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MULTI-BUMP SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATIONS
WITH ELECTROMAGNETIC FIELDS

Huirong Pi1 and Chunhua Wang1

Abstract. In this paper, we are concerned with the existence of multi-bump solutions for a nonlinear
Schrödinger equations with electromagnetic fields. We prove under some suitable conditions that for
any positive integer m, there exists ε(m) > 0 such that, for 0 < ε < ε(m), the problem has an m-
bump complex-valued solution. As a result, when ε → 0, the equation has more and more multi-bump
complex-valued solutions.
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1. Introduction

In this paper, we are interested in the existence of multi-bump solutions for the following nonlinear problem(∇
i
− Aε(x)

)2

u + (1 + εa(x))u = |u|p−2u, x ∈ R
N , (1.1)

where 2 < p < 2N
N−2 if N ≥ 3 and 2 < p < +∞ if N = 1 or N = 2 and ε > 0 is a parameter. a(x) is a positive

continuous function on RN , and Aε = (Aε,1(x), Aε,2(x), . . . , Aε,N (x)) is such that Aε,j(x)(j = 1, 2, . . . , N) is a
real C1 function on RN . Throughout this paper we assume that a(x) and Aε(x) satisfy the following conditions
respectively:

(H1) a(x) ∈ C(RN , R+), lim
|x|→∞

a(x) = 0, and lim
|x|→∞

ln(a(x))
|x| = 0;

(H2) Aε(x) = εB(x), where B(x) ∈ C1(RN , RN ) is bounded.

Equation (1.1) rises in many fields of physics, in particular condensed matter physics and nonlinear optics
(see [35])

i�
∂Ψ

∂t
=
(

�

i
∇− A(x)

)2

Ψ + G(x)Ψ − f(x, Ψ), (t, x) ∈ R × R
N (N ≥ 2). (1.2)

Keywords and phrases. Contraction map, electromagnetic fields, multi-bump solutions, nonlinear Schrödinger equation, varia-
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1 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China. wch5923@yahoo.com.cn

Article published by EDP Sciences c© EDP Sciences, SMAI 2012

http://dx.doi.org/10.1051/cocv/2011207
http://www.esaim-cocv.org
http://www.edpsciences.org


92 H. PI AND C. WANG

The function Ψ(x, t) takes on complex values, � is the Planck constant, i is the imaginary unit. Here A : RN →
RN denotes a magnetic potential and the Schrödinger operator is defined by(

�

i
∇− A(x)

)2

Ψ := −�
2�Ψ − 2�

i
A · ∇Ψ + |A|2Ψ − �

i
ΨdivA.

Actually, in general dimension N ≥ 4, the magnetic field D is a 2-form where Dk,j = ∂jAk − ∂kAj . In the case
N = 3, D = curlA. The function G : R

N → R represents an electric potential.
We intend to find standing waves for (1.2), namely solutions of the form Ψ(x, t) = e−

iEt
� u(x) for some function

u : RN �→ C. Substituting this ansatz into (1.2), one is led to solve the complex equation(
�

i
∇− A(x)

)2

u + V (x)u = f(x, u), x ∈ R
N , (1.3)

where V (x) = G(x) − E. If � = 1, A(x) = Aε(x), V (x) = 1 + εa(x) and f(x, u) = |u|p−2u, then (1.3) is reduced
to (1.1). The transition from quantum mechanics to classical mechanics can be formally described by letting
� → 0, and thus the existence of solutions for � small has physical interest. Standing waves for � small are
usually referred as semi-classical bound states (see [22]).

When A(x) ≡ 0, (1.3) reads
−�

2�u + V (x)u = f(x, u), x ∈ R
N . (1.4)

In recent years, much attention has been paid to the study of the existence and uniqueness for one- or multi-
bump bound states of (1.4). In [21], using a Lyapunov-Schmidt reduction, Floer and Weinstein established the
existence of a standing wave solution of (1.4) when N = 1, f(x, u) = |u|u and V (x) was a bounded function
having a nondegenerate critical point for sufficiently small �. Moreover, they showed that u concentrated near the
given non-degenerate critical point of V when � tended to 0. Their methods and results were later generalized
by Oh [32, 33] to the higher-dimensional case. For a potential V without any nondegenerate critical point,
Rabinowitz [34] obtained an existence result for (1.4) with � small, provided that 0 < inf

x∈RN
V (x) < lim inf

|x|→∞
V (x),

using a global variational argument. These solutions concentrate near the global minima of V as � → 0, as
shown by Wang [38]. For more general case, one can see [40]. del Pino and Felmer [16, 17] obtained multi-peak
solutions having exactly k maximum points provided that there were k disjoint open bounded sets Λi at its
bottom. For more results concerning (1.4), see [7, 9, 10, 18, 19, 27, 39].

When A(x) 
≡ 0, we first mention a paper by Esteban and Lions [20], in which concentration-compactness
principle of Lions was applied to solve some minimization problems under suitable assumptions on the magnetic
field. Results concerning bounded vector potentials, when V had a manifold of stationary points, were obtained
by Cingolani and Secchi in [13] using a perturbation approach given by Ambrosetti et al. in [2]. Semiclassical
multi-peak solutions for (1.3) for bounded vector potentials were constructed in [11] by Cao and Tang. In [14],
using a penalization procedure (see [18]), Cingolani and Secchi extended the result in [13] to the case of a vector
potential A, possibly unbounded. The penalization approach was also used by Bartsch et al. in [5], and later by
Cingolani et al. in [15] to obtain multi-bump semiclassical bound for problem (1.2) with more general nonlinear
term f(x, Ψ). Concerning other papers on the topic, we mention that Kurata in [25] proved the existence of
least energy solution of (1.3) for � > 0 under a condition relating V (x) and A(x). In [22, 23], Helffer studied
asymptotic behavior of the eigenfunctions of the Schrödinger operators with magnetic fields in the semiclassical
limit. See also [6] for generalization of the results in [24] for potentials which were degenerate at infinity. For
more related results, we can refer to [3, 12, 15, 36, 37] and the references therein.

We should point out that in almost all papers listed above, the solutions obtained will concentrate around
some points when the parameter which is the Planck constant �(ε) tends to 0+. However, in this paper, we want
to find solutions to (1.1) which do not concentrate near any point in the space. More precisely, we intend to look
for solutions to (1.1) whose bumps are separated far apart and the distance between two bumps goes to infinity
when ε → 0. Moreover, the size of each bump does not shrink and is fixed when ε → 0. This is greatly different
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from the concentration phenomenon described above. To this end, we use the idea introduced in the paper of
Lin et al. [31], where Aε(x) ≡ 0, (1.1) was considered as a real-valued problem and multi-bump real-valued
solutions were found.

When ε → 0, the limiting equation of (1.1) is

−Δu + u = |u|p−2u, u(x) ∈ H1(RN , C). (1.5)

We will use the solutions of (1.5) to build up the approximate solutions for (1.1).
If we denote Uc : RN �→ C a least-energy solution to equation (1.5). By energy comparison (see [25]), one has

that
Uc(x) = eiσw(x − y0),

for some choice of σ ∈ [0, 2π] and y0 ∈ RN , where w ∈ C∞(RN , R) is the unique solution of the problem{−�u + u = up−1, u > 0 in RN ,
u(x) → 0, as |x| → +∞.

(1.6)

It is well-known that every positive solution of equation (1.6) has the form wy := w(· − y) for some y ∈ RN ,
w satisfies, for some c > 0,

w(r)r
N−1

2 er → 0, w′(r)r
N−1

2 er → −c, as r = |x| → ∞,

(see [26]). This solution w will be employed as a building block to construct multi-bump solutions for (1.1). Let
m ≥ 1 be an integer. For sufficiently separated y1, y2, . . . , ym in RN and some choice of σ ∈ [0, 2π], a solution
of (1.1) which is close to

∑m
j=1 eiσw(x − yj) :=

∑m
j=1 ηw(x − yj) in a sense which will be made clear later is

called an m-bump solution.
For convenience, we denote

Vε(x) = 1 + εa(x).

Let E be a Hilbert space defined as the closure of C∞
0 (RN , C) under the scalar product

(u, v)ε = Re
∫ (∇u

i
− Aε(x)u

)(∇v

i
− Aε(x)v

)
+ Vε(x)uv̄.

The norm induced by the product (·, ·)ε is

‖u‖ε =

(∫ ∣∣∣∣∇u

i
− Aε(x)u

∣∣∣∣2 + Vε(x)|u|2
) 1

2

=
(∫

|∇u|2 + |Aε(x)|2|u|2 + Vε(x)|u|2 − 2Re
∫

1
i
∇u · Aε(x)ū

) 1
2

.

We use ‖ ·‖ and (·, ·) to denote the usual norm and inner product of H1(RN , C). By the assumptions of Aε(x)
and a(x) and Lemma A.2 we know that ‖ · ‖ε in E is equivalent to ‖ · ‖ in H1(RN , C). The energy functional
associated with (1.1) is defined by

Iε(u) =
1
2

∫ ∣∣∣∣∇u

i
− Aε(x)u

∣∣∣∣2 + Vε(x)|u|2 − 1
p

∫
|u|p, ∀u ∈ E. (1.7)

Denote the functional related to (1.5) by I0(u), that is

I0(u) =
1
2

∫ (|∇u|2 + |u|2)− 1
p

∫
|u|p, ∀u ∈ H1(RN , C).
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Let
Z =

{
eiσw(x); (x, σ) ∈ R

N × [0, 2π] 
 R
N × S1

}
.

From [13,14], we know that Z is non-degenerate, that is

kerI ′′0 (ηw) = spanR

{
∂(ηw)
∂x1

, . . . ,
∂(ηw)
∂xN

,
∂(ηw)

∂σ
= iηw

}
.

Our main result is as follows:

Theorem 1.1. Let (H1) and (H2) hold. Then for any positive integer m there exists ε(m) > 0 such that for
0 < ε < ε(m), problem (1.1) has an m-bump complex-valued solution u with the following form:

u =
m∑

j=1

eiσw(x − yε
j) + vε,σ,yε ,

where σ is any constant in [0, 2π], yε = (yε
1, y

ε
2, . . . , y

ε
m) ∈ (RN )m with |yε

i − yε
j| → +∞ as ε → 0 for any i 
= j,

‖vε,σ,yε‖ε = O(ε).

Remark: By the very similar argument, we can obtain the following result (see also [30]):
Suppose that Aε(x) satisfies (H2) and a(x) satisfies

(H′
1) a(x) ∈ C

(
R

N , R+
)
, lim
|x|→∞

a(x) = 0, a(x) ≥ ce−δ|x| for some c > 0, δ > 0.

If m ∈ N satisfies m < 1+ p−2
2δ(p−1) , then there exists ε(m) > 0 such that for 0 < ε < ε(m), the following equation(∇

i
− Aε(x)

)2

u + u = (1 − εa(x))|u|p−2u, x ∈ R
N , (1.8)

has an m-bump complex-valued solution.
Moreover, if Aε(x) satisfies (H2) and a(x) ∈ C(RN , R+) satisfies

(H′′
1) lim

|x|→∞
a(x) = 0, and there exists c > 0 such that a(x) ≥ ce−δ|x|, ∀δ > 0.

Then for any m ∈ N, there exists ε(m) > 0 such that for 0 < ε < ε(m), (1.8) has an m-bump complex-valued
solution. As a consequence, when ε → 0, (1.8) has more and more multi-bump complex-valued solutions.

We mainly use the variational reduction method to prove Theorem 1.1. Our argument is partially inspired
by [28–31]. We first reduce the problem to look for solutions of (1.1) to the problem to find the critical points
of a function defined on a open subset of a finite dimensional Euclidian space. Then we prove that the function
achieves its maximum at the interior of that open subset. We remark that differently from [28,30, 31], we need
to overcome many additional difficulties which arise because of the appearance of the magnetic field Aε(x).
Problem (1.1) cannot be changed into a pure real-valued problem, hence we should deal with a complex-
valued problem directly, which causes more new difficulties in employing the methods in dealing with singularly
perturbed problems (see [1]).

This paper is organized as follows. In Section 2, we will carry out the reduction. Then, we will study the
reduced finite dimensional problem and prove Theorem 1.1 in Section 3. In Appendix A, we give some elementary
inequalities which are useful in our estimates.

Notation:

1. We simply write
∫

f to mean the Lebesgue integral of f(x) in RN ;
2. the complex conjugate of any number z ∈ C will be denoted by z̄;
3. the real part of a number z ∈ C will be denoted by Rez;
4. the ordinary inner product between two vectors a, b ∈ RN will be denoted by a · b;
5. C, ci, Ci, C

′
i (i = 1, 2, . . .) denote generic constants, which may vary inside a chain of inequalities.



MULTI-BUMP SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS 95

2. Variational reduction

Fix m ∈ N. For λ > 0 and m ≥ 2, define

Ωλ =
{
(y1, y2, . . . , ym) ∈ (RN )m : |yk − yj| > λ, for any k 
= j

}
.

For simplicity, we make the convention

Ωλ ≡ R
N (∀λ > 0),

if m = 1. For y ∈ Ωλ, let

zy =
m∑

j=1

eiσw(x − yj) =
m∑

j=1

ηwyj = ηuy,

where wyj = w(· − yj), uy =
∑m

j=1 wyj .
Let y ∈ Ωy. Define

Wy =
{

v ∈ E
∣∣∣Re

∫
ηwp−2

yj

∂wyj

∂xα
v̄ = 0 and Re

∫
ηwp−1

yj
v̄ = 0

}
,

where α = 1, 2, . . . , N and j = 1, 2, . . . , m.
It is easy to check that

Re
∫ [(∇

i
− Aε(x)

)
v1

](∇
i
− Aε(x)

)
v2 + Re

∫
Vε(x)v1v̄2

−
[
(p − 2)Re

∫
|zy|p−4Re(zy v̄2)zy v̄1 +

∫
|zy|p−2Re(v1v̄2)

]
, ∀v1, v2 ∈ Wy,

is a bounded bi-linear functional in Wy. Hence there is a bounded linear operator Ly from Wy to Wy, such that

〈Lyv1, v2〉 = Re
∫ [(∇

i
− Aε(x)

)
v1

](∇
i
− Aε(x)

)
v2 + Re

∫
Vε(x)v1v̄2

−
[
(p − 2)Re

∫
|zy|p−4Re(zy v̄2)zy v̄1 +

∫
|zy|p−2Re(v1v̄2)

]
, ∀v1, v2 ∈ Wy.

The following lemma shows that Ly is invertible in Wy .

Lemma 2.1. There exist positive constants λ0, ε0 and ζ0 such that for any λ > λ0, 0 < ε < ε0, σ ∈ [0, 2π], y ∈ Ωλ

and v ∈ Wy ,
‖Lyv‖ε ≥ ζ0‖v‖ε. (2.1)

Proof. We argue by contradiction argument. Suppose that there exist {yk,n}∞n=1 ⊂ RN , k = 1, 2, . . . , m, with
|yk,n − yj,n| → ∞ for k 
= j and vn ∈ Wyn with ‖vn‖ε = 1 such that

‖Lynvn‖ε = o(1)‖vn‖ε = o(1), (2.2)

where yn = (y1,n, y2,n, . . . , ym,n). Without loss of generality, we may assume that |yk,n| → ∞, k = 1, 2, . . . , m as
n → ∞. Assume that

vn(· + yk,n) ⇀ v∗k, in E, k = 1, 2, . . . , m, as n → ∞
and

vn(· + yk,n) → v∗k, strongly in L2
loc(R

N ), k = 1, 2, . . . , m, as n → ∞.
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From

Re
∫

ηwp−2
yk,n

∂wyk,n

∂xα
vn = 0 and Re

∫
ηwp−1

yk,n
vn = 0

for α = 1, 2, . . . , N and k = 1, 2, . . . , m, we obtain

Re
∫

ηwp−2 ∂w

∂xα
vn(· + yk,n) = 0 and Re

∫
ηwp−1vn(· + yk,n) = 0

for α = 1, 2, . . . , N and k = 1, 2, . . . , m. So v∗k satisfies

Re
∫

ηwp−2 ∂w

∂xα
v∗k = 0 and Re

∫
ηwp−1v∗k = 0 (2.3)

for α = 1, 2, . . . , N and k = 1, 2, . . . , m.

Now we prove that v∗k ∈ kerI ′′0 (ηw), that is

Re
∫

∇v∗k∇ϕ̄ + Re
∫

v∗kϕ̄ −
[
(p − 2)Re

∫
ηwp−3Re(ηwϕ̄)v∗k + Re

∫
wp−2Re(v∗kϕ̄)

]
= 0, ∀ϕ ∈ E.

Define

W̃y =
{

ϕ : ϕ ∈ E, Re
∫

ηwp−2 ∂w

∂xα
ϕ = 0 and Re

∫
ηwp−1ϕ = 0, α = 1, 2, . . . , N

}
.

Note that

o(1)‖ϕ‖ = 〈Lynvn, ϕ〉

= Re
∫ [(∇

i
− Aε(x)

)
vn

](∇
i
− Aε(x)

)
ϕ + Re

∫
Vε(x)vnϕ̄

−
[
(p − 2)Re

∫
|zyn |p−4Re(zynϕ̄)zyn v̄n +

∫
|zyn |p−2Re(vnϕ̄)

]
, ∀ϕ ∈ W̃y. (2.4)

Let ϕ ∈ C∞
0 (RN , C)∩ W̃y and take ϕn(x) =: ϕ(x + yk,n) ∈ C∞

0 (RN , C). Inserting ϕn into (2.4) and choosing
ε > 0 small enough and λ > 0 big enough, we find

Re
∫

∇v∗k∇ϕ̄ + Re
∫

v∗kϕ̄ −
[
(p − 2)Re

∫
ηwp−3Re(ηwϕ̄)v∗k + Re

∫
wp−2Re(v∗kϕ̄)

]
= 0.

Since C∞
0 (RN , C) is dense in H1(RN , C) and the norm ‖·‖ε in E is equivalent to ‖·‖ in H1(RN , C), C∞

0 (RN , C)
is dense in E. It is easy to show that

Re
∫

∇v∗k∇ϕ̄ + Re
∫

v∗kϕ̄ −
[
(p − 2)Re

∫
ηwp−3Re(ηwϕ̄)v∗k + Re

∫
wp−2Re(v∗kϕ̄)

]
= 0, ∀ϕ ∈ W̃y. (2.5)
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But (2.5) holds for ϕ = c0ηw +
∑N

α=1 cα
∂(ηw)
∂xα

. Hence (2.5) is true for any ϕ ∈ E, which means that v∗k ∈
kerI ′′0 (ηw) and hence v∗k = c0ηw +

∑N
α=1 cα

∂(ηw)
∂xα

. From (2.3), we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0

∫
wp−1 ∂w

∂x1
+

N∑
α=1

cα

∫
wp−2 ∂w

∂x1

∂w

∂xα
= 0,

c0

∫
wp−1 ∂w

∂x2
+

N∑
α=1

cα

∫
wp−2 ∂w

∂x2

∂w

∂xα
= 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c0

∫
wp−1 ∂w

∂xN
+

N∑
α=1

cα

∫
wp−2 ∂w

∂xN

∂w

∂xα
= 0,

c0

∫
wp +

N∑
α=1

cα

∫
wp−1 ∂w

∂xα
= 0.

(2.6)

Consequently, c0 = c1 = . . . = cN = 0 and v∗k = 0. As a result,∫
BR(0)

|vn|2 = o(1), for any R > 0.

Thus, choosing ε > 0 small enough, we have

〈Lynvn, vn〉 =
∫ ⎧⎨⎩

∣∣∣∣∣
(∇

i
− Aε(x)

)
vn

∣∣∣∣∣
2

+ Vε(x)|vn|2 −
[
(p − 2)|zyn |p−4(Re(zyn v̄n))2 + |zyn |p−2|vn|2

]⎫⎬⎭
≥
∫ [∣∣∣(∇

i
− Aε(x)

)
vn

∣∣∣2+Vε(x)|vn|2
]
− (p − 1)

∫
|zyn |p−2|vn|2

= ‖vn‖2
ε − (p − 1)

∫
|zyn |p−2|vn|2

= 1 + O(e−(p−2)R)
∫

BR(0)

|vn|2 ≥ 1
2

+ o(1).

This is a contradiction to (2.2). �

Let
J(ϕ) = Iε(zy + ϕ), ϕ ∈ Wy .

We have the following result:

Lemma 2.2. There exist positive constants ε0 and λ0 such that for 0 < ε < ε0 and λ ≥ λ0, there exists a C1

map
vλ,ε : Ωλ × [0, 2π] → E

depending on λ and ε, satisfying
(i) for any (y, σ) ∈ Ωλ × [0, 2π], vλ,ε,σ,y ∈ Wy and〈

∂J(vλ,ε,σ,y)
∂vλ,ε,σ,y

, ϕ

〉
= 0, ∀ϕ ∈ Wy;

(ii)
‖vλ,ε,σ,y‖ε ≤ ε1−τ +

∑
k �=j

e−
p−1−τ

p |yk−yj|,

where τ > 0 is an arbitrary small constant. Moreover, vλ,ε,σ,y = eiσVλ,ε,y with Vλ,ε,y ∈ E independent of σ.
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Proof. Noting that

Re
∫

∇zy∇v̄λ,ε,σ,y + Re
∫

zyv̄λ,ε,σ,y =
m∑

j=1

Re
∫

ηwp−1
yj

v̄λ,ε,σ,y,

we see

J(vλ,ε,σ,y) =: Iε(zy + vλ,ε,σ,y)

=
1
2

∫ [∣∣∣∣(∇
i
− Aε(x)

)
(zy + vλ,ε,σ,y)

∣∣∣∣2 + Vε(x)|zy + vλ,ε,σ,y|2
]
− 1

p

∫
|zy + vλ,ε,σ,y|p

=

{
1
2

∫ ∣∣∣∣(∇
i
− Aε(x)

)
zy

∣∣∣∣2 + Vε(x)|zy |2 − 1
p

∫
|zy|p

}
+

{
Re

∫
Vε(x)zy v̄λ,ε,σ,y

+Re
∫ (∇

i
− Aε(x)

)
zy

(∇
i
− Aε(x)

)
vλ,ε,σ,y − Re

∫
|zy|p−2zyv̄λ,ε,σ,y

}

+

{
1
2

∫ ∣∣∣∣(∇
i
− Aε(x)

)
vλ,ε,σ,y

∣∣∣∣2 + Vε(x)|vλ,ε,σ,y|2

− [
(p − 2)|zy|p−4(Re(zy v̄λ,ε,σ,y))2 + |zy|p−2|vλ,ε,σ,y|2

]}

−
{

1
p

∫ [|zy + vλ,ε,σ,y|p − |zy|p − pRe(|zy|p−2zy v̄λ,ε,σ,y)
]

−p

2
[
(p − 2)|zy|p−4(Re(zy v̄λ,ε,σ,y))2 + |zy|p−2|vλ,ε,σ,y|2

]}
.

Direct calculation yields

Re
∫ (∇

i
− Aε(x)

)
zy

(∇
i
− Aε(x)

)
vλ,ε,σ,y = Re

∫
∇zy∇v̄λ,ε,σ,y − εRe

∫ ∇
i

zyB(x)v̄λ,ε,σ,y

−εRe
∫

B(x)zy
∇
i

vλ,ε,σ,y + ε2Re
∫

|B(x)|2zyvλ,ε,σ,y.

Hence,

J(vλ,ε,σ,y) =: J(0) + ly(vλ,ε,σ,y) +
1
2
〈Lyvλ,ε,σ,y, vλ,ε,σ,y〉 − Ry(vλ,ε,σ,y),

where

ly(vλ,ε,σ,y) =
m∑

j=1

Re
∫

ηwp−1
yj

v̄λ,ε,σ,y − Re
∫

|zy|p−2zy v̄λ,ε,σ,y

−εRe
∫ ∇

i
zyB(x)v̄λ,ε,σ,y − εRe

∫
B(x)zy

∇
i

vλ,ε,σ,y

+ε2Re
∫

|B(x)|2zy v̄λ,ε,σ,y + εRe
∫

a(x)zy v̄λ,ε,σ,y.
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Ly is the bounded linear map from Wy to Wy in Lemma 2.1, and

Ry(vλ,ε,σ,y) =
1
p

∫ { [|zy + vλ,ε,σ,y|p − |zy|p − pRe
(|zy|p−2zyv̄λ,ε,σ,y

)]
−p

2
[
(p − 2)|zy|p−4(Re(zy v̄λ,ε,σ,y))2 + |zy|p−2|vλ,ε,σ,y|2

]}
.

It is easy to check that ly(vλ,ε,σ,y) is a bounded linear functional in Wy, so there exists an ly,k ∈ Wy such that

ly(vλ,ε,σ,y) = 〈ly,k, vλ,ε,σ,y〉.
Thus, to find a critical point for J(vλ,ε,σ,y), we only need to solve

ly,k + Lyvλ,ε,σ,y − R′
y(vλ,ε,σ,y) = 0. (2.7)

Lemma 2.1 implies that Ly is invertible. Thus, (2.7) can be rewritten as

vλ,ε,σ,y = Ay(vλ,ε,σ,y) =: −L−1
y ly,k + L−1

y R′
y(vλ,ε,σ,y).

Set

Sy =

⎧⎨⎩vλ,ε,σ,y : vλ,ε,σ,y ∈ Wy , ‖vλ,ε,σ,y‖ε ≤ ε1−τ +
∑
k �=j

e−
p−1−τ

p |yk−yj|

⎫⎬⎭ .

If 2 < p ≤ 3, we can check that

‖R′
y(vλ,ε,σ,y)‖ε ≤ C‖vλ,ε,σ,y‖p−1

ε and ‖R′′
y(vλ,ε,σ,y)‖ε ≤ C‖vλ,ε,σ,y‖p−2

ε .

Thus,

‖Ay(v1
λ,ε,σ,y) − A(v2

λ,ε,σ,y)‖ε = ‖L−1
y R′

y(v1
λ,ε,σ,y) − L−1

y R′
y(v2

λ,ε,σ,y)‖ε

≤ C‖R′
y(v1

λ,ε,σ,y) − R′
y(v2

λ,ε,σ,y)‖ε

≤ C‖R′′
y(θv1

λ,ε,σ,y + (1 − θ)v2
λ,ε,σ,y)‖ε‖v1

λ,ε,σ,y − v2
λ,ε,σ,y‖ε

≤ C(‖v1
λ,ε,σ,y‖p−2

ε + ‖v2
λ,ε,σ,y‖p−2

ε )‖v1
λ,ε,σ,y − v2

λ,ε,σ,y‖ε

≤ 1
2
‖v1

λ,εσ,y − v2
λ,ε,σ,y‖ε,

where θ ∈ (0, 1).
Thus, we have proved that if 2 < p ≤ 3, Ay is a contraction map.
When ε → 0 and λ → ∞, Lemma 2.3 below implies that

‖ly,k
‖ε ≤ C

⎛⎝ε +
∑
k �=j

e−
p−1

p |yk−yj|

⎞⎠ .

Hence,
‖Ay(vλ,ε,σ,y)‖ε = ‖Ay(vλ,ε,σ,y) − Ay(0)‖ε + ‖Ay(0)‖ε

≤ Cεp−2‖vλ,ε,σ,y‖ε + C‖ly,k‖ε

≤ Cεp−2‖vλ,ε,σ,y‖ε + C

⎛⎝ε +
∑
k �=j

e−
p−1

p |yk−yj |

⎞⎠
≤ ε1−τ +

∑
k �=j

e−
p−1−τ

p |yk−yj|.

(2.8)

Thus, Ay maps Sy into Sy if 2 < p ≤ 3.
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Suppose that p > 3. Note that for any a ∈ C, |Rea| ≤ |a|. Then by Lemma A.4, Hölder inequality and the
Sobolev inequality, we get

|〈R′
y(vλ,ε,σ,y), ξ〉| =

∣∣∣∣∣Re
∫

|zy + vλ,ε,σ,y|p−2(zy + vλ,ε,σ,y)ξ − Re
∫

|zy|p−2zyξ

−Re
∫ [

(p − 2)|zy|p−4Re(zyvλ,ε,σ,y)zyξ + |zy|p−2v̄λ,ε,σ,yξ
] ∣∣∣∣∣

≤
∫ ∣∣∣|zy + vλ,ε,σ,y|p−2(zy + vλ,ε,σ,y) − |zy|p−2zy

− [
(p − 2)|zy|p−4Re(zyvλ,ε,σ,y)zy + |zy|p−2v̄λ,ε,σ,y

] ∣∣∣|ξ|
≤ C

∫
|zy|p−3|vλ,ε,σ,y|2|ξ|

≤ C

[∫ (|zy|p−3|vλ,ε,σ,y|2
) p

p−1

] p−1
p

‖ξ‖ε.

Hence, we get

‖R′
y(vλ,ε,σ,y)‖ε ≤ C

[∫ (|zy|p−3|vλ,ε,σ,y|2
) p

p−1

] p−1
p

.

Since zy is bounded, we have

‖R′
y(vλ,ε,σ,y)‖ε ≤ C

(∫
|vλ,ε,σ,y|

2p
p−1

) p−1
p

≤ C‖vλ,ε,σ,y‖2
ε .

For the estimate of ‖R′′
y(vλ,ε,σ,y)‖ε, by Hölder inequality and the Sobolev inequality, we have

|R′′
y(vλ,ε,σ,y)(ξ, ϑ)| =

∣∣∣∣∣Re
∫ [

(p − 2)|zy|p−4Re(zy + vλ,ε,σ,yξ)z̄yϑ + |zy|p−2ξ̄ϑ
]

−Re
∫ [

(p − 2)|zy|p−4Re(zyξ)zyϑ + |zy|p−2ξ̄ϑ
] ∣∣∣∣∣

=

∣∣∣∣∣Re
∫

(p − 2)|zy|p−4Re(v̄λ,ε,σ,yξ)zyϑ

∣∣∣∣∣
≤
∫

(p − 2)|zy|p−3|vλ,ε,σ,y||ξ||ϑ|

≤ C

(∫
|vλ,ε,σ,y|3

) 1
3
(∫

|ξ|3
) 1

3
(∫

|ϑ|3
) 1

3

≤ C‖vλ,ε,σ,y‖ε‖ξ‖ε‖ϑ‖ε,

which implies

‖R′′
y(vλ,ε,σ,y)‖ε ≤ C‖vλ,ε,σ,y‖ε.
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Consequently, we have

‖Ay(v1
λ,ε,σ,y) − A(v2

λ,ε,σ,y)‖ε = ‖L−1
y R′

y(v1
λ,ε,σ,y) − L−1

y R′
y(v2

λ,ε,σ,y)‖ε

≤ C‖R′
y(v1

λ,ε,σ,y) − R′
y(v2

λ,ε,σ,y)‖ε

≤ C‖R′′
y(θv1

λ,ε,σ,y + (1 − θ)v2
λ,ε,σ,y)‖ε‖v1

λ,ε,σ,y − v2
λ,ε,σ,y‖ε

≤ C(‖v1
λ,ε,σ,y‖ε + ‖v2

λ,ε,σ,y‖ε)‖v1
λ,ε,σ,y − v2

λ,ε,σ,y‖ε

≤ 1
2
‖v1

λ,ε,σ,y − v2
λ,ε,σ,y‖ε,

where 0 < θ < 1 and

‖Ay(vλ,ε,σ,y)‖ε = ‖Ay(vλ,ε,σ,y) − Ay(0)‖ε + ‖Ay(0)‖ε

≤ Cε‖vλ,ε,σ,y‖ε + C‖ly,k‖ε

≤ Cε‖vλ,ε,σ,y‖ε + C

⎛⎝ε +
∑
k �=j

e−
p−1

p |yk−yj |

⎞⎠
≤ ε1−τ +

∑
k �=j

e−
p−1−τ

p |yk−yj |.

(2.9)

Hence, Ay is also a contraction map from Sy to Sy. Now applying the contraction mapping theorem, for any
(y, σ) ∈ Ωλ × [0, 2π], we can find a unique vλ,ε,σ,y such that (2.7) holds. By (2.8) and (2.9), we obtain

‖vλ,ε,σ,y‖ε ≤ ε1−τ +
∑
k �=j

e−
p−1−τ

p |yk−yj|.

To prove the C1-continuity of vλ,ε,σ,y with respect to (y, σ), we can use the implicit function theorem to find
a unique C1-map: (y, σ) → ṽλ,ε,y,σ, which solves (2.7) (see [11]). By the uniqueness, we see vλ,ε,σ,y = ṽλ,ε,y,σ

and hence is a C1 map with respect to (y, σ).
Finally, we prove vλ,ε,σ,y = eiσVλ,ε,y with Vλ,ε,y ∈ E independent of σ. Since vλ,ε,σ,y solves (2.7), from

Lagrange multiplier theorem, there exist constants Xj ∈ R and Yj ∈ R (j = 1, 2, . . . , m) such that

I ′ε(zy + vλ,ε,σ,y) =
m∑

j=1

iXjeiσwyj +
m∑

j=1

N∑
α=1

Yjeiσ ∂wyj

∂xα
· (2.10)

Let vλ,ε,σ,y = eiσVλ,ε,y with Vλ,ε,y ∈ E. Noting that for any ϕ ∈ E

〈I ′ε(u), ϕ〉 = Re
∫ (∇

i
− Aε(x)

)
u

(∇
i
− Aε(x)

)
ϕ + Re

∫
Vε(x)uϕ̄ − Re

∫
|u|p−2uϕ̄,

we test (2.10) by eiσv(x) with v(x) in E and derive that
∑N

j=1 wyj + Vλ,ε,y is a solution of an equation indepen-
dently of σ. Thus, Vλ,ε,y is independent of σ and we complete the proof. �

Lemma 2.3. If λ → ∞ and for any y ∈ Ωλ, then

∣∣ly,k(vλ,ε,σ,y)
∣∣ ≤ C

⎛⎝ε +
∑
k �=j

e−
p−1

p |yk−yj |

⎞⎠ ‖vλ,ε,σ,y‖ε.
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Proof. By Lemmas A.6 and A.8, we have∣∣∣∣∣∣Re
∫

|zy|p−2zyv̄λ,ε,σ,y −
m∑

j=1

Re
∫

|ηwyj |p−2ηwyj v̄λ,ε,σ,y

∣∣∣∣∣∣ ≤
∫ ∣∣∣∣∣∣|zy|p−2zy −

m∑
j=1

|ηwyj |p−2ηwyj

∣∣∣∣∣∣ |v̄λ,ε,σ,y|

≤

⎛⎜⎝∫ ∣∣∣∣∣∣|zy|p−2zy −
m∑

j=1

|ηwyj |p−2ηwyj

∣∣∣∣∣∣
p

p−1
⎞⎟⎠

p−1
p (∫

|v̄λ,ε,σ,y|p
) 1

p

≤ C

⎛⎝∑
k �=j

∫
wp−1

yk
wyj

⎞⎠
p−1

p

‖vλ,ε,σ,y‖ε

≤ C
∑
k �=j

e−
p−1

p |yk−yj |‖vλ,ε,σ,y‖ε, (2.11)

as λ → ∞.
On the other hand, we have∣∣∣∣εRe

∫ ∇
i

zyB(x)v̄λ,ε,σ,y

∣∣∣∣ ≤ Cε

∫ (∣∣∣∣∇i zy

∣∣∣∣2 |B(x)|2
) 1

2 (∫
|vλ,ε,σ,y|2

) 1
2

≤ Cε

∫ (∣∣∇zy|2|B(x)|2) 1
2 ‖vλ,ε,σ,y‖ε

≤ Cε‖vλ,ε,σ,y‖ε. (2.12)

Similarly, we can get∣∣∣∣εRe
∫

B(x)zy
∇
i

vλ,ε,σ,y

∣∣∣∣ ≤ Cε

∫ (|zy|2|B(x)|2) 1
2 ‖vλ,ε,σ,y‖ε ≤ Cε‖vλ,ε,σ,y‖ε, (2.13)∣∣∣∣ε2Re

∫
|B(x)|2zy v̄λ,ε,σ,y

∣∣∣∣ ≤ Cε2
∫ (|zy|2|B(x)|2) 1

2 ‖vλ,ε,σ,y‖ε

≤ Cε2‖vλ,ε,σ,y‖ε ≤ Cε‖vλ,ε,σ,y‖ε (2.14)

and ∣∣∣∣εRe
∫

a(x)zy v̄λ,ε,σ,y

∣∣∣∣ ≤ Cε

(∫
a(x)|zy|2

) 1
2

‖vλ,ε,σ,y‖ε ≤ Cε‖vλ,ε,σ,y‖ε. (2.15)

From (2.11) to (2.15), we get

‖ly,k‖ε ≤ C

⎛⎝ε +
∑
k �=j

e−
p−1

p |yk−yj|

⎞⎠ ‖vλ,ε,σ,y‖ε,

as λ → ∞. �

For any y = (y1, . . . , ym) ∈ Ωλ, define

fm,ε(y1, y2, . . . , ym) = Iε(zy + vλ,ε,σ,y). (2.16)

Since vλ,ε,σ,y = eiσVλ,ε,y with Vλ,ε,y ∈ E independent of σ, we know that Iε(zy + vλ,ε,σ,y) does not depend on σ
either.

From Lemma 2.2, we derive the following result, whose proof is standard and thus is omitted (see for exam-
ple, [8, 31]).
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Lemma 2.4. For large enough λ > 0 and small enough ε > 0, if y0 = (y0
1 , . . . , y

0
m) ∈ Ωλ is a critical point of

fm,ε, then zy0 + vλ,ε,σ,y0 is a critical point of Iε.

3. Proof of our main result

In this section, we will prove Theorem 1.1. In order to prove it, first we prove that for ε > 0 small enough, we
can choose μ = μ(ε) large enough such that the function fm,ε(y1, . . . , ym) defined in (2.16) attains its maximum
in Ωμ at some point y(0) = (y(0)

1 , . . . , y
(0)
m ). We know that zy(0) + vλ,ε,σ,y(0) is a solution of (1.1) by Lemma 2.4.

Here we mainly apply the technique in [28, 31], but we make some minor modifications.
Considering that the case m = 1 is much easier, we will discuss the case m ≥ 2. Define

d = sup
y∈(RN )m

{∫
a(x)|zy|2

}
.

We choose a number l such that l > max{1, 3dC−1
4 }. Then for any ε satisfying

0 < ε < min

{(
lC4

2C′
4

) p
p−2−2τ

,
1
l
|w|pp

}
,

there exists μ∗ = μ∗(ε) > μ = μ(ε) > 0 such that, for z ∈ RN with |z| ∈ [μ(ε), μ∗(ε)],

lε ≤
∫

wp−1(x)w(x − z)dx ≤ 2lε. (3.1)

Define
Mε := sup

{
fm,ε(y)

∣∣y ∈ Ωμ(ε)

}
.

Denote
C0 =

1
2

∫ [|∇(ηw)|2 + |ηw|2]− 1
p

∫
|ηw|p.

In order to get an m-bump solution of (1.1), it is sufficient to prove that Mε is achieved in the interior of
Ωμ(ε).

Lemma 3.1. Let m ≥ 2. Then for ε > 0 sufficiently small ,

Mε > sup
{
fm,ε(y)

∣∣y ∈ Ωμ(ε) and |yk − yj| ∈ [μ(ε), μ∗(ε)] for some k 
= j
}

.

Proof. Observe that μ(ε) = O(ln 1
ε ) → ∞ as ε → 0.

By Lemma 2.2 (ii) and (3.1) we know that if y ∈ Ωμ(ε), then

‖vλ,ε,σ,y‖ε ≤ ε1−τ +
∑
k �=j

e−
p−1−τ

p |yk−yj | ≤ C1ε
p−1−τ

p . (3.2)

Note that

1
2
〈Lyvλ,ε,σ,y, vλ,ε,σ,y〉 =

1
2

∫ {[∣∣∣∣(∇
i
− Aε(x)

)
vλ,ε,σ,y

∣∣∣∣2 + Vε(x)|vλ,ε,σ,y |2
]

− [
(p − 2)|zy|p−2(Re(zy v̄λ,ε,σ,y))2 + |zy|p−2|vλ,ε,σ,y|2

]}

≤ 1
2
‖vλ,ε,σ,y‖2

ε + (p − 1)
∫

|zy|p−2|vλ,ε,σ,y|2

≤ 1
2
‖vλ,ε,σ,y‖2

ε + C‖vλ,ε,σ,y‖2
ε = C2‖vλ,ε,σ,y‖2

ε
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and by Lemma A.5

|Ry(vλ,ε,σ,y)| =

∣∣∣∣∣1p
∫ {

|zy + vλ,ε,σ,y|p − |zy|p − p
[|zy|p−2Re(zy v̄λ,ε,σ,y)

]
−p

2
[
(p − 2)|zy|p−4(Re(zyv̄λ,ε,σ,y))2 + |zy|p−2|vλ,ε,σ,y|2

]}∣∣∣∣∣
≤ C

∫
|vλ,ε,σ,y|p∗ ≤ C‖vλ,ε,σ,y‖p∗

ε ≤ C3‖vλ,ε,σ,y‖2
ε ,

where p∗ = min{3, p} > 2.
Hence, by Lemma 2.3, we have

fm,ε(y1, y2, . . . , ym) = Iε(zy + vλ,ε,σ,y)

= Iε(zy) + ly(vλ,ε,σ,y) +
1
2
〈Lyvλ,ε,σ,y, vλ,ε,σ,y〉 − Ry(vλ,ε,σ,y)

= Iε(zy) + O
(‖ly‖ε‖vλ,ε,σ,y‖ε + ‖vλ,ε,σ,y‖2

ε

)
= Iε(zy) + O

(
ε

2(p−1−τ)
p

)
=

1
2

∫ ∣∣∣∣(∇
i
− Aε(x)

)
zy

∣∣∣∣2 + Vε(x)|zy |2 − 1
p

∫
|zy|p + O

(
ε

2(p−1−τ)
p

)
=

1
2

∫ ∣∣∣∣∇i zy

∣∣∣∣2 + |zy|2 +
ε

2

∫
a(x)|zy|2 +

ε2

2

∫
|B(x)|2|zy|2 − εRe

∫ ∇
i

zyB(x)z̄y

−1
p

∫
|zy|p + O

(
ε

2(p−1−τ)
p

)
=

⎧⎨⎩
m∑

j=1

1
2

∫ ∣∣∣∣∇i (ηwyj )
∣∣∣∣2 + |ηwyj |2 −

m∑
j=1

∫
1
p
|ηwyj |p

⎫⎬⎭+
ε

2

∫
a(x)|zy |2

+

⎧⎨⎩∑
k<j

Re
∫ ∇

i
(ηwyk

)
∇
i

(ηwyj ) + Re
∑
k<j

∫
ηwyk

ηwyj

⎫⎬⎭
+

1
p

m∑
j=1

∫
|ηwyj |p − 1

p

∫
|zy|p + O

(
ε

2(p−1−τ)
p

)

= mC0 +

⎧⎨⎩∑
k<j

∫
wp−1

yj
wyk

− 1
p

∫
up

y +
1
p

m∑
j=1

∫
wp

yj

⎫⎬⎭+
ε

2

∫
a(x)|zy|2 + O

(
ε

2(p−1−τ)
p

)
=: mC0 +

ε

2

∫
a(x)|zy |2 − Ly,

where

Ly = −
∑
k<j

∫
wp−1

yj
wyk

+
1
p

∫
up

y − 1
p

m∑
j=1

∫
wp

yj
+ O

(
ε

2(p−1−τ)
p

)
. (3.3)

Assume that y = (y1, . . . , ym) ∈ Ωμ(ε) and |yk − yj | ∈ [μ(ε), μ∗(ε)] for some k 
= j.
On one hand, by Lemma A.7, we have∫

up
y =

∫ ⎛⎝ m∑
j=1

wyj

⎞⎠p

≥
m∑

j=1

∫
wp

yj
+ 2(p − 1)

∑
1≤k<j≤m

∫
wp−1

yk
wyj ,
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where we use the fact that ∫
wp−1

yk
wyj =

∫
wp−1

yj
wyk

.

Therefore, by (3.1),

Ly ≥ C4

∑
1≤k<j≤m

∫
wp−1

yk
wyj − C′

4ε
2(p−1−τ)

p ≥ C4lε − C′
4ε

2(p−1−τ)
p ≥ 1

2
C4lε >

3
2
dε.

Hence,

fm,ε(y1, y2, . . . , ym) ≤ mC0 +
ε

2

∫
a(x)|zy |2 − Ly

≤ mC0 +
d

2
ε − 3

2
dε = mC0 − dε.

(3.4)

On the other hand, by Lemma A.3, we get

∫
up

y =
∫ ⎛⎝ m∑

j=1

wyj

⎞⎠p

≤
m∑

j=1

∫
wp

yj
+ C

∑
1≤k<j≤m

∫
wp−1

yk
wyj ,

where we also use the fact that ∫
wp−1

yk
wyj =

∫
wp−1

yj
wyk

.

Then we have

Ly ≤ C5

⎛⎝∑
k<j

∫
wp−1

yk
wyj

⎞⎠ + O
(
ε

2(p−1−τ)
p

)
.

Hence

fm,ε(y1, y2, . . . , ym) = mC0 +
ε

2

∫
a(x)|zy|2 − Ly

≥ mC0 +
ε

2

∫
a(x)|zy|2 − C6ε

2(p−1−τ)
p + o(1),

where o(1) denotes some quantities which depend only on y and converge to 0 as |yk − yj| → ∞ for all k 
= j.
Hence, for ε > 0 sufficiently small,

lim inf
|yk−yj|→∞,∀k �=j

fm,ε(y1, y2, . . . , ym) ≥ mc0. (3.5)

Combining (3.4) and (3.5), we complete the proof of this lemma. �

Choose y(h)(ε) =
(
y
(h)
1 (ε), . . . , y(h)

m (ε)
)
∈ Ωμ(ε) such that

lim
h→∞

fm,ε

(
y
(h)
1 (ε), . . . , y(h)

m (ε)
)

= Mε.

By Lemma 3.1, we may assume that

inf
h

min
k �=j

∣∣∣y(h)
k (ε) − y

(h)
j (ε)

∣∣∣ ≥ μ∗.
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Thus, for any 1 ≤ k ≤ m, passing to a subsequence if necessary, we may assume either lim
h→∞

y
(h)
k (ε) = y

(0)
k (ε) ∈

RN with ∣∣∣y(0)
k (ε) − y

(0)
j (ε)

∣∣∣ ≥ μ∗ for k 
= j or lim
h→∞

|y(h)
k (ε)| = ∞.

Define
Π(ε) =

{
1 ≤ k ≤ m : |y(h)

k (ε)| → ∞, as h → ∞
}

.

We will prove that Π(ε) = ∅ for ε > 0 small enough and hence fm,ε attain its maximum at
(
y
(0)
1 (ε), . . . , y(0)

m (ε)
)

in Ωμ(ε).

Lemma 3.2. Let m ≥ 2. Then there exists ε(m) > 0 such that for any ε ∈ (0, ε(m)),

Π(ε) = ∅.
Proof. We make a contradiction argument and assume that Π(ε) 
= ∅ along a sequence εn → 0. Without loss of
generality, we may assume Π(εn) = {1, 2, . . . , jm} for all n ∈ N and for some 1 ≤ jm < m. When jm = m, we
can hand by the same argument. For notation of simplicity, we will denote ε = εn and (y(h)

1 , y
(h)
2 , . . . , y

(h)
m ) =

(y(h)
1 (εn), y(h)

2 (εn), . . . , y(h)
m (εn)) for h = 0, 1, 2, . . . . Then, when h → ∞,∣∣∣y(h)

1

∣∣∣→ ∞, . . . ,
∣∣∣y(h)

jm

∣∣∣ → ∞ and y
(h)
jm+1 → y

(0)
jm+1, . . . , y

(h)
m → y(0)

m .

Set
y(h) = (y(h)

1 , y
(h)
2 , . . . , y(h)

m ) and y
(h)
∗ = (y(h)

jm+1, y
(h)
jm+2, . . . , y

(h)
m ).

Let

zh =
m∑

k=1

ηw
y
(h)
k

:= ηuh, zh,1 =
jm∑

k=1

ηw
y
(h)
k

:= ηuh,1, zh,2 =
m∑

k=jm+1

ηw
y
(h)
k

:= ηuh,2.

Similar to (3.2), we get ∥∥∥vμ,ε,σ,y
(h)
∗

∥∥∥
ε
≤ C7ε

p−1−τ
p ,

∥∥vμ,ε,σ,y(h)

∥∥
ε
≤ C7ε

p−1−τ
p . (3.6)

Now we rewrite fm,ε(y
(h)
1 , . . . , y

(h)
m ) as

fm,ε(y
(h)
1 , . . . , y

(h)
m ) = Iε(zh + vμ,ε,σ,y(h))

= mC0 +
ε

2

∫
a(x)|zh|2 − Ly(h)

= jmC0 +
ε

2

∫
a(x)|zh,1|2 +

[
(m − jm)C0 +

ε

2

∫
a(x)|zh,2|2 − L

y
(h)
∗

]

+εRe
∫

a(x)zh,1zh,2 + L
y
(h)
∗

− Ly(h) .

(3.7)

Since
∣∣∣y(h)

k

∣∣∣ → ∞, k = 1, . . . , jm, we get, as h → ∞,∣∣∣∣∣ ε2
∫

a(x)|zh,1|2 + εRe
∫

a(x)zh,1zh,2

∣∣∣∣∣→ 0. (3.8)

From (3.7) and (3.8), we obtain

fm,ε

(
y(h)

)
≤ jmC0 + fm−jm,ε

(
y
(h)
∗

)
+ L

y
(h)
∗

− Ly(h) + o(1). (3.9)
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By (3.3), we infer that

Ly(h) = −
∑
k<j

∫
wp−1

y
(h)
j

w
y
(h)
k

+
1
p

∫
up

h −
m∑

j=1

1
p

∫
wp

y
(h)
j

+ O
(
ε

2(p−1−τ)
p

)
(3.10)

and

L
y
(h)
∗

= −
∑

jm<k<j

∫
wp−1

y
(h)
j

w
y
(h)
k

+
1
p

∫
up

h,2 −
m∑

j=1

1
p

∫
wp

y
(h)
j

+ O
(
ε

2(p−1−τ)
p

)
. (3.11)

Then, by (3.10) and (3.11),

L
y
(h)
∗

− Ly(h) =
∑

k<j≤jm

∫
wp−1

y
(h)
k

w
y
(h)
j

+
jm∑
k=1

∫
wp−1

y
(h)
k

uh,2 +
1
p

jm∑
k=1

∫
wp

y
(h)
k

+
1
p

∫
up

h,2 −
1
p

∫
up

h + O
(
ε

2(p−1−τ)
p

)
< O

(
ε

2(p−1−τ)
p

)
.

(3.12)
Letting h → ∞ in (3.9), we get

Mε ≤ jmC0 + fm−jm,ε(y
(0)
jm+1, . . . , y

(0)
m ) + C8ε

2(p−1−τ)
p . (3.13)

Furthermore, by Lemma A.8 and (3.1), we see that

C9ε ≤ μ−N−1
2 e−μ ≤ C10ε, (3.14)

which means that
2
3

ln
1
ε

< μ = μ(ε) < 2 ln
1
ε
, (3.15)

for ε > 0 sufficiently small. Choose δ such that 0 < δ < p−2−2τ
14mp . By (H1), there exists T > 0 such that

a(x) ≥ e−δ|x|, |x| ≥ T. (3.16)

For ε > 0 sufficiently small, define

ỹε
s = (14m ln ε−1 − 6sμ(ε) − 1, 0, . . . , 0) ∈ R

N , s = 1, 2, . . . , m. (3.17)

The open balls B(ỹε
s, 3μ(ε)) are mutually disjoint. Therefore there are jm integers from {1, 2, . . . , m}, denoted

by s1 < s2 < · · · < sjm , such that

|ỹε
sk

− y
(0)
j | ≥ 3μ(ε), k = 1, 2, . . . , jm, j = jm + 1, . . . , m. (3.18)

Denote ỹε
sk

by yε
k, k = 1, 2, . . . , jm. It follows that from (3.16)–(3.18), for ε > 0 small enough,

T + 1 ≤ |yε
k| ≤ 14m ln ε−1 − 1, k = 1, 2, . . . , jm, (3.19)

|yε
k − yε

j | ≥ 3μ(ε), 1 ≤ k < j ≤ jm, (3.20)

|yε
k − y

(0)
j | ≥ 3μ(ε), k = 1, 2, . . . , jm, j = jm + 1, . . . , m. (3.21)

Thus,
(yε

1, . . . , y
ε
jm

, y
(0)
jm+1, . . . , y

(0)
m ) ∈ Ωμ(ε).
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Denote y(ε) = (yε
1, . . . , y

ε
jm

, y
(0)
jm+1, . . . , y

(0)
m ) and y

(ε)
∗ = (y0

jm+1, . . . , y
0
m). Let

zε,1 =
jm∑
k=1

ηwyε
k

:= ηu1,ε and zε,2 =
m∑

k=jm+1

ηw
y
(0)
k

= ηu2,ε.

Similar to (3.7), we get

fm,ε(yε
1, . . . , y

ε
jm

, y
(0)
jm+1, . . . , y

(0)
m ) = jmC0 + fm−jm,ε(y

(0)
jm+1, . . . , y

(0)
m ) +

ε

2

∫
a(x)|zε,1|2 + εRe

∫
a(x)zε,1zε,2

+ L
y
(ε)
∗

− Ly(ε) . (3.22)

Similar to (3.12), we have

L
y
(ε)
∗

− Ly(ε) =
∑

k<j≤jm

∫
wp−1

y
(ε)
k

w
y
(ε)
j

+
jm∑
k=1

∫
wp−1

y
(ε)
k

uε,2 +
1
p

jm∑
k=1

∫
wp

y
(ε)
k

+
1
p

∫
up

ε,2 −
1
p

∫
up

ε + O
(
ε

2(p−1−τ)
p

)

≥ 1
p

jm∑
k=1

∫
wp

y
(ε)
k

+
1
p

∫
up

ε,2 −
1
p

∫
up

ε + O
(
ε

2(p−1−τ)
p

)
.

(3.23)
Then, by Lemma A.3, we get

L
y
(ε)
∗

− Ly(ε) ≥ −C

jm∑
k=1

∫
wp−1

y
(ε)
k

uε,2 − C

jm∑
k=1

∫
up−1

ε,2 w
y
(ε)
k

− C
∑

1≤k<j≤jm

∫
wp−1

y
(ε)
k

w
y
(ε)
j

+ O
(
ε

2(p−1−τ)
p

)
. (3.24)

By Lemma A.8, (3.14) and (3.20), we have∑
1≤k<j≤jm

∫
wp−1

y
(ε)
k

w
y
(ε)
j

= o
(
e−3μ

)
= o(ε2), as ε → 0.

According to (3.21), a similar argument shows that

jm∑
k=1

∫
wp−1

y
(ε)
k

uε,2 +
jm∑

k=1

∫
up−2

ε,2 w
y
(ε)
k

= o(ε2). (3.25)

From (3.24) to (3.25), we get
L

y
(ε)
∗

− Ly(ε) ≥ O
(
ε

2(p−1−τ)
p

)
,

which with (3.22) yields

fm,ε(yε
1, . . . , y

ε
jm

, y
(0)
jm+1, . . . ,

(0)
m ) ≥ jmC0 + fm−jm,ε(y

(0)
jm+1, . . . , y

(0)
m ) +

ε

2

∫
a(x)|zε,1|2

+εRe
∫

a(x)zε,1zε,2 − C11ε
2(p−1−τ)

p .

By (3.16) and (3.19), we have, for k = 1, 2, . . . , jm,∫
a(x)|zε,1|2 =

∫
a(x)u2

ε,1 ≥
∫
|x−yε

k
|≤1

a(x)u2
ε,1 ≥

∫
|x−yε

k
|≤1

e−δ|x|u2
ε,1

≥ C12e−δ(|yε
k|+1) ≥ C12e−14mδ ln ε−1

= C12ε
14mδ.
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Hence,we get for ε small enough,

fm,ε(yε
1, . . . , y

ε
jm

, y
(0)
jm+1, . . . ,

(0)
m ) ≥ jmC0 + fm−jm,ε(y

(0)
jm+1, . . . , y

(0)
m ) + C12ε

14mδ+1 − C11ε
2(p−1−τ)

p

≥ jmC0 + fm−jm,ε(y
(0)
jm+1, . . . , y

(0)
m ) + C13ε

14mδ+1,

since 14mδ + 1 < 2(p−1−τ)
p . It contradicts to (3.13). Thus there exists ε(m) > 0 such that if 0 < ε < ε(m), then

Π(ε) = ∅ and fm,ε achieves its maximum at some point (y(0)
1 , . . . , y

(0)
m ) ∈ Ωμ(ε). �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2, if m ≥ 2 and 0 < ε < ε(m), then fm,ε achieves its maximum at some point
(y(0)

1 , . . . , y
(0)
m ) ∈ Ωμ(ε). Then zy(0) + vλ,ε,σ,y(0) is an m-bump complex-valued solution of (1.1). By Lemma 2.2

(ii), if m = 1 and ε ∈ (0, ε0], then

lim
|y|→∞

fm,ε(y) = lim
|y|→∞

Iε(zy + vλ,ε,σ,y) = I0(ηw) = C0.

For m = 1, since fm,ε is defined on all RN , fm,ε has a critical point y(0) ∈ RN and zy(0) + vλ,ε,σ,y(0) is a
complex-valued solution of (1.1).

Set ε(1) = ε0 and ε1(m) = min{ε(1), ε(2) . . . , ε(m)}. If 0 < ε < ε1(m), then (1.1) has at least m nontrivial
complex-valued solutions. �

Appendix A

Since the following two lemmas are very basic, we omit their proofs and one can refer [13].

Lemma A.1. For any u ∈ E, there exists C > 0 such that∫ ∣∣∣∣∣
(∇

i
− Aε(x)

)
u

∣∣∣∣∣
2

+ Vε(x)|u|2 ≥ C

∫
(|∇u|2 + |u|2). (A.1)

Lemma A.2. The two norms ‖ · ‖ in H1(RN , C) and ‖ · ‖ε in E are equivalent.

Now we give some elementary inequalities which are applied in the previous subsections. For these inequalities,
one can refer [29–31].

Lemma A.3. For q > 1, there exists C > 0 such that for any a, b ∈ C,∣∣|a + b|q − |a|q − |b|q∣∣≤ C|a|q−1|b| + C|a||b|q−1. (A.2)

Lemma A.4. For q > 1, there exists C > 0 such that for any a, b ∈ C and |a| > |b|,∣∣|a + b|q(ā + b̄) − |a|qā − [q|a|q−2Re(āb)ā + |a|q b̄]∣∣≤ C|a|q−1|b|2.
Lemma A.5. For q > 2, there exists C > 0 such that for any a, b ∈ C and |a| > |b|,∣∣∣∣∣|a + b|q − |a|q − q|a|q−2Re(ab̄) − q

2

[
(q − 2)|a|q−4(Re(ab̄))2 + |a|q−2|b|2

]∣∣∣∣∣
≤

{
C|a|q−3|b|3, if q > 3,

C|a|3−q|b|q, if 2 < q ≤ 3.
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Lemma A.6. For q ≥ 2 and m ∈ N, there exists C > 0 such that for any aj ∈ C, j = 1, 2, . . . , m,∣∣∣∣∣
∣∣∣∣∣

m∑
j=1

aj

∣∣∣∣∣
q−2

⎛⎝ m∑
j=1

aj

⎞⎠−
m∑

j=1

|aj |q−2aj

∣∣∣∣∣
q

q−1

≤ C
∑
k �=j

|ak|q−1|aj |.

Lemma A.7. For q ≥ 2 and m ∈ N, there exists C > 0 such that for any aj ≥ 0, j = 1, 2, . . . , m,⎛⎝ m∑
j=1

aj

⎞⎠q

≥
m∑

j=1

aq
j + (q − 1)

∑
1≤k �=j≤m

aq−1
k aj .

Lemma A.8 (Lem. II.2, [4]). There exists a positive constants c > 0 such that as |yk − yj| → ∞,∫
wp−1

yk
wyj ∼ c|yk − yj |−N−1

2 e−|yk−yj|.
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