 6.20. We first prove (6.43) and then describe the curve Γj,i.
Proof of (6.43). Combining (6.13) and (6.17), we obtain

Dji
0 (y, x) = min(Dji

junction(y, x),Dji
straight(y, x))

=

{
Dji

straight(y, x) = Li(x − y) for (y, x) ∈ (Jj × Ji) \Δji,

min(Dji
linear(y, x),Dji

straight(y, x)) for (y, x) ∈ Δji.
(6.44)

On the other hand, we have (a strictly convex function being above its tangent) for x �= ξ+i and y �= −ξ−j

Li(x) > Li(ξ+i ) + (x− ξ+i )L′
i(ξ

+
i ) = xL′

i(ξ
+
i ) + L0(0) = Dji

linear(0, x)

Lj(−y) > Lj(ξ−j ) + (−y − ξ−j )L′
j(ξ

−
j ) = −yL′

j(ξ
−
j ) + L0(0) = Dji

linear(y, 0).

This shows that
Dji

straight > Dji
linear on (∂(Jj × Ji)) ∩Δji. (6.45)

We see that (6.44) and (6.45) imply (6.43).
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Description of
{
Dji

linear = Dji
straight

}
∩Δji. Notice that

{Dji
linear(0, ξ

+
i ) = ξ+i L

′
i(ξ

+
i ) + L0(0) = Li(ξ+i ) = Dji

straight(0, ξ
+
i ),

Dji
linear(−ξ−j , 0) = ξ−j L

′
j(ξ

−
j ) + L0(0) = Lj(ξ−j ) = Dji

straight(−ξ−j , 0).

This means that the functions Dji
linear and Dji

straight coincide at the two points Xi = (0, ξ+i ) and Yj = (−ξ−j , 0).
Therefore we have

Dji
straight < Dji

linear on the open interval ]Xi, Yj [

because Dji
linear is linear and Dji

straight is strictly convex as a function of y − x.
The function (y, x) �→ Dji

straight(y, x)−Dji
linear(y, x) being convex because Dji

linear(y, x) is linear, we can consider
the convex set

Kji =
{
(y, x) ∈ Jj × Ji, Dji

straight(y, x) ≤ Dji
linear(y, x)

}
.

Then for i = j ∈ IN \ I0, the set

Γ ji =
{

(y, x) ∈ Δji, Dji
linear(y, x) = Dji

straight(y, x)
}

is contained in the boundary of the convex set Kji. More precisely, we have

Γ ji = ((∂Kji) ∩Δji) ⊂ J∗
j × J∗

i

which shows that Γ ji is a curve and
Γ ji = Γ ji ∪ {Xi, Yj} . �

Lemma 6.21 (the equations for D0). For all i, j, and x, y where Dji
0 is C1:

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, x) = −Hi((∂xDji

0 )(y, x)) = −Hj((−∂yDji
0 )(y, x)). (6.46)

Moreover for all x ∈ Ji (with x �= ξ+i if j = i ∈ IN \ I0)

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(0, x) = L0(0) +Ki(max(x, ξ+i )) (6.47)

and for all y ∈ Jj (with y �= −ξ−j if j = i ∈ IN \ I0)

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, 0) = L0(0) +Kj(−max(y,−ξ−j )). (6.48)

We also have
∂xDji

0 (y, x) = L′
i(ξx), ∂yDji

0 (y, x) = −L′
j(ξy) (6.49)

for all (y, x) ∈ ∂(Jj × Ji) except for i = j ∈ IN \ I0 for which we exclude points (y, x) ∈ {Yj , Xi}.
Moreover for j = i ∈ I0, we have

ξx = ξy = x− y for all (y, x) ∈ ∂(Jj × Ji) (6.50)

and j = i ∈ IN \ I0, we have{
ξy = x− y, ξx = x− y

ξy = ξ−j , ξx = ξ+i for (y, x) ∈ (∂(Jj × Ji)) ∩Δji.
(6.51)
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Proof. Using Proposition 6.12 for Dji
junction, Lemma 6.18 for Dji

straight, and (6.32) for Dji
linear and the property

(6.43), we get

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(0, x) =

⎧⎪⎪⎨
⎪⎪⎩
L0(0) +Ki(max(x, ξ+i )) if i �= j
L0(0) +Ki(x) if i = j ∈ I0{
L0(0) +Ki(x) if x > ξ+i
L0(0) if x < ξ+i

∣∣∣∣ if i = j ∈ IN \ I0

which implies (6.47). Similarly we get

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, 0) =

⎧⎪⎪⎨
⎪⎪⎩
L0(0) +Kj(−max(y,−ξ−j )) if i �= j
L0(0) +Kj(−y) if i = j ∈ I0{
L0(0) +Kj(−y) if y > −ξ−j
L0(0) if y < −ξ−j

∣∣∣∣ if i = j ∈ IN \ I0

which implies (6.48). Relations (6.46) and (6.49) follow both from Proposition 6.12 and Lemma 6.18. Finally
(6.50) and (6.51) follows from the previous results. This ends the proof of the lemma. �

We now can check the equations satisfied by D0 at the boundary.

Lemma 6.22 (boundary properties of D0). At any point (y, x) ∈ {0} × Ji with x �= ξ+i if i ∈ IN \ I0, we have
for any j ∈ IN

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, x) =

{−maxk∈IN H−
k (−∂yDki

0 (y, x)) if N ≥ 2,
−H1(−∂yDki

0 (y, x)) if N = 1. (6.52)

Lemma 6.23 (boundary properties of D0 (continued)). At any point (y, x) ∈ Jj × {0} with y �= −ξ−j if
j ∈ IN \ I0, we have for any i ∈ IN

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, x) = − max

k∈IN

H−
k (∂xDjk

0 (y, x)). (6.53)

Proof of Lemma 6.22. We first remark the general fact that

Hk(L′
k(ξ)) = H−

k (L′
k(ξ)) if ξ ≤ 0.

On the one hand, from Lemma 6.19, we have for points (y, x) ∈ {0} × Ji where Dki
0 is C1

−(Dki
0 − x∂xDki

0 − y∂yDki
0 )(y, x) = Hk(−∂yDki

0 (y, x)) ≥ H−
k (−∂yDki

0 (y, x))

and this common quantity is independent on k. Therefore to conclude to (6.52) in the case N ≥ 2, it is enough
to show that there exists at least an index k such that

Hk(−∂yDki
0 (y, x)) = H−

k (−∂yDki
0 (y, x)). (6.54)

Case 1: N ≥ 2 and k �= i. Then we have ξy ≤ 0 and then

Hk(−∂yDki
0 (y, x)) = Hk(L′

k(ξy)) = H−
k (L′

k(ξy)) = H−
k (−∂yDki

0 (y, x)).

Therefore (6.54) holds true for k �= i.
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Case 2: N = 1 and k = i = 1 ∈ I0. Then we have

D0(y, x) = D11
0 (y, x) = L1(x− y)

and by Lemma 6.18, we have for

(D11
0 − x∂xD11

0 − y∂yD11
0 )(y, x) = −H1(−∂yD11

0 (y, x))

which is in particular true for y = 0. This shows (6.52) in the case N = 1. �

Proof of Lemma 6.23. From Lemma 6.19, we have for points (y, x) ∈ Jj × {0} where Djk
0 is C1

−(Djk
0 − x∂xDjk

0 − y∂yDjk
0 )(y, x) = Hk(∂xDjk

0 (y, x)) ≥ H−
k (∂xDjk

0 (y, x))

and this common quantity is independent on k. Therefore to conclude to (6.53), it is enough to show that there
exists at least an index k such that

Hk(∂xDjk
0 (y, x)) = H−

k (∂xDjk
0 (y, x)). (6.55)

Case 1: j ∈ I0. Then from Lemma 6.19, we have with k = j

∂xDjk
0 (y, x) = L′

k(ξx) with ξx = x− y ≤ 0. (6.56)

Therefore (6.53) holds true for k = j.

Case 2: j ∈ IN \ I0. We distinguish sub-cases.

Subcase 2.1: y > −ξ−j . From Lemma 6.19, we still have (6.56) with k = j, which again implies (6.53) for k = j.

Subcase 2.2: y < −ξ−j . Then we choose an index k ∈ I0, and Lemma 6.19 implies that

∂xDjk
0 (y, x) = L′

k(ξx) with ξx = ξ+k = 0

which again implies (6.53) for such k ∈ I0. This ends the proof of the lemma. �

We can now prove Theorem 6.2.

Proof of Theorem 6.2. From Lemma 6.19, we know that D0 has the regularity C1
∗ except on certain curves

Γ ji ∪ {Yj , Xi} for j = i ∈ IN \ I0. So if (y, x) is a point of local C1
∗ regularity of D0, then we simply set

ϕ0 = D0 locally around (y, x).

If (y, x) is a point where D0 is not C1∗ , then we have D0(y, x) = Djunction(y, x), and we can simply set

ϕ0 = Djunction on J2.

The required equalities follow from Lemmas 6.19, 6.22 and 6.23. Estimate (6.6) follows from the fact that
D0 is the minimum of Djunction ∈ C1∗(J2) and of functions in C1(J2

i ) for some i. This ends the proof of the
theorem. �

Appendix A. Stability and Perron’s method

This section contains classical results from viscosity solutions, whose statements are adapted to the equation
studied in the present paper.
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A.1. Stability results

In view of Proposition 3.3, the following stability results are classical in the viscosity solution framework. See
for instance [7].

Proposition A.1 (stability). Assume (A1’) and let T > 0.

• Consider a family of sub-solutions (resp. super-solutions) (uα)α∈A of (1.1) on JT such that the u.s.c. (resp.
l.s.c.) envelope u of

sup
α∈A

uα (resp. inf
α∈A

uα)

is finite everywhere. Then u is a sub-solution (resp. super-solution) of (1.1) on JT ;
• consider a family of sub-solutions (resp. super-solutions) (uε)ε∈(0,1) of (1.1) on JT such that the upper (resp.

lower) relaxed semi-limit u is finite everywhere. Then u is a sub-solution (resp. super-solution) of (1.1) on
JT .

A.2. Perron’s method

In this subsection, we state the existence of a solution of (1.1)–(1.2) which can be constructed by using
Perron’s method. This method is the classical way to get existence in a viscosity solution framework.

Theorem A.2 (existence). Assume (A0)–(A1’) and let T > 0. Then there exists an upper semi-continuous
function u : [0, T )× J → R which is a viscosity solution of (1.1)–(1.2) on JT and satisfies

|u(t, x) − u0(x)| ≤ Ct for (t, x) ∈ [0, T )× J.
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