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LINEAR-QUADRATIC OPTIMAL CONTROL FOR THE OSEEN EQUATIONS
WITH STABILIZED FINITE ELEMENTS
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Abstract. For robust discretizations of the Navier-Stokes equations with small viscosity, standard
Galerkin schemes have to be augmented by stabilization terms due to the indefinite convective terms
and due to a possible lost of a discrete inf-sup condition. For optimal control problems for fluids such
stabilization have in general an undesired effect in the sense that optimization and discretization do
not commute. This is the case for the combination of streamline upwind Petrov-Galerkin (SUPG) and
pressure stabilized Petrov-Galerkin (PSPG). In this work we study the effect of different stabilized finite
element methods to distributed control problems governed by singular perturbed Oseen equations. In
particular, we address the question whether a possible commutation error in optimal control problems
lead to a decline of convergence order. Therefore, we give a priori estimates for SUPG/PSPG. In a
numerical study for a flow with boundary layers, we illustrate to which extend the commutation error
affects the accuracy.
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1. Introduction

The Oseen linearization is the most popular linearization of the Navier-Stokes equations and is used for math-
ematical analysis and for the design of numerical solution schemes as well. In the case of dominant convection,
the convective parts must be treated appropriately in order to obtain a stable discrete scheme. Among the
most popular finite element stabilization is the streamline upwind Petrov-Galerkin (SUPG) [13] method. In the
case of not inf-sup stable elements, as e.g. equal-order elements for pressure and velocity, a further stabilization
is needed, e.g. the pressure stabilized Petrov-Galerkin (PSPG) [7] method. Such SUPG/PSPG stabilization
techniques cause certain difficulties in the context of optimal control problems.

This is due to the fact that the optimal control problem involves another PDE, the so called adjoint equation,
which is also of Oseen type and need to be stabilized. If one firstly discretizes the state equation and then build
up the optimality system, called discretize-optimize approach, the stabilization scheme of the adjoint equation
depends on the stabilization scheme applied to the state equation. Therefore this equation may not be stabilized
in an appropriate way. Due to the optimality conditions the adjoint state is strongly associated with the control
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and a potentially lack of accuracy of the adjoint state carries over to the control. Alternatively, one may choose
the optimize-discretize approach, which means that the optimality system is built up first on the continuous level.
Afterwards, the state and adjoint equation are discretized separately. Whereas the continuous optimality system
is symmetric by definition, the drawback of this technique reflects in possible non-symmetry of the resulting
discrete optimality system. Consequently, the computed control may be significantly affected by the way of
defining the discrete optimality condition. In contrast to this, for symmetric stabilization schemes optimize-
discretize and discretize-optimize are equivalent and lead to optimal order of convergence [4]. In this work,
we analyze the two versions of a classical non-symmetric discretization of the Oseen problem in the context
of optimal control. Moreover, we compute the convergence order numerically and make comparisons with a
symmetric scheme.

The discretization with stabilized finite elements of optimal control problems governed by scalar elliptic
problems is an active field of research. An analytical error estimate for scalar linear elliptic equations with the
SUPG method is given by Collis and Heinkenschloss in [8] where for the two approaches “discretize-optimize”
and “optimize-discretize” different a priori estimates are derived. Moreover, local estimates have been published
recently in [11]. An error estimate for a particular symmetric finite element method (local projection) has been
carried out by Becker and Vexler [3] for such scalar linear elliptic equations. The paper by Lube and Tews [16]
studies the local projection stabilization applied to quadratic optimal control problems governed by convection
diffusion equations with and without control constraints. The interior penalty method for optimal control is
analyzed recently by Hinze et al. [12] and Yan and Zhou [19]. As a reference for the streamline diffusion method
we like to refer to [18]. An a posteriori estimator for scalar advection-diffusion problems has been published by
Dede and Quarteroni [9].

For the Oseen system the upper mentioned effect is still poorly analyzed and numerical investigations are rare,
e.g. Abraham et al. [1] numerically observed significant effects in view of choosing the stabilization constants.
In this work, we try to close this gap. We give an a priori error analysis of the optimal control problem with the
Oseen system and present numerical results. Furthermore, we give a comparison with a symmetric scheme [6].

The Oseen equations in a polyhedral domain Ω ⊂ R
d, d ∈ {2, 3} with Lipschitz boundary ∂Ω are formulated

for the pressure p and the velocity field v by

−μΔv + (b · ∇)v + σv + ∇p+ u = f in Ω
∇ · v = 0 in Ω

v = 0 on ∂Ω, (1.1)

where f stands for given data, μ > 0, σ ≥ 0 and b is a divergence free vector field, ∇ · b = 0. Furthermore, u is
a control function which has to be determined such that a functional J becomes minimal:

J(v,u) :=
1
2
‖v − vd‖2

0 +
α

2
‖u‖2

0 → min. (1.2)

Here, vd is a target velocity field, and α > 0 is a given positive constant.
The content of this work is structured as follows. We start in Section 2 with the variational formulation

of the optimal control Oseen system (1.1)–(1.2). The discretization by finite elements and the formulation of
the finite-dimensional linear systems for SUPG/PSPG and for local projection stabilization (LPS) is given in
Section 3. In Section 4 we give an a priori analysis. In the last section we report on numerical results of a model
problem with an exponential boundary layer.

2. Variational formulation of the optimization problem

2.1. Notations

We use the standard notation L2(Ω) for Lebesgue integrable functions and Hr(Ω) for the Sobolev space with
derivatives of order r ≥ 0 (see e.g. [10]). We will use a context-sensitive notation for the L2-inner product applied
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to scalar, vector-valued and tensor-valued functions. Let ω ⊂ Ω a measurable subset of the domain Ω. Then,
for scalar functions p, q ∈ L2(Ω), we denote by (p, q)ω the usual inner product in L2(ω). If v,w : Ω → R

d are
vector-valued functions with the components vi, wi ∈ L2(Ω) and A,B : Ω → R

d×d are matrix-valued functions
with components Aij , Bij ∈ L2(Ω) we define

(v,w)ω :=
d∑

i=1

(vi, wi)ω and (A,B)ω :=
d∑

i,j=1

(Aij , Bij)ω .

This context-sensitive L2-inner product induces the corresponding context-sensitive L2-norm notation ‖ · ‖0,ω

and H1-semi-norm or norm notation |v|21,ω := (∇v,∇v)ω or ‖v‖2
1,ω := |v|21,ω + ‖v‖2

0,ω. In the case ω = Ω, we
will omit the index ω and write simply (·, ·) and ‖ · ‖r or | · |r for functions in Hr(Ω)n where n ∈ {1, d} and H0

is formally identified with L2. The natural weak solution space for the velocity v is

H1
0 (Ω)d = {v ∈ H1(Ω)d : v = 0 a.e. on ∂Ω}. (2.1)

The pressure space L2
0(Ω) is the subspace of the L2(Ω) functions with zero integral mean value. By y we denote

the vector of velocities and pressure, y = (v, p). Hence, y is sought in the Hilbert space X := H1
0 (Ω)d × L2

0(Ω)
and the control in a further Hilbert space, u ∈ Q ⊂ L2(Ω)d. By || · ||0 and (·, ·) we denote the L2(Ω)-norm and
L2(Ω)-scalar product, respectively. For a Hilbert space H and its dual space H∗ the duality product between
functions g ∈ H and f ∈ H ′ is denoted

〈f, g〉 = f(g).

2.2. Variational formulation of the state equation

In order to express the variational formulation of the state equation (1.1) we introduce the bilinear forms for
the pair of test functions ϕ = (φ, ξ) ∈ X

A(y,ϕ) := (∇ · v, ξ) + (σv,φ) + ((b · ∇)v,φ) + (μ∇v,∇φ) − (p,∇ · φ)
B(u,φ) := (u,φ).

For a right hand side f ∈ H−1(Ω)d the weak formulation reads now: Seek the pair y = (v, p) ∈ X s.t:

A(y,ϕ) +B(u,φ) = 〈f ,φ〉 ∀ϕ = (φ, ξ) ∈ X. (2.2)

2.3. First and second order optimality system

As usual for optimization problems, we define the Lagrangian functional L : X ×Q×X → R with Lagrange
multiplier z = (zv, zp) ∈ X ,

L(y,u, z) := J(y,u) −A(y, z) −B(u, zv) + 〈f , zv〉.

The necessary and, due to convexity, also sufficient first order optimality conditions for minimize the unconstraint
functional J are formulated in terms of the Frechet-derivatives with respect to the variables. The derivative
with respect to the Lagrange multiplier leads to the state equation (2.2). The derivative with respect to the
state leads to the so called adjoint equation,

∂yL(y,u, z)(ψ) ≡ 0 ⇒ A(ψ, z) = (v − vd,ψ
v) ∀ψ = (ψv, ψp) ∈ X. (2.3)

The derivative with respect to the control leads to the gradient equation,

∂uL(y,u, z)(λ) ≡ 0 ⇒ α(u,λ) = B(λ, zv) ∀λ ∈ Q. (2.4)
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Due to the theorem of Lax-Milgram we know that for every control u ∈ Q and every right hand side f ∈ H−1(Ω)d

equation (2.2) possesses a weak solution. Hence, we define a continuous affine linear solution operator S : Q→ X ,
by y = Su. Furthermore, we introduce the reduced cost functional j : Q→ R by

j(u) := J(Su,u).

Lemma 2.1. It holds

j′(u)(q) = −B(q, zv) + α(u,q) ∀u,q ∈ Q, (2.5)

where z = (zv, zp) ∈ X is the solution of the adjoint equation (2.3).

Proof. This identity follows directly by applying the chain rule. �

3. Discretization of the optimality system

3.1. Finite element spaces

In order to discretize the optimality system (2.2)–(2.4) we use conforming equal order finite elements. Let
{Th} be a family of shape-regular, admissible decompositions of Ω into d-dimensional quadrilaterals (d = 2) or
hexahedra (d = 3). By hK we denote the diameter of a cell K ∈ Th. The maximal mesh size is h = maxK∈Th

hK .
We assume that for each K ∈ Th there exists a bilinear mapping FK : K̂ → K which maps the reference element
K̂ onto K. Let Qr be the space of all polynomials on the reference cell K̂ with maximal degree r ≥ 1 in each
coordinate direction.

Now, we set Qr
h := {ϕ ∈ L2(Ω) : ϕ ◦FK ∈ Qr,K ∈ Th}. The discrete state, dual and control spaces are given

in the following way for r, l ≥ 1, m ≥ 0:

Xh := X ∩ [Qr
h ∩ C(Ω)]d+1,

Zh := X ∩ [Ql
h ∩ C(Ω)]d+1,

Qh := Q ∩ [Qm
h ∩ C(Ω)]d.

By Ih : C(Ω) → Qr
h ∩ C(Ω) we denote the Lagrange interpolation and use the bold notation Ih for the vector

valued variant. In this work, the expression a � b stands for a ≤ cb with a constant c independent of the
parameters α, σ, μ and independent of h.

3.2. Discrete variational formulation

Our choice of finite element spaces consists of equal order interpolation for p and v. Hence, the discrete
inf-sup condition is not fulfilled. Furthermore, in the convection dominated case there may occur unphysical
oscillations. Hence, we need to add a stabilization term Sh to the Galerkin formulation in order to cure these
two types of instabilities. Different choices of this term and their effect to the discrete optimality system will
be shown later on.

The equation for the discrete state yh ∈ Xh reads now

A(yh,ϕ) +B(uh,φ) + Sh(yh,uh)(ϕ) = 〈fh,ϕ〉 ∀ϕ = (φ, ξ) ∈ Xh. (3.1)

Furthermore, the right-hand side is changed to fh which also may involve stabilization terms. If the discrete state
equation (3.1) is uniquely solvable, we can define the discrete solution operator analogously to the continuous
case by Sh : Q→ Xh, Shu = yh(u). Furthermore, the discrete reduced functional is given by jh(u) := J(Shu,u).
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Lemma 3.1. If (3.1) has an unique solution, then the second derivative of the discrete reduced cost functional
jh is coercive:

j′′h(u,u) = α‖u‖2
0 + ‖Shu‖2

0 ∀u ∈ Q.

Proof. Follows directly by definition of the functional jh. �

The adjoint equation (2.3) is also of Oseen type and therefore it also requires stabilization. We denote the
corresponding stabilization term by Sz

h and give the specific realization later. Sz
h should be appropriate for the

strong formulation (2.3).
Many stabilization methods for the Oseen problem are additive in the sense that it holds

Sh(yh,uh)(ϕ) = Sh(yh, 0)(ϕ) + Sh(0,uh)(ϕ). (3.2)

In the following subsections, we give two examples of such stabilizations leading to unique solvability of (3.1).
For the further analysis it is useful to introduce the discrete bilinear forms

Ah(y,ϕ) := A(y,ϕ) + Sh(y,0)(ϕ),
Bh(u,ϕ) := B(u, φ) + Sh(0,u)(ϕ).

The optimality system for the discretize-optimize strategy becomes:

yh ∈ Xh : Ah(yh,ϕ) +Bh(uh,ϕ) = 〈fh,ϕ〉 ∀ϕ = (φ, ξ) ∈ Xh, (3.3)
zh ∈ Xh : Ah(ψ, zh) − (vh,ψ

v) = −(vd,ψ
v) ∀ψ = (ψv, ψp) ∈ Xh, (3.4)

uh ∈ Qh : Bh(λ, zh) − α(uh,λ) = 0 ∀λ ∈ Qh. (3.5)

The optimality system for the optimize-discretize- strategy becomes:

yh ∈ Xh : Ah(yh,ϕ) +Bh(uh,ϕ) = 〈fh,ϕ〉 ∀ϕ = (φ, ξ) ∈ Xh, (3.6)
zh ∈ Xh : A(ψ, zh) + Sz

h(zh,vd − vh)(ψ) − (vh,ψ
v) = −(vd,ψ

v) ∀ψ = (ψv, ψp) ∈ Xh, (3.7)
uh ∈ Qh : B(λ, zv

h) − α(uh,λ) = 0 ∀λ ∈ Qh. (3.8)

Note that the discrete primal equations (3.3) and (3.6) are identical, independent of the type of stabiliza-
tion scheme. When the variables are ordered as (uh, zh,yh), the linear operator corresponding to the sys-
tem (3.3)–(3.5) turns out to be ⎛⎜⎝−αI 0 B∗

h

0 −I A∗
h

Bh Ah 0

⎞⎟⎠ ,

with appropriate matrices Ah,Bh. Hence, this system is symmetric when Ah is symmetric.

3.3. SUPG/PSPG-stabilization

For the classical combination of pressure stabilized Petrov-Galerkin (PSPG) and streamline upwind Petrov-
Galerkin (SUPG) [7] the stabilization form Sh = Ssd

h reads

Ssd
h (yh,uh)(ϕ) :=

∑
K∈Th

{
δK
(
− μΔvh + (b · ∇)vh + σvh + ∇ph + uh, (b · ∇)φ+ ∇ξ

)
K

+ γK

(
∇ · vh,∇ · φ

)
K

}
.

The new parameters δK and γK are cell-wise constants. The corresponding right hand side becomes

〈fh,ϕ〉 := 〈f ,φ〉 +
∑

K∈Th

δK(f , (b · ∇)φ+ ∇ξ)K .
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Obviously, this method allows the splitting (3.2). Related to this type of stabilization is the following norm:

|||y|||sd :=

(
μ|v|21 + σ‖v‖2

0 + ρ‖p‖2
0 +

∑
K∈Th

δK‖(b · ∇)v + ∇p‖2
0,K + γK‖∇ · v‖2

0,K

)1/2

,

with sufficient small parameter ρ > 0, for details see [14]. This definition of the norm provides additional control
of the L2-norm of the pressure, but the bilinear form Ah(·, ·) does not fulfill the coercivity estimate. However,
with the following definitions of the parameters

γK = γ0hK , δK = δ0
h2

K

‖b‖0,∞;KhK + σh2
K + μ

, (3.9)

with fixed δ0, γ0 > 0, the bilinear form satisfies the discrete inf-sup condition

∃β > 0, s.t. inf
yh∈Xh

sup
ϕ∈Xh

Ah(yh,ϕ)
|||yh|||sd |||ϕ|||sd

≥ β, (3.10)

which guarantees existence and uniqueness of the discrete solution, see e.g. [15] for arbitrary polynomial order.
We assume in the subsequent analysis that the stabilization parameters are chosen according to (3.9).

Corollary 3.2. The adjoint bilinear form (3.4) also fulfills the discrete inf-sup condition with the same choice
of parameters (3.9) and constant β > 0 from (3.10), e.g.

inf
zh∈Xh

sup
uh∈Xh

Ah(uh, zh)
|||uh|||sd |||zh|||sd

≥ β· (3.11)

Proof. Let Ah : Xh → X∗
h denote the linear operator associated with the bilinear form Ah(·, ·) by

yh �→ Ah(yh, ·).

Due to the inf-sup condition (3.10) the operator Ah is injective. Furthermore, due to the fact that we consider a
map between spaces of the same finite dimension, the mapping is also surjective. It follows for arbitrary zh ∈ Xh

|||zh|||sd = sup
g∈X∗

h

〈g, zh〉
‖g‖X∗

h

= sup
uh∈Xh

〈Ahuh, zh〉
‖Ahuh‖X∗

h

= sup
uh∈Xh

Ah(uh, zh)
‖Ahuh‖X∗

h

≤ sup
uh∈Xh

Ah(uh, zh)
β|||uh|||sd

· �

3.4. Local projection stabilization

The main idea of local projection stabilization (LPS) is to include artificial viscosity but only for the fine
scale part of the pressure gradient and of the velocity gradient in the stabilization term. For simplicity, we
restrict here to the so called two-level version of LPS. However, all results stated in the following are also valid
for one-level variants [17].

Let T2h be the coarser mesh obtained by a “global coarsening” of Th. The finer mesh Th contains 2d times
more elements than T2h. The elements of T2h will be denoted by “patches”. By πh we denote the L2-projection
operator on discontinuous finite elements

πh : L2(Ω) → Qr−1
2h ,

characterized by the property for v ∈ L2(Ω):

(v − πhv, φ) = 0 ∀φ ∈ Qr−1
2h . (3.12)
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Important is the fact that this projection acts locally on patches of elements, so that the numerical effort for
computing this projection is very low. The operator giving the space fluctuations is denoted by

κh := I − πh.

with the identity mapping I. We use the bold notations πh, κκκh for the mappings of vector-valued functions, for
instance, πh : L2(Ω)d → [Qr−1

2h ]d.
The discrete primal equation of the optimal control problem with local projection is as in (3.1) with a

stabilization term independent of the control u:

Slps
h (y, 0)(ϕ) := ((b · ∇)v, δκκκh[(b · ∇)φ)]) + (∇p, τκκκh∇ξ) + (∇ · v, γκκκh(∇ · φ)), (3.13)

Slps
h (0,u)(ϕ) := 0.

The parameters τ, δ and γ are patch-wise constant and depend (similar to PSPG and SUPG) on the local
Peclet number. This bilinear stabilization is proposed in [2] and analyzed in [5]. Due to the orthogonality
property (3.12), it is easy to verify, that Slps

h (y,u)(ϕ) is symmetric, i.e. Slps
h (y,u)(ϕ) = Slps

h (ϕ,u)(y).
Associated to this method is the semi-norm

|||y|||lps :=
(
μ|v|21 + σ‖v‖2

0 + Slps
h (y, 0)(y)

)1/2

.

Note that this semi-norm does not include the L2-norm of p. However, an a priori estimate of ||p − ph|| with
optimal order can be easily achieved as shown in [5].

4. A PRIORI error analysis

In this section we present an a priori error estimate of the linear-quadratic optimal control problem (1.1)–(1.2)
with stabilized finite elements of the above types. The estimates for the PSPG/SUPG method are new. The
estimate for LPS fits into the framework in [4]. However, in order to have a comparison, we state also the result
for LPS.

For an upper bound of interpolation errors in the norm ||| · |||sd we will use the following notation for y = (v, p):

ε(y) :=

( ∑
K∈Th

(
LKh

2r
K ‖v‖2

r+1,K + h2r+1
K ‖p‖2

r+1,K

))1/2

,

with LK := μ+ σh2
K + hK‖b‖∞,K + hK . In order to describe the σ and μ dependence of the error we will use

the notation

η :=
(
σ +

μ

cΩ

)−1

,

where cΩ is the Poincaré constant in ‖φ‖0 ≤ cΩ|φ|1 for φ ∈ H1
0 (Ω).

Lemma 4.1. Let y the solution of (2.2). If y ∈ Hr+1(Ω)d+1, then we obtain for the Lagrange interpolation Ih
and the parameter choice (3.9):

|||y − Ihy|||lps + |||y − Ihy|||sd � ε(y).

Proof. This is a direct implication of the standard estimate for k ∈ {0, 1}:

||φ− Ihφ||2k �
∑

K∈Th

h
2(r+1−k)
K ||φ||2r+1,K ∀φ ∈ Hr+1(Ω) (4.1)

and definition (3.9). �
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4.1. First discretize then optimize for PSPG/SUPG

Lemma 4.2. Let vh be the velocity component of Shu and zh ∈ Xh the corresponding solution of the adjoint
equation (3.4). Then there holds for all u, q ∈ Q

j′h(u)(q) = −Bh(q, zh) + α(u, q).

Proof. The derivative of the discrete reduced functional can be expressed by

j′h(u)(q) = ∂uJ(Shu,u)(q)
= (S′

h(u)(q),vh − vd) + α(u, q).

Since S is affine-linear, it holds S′
h(u)(q) = Sh(u + q) − Shu. With zh ∈ Xh, the solution of the adjoint

equation (3.4), we obtain

(S′
h(u)(q),vh − vd) = Ah(Sh(u + q), zh) −Ah(Shu, zh) = −Bh(q, zh).

This implies the assertion. �

Lemma 4.3. For given controls u, û ∈ Q let y(u) ∈ X be the solution of the state equation associated to u and
ŷh(û) ∈ Xh be the discrete solution associated to û. Then the following error estimate holds:

|||y − ŷh|||sd � η1/2‖u− û‖0 + ε(y).

Proof. The inf-sup condition (3.10) gives us

|||Ihy − ŷh|||sd ≤ 1
β

sup
ϕ∈Xh

Ah(Ihy − ŷh,ϕ)
|||ϕ|||sd

·

Due to Galerkin orthogonality we estimate

Ah(Ihy − ŷh,ϕ) = Ah(Ihy − y,ϕ) −Bh(u− û,φ)

≤ Ah(Ihy − y,ϕ) +
(
η1/2 + (max

K
δK)1/2

)
‖u− û‖0|||ϕ|||sd.

Furthermore we estimate

Ah(Ihy − y,ϕ) = A(Ihy − y,ϕ) + Ssd
h (Ihy − y,0)(ϕ).

The Galerkin part is bounded as follows:

A(Ihy − y,ϕ) = μ(∇(Ihv − v),∇φ) + σ(Ihv − v,φ) − (Ihv − v, (b · ∇)φ+ ∇ξ) − (Ihp− p,∇ · φ)

≤ 2|||Ihy − y|||sd|||ϕ|||sd +
∑

K∈Th

δ
−1/2
K ‖Ihv − v‖0;K δ

1/2
K ‖(b · ∇)φ+ ∇ξ‖0;K

+
∑

K∈Th

γ
−1/2
K ‖Ihp− p‖0;K γ

1/2
K ‖∇ · φ‖0;K

� |||ϕ|||sd

⎡⎣|||Ihy − y|||sd +

( ∑
K∈Th

δ−1
K ‖Ihv − v‖2

0;K

)1/2

+

( ∑
K∈Th

γ−1
K ‖Ihp− p‖2

0;K

)1/2
⎤⎦

� |||ϕ|||sdε(y).
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For the stabilization term we obtain due to ‖∇ · v‖0 ≤
√
d‖∇v‖0

Ssd
h (Ihy − y,0)(ϕ)=

∑
K∈Th

{
δK
(
−μΔ(Ihv − v) + (b · ∇)(Ihv − v) + σ(Ihv − v) + ∇(Ihp− p), (b · ∇)φ+ ∇ξ

)
K

+ γK

(
∇ · (Ihv − v),∇ · φ

)
K

}
≤ |||ϕ|||sd

( ∑
K∈Th

δK
[
μ2‖Δ(Ihv − v)‖2

0;K + ‖b‖2
0,∞;K‖∇(Ihv − v)‖2

0;K + σ2‖Ihv − v‖2
0;K

+‖∇(Ihp− p)‖2
0;K

]
+ γK‖∇(Ihv − v)‖2

0;K

)1/2

.

The assertion follows by the interpolation estimate of Lemma 4.1, definition (3.9) and via triangle inequality. �

Lemma 4.4. For given controls u, û ∈ Q let z(y(u)) ∈ X and ẑh(ŷh(û)) ∈ Zh be the associated adjoint
solutions to u and û, respectively. Then it holds:

|||z − ẑh|||sd � ε(z) + η3/2‖u− û‖0 + (1 + η)ε(y) + sup
ϕ∈Xh

Ssd
h (ϕ,0)(Ihz)

|||ϕ|||sd
·

Proof. By ŷh we denote the discrete primal solution of (3.3) for the control û. For discretize-optimize with
SUPG/PSPG the adjoint system is not stabilized in a consistent way. Therefore we obtain a perturbed Galerkin
orthogonality by subtracting (3.4) from (2.3)

A(ϕ, z − ẑh) = Ssd
h (ϕ,0)(ẑh) + (v − v̂h,φ) ∀ϕ = (φ, ξ) ∈ Xh.

With definitions η := z − Ihz and ω := Ihz − ẑh and by using the triangle inequality we can split the error

|||z − ẑh|||sd ≤ ε(z) + |||ω|||sd.

The second term can be estimated by help of (3.4):

|||ω|||sd ≤ 1
β

sup
ϕ∈Xh

A(ϕ,ω) + Ssd
h (ϕ,0)(ω)

|||ϕ|||sd

=
1
β

sup
ϕ∈Xh

A(ϕ, z − ẑh) −A(ϕ,η) − Ssd
h (ϕ,0)(ẑh) + Ssd

h (ϕ,0)(Ihz)
|||ϕ|||sd

=
1
β

sup
ϕ∈Xh

(v − v̂h,φ) −A(ϕ,η) + Ssd
h (ϕ,0)(Ihz)

|||ϕ|||sd
·

For the first term we obtain with the Poincare inequality and Lemma 4.3

(v − v̂h,φ) ≤ ‖v − v̂h‖0 ‖φ‖0

� η|||y − ŷh|||sd |||ϕ|||sd

� η(ε(y) + η1/2‖u− û‖0)|||ϕ|||sd.

Analogously to Lemma 4.3 we obtain by help of the interpolation estimate (4.1) for the bilinear form A

A(ϕ,η) ≤ |||ϕ|||sd

⎡⎣ε(y) +

( ∑
K∈Th

δ−1
K ‖Ihv − v‖2

0;K

)1/2

+

( ∑
K∈Th

γ−1
K ‖Ihp− p‖2

0;K

)1/2
⎤⎦

� |||ϕ|||sdε(y).

�
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In the following Lemma we derive an upper bound for the SUPG/PSPG term arising on the right hand side
of Lemma 4.4.

Lemma 4.5. We define the stabilization parameter as indicated in (3.9). Then it holds for arbitrary ϕ ∈ Xh

and arbitrary z = (zv, zp) ∈ X with ∇ · zv = 0:

Ssd
h (ϕ,0)(Ihz) � |||ϕ|||sd

( ∑
K∈Th

(
D2

K(Ihz) + h2l+1
K ||zv||2l+1,K

))1/2

,

with the notation DK(z) := δ
1/2
K ‖(b · ∇)zv + ∇zp‖0,K.

Proof. The stabilization term is of the following form:

Ssd
h (ϕ,0)(Ihz)=

∑
K∈Th

{δK (−μΔφ+ (b · ∇)φ+ σφ+ ∇ξ, (b · ∇)Ihzv + ∇Ihz
p)K + γK(∇ · φ,∇ · Ihzv)K} .

Using the abbreviation EK(φ) := h
1/2
K ‖∇ · φ‖0, we get by an inverse estimate∑

K∈Th

δK(−μΔφ, (b · ∇)Ihzv + ∇Ihzp)K ≤
∑

K∈Th

μ‖Δφ‖0,Kδ
1/2
K DK(Ihz)

�
( ∑

K∈Th

μδKh
−2
K D2

K(Ihz)

)1/2

μ1/2|φ|1

∑
K∈Th

δK((b · ∇)φ + ∇ξ, (b · ∇)Ihzv + ∇Ihzp)K ≤
( ∑

K∈Th

D2
K(Ihz)

)1/2( ∑
K∈Th

D2
K(ϕ)

)1/2

∑
K∈Th

δK(σφ, (b · ∇)Ihzv + ∇Ihzp) ≤
( ∑

K∈Th

σδKD
2
K(Ihz)

)1/2

σ1/2‖ϕ‖0

∑
K∈Th

γK(∇ · φ,∇ · Ihzv) ≤
( ∑

K∈Th

E2
K(Ihzv)

)1/2 ( ∑
K∈Th

E2
K(φ)

)1/2

.

Altogether we can estimate the stabilization term by

Sh
sd(ϕ,0)(Ihz) �

( ∑
K∈Th

(
MKD

2
K(Ihz) + E2

K(Ihzv)
))1/2

|||ϕ|||sd,

with MK = 1 + h−2
K μδK + δKσ. Due to the fact that δK ≤ δ0σ

−1 and δK ≤ δ0h
2
K/μ, MK can be bounded by

1 + 2δ0, i.e. by a h-independent constant. Now, we use that the velocity components of z are supposed to be
divergence free:

EK(Ihzv) = EK(zv − Ihzv) � h
l+1/2
K ||zv||l+1,K

and arrive at the target estimate

Ssd
h (ϕ,0)(Ihz) � |||ϕ|||sd

( ∑
K∈Th

(
D2

K(Ihz) + h2l+1
K ||zv||2l+1,K

))1/2

. �
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Remark 4.6. Lemma 4.3 shows that the error in the state variable measured in the triplenorm is bounded by
the L2-error in the control plus interpolation error. Therefore, improved errors in the control carries over to
the error in the state. However, combining Lemmas 4.4 and 4.5 the error in the adjoint state measured in the
triplenorm is only of order O(h1/2) due to the term

DK(Ihz) = δ
1/2
K ‖(b · ∇)Ihzv + ∇Ihzp‖0,K � min

(
h

1/2
K , σ−1/2, hK/μ

)
.

In the numerical examples we will demonstrate that this estimate is sharp.

Theorem 4.7. Let (y, z,u) ∈ X × X × Q be the solution of the continuous optimization problem (2.2)–(2.4)
and (yh, zh,uh) ∈ Xh ×Xh ×Qh be the discrete solution of (3.3)–(3.5) for SUPG/PSPG. Then it holds

‖u− uh‖0 � λ|||z − zh(Ihu)|||sd + ‖u− Ihu‖0 +
1
α

( ∑
K∈Th

D2
K(z)

)1/2

,

with λ := 1
α (1 + η)1/2 and DK(z) as defined in the previous Lemma.

Proof. Obviously, it is sufficient to have an appropriate bound on ||Ihu − uh||. Even for arbitrary ûh ∈ Qh it
holds due to Lemma 3.1 and due to the fact that jh is quadratic

α‖ûh − uh‖2
0 ≤ j′′h(ûh − uh, ûh − uh)

= j′h(ûh)(ûh − uh) − j′h(uh)(ûh − uh).

Since j′h(uh)(ûh − uh) = 0 = j′(u)(ûh − uh) we get the upper bound

α‖ûh − uh‖2
0 ≤ j′h(ûh)(ûh − uh) − j′(u)(ûh − uh).

Using Lemmas 2.1 and 4.2 we obtain

α‖ûh − uh‖2
0 ≤ −B(ûh − uh, ẑh) + α(ûh, ûh − uh) + Ssd

h (0, ûh − uh)(ẑh − z + z)
+B(ûh − uh, z) − α(u, ûh − uh)

� ‖ûh − uh‖0

⎛⎝‖ẑh − z‖0 + α‖ûh − u‖0 + |||ẑh − z|||sd +

( ∑
K∈Th

D2
K(z)

)1/2
⎞⎠ .

Here, we used due to δK ≤ C the upper bound∣∣∣∣∣∑
K

δK(ũ, (b · ∇)v + ∇p)K

∣∣∣∣∣ � ‖ũ‖0|||y|||sd ∀y = (v, p) ∈ X, ∀ũ ∈ Q.

Therefore, we get

‖ûh − uh‖0 � 1
α
‖ẑh − z‖0 +

1
α
|||z − ẑh|||sd + ‖ûh − u‖0 +

1
α

( ∑
K∈Th

D2
K(z)

)1/2

.

Now, we choose ûh = Ihu and apply the triangle inequality in order to obtain the desired estimate. �

The following Corollary shows that the order of convergence in the control is at least O(h1/2).
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Corollary 4.8. Let the assumptions from Theorem 4.7 be fulfilled and assume the following regularity assump-
tions on the continuous solutions for integers r, l ≥ 1 and m ≥ 0:

y ∈ Hr+1(Ω)d+1, z ∈ H l+1(Ω)d+1, u ∈ Hm+1(Ω)d. (4.2)

Then it holds with λ := 1
α (1 + η)1/2,

‖u− uh‖0 � λε(z) + λ(1 + η)ε(y) + (1 + λη3/2)||u − Ihu|| + (λ+ α−1)

( ∑
K∈Th

D2
K(z)

)1/2

.

Proof. The combination of Theorem 4.7 and Lemma 4.4 leads to

‖u− uh‖0 � λ|||z − Ihz|||sd + (1 + η3/2λ)‖u − Ihu‖0 + λ(1 + η)ε(y)

+λ

( ∑
K∈Th

D2
K(Ihz) + h2l+1

K ‖zv‖2
l+1,K

)1/2

+
1
α

( ∑
K∈Th

D2
K(z)

)1/2

.

By estimating ∑
K∈Th

D2
K(Ihz) �

∑
K∈Th

D2
K(Ihz − z) +

∑
K∈Th

D2
K(z)

�
∑

K∈Th

‖b‖0,∞;Kh
2l+1
K ‖zv‖2

l+1,K + h2l+1
K ‖zp‖2

l+1,K +
∑

K∈Th

D2
K(z)

we obtain the desired result. �

4.2. First optimize then discretize for SUPG/PSPG

Now we first build up the optimality system on the continuous level and then discretize each equation
separately. That means that we can choose an adequate stabilization term for the dual equation denoted Sz

h.
This term contains the full residual of the dual equation and therefore depends on z and u. The optimality
system for the optimize-discretize- strategy is (3.6)–(3.8) with

Sz
h(zh,vd − vh)(ϕ) =

∑
K∈Th

{
γK(∇ · zh,∇ · φ)K + δK (−μΔzh − (b · ∇)zh + σzh

+∇zp
h + vd − vh,−(b · ∇)φ+ ∇ξ)K

}
.

Theorem 4.9. Let (y,u, z) be the solution of (2.2)–(2.4) with control u ∈ Hm+1(Ω)d and (yh,uh, zh) the
solution of (3.6)–(3.8), then it holds with the parameter choice of (3.9) and the regularity assumption (4.2) the
following estimate of optimal order:

‖u− uh‖0 �
(

1 +
η2

α

)⎛⎝( ∑
K∈Th

h
2(m+1)
K ‖u‖2

m+1,K

)1/2

+
η3/2

α
ε(y(uh)) +

η1/2

α
ε(z(y(uh)))

⎞⎠ .

Proof. Let (y(uh), z(y(uh))) be the solution of the following equations

A(y(uh),ϕ) +B(uh,φ) = 〈f ,φ〉 ∀ϕ = (φ, ξ) ∈ X, (4.3)
A(ψ, z(y(uh))) − (v(uh),ψv) = (−vd,ψ

v) ∀ψ = (ψv, ψp) ∈ X. (4.4)
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For these solutions and z of (2.2)–(2.4) and z(uh) := z(y(uh)) it holds:

j′(u)(λ) = −α(u,λ) +B(λ, zv) ∀λ ∈ Q,

j′(uh)(λh) = −α(uh,λh) +B(λh, zv(uh)) ∀λh ∈ Qh.

Due to Lemma 3.1, and due the identities

−(αu,u − uh) +B(u − uh, zv) = 0 = −(αu,u− Ihu) +B(u− Ihu, zv)
−(αuh,uh − Ihu) +B(uh − Ihu, zv

h) = 0

we get

α‖u− uh‖2
0 ≤ j′(u)(u − uh) − j′(uh)(u − uh)

= −(αu,u− uh) +B(u − uh, zv) + (αuh,u− uh) −B(u − uh, zv(uh))

= (αuh,u − Ihu) +B(Ihu− u, zv
h) + (αu, Ihu − u) −B(Ihu − u, zv)

+B(uh − u, zv(uh) − zv
h)

= α(u − uh, Ihu − u) +B(Ihu− u, zv
h − zv(uh)) +B(Ihu − u, zv(uh) − zv)

+B(uh − u, zv(uh) − zv
h)

� ‖zv
h − zv(uh)‖0‖Ihu − u‖0 + ‖zv(uh) − zv‖0‖Ihu − u‖0 + ‖zv(uh) − zv

h‖0‖uh − u‖0

+α‖uh − u‖0‖Ihu − u‖0.

By Young’s inequality and due to ‖zv(uh) − zv‖0 ≤ η|||y(uh) − y(u)‖0 ≤ η2‖u − uh‖0 we obtain for arbitrary
ε > 0

α‖u− uh‖2
0 � ε−1α‖u − Ihu‖2

0 + (2ε)−1‖zv
h − zv(uh)‖2

0 +
ε

α
‖zv(uh) − zv‖2

0 + 2εα‖uh − u‖2
0

≤ ε−1α‖u − Ihu‖2
0 + (2ε)−1‖zv

h − zv(uh)‖2
0 + ε(2α+ (σ + μ)−1α−1)‖uh − u‖2

0.

With the choice ε := α
2 (2α+ η2α−1)−1 we end up with

α

2
‖u− uh‖2

0 � ε−1α‖u − Ihu‖2
0 + ε−1‖zv

h − zv(uh)‖2
0.

Due to ε−1 � 1 + η2α−1, we obtain

‖u− uh‖2
0 �

(
1 +

η2

α

)( ∑
K∈Th

h
2(m+1)
K ‖u‖2

m+1,K +
1
α
‖zv

h − zv(uh)‖2
0

)
.

In order to bound the last term, we introduce the continuous adjoint solution z(yh(uh)) which is the solution of

A(ψ, z(yh(uh))) = (vh − vd,ψ
v) ∀ψ = (ψv, ψp) ∈ X.

Due to the stability of the continuous problem and due to a standard estimate a priori estimates of adjoint
PSPG/SUPG stabilization it holds:

‖zv
h − zv(uh)‖0 ≤ ‖zv

h − zv(yh(uh))‖0 + ‖zv(yh(uh)) − zv(uh)‖0

� η1/2|||zh − z(yh(uh))|||sd + η3/2|||yh(uh) − y(uh)|||sd.

By help of a priori standard estimates for the primal error |||yh(uh) − y(uh)|||sd and dual error |||zh(yh(uh)) −
z(yh(uh))|||sd we arrive at the desired estimate. �
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4.3. A priori estimate for local projection stabilization

For an a priori analysis we refer to [4] where symmetric stabilization methods for optimal control problems
with the Oseen system are analyzed. The local projection stabilization is a particular technique which fits into
that framework. There is no difference in optimize-discretize or discretize-optimize, because the resulting systems
are completely identical:

Ah(Ψ, zh) = A(Ψ, zh) + Slps
h (Ψ, 0)(zh),

and

Slps
h (Ψ, 0)(zh) = Slps

h (zh, 0)(Ψ) = Slps
h (zh,vd − vh)(Ψ) = Slps∗

h (zh,vd − vh)(Ψ).

We get the following result, see [4]:

Theorem 4.10. Let (y,u, z) ∈ X ×Q×X be the solution of the continuous optimization problem (2.2)–(2.4)
with regularity (4.2) and (yh,uh, zh) ∈ Xh×Qh×Xh be the solution of discrete optimization problem (3.3)–(3.5)
with LPS stabilization (3.13). Then it holds

‖u− uh‖2
0 � α−2η (ε(y) + ε(z)) + (1 + α−2)

∑
K∈Th

h2m+2
K ‖u‖2

m+1,K.

4.4. Discussion on the a priori results

Remark 4.11. The a priori estimates for SUPG/PSPG in the optimize-discretize setting (Thm. 4.9) and the
symmetric LPS method (Thm. 4.10) are both quasi-optimal in the sense that the h-depending convergence
order scale is the same as for the pure primal problem without control, i.e. convergence order hr+1/2 for
convection dominated flows. For SUPG/PSPG in the discretize-optimize setting, the convergence order is worse.
In particular with respect to the error in the adjoint state and according to Lemma 4.4, the order of convergence
is limited to h1/2 independently of the regularity of the solution and independently of the order of finite elements.

Remark 4.12. Furthermore, the case σ ≥ 1 leads to η ≤ 1 and λ � α−1/2. This implies that all a priori
estimates stated above become (formally) independent of the parameters σ and μ. If additionally α ≥ 1, the
estimates become also α-independent, in particular,

• SUPG discretize-optimize:

‖u− uh‖0 � ε(y) + ε(z) + ||u − Ihu|| +
( ∑

K∈Th

D2
K(z)

)1/2

;

• SUPG optimize-discretize:

‖u− uh‖0 � ε(y(uh)) + ε(z(y(uh))) +

( ∑
K∈Th

h
2(m+1)
K ‖u‖2

m+1,K

)1/2

;

• LPS:

‖u− uh‖0 � ε(y) + ε(z) +

( ∑
K∈Th

h2m+2
K ‖u‖2

m+1,K

)1/2

.
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Figure 1. The function g (right).

5. Numerical experiment

In order to validate the analytical results presented so far, we consider a model problem with analytical
solution. We are interested in particular in the decline of convergence order for SUPG/PSPG in the setting
discretize-optimize (DO). The domain is the two dimensional unit square Ω = (0, 1)2 with the boundaries
ΓS , ΓE , ΓN , ΓW , where the indices refer to the cardinal points, e.g. S(outh) etc. The boundary conditions are
given by:

v1 = 0; μ(∇v2,n) − pn2 = 0 on ΓS ∪ ΓN

v2 = 0; μ(∇v1,n) − pn1 = 0 on ΓE ∪ ΓW .

The exact solution y = (v, p) reads:

v1(x, y) = g(y), v2(x, y) = g(x), p = 0,

with the viscosity-depending function (see Fig. 1)

g(x) := x− 1 − ex/μ

1 − e1/μ
·

The adjoint state z = (zv, zp) and the control are given by

zv,1(x, y) = g(1 − y), zv,2(x, y) = g(1 − x), zp = 0 u = −zv.

The viscosity is set to μ = 7.5×10−3 in order to enforce a sharp boundary layer. The constants in the stabilization
parameters are always chosen as γ0 = δ0 = 0.2, and the regularization parameter of the cost fuctional is α = 1.

In Figure 2 we show the discrete control uh with SUPG/PSPG in the combination optimize-discretize (OD)
and discretize-optimize (DO) with Q2 elements. The Q2 solution with DO exhibit strong oscillations. It is
remarkable that these spurious modes are not even restricted at the neighborhood of the boundary layer. The
non-consistent stabilization leads obviously to parasitic currents in the entire domain.

In Table 1 we list the order of convergence with respect to the state, the adjoint state, the control and
the error in the functional for the DO and the OD approach using SUPG/PSPG – stabilization and Q1/Q2
elements. For Q1 elements, there is no significant difference and all quantities show a convergence rate of about
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Figure 2. Q2 solutions with SUPG/PSPG. State v1
h OD (upper left), control u1

h OD (upper
right), state v1

h DO (lower left) and control u1
h DO (lower right).

3/2 in the L2-norm. In case of higher order (Q2) elements this holds also true for the error in state variable.
However, the error in the adjoint solution for the DO setting is even larger than for Q1 elements. This lack of
accuracy carries over to the error in the control. For OD we obtain a L2 convergence rate of approximately 5/2
in all variables.

In Table 2 the convergence rates of all quantities using LPS-stabilization are listed. The optimal orders
are reached quite earlier than in case of SUPG/PSPG-stabilization. Comparing the error j(u) − jh(uh) for
SUPG/PSPG in the DO setting and for LPS, the error is smaller by more than three magnitudes on the same
mesh (the finest one) and the same finite element (bi-quadratics) when a symmetric stabilization is chosen. We
think that this is a also remarkable result.

6. Summary

We have analyzed two types of stabilized finite element techniques for optimal control problems with the
Oseen system, namely the local projection stabilization (LPS) and the combination of streamline upwind Petrov-
Galerkin (SUPG) and pressure stabilized Petrov-Galerkin (PSPG). There is a fundamental difference between
these two methods in the context of optimize-discretize (OD) and discretize-optimize (DO). Whereas OD and
DO are identical for LPS due to its symmetry properties, the ordering of discretization and optimization leads to
different schemes for SUPG/PSPG. We have proved that LPS and OD with SUPG/PSPG lead to optimal order
of convergence in the control. In contrast to this, DO with SUPG/PSPG gives only a suboptimal convergence
order. The reason is the inconsistent discretization of the adjoint equation. In a numerical test problem with
a sharp boundary layer we investigated whether this decrease in convergence order is observable in practice.
It turns out that for low order finite elements (Q1), no substantial difference is observed. However, DO with
SUPG/PSPG for higher order elements as e.g. Q2, leads to a clear decline of convergence order in the control
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Table 1. Errors and convergence orders obtained with SUPG/PSPG.

h = ‖y − yh‖ ‖z − zh‖ ‖u − uh‖ j(u) − jh(uh)
2−l ‖ · ‖0 Order ||| · |||sd Order ‖ · ‖0 Order ||| · |||sd Order ‖ · ‖0 Order Value Order

SUPG/PSPG Q1 optimize-discretize
3 2.65e-1 9.58e-1 2.68e-1 9.76e-1 1.89e-1 2.91e-2
4 1.50e-1 0.82 7.77e-1 0.30 1.50e-1 0.83 7.77e-1 0.33 1.06e-1 0.83 2.06e-2 0.50
5 6.62e-2 1.18 7.44e-1 0.06 6.62e-2 1.18 7.43e-1 0.06 4.68e-2 1.18 1.03e-2 1.00
6 2.42e-2 1.45 5.30e-1 0.49 2.42e-2 1.45 5.29e-1 0.49 1.71e-2 1.45 4.24e-3 1.28
7 8.15e-3 1.57 2.96e-1 0.84 8.15e-3 1.57 2.96e-1 0.84 5.76e-3 1.57 1.59e-3 1.42

SUPG/PSPG Q1 discretize-optimize
3 2.67e-1 9.55e-1 2.70e-1 9.70e-1 1.52e-1 4.33e-2
4 1.50e-1 0.83 7.77e-1 0.30 1.51e-1 0.84 7.78e-1 0.32 7.85e-2 0.95 2.53e-2 0.78
5 6.61e-2 1.19 7.44e-1 0.06 6.65e-2 1.19 7.44e-1 0.06 2.86e-2 1.46 1.17e-2 1.12
6 2.42e-2 1.45 5.30e-1 0.49 2.43e-2 1.45 5.30e-1 0.49 6.62e-3 2.11 4.58e-3 1.35
7 8.11e-3 1.58 2.96e-1 0.84 8.16e-3 1.57 2.96e-1 0.84 1.52e-3 2.12 1.65e-3 1.47

SUPG/PSPG Q2 optimize-discretize
3 1.91e-1 7.52e-1 1.89e-1 7.47e-1 1.34e-1 6.59e-2
4 9.86e-2 0.96 9.67e-1 -0.36 9.77e-2 0.95 9.66e-1 -0.37 6.91e-2 0.95 3.22e-2 1.03
5 4.05e-2 1.29 6.27e-1 0.63 4.00e-2 1.29 6.26e-1 0.63 2.83e-2 1.29 1.17e-2 1.26
6 1.06e-2 1.93 2.32e-1 1.44 1.03e-2 1.95 2.31e-1 1.44 7.32e-3 1.95 2.62e-3 2.16
7 1.69e-3 2.65 5.68e-2 2.03 1.55e-3 2.74 5.68e-2 2.03 1.09e-3 2.75 2.54e-4 3.37

SUPG/PSPG Q2 discretize-optimize
3 1.89e-1 7.50e-1 2.20e-1 1.68e+0 9.01e-2 8.05e-2
4 9.74e-2 0.95 9.66e-1 -0.37 1.29e-1 0.77 1.62e+0 0.05 4.49e-2 1.01 3.83e-2 1.07
5 4.01e-2 1.28 6.26e-1 0.63 7.54e-2 0.78 1.52e+0 0.09 2.59e-2 0.80 1.35e-2 1.50
6 1.05e-2 1.93 2.32e-1 1.44 3.76e-2 1.00 1.20e+0 0.34 1.31e-2 0.98 3.00e-3 2.17
7 1.66e-3 2.66 5.58e-2 2.03 1.48e-2 1.35 7.86e-1 0.62 5.27e-3 1.32 3.18e-4 3.24

Table 2. Errors and convergence orders obtained with LPS.

h = ‖y − yh‖ ‖z− zh‖ ‖u − uh‖ j(u) − jh(uh)
2−l ‖ · ‖0 Order ‖ · ‖0 Order ‖ · ‖0 Order Value Order

LPS Q1
3 2.70e-1 2.77e-1 1.96e-1 4.80e-3
4 1.58e-1 0.77 1.60e-1 0.79 1.13e-1 0.79 3.03e-3 0.66
5 7.20e-2 1.14 7.25e-2 1.15 5.12e-2 1.15 1.06e-3 1.52
6 2.48e-2 1.54 2.48e-2 1.54 1.76e-2 1.54 1.62e-4 2.71
7 6.46e-3 1.94 6.48e-3 1.94 4.58e-3 1.94 1.60e-5 3.35

LPS Q2
3 2.00e-1 2.04e-1 1.44e-1 1.80e-3
4 9.24e-2 1.12 9.31e-2 1.13 6.58e-2 1.13 1.13e-3 0.67
5 3.08e-2 1.59 3.09e-2 1.59 2.18e-2 1.59 1.35e-4 3.06
6 6.28e-3 2.29 6.29e-3 2.30 4.44e-3 2.30 6.72e-6 4.33
7 7.80e-4 3.01 7.81e-4 3.01 5.53e-4 3.01 2.28e-7 4.88

and in the adjoint variable. LPS and OD with SUPG/PSPG remain optimal for Q2 elements. However, the
symmetric method shows by far the best performance in terms of accuracy.
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