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DETERMINISTIC MINIMAX IMPULSE CONTROL IN FINITE
HORIZON: THE VISCOSITY SOLUTION APPROACH ∗, ∗∗

Brahim El Asri1

Abstract. We study here the impulse control minimax problem. We allow the cost functionals and
dynamics to be unbounded and hence the value functions can possibly be unbounded. We prove that
the value function of the problem is continuous. Moreover, the value function is characterized as the
unique viscosity solution of an Isaacs quasi-variational inequality. This problem is in relation with an
application in mathematical finance.
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1. Introduction

In this paper we study an optimal impulse control problem with finite horizon.
Optimal impulse control problems appear in many practical situations. We refer the reader to [3] (and the

references cited therein) for extensive discussions. For deterministic autonomous systems with infinite horizon,
optimal impulse control problems were studied in [1], and optimal control problems with continuous, switching,
and impulse controls were studied by the author [17] (see also [18]). Differential games with switching strategies
in finite and infinite duration were also studied [19, 20]. Yong, in [9], also studies differential games where one
person uses an impulse control and other uses continuous controls. Recently El Farouq et al. [10] extended the
work of Yong [21] in the finite horizon case but allowing general jumps. In all these works the existence of the
value functions of optimal impulse control problem and uniqueness of viscosity solution are obtained assuming
that the dynamics and costs functionals are bounded and the impulse cost function should not depend on y.

Our aim in this work is to relax the boundedness assumption on cost functionals and the dynamics for
impulse control problem and the impulse cost function should depend on x. Therefore the main objective of our
work, and this is the novelty of the paper, is to characterize the value function as the only solution in viscosity
sense of the associated quasivariational inequality for the finite horizon problem in suitable subclass of bounded

Keywords and phrases. Impulse control, robust control, differential games, quasi-variational inequality, viscosity solution.

∗ The research leading to these results has received funding in part by the European Community’s FP 7 Programme under
contract agreement PITN-GA-2008-213841, Marie Curie ITN “Controlled Systems”.
∗∗ A significant part of this work was done when the author was affiliated to Le Mans University.

1 Institut für Stochastik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
brahim.el-asri@uni-jena.de

Article published by EDP Sciences c© EDP Sciences, SMAI 2012

http://dx.doi.org/10.1051/cocv/2011200
http://www.esaim-cocv.org
http://www.edpsciences.org


64 B. EL ASRI

from below continuous functions, with linear growth when the dynamics unbounded and costs functionals are
bounded from below with linear growth and the impulse cost function depends on x.

This paper is organized as follows:
In Section 2, we formulate the problem and we give the related definitions. In Section 3, we give some prop-

erties of the value function, especially the dynamic programming principle. Further we provide some estimates
for the optimal strategy of the optimal impulse control problem which, in combination with the dynamic pro-
gramming principle, play a crucial role in the proof of the existence of the value function. Section 4 is devoted
to the connection between the optimal impulse control problem and quasi-variational inequality. In Section 5,
we show that the solution of QVIs is unique in the subclass of bounded from below continuous functions which
satisfy a linear growth condition.

2. Formulation of the problem and preliminary results

2.1. Setting of the problem

Let a two-players differential game system be defined by the solution of following dynamical equations⎧⎨
⎩
ẏ(t) = f(t, y(t), τ(t))
y(t0) = x ∈ IRm,
y(t+k ) = y(t−k ) + g(tk, y(t−k ), ξk), tk ≥ t0, ξk �= 0,

(2.1)

where y(t) is the state of the system, with values in IRm, at time t, x is the initial state. The time variable t
belongs to [t0, T ] where 0 ≤ t0 < T , and y(t±k ) = lim

t→t±k
y(t). We assume that y is left continuous at the times tk:

y(t−k ) = y(tk), k ≥ 1.
The system is driven by two controls, a continuous control τ(t) ∈ K ∈ IRm, where K is compact set, and an

impulsive control defined by a double sequence t1, . . . , tk, . . . , ξ1, . . . , ξk, . . . ,
k ∈ IN∗ = IN\{0}, where tk are the strategy, tk ≤ tk+1 and ξk ∈ IRm the control at time tk of the jumps in
y(tk). Let S := ((tk)k≥1, (ξk)k≥1) the set of these strategies denoted by D.

For any initial condition (t0, x), controls τ(·) and S generate a trajectory y(·) of this system. The pay-off is
given by the following:

J(t0, x,S, τ(.)) =
∫ T

t0

ψ(s, y(s), τ(s))ds +
∑
k≥1

C(tk, y(tk), ξk)11[tk≤T ] +G(y(T )), (2.2)

where if tk = T for some k then we take G(y(T )) = G(y(T+)). The term C(tk, y(tk), ξk) is called the impulse
cost. It is the cost when player-ξ makes an impulse ξk at time tk. In the game, player-ξ would like to minimize
the pay-off (2.2) by choosing suitable impulse control ξ(.), whereas player-τ wants to maximize the pay-off (2.2)
by choosing a proper control

τ(.) ∈ Ω = {measurable functions [t0, T ] → K}.
We shall sometimes write τ ∈ Ω instead of τ(.) ∈ Ω.

We now define the admissible strategies ϕ for the minimizing impulse control D, as non-anticipative strategies.
We shall let Da be the set of all such non-anticipative strategies.

Definition 2.1. A map ϕ : Ω → S is called a non-anticipative strategy if for any two controls τ1(.) and τ2(.),
and any t ∈ [t0, T ], the condition on their restrictions to [t0, t[: τ1|[t0,t[ = τ2|[t0,t[ implies ϕ(τ1)|[t0,t] = ϕ(τ2)|[t0,t].

In the next, we define the value function of the problem v : [0, T ]× IRm → IR as

v(t0, x) = inf
ϕ∈Da

sup
τ(.)∈Ω

J(t0, x, ϕ(τ(.)), τ(.)).
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2.2. Assumptions

Throughout this paper T (resp. m) is a fixed real (resp. integer) positive constant. Let us now consider the
followings:

(1) f : [0, T ] × IRm × K → IRm and g : [0, T ] × IRm × IRm → IRm are two continuous functions for which
there exists a constant C ≥ 0 such that for any t ∈ [0, T ], τ ∈ K and ξ, x, x′ ∈ IRm

|f(t, x, τ)| + |g(t, x, ξ)| ≤ C(1 + |x|) and

|g(t, x, ξ) − g(t, x′, ξ)| + |f(t, x, τ) − f(t, x′, τ)| ≤ C|x− x′|; (2.3)

(2) C : [0, T ]× IRm × IRm → IR, is continuous with respect to t and ξ uniformly in x with linear growth

|C(t, x, ξ)| ≤ C(1 + |x|), ∀(t, x, ξ) ∈ [0, T ]× IRm × IRm.

Moreover we assume that there exists a constant α > 0 such that for any (t, x, ξ) ∈ [0, T ]× IRm × IRm,

C(t, x, ξ) ≥ α; (2.4)

(3) ψ : [0, T ]× IRm ×K → IR is continuous with respect to t and τ uniformly in x with linear growth,

|ψ(t, x, τ)| ≤ C(1 + |x|), ∀(t, x, τ) ∈ [0, T ]× IRm ×K, (2.5)

and is bounded from below;
(4) G : IRm → IR is uniformly continuous with linear growth

|G(x)| ≤ C(1 + |x|), ∀x ∈ IRm, (2.6)

and is bounded from below.
These properties of f and g imply in particular that y(t)0≤t≤T solution of the standard DE (2.1) exists and

is unique, for any t ∈ [0, T ] and x ∈ IRm.

2.3. Admissible strategies

We want to investigate the problem of minimizing sup
τ∈Ω

J through the impulse control. We mean to allow

closed loop strategies for the minimizing control. We remark that, being only interested in the inf sup problem,
and not a possible saddle point.

Theorem 2.2. Under the standing assumptions (Sect. 2.2) the value function v is bounded from below with
linear growth.

Proof. Consider the particular strategy in Da is the one where we have no impulse time. In this case∑
k≥1 C(tk, y(tk), ξk)11[tk≤T ] = 0.

v(t, x) ≤ sup
τ∈Ω

[∫ T

t

ψ(s, y(s), τ(s))ds +G(y(T ))

]
.

Since ψ and G are linear growth, then

v(t, x) ≤
∫ T

t

C(1 + |y(s)|)ds+ C(1 + |y(T )|).

Now by using standard estimates from ODE, Gronwall’s Lemma and the strategy where we have no impulse
time, we can show that

|y(t)| ≤ C(1 + |x|),
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where C is constant of T . Hence using this estimate we get

v(t, x) ≤ C(1 + |x|).
On the other hand, since the cost C(tk, y(tk), ξk) are non negative functions and since ψ and G are bounded
from below, then v is bounded from below. �

We are now giving some properties of the admissible strategy.

Proposition 2.3. Let ϕ be a non-anticipative nearly optimal strategy composed of impulse control (δ, ξ) =
((tn)n≥1, (ξn)n≥1). Then: ∑

k≥1

C(tk, y(tk), ξk)11[tk≤T ] ≤ C(1 + |x|).

There exists a positive constant C which does not depend on t and x such that:

∀n ≥ 1, 11[tn≤T ] ≤ C(1 + |x|)
n

· (2.7)

Proof. Recall the characterization of (2.2) that reads as:

v(t, x) = inf
ϕ∈Da

sup
τ(.)∈Ω

⎡
⎣∫ T

t

ψ(s, y(s), τ(s))ds +
∑
k≥1

C(tk, y(tk), ξk)11[tk≤T ] +G(y(T ))

⎤
⎦ .

Let us choose a non-anticipative nearly optimal strategy ϕ composed of impulse control (δ, ξ) =
((tn)n≥1, (ξn)n≥1) such that:

∫ T

t

ψ(s, y(s), τ(s))ds +
∑
k≥1

C(tk, y(tk), ξk)11[tk≤T ] +G(y(T )) ≤ v(t, x) + 1.

Since v(t, x) ≤ C(1 + |x|) and since ψ and G are bounded from below then we have∑
k≥1

C(tk, y(tk), ξk)11[tk≤T ] ≤ C(1 + |x|).

Next we show (2.7). Taking into account that C(t, y, ξ) ≥ α > 0 for any (t, y, ξ) ∈ [t0, T ] × IRm × IRm we
obtain: ∑

k≥1

α11[tk≤T ] ≤ C(1 + |x|).

But for any k ≤ n, [tn ≤ T ] ⊂ [tk ≤ T ] then:

αn11[tn≤T ] ≤ C(1 + |x|).
Finally taking into account α > 0, we obtain the desired result. �

It may be to the best advantage of the minimizer to make a jump at some time t, immediately followed, at the
same time, by another jump, and so on. As any such jump entails a cost not less than α, from Proposition 2.3
the number of jumps may be restricted, with no loss of generality, to be less than k = C

α (1 + |x|). To allow for
the possibility of several successive but simultaneous jumps, we proceed as follows. Let

E =
k⋃

n=1

(IRm)n.
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We extend g and C from IRm to E in the natural way: let ξ ∈ (IRm)p be a multiple jump of multiplicity p. Let
(ξ1, ξ2, . . . , ξp) be its components. For a given y ∈ IRm, let z0 = y, and for l ∈ {1, . . . , p}, zl = zl−1+g(t, zl−1, ξ

l).
Then we set

g(t, y, ξ) = zp − y, C(t, y, ξ) =
p∑

l=1

C
(
t, zl−1, ξ

l
)
.

There is no point in considering the possibility of several successive multiple jumps at the same jump time,
since a sequence of simultaneous multiple jumps is a multiple jump.

From now on, when we refer to jumps, it will always be multiple jumps, unless specifically referred to as
simple jumps. Simple jumps are the same thing as a multiple jump of multiplicity 1. And of course, in a control
(tk, ξk) the ξk are to be considered as multiple jumps. But the tk ’s are always assumed to be distinct.

We also state the following definition:

Definition 2.4. For any function v : [t0, T ]× IRm → IR, let the operator N be given by

N [v](t, x) = inf
ξ∈E

[v(t, x+ g(t, x, ξ)) + C(t, x, ξ)].

3. The value function

3.1. Dynamic programming principle

The dynamic programming principle is a well-known property in optimal impulse control. In our optimal
control problem, it is formulated as follows:

Theorem 3.1 ([10], Prop. 3.1). The value function v(., .) satisfies the following optimality principle:
for all t ≤ t′ ∈ [t0, T [ and x ∈ IRm,

v(t, x) = inf
ϕ∈Da

sup
τ∈Ω

⎡
⎣∫ t′

t

ψ(s, y(s), τ(s))ds +
∑

k≥1, tk<t′
C(tk, y(tk), ξk)11[tk≤T ] + 11[t′≤T ]v(t′, y(t′))

⎤
⎦ ,

and

v(t, x) = inf
ϕ∈Da

sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y(s), τ(s))ds +
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦ ,

where ((tn)n≥1, (ξn)n≥1) be an admissible control.

Proposition 3.2. The value function v(., .) has the following property:
for all t ∈ [t0, T ] and x ∈ IRm,

v(t, x) ≤ N [v](t, x).

Proof. Assume first that for some x and t:

v(t, x) > N [v](t, x).

Then we have for t ≤ t′:

inf
ϕ∈Da

sup
τ∈Ω

⎡
⎣∫ t′

t

ψ(s, y(s), τ(s))ds +
∑

k≥1, tk<t′
C(tk, y(tk), ξk)11[tk≤T ] + 11[t′≤T ]v(t′, y(t′))

⎤
⎦

> inf
ξ∈E

[v(t, x + g(t, x, ξ)) + C(t, x, ξ)].
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Among the admissible strategy ϕε’s there are those that place a jump at time t.

sup
τ∈Ω

⎡
⎣∫ t′

t

ψ(s, y(s), τ(s))ds +
∑

k≥1, tk<t′
C(tk, y(tk), ξk)11[tk<T ] + 11[t′<T ]v(t′, y(t′))

⎤
⎦

> v(t, x+ g(t, x, ξ)) + C(t, x, ξ) − ε.

Now, pick τ1 such that

∫ t′

t

ψ(s, y(s), τ1(s))ds +
∑

k≥1, tk<t′
C(tk, y(tk), ξk)11[tk≤T ] + 11[t′≤T ]v(t′, y(t′)) + ε

≥ sup
τ∈Ω

⎡
⎣∫ t′

t

ψ(s, y(s), τ(s))ds +
∑

k≥1, tk<t′
C(tk, y(tk), ξk)11[tk≤T ] + 11[t′≤T ]v(t′, y(t′))

⎤
⎦ ,

which implies that:

∫ t′

t

ψ(s, y(s), τ1(s))ds+
∑

k≥1, tk<t′
C(tk, y(tk), ξk)11[tk≤T ] + 11[t′≤T ]v(t′, y(t′)) + ε

> v(t, x + g(t, x, ξ)) + C(t, x, ξ) − ε.

Choosing now t′ = t, yields the relation

ε+ v(t, x+ g(t, x, ξ)) > v(t, x+ g(t, x, ξ)) + C(t, x, ξ) − ε.

By sending ε→ 0, we obtain C(t, x, ξ) < 0, which is a contradiction. �

3.2. Continuity of value function

In this section we prove the continuity of the value function. The main result of this section can be stated as
follows.

We first present some preliminary results on y(.). Consider ϕ ∈ Da and (τ(.), ϕ(τ(.)), composed of jumps
instants t1, t2, . . . , tn in the interval [t, T ], with jumps ξ1, ξ2, . . . , ξn, and let y1(.) and y2(.) be the trajectories
generated by Da, from yi(t) = xi, i = 1, 2.

Lemma 3.3. There exists a constant C such that for any s ∈ [t, T ], x1, x2 ∈ IRm, and k ∈ {1, 2 . . . , n}
|y1(s) − y2(s)| ≤ exp(C(s− t))(1 + C)n|x1 − x2|. (3.1)

Proof. By the Lipschitz continuity of f and Gronwall’s lemma, we have

|y1(s) − y2(s)| ≤ exp(C(s− t))(1 + C)|x1 − x2|, ∀s ∈ [t, t1].

Next let us show for an impulse time

|y1(t+k ) − y2(t+k )| ≤ exp(C(tk − t))(1 + C)k|x1 − x2|.
Looking more carefully at the first jump and using the Lipschitz continuity of g, we have

|y1(t+1 ) − y2(t+1 )| = |y1(t−1 ) + g(t−1 , y1(t
−
1 ), ξ1) − y2(t−1 ) − g(t−1 , y2(t

−
1 ), ξ1)|

≤ (1 + C)|y1(t−1 ) − y2(t−1 )|
≤ exp(C(t1 − t))(1 + C)|x1 − x2|. (3.2)
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The above assertion is obviously true for k = 1. Suppose now it holds true at step k. Then, at step k + 1,

|y1(t+k+1) − y2(t+k+1)| ≤ (1 + C)|y1(t−k+1) − y2(t−k+1)|
≤ (1 + C)|y1(t+k ) − y2(t+k )| exp(C(t−k+1 − t+k ))
≤ exp(C(tk+1 − t))(1 + C)k+1|x1 − x2|.

(3.3)

Finally
|y1(s) − y2(s)| ≤ exp(C(s − t))(1 + C)n|x1 − x2|, ∀s ∈ [0, T ]. �

We are now ready to give the main theorem of this article.

Theorem 3.4. The value function v : [0, T ]× IRm → IR is continuous in t and x.

Proof. Let us consider ε > 0 and (t′, x′) ∈ B((t, x), ε) and let us consider the following set of strategies:

D̃a :=
{

(δ, ξ) = ((tn)n≥1, (ξn)n≥1) ∈ Da such that ∀n ≥ 1, 11[τn≤T ] ≤ C(1 + (ε+ |x|))
n

}
·

From Proposition 2.3, the impulse control of non-anticipative strategy optimal (δ, ξ) belongs to D̃a.
First let us show that v is upper semi-continuous. Recall the characterization of dynamical programming

principle that reads as

v(t, x) = inf
ϕ∈D̃a

sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y(s), τ(s))ds +
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦ ,

v(t′, x′) = inf
ϕ∈D̃a

sup
τ∈Ω

⎡
⎣∫ tn

t′
ψ(s, y′(s), τ(s))ds +

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y′(tn))

⎤
⎦ .

Fix an arbitrary ε1 > 0. Let ϕ = ((tn)n≥1, (ξn)n≥1) belongs to D̃a such that

sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y(s), τ(s))ds +
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦

≤ inf
ϕ∈D̃a

sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y(s), τ(s))ds +
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦ + ε1

= v(t, x) + ε1.

Also,

v(t′, x′) ≤ sup
τ∈Ω

⎡
⎣∫ tn

t′
ψ(s, y′(s), τ(s))11[s≥t′ ]ds+

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y′(tn))

⎤
⎦ .

Now pick τ1 such that

sup
τ∈Ω

⎡
⎣∫ tn

t′
ψ(s, y′(s), τ(s))11[s≥t′ ]ds+

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y′(tn))

⎤
⎦

≤
∫ tn

t′
ψ(s, y′(s), τ1(s))11[s≥t′]ds+

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y′(tn)) + ε1.
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Then

v(t′, x′) − v(t, x) ≤
∫ tn

t′
ψ(s, y′(s), τ1(s))11[s≥t′]ds+

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ]

+11[tn≤T ]v(tn, y′(tn))] −
∫ tn

t

ψ(s, y(s), τ1(s))ds

−
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] − 11[tn≤T ]v(tn, y(tn)) + 2ε1.

Next w.l.o.g we assume that t′ < t. Then we deduce that:

v(t′, x′) − v(t, x) ≤
∫ tn

t0

{(ψ(s, y′(s), τ1(s)) − ψ(s, y(s), τ1(s)))11[s≥t]}ds+
∫ tn

t0

ψ(s, y′(s), τ1(s))11[t′≤s<t]ds

+
∑

1≤k<n

{C(tk, y′(tk), ξk) − C(tk, y(tk), ξk)}11[tk≤T ]

+ 11[tn≤T ]{v(tn, y′(tn)) − v(tn, y(tn))} + 2ε1

≤
∫ tn

t0

{|ψ(s, y′(s), τ1(s)) − ψ(s, y(s), τ1(s))|11[s≥t]} +
∫ tn

t0

|ψ(s, y′(s), τ1(s))|11[t′≤s<t]ds

+ n max
1≤k≤n

|C(tk, y′(tk), ξk) − C(tk, y(tk), ξk)| + 11[tn≤T ]{|v(tn, y′(tn))| + |v(tn, y(tn))|} + 2ε1.

(3.4)

Using the uniform continuity of ψ, C in y and property (3.1), then the right-hand side of (3.4), the first and
the second term converges to 0 as t′ tends to t and x′ tends to x.

Now let us focus on the last one. Since (δ, ξ) ∈ D̃a then

11[tn≤T ]{|v(tn, y′(tn))| + |v(tn, y(tn))|} ≤ C
(1 + |x|2 + |x′|2)

n
,

where C is a constant which comes from the linear growth of ψ and G. Taking the limit as (t′, x′) → (t, x) we
obtain:

lim sup
(t′,x′)→(t,x)

v(t′, x′) ≤ v(t, x) + C
(1 + |x|2 + |x′|2)

n
+ 2ε1.

As n and ε1 are arbitrary then sending n→ +∞ and ε1 → 0, to obtain:

lim sup
(t′,x′)→(t,x)

v(t′, x′) ≤ v(t, x).

Therefore v is upper semi-continuous.
Now we show that v is lower semi-continuous.
Fix an arbitrary ε2 > 0. Let ϕ2 = ((tn)n≥1, (ξn)n≥1) belongs to D̃a such that

sup
τ∈Ω

⎡
⎣∫ tn

t′
ψ(s, y′(s), τ(s))ds +

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y′(tn))

⎤
⎦

≤ inf
ϕ2∈D̃a

sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y′(s), τ(s))ds +
∑

1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦ + ε2

= v(t′, x′) + ε2.



DETERMINISTIC MINIMAX IMPULSE CONTROL IN FINITE HORIZON: THE VISCOSITY SOLUTION APPROACH 71

Also,

v(t, x) ≤ sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y(s), τ(s))11[s≥t]ds+
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦ ,

now, pick τ2 such that

sup
τ∈Ω

⎡
⎣∫ tn

t

ψ(s, y(s), τ(s))11[s≥t]ds+
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn))

⎤
⎦

≤
∫ tn

t

ψ(s, y(s), τ2(s))11[s≥t]ds+
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] + 11[tn≤T ]v(tn, y(tn)) + ε2.

Then

v(t′, x′) − v(t, x) ≥
∫ tn

t′
ψ(s, y′(s), τ2(s))ds+

∑
1≤k<n

C(tk, y′(tk), ξk)11[tk≤T ]

+11[tn≤T ]v(tn, y′(tn))] −
∫ tn

t

ψ(s, y(s), τ2(s))ds− 11[tn≤T ]v(tn, y(tn))

−
∑

1≤k<n

C(tk, y(tk), ξk)11[tk≤T ] − 2ε2.

Next w.l.o.g we assume that t′ < t. Then we deduce that:

v(t′, x′) − v(t, x) ≥
∫ tn

t0

{(ψ(s, y′(s), τ2(s)) − ψ(s, y(s), τ2(s)))11[s≥t]}ds+
∫ tn

t0

ψ(s, y′(s), τ2(s))11[t′≤s<t]ds

+
∑

1≤k<n

{C(tk, y′(tk), ξk) − C(tk, y(tk), ξk)}11[tk≤T ]

+ 11[tn≤T ]{v(tn, y′(tn)) − v(tn, y(tn))} − 2ε2

≥ −
∫ tn

t0

{|ψ(s, y′(s), τ2(s)) − ψ(s, y(s), τ2(s))|11[s≥t]}ds

−
∫ tn

t0

|ψ(s, y′(s), τ2(s))|11[t′≤s<t]ds− n max
1≤k≤n

|C(tk, y′(tk), ξk) − C(tk, y(tk), ξk)|

− 11[tn≤T ]{|v(tn, y′(tn))| + |v(tn, y(tn))|} − 2ε2. (3.5)

Using the uniform continuity of ψ, C in y and property (3.1). Then the right-hand side of (3.4) the first and
the second term converges to 0 as t′ → t and x′ → x.

Now let us focus on the last one. Since ((tn)n≥1, (ξn)n≥1) be a admissible control then

−11[tn≤T ]{|v(tn, y′(tn))| + |v(tn, y(tn))|} ≥ −C (1 + |x|2 + |x′|2)
n

,

where C is a constant which come from the linear growth of ψ and G, taking the limit as (t′, x′) → (t, x) to
obtain:

lim inf
(t′,x′)→(t,x)

v(t′, x′) ≥ v(t, x) − C
(1 + |x|2 + |x′|2)

n
− 2ε2.
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As n and ε2 are arbitraries then putting n→ +∞ and ε2 → 0 to obtain:

lim inf
(t′,x′)→(t,x)

v(t′, x′) ≥ v(t, x).

Therefore v is lower semi-continuous. We then proved that v is continuous. �

3.3. Terminal value

Because of the possible jumps at the terminal time T , it is easy to see that, in general, v(t, x) does not tend
to G(x) as t tends to T . Extend the set of jumps to include jumps of zero, meaning no jump. Call this extended
set E0, extend trivially the operator N to a function independent from t, and let

G1(x) = inf
ξ∈E0

[G(x + g(T, x, ξ)) + C(T, x, ξ)] = min{G(x), N [G](T, x)}. (3.6)

We know that G and C are uniformly continuous in x then G1(x) is continuous. We claim

Lemma 3.5.
v(t, x) → G1(x) as t → T.

Proof. Fix (t, x) and a strategy ϕ. As in the previous proof, for each τ(Δ), gather all jumps of ϕ(τ) if any, in
jump ξ1 at the time T . Then we have

|J(t, x, ϕ, τ) −G(x+ g(T, x, ξ1)) − C(T, x, ξ1)| ≤ Cx(T − t)

or
J(t, x, ϕ, τ) = G(x+ g(T, x, ξ1)) + C(T, x, ξ1) +O(T − t).

The right hand side above only depends on ξ1, not on τ(.) itself. It follows that

inf
ϕ

sup
τ
J(t, x, ϕ, τ) = inf

ξ∈E0
[G(x+ g(T, x, ξ)) + C(T, x, ξ)] +O(T − t)

= G1(x) +O(T − t).

The result follows letting t→ T. �

4. Viscosity characterization of the value function

In this section we prove that the value function v is a viscosity solution of the Hamilton-Jacobi-Isaacs quasi-
variational inequality, that we replace by an equivalent QVI easier to investigate.

We now consider the following quasi-variational inequality (Isaacs equation):

max
{

min
τ∈K

[
−∂v
∂t

− ∂v

∂x
f(t, x, τ) − ψ(t, x, τ)

]
, v(t, x) −N [v](t, x)

}
= 0, (4.1)

with the terminal condition: v(t, x) = G1(x), x ∈ IRm, where G1 is given by (3.6).
Notice that it follows from hypothesis that the term in square brackets in (4.1) above is continuous with

respect to τ so that the minimum in τ over the compact K exists.
Recall the notion of viscosity solution of QVI (4.1).
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Definition 4.1. Let v be a continuous function defined on [0, T ]×IRm, IR-valued and such that v(T, x) = G1(x)
for any x ∈ IRm. The v is called:

(i) A viscosity supersolution of (4.1) if for any (t, x) ∈ [t0, T [×IRm and any function ϕ ∈ C1,2([t0, T [×IRm)
such that ϕ(t, x) = v(t, x) and (t, x) is a local maximum of ϕ− v, we have:

max
{

min
τ∈K

[
−∂ϕ
∂t

− ∂ϕ

∂x
f(t, x, τ) − ψ(t, x, τ)

]
, v(t, x) −N [v](t, x)

}
≥ 0; (4.2)

(ii) a viscosity subsolution of (4.1) if for any (t, x) ∈ [t0, T [×IRm and any function ϕ ∈ C1,2([t0, T [×IRm) such
that ϕ(t, x) = v(t, x) and (t, x) is a local minimum of ϕ− v, we have:

max
{

min
τ∈K

[
−∂ϕ
∂t

− ∂ϕ

∂x
f(t, x, τ) − ψ(t, x, τ)

]
, v(t, x) −N [v](t, x)

}
≤ 0; (4.3)

(iii) a viscosity solution if it is both a viscosity supersolution and subsolution.

Theorem 4.2. The value function v is the viscosity solution of the quasi-variational inequality (4.1).

Proof. The viscosity property follows from the dynamic programming principle and is proved in [10]. �

Now we give an equivalent of quasi-variational inequality (4.1). In this section, we consider the new function
Γ given by the classical change of variable Γ (t, x) = exp(t)v(t, x), for any t ∈ [t0, T ] and x ∈ IRm. Of course,
the function Γ is bounded from below and continuous with respect to its arguments.

A second property is given by the:

Proposition 4.3. v is a viscosity solution of (4.1) if and only if Γ is a viscosity solution to the following
quasi-variational inequality in [t0, T [×IRm,

max
{

min
τ

[
−∂Γ
∂t

+ Γ (t, x) − ∂Γ

∂x
f(t, x, τ) − exp(t)ψ(t, x, τ)

]
, Γ (t, x) −M [Γ ](t, x)

}
= 0, (4.4)

where M [Γ ](t, x) = inf
ξ∈E

[Γ (t, x + g(t, x, ξ)) + exp(t)C(t, x, ξ)]. The terminal condition for Γ is: Γ (T, x) =

exp(T )G1(x) in IRm.

5. Uniqueness of the solution of quasi-variational inequality

We are going now to address the question of uniqueness of the viscosity solution of quasi-variational inequal-
ity (4.1). We have the following:

Theorem 5.1. The solution in viscosity sense of quasi-variational inequality (4.1) is unique in the space of
continuous functions on [t0, T ] ×Rm which satisfy a linear growth condition, i.e., in the space

C := {ϕ : [0, T ]× IRm → IR, continuous and for any

(t, x), ϕ(t, x) ≤ C(1 + |x|) for some constants C and bounded from below}.

Proof. We will show by contradiction that if u and w is a subsolution and a supersolution respectively for (4.4)
then u ≤ w. Therefore if we have two solutions of (4.4) then they are obviously equal. Actually for some R > 0
suppose there exists (t, x) ∈ [t0, T ]×BR × I (BR := {x ∈ IRm; |x| < R}) such that:

max
t,x

(u(t, x) − w(t, x)) = u(t, x) − w(t, x) = η > 0. (5.1)
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Let us take θ, λ and β ∈ (0, 1] small enough. Then, for a small ε > 0, let us define:

Φε(t, x, y) = (1 − λ)u(t, x) − w(t, y) − 1
2ε

|x− y|2 − θ(|x − x|4 + |y − x|4) − β(t− t)2. (5.2)

By the linear growth assumption on u and w, there exists a (tε, xε, yε) ∈ [t0, T ]×BR ×BR, for R large enough,
such that:

Φε(tε, xε, yε) = max
(t,x,y)

Φε(t, x, y).

On the other hand, from 2Φε(tε, xε, yε) ≥ Φε(tε, xε, xε) + Φε(tε, yε, yε), we have

1
ε
|xε − yε|2 ≤ (1 − λ)(u(tε, xε) − u(tε, yε)) + (w(tε, xε) − w(tε, yε)), (5.3)

and consequently 1
ε |xε − yε|2 is bounded, and as ε → 0, |xε − yε| → 0. Since u and w are uniformly continuous

on [0, T ]×BR, then 1
2ε |xε − yε|2 → 0 as ε→ 0.

Since
(1 − λ)u(t, x) − w(t, x) ≤ Φε(tε, xε, yε) ≤ (1 − λ)u(tε, xε) − w(tε, yε),

it follow as λ→ 0 and the continuity of u and w that, up to a subsequence,

(tε, xε, yε) → (t, x, x). (5.4)

Next let us show that tε < T. Actually if tε = T then,

Φε(t, x, x) ≤ Φε(T, xε, yε),

and,
(1 − λ)u(t, x) − w(t, x) ≤ (1 − λ) exp(T )G1(xε) − exp(T )G1(yε) − β(T − tε)2,

since u(T, xε) = exp(T )G1(xε), w(T, yε) = exp(T )G1(yε) and G1 is uniformly continuous on BR. Then as λ→ 0
we have,

η ≤ −β(T − t)2
η < 0,

which yields a contradiction and we have tε ∈ [t0, T ). We now claim that:

w(tε, yε) − inf
ξ∈E

[w(tε, yε + g(tε, yε, ξ)) + exp(tε)C(tε, yε, ξ)] < 0. (5.5)

Indeed if
w(tε, yε) − inf

ξ∈E
[w(tε, yε + g(tε, yε, ξ)) + exp(tε)C(tε, yε, ξ)] ≥ 0,

then from Proposition 3.2 we have:

w(tε, yε) − inf
ξ∈E

[w(tε, yε + g(tε, yε, ξ)) + exp(tε)C(tε, yε, ξ)] = 0,

then there exist ξ1 ∈ E and small ε1 > 0 such that:

w(tε, yε) − w(tε, yε + g(tε, yε, ξ1)) − exp(tε)C(tε, yε, ξ1) ≥ −ε1.

From the subsolution property of u(tε, xε), we have

u(tε, xε) − inf
ξ∈E

[u(tε, xε + g(tε, xε, ξ)) + exp(tε)C(tε, xε, ξ)] ≤ 0,
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then
u(tε, xε) − u(tε, xε + g(tε, xε, ξ1)) − exp(tε)C(tε, xε, ξ1) ≤ 0.

It follows that:

(1 − λ)(u(tε, xε) − w(tε, yε) − [(1 − λ)u(tε, xε + g(tε, xε, ξ1)) − w(tε, yε + g(tε, yε, ξ1))]
≤ (1 − λ) exp(tε)C(tε, xε, ξ1) − exp(tε)C(tε, yε, ξ1) + ε1.

Now since C ≥ α > 0, then

(1 − λ)(u(tε, xε) − w(tε, yε) − [(1 − λ)u(tε, xε + g(tε, xε, ξ1)) − w(tε, yε + g(tε, yε, ξ1))]
< −λα+ exp(tε)C(tε, xε, ξ1) − exp(tε)C(tε, yε, ξ1) + ε1.

But this contradicts the definition of (5.1), since C, u, w is uniformly continuous on [0, T ] × BR and sending
ε1 → 0 and the claim (5.5) holds.

Next let us denote

ϕε(t, x, y) =
1
2ε

|x− y|2 + θ(|x− x|4 + |y − x|4) + β(t− t)2. (5.6)

Then we have: ⎧⎪⎪⎨
⎪⎪⎩
Dtϕε(t, x, y) = 2β(t− t),

Dxϕε(t, x, y) = 1
ε (x− y) + 4θ(x− x)|x− x|2,

Dyϕε(t, x, y) = − 1
ε (x− y) + 4θ(y − x)|y − x|2.

(5.7)

Let c, d ∈ IR such that
c+ d = 2β(tε − t). (5.8)

Taking now into account (5.5), (5.8), and the definition of viscosity solution, we get:

min
τ

[
−c+ (1 − λ)u(tε, xε) −

〈
1
ε
(xε − yε) + 4θ(xε − x)|xε − x|2, f(tε, xε, τ)

〉
− (1 − λ) exp(tε)ψ(tε, xε, τ)

]
≤ 0

(5.9)
and

min
τ

[
d+ w(tε, yε) −

〈
1
ε
(xε − yε) − 4θ(yε − x)|yε − x|2, f(tε, yε, τ)

〉
− exp(tε)ψ(tε, yε, τ)

]
≥ 0, (5.10)

which implies that:

− c− d+ (1 − λ)u(tε, xε) − w(tε, yε)

≤ min
τ

[
−

〈
1
ε
(xε − yε) − 4θ(yε − x)|yε − x|2, f(tε, yε, τ)

〉
− exp(tε)ψ(tε, yε, τ)

]

− min
τ

[
−

〈
1
ε
(xε − yε) + 4θ(xε − x)|xε − x|2, f(tε, xε, τ)

〉
− (1 − λ) exp(tε)ψ(tε, xε, τ)

]
,

≤ sup
τ

[〈
1
ε
(xε − yε) + 4θ(xε − x)|xε − x|2, f(tε, xε, τ)

〉
+ (1 − λ) exp(tε)ψ(tε, xε, τ)

]

− sup
τ

[〈
1
ε
(xε − yε) − 4θ(yε − x)|yε − x|2, f(tε, yε, τ)

〉
+ exp(tε)ψ(tε, yε, τ)

]
,

≤ sup
τ

[〈
1
ε
(xε − yε), f(tε, xε, τ) − f(tε, yε, τ)

〉
+〈4θ(xε − x)|xε − x|2, f(tε, xε, τ)〉 + 〈4θ(yε − x)|yε − x|2, f(tε, yε, τ)〉

+(1 − λ) exp(tε)ψ(tε, xε, τ) − exp(tε)ψ(tε, yε, τ)
]
. (5.11)
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Now, from (2.3), we get: 〈
1
ε
(xε − yε), f(tε, xε, τ) − f(tε, yε, τ)

〉
≤ C

ε
|xε − yε|2.

Next
〈4θ(xε − x)|xε − x|2, f(tε, xε, τ)〉 ≤ 4Cθ|xε||xε − x|3,

and finally,
〈4θ(yε − x)|yε − x|2, f(tε, yε, τ)〉 ≤ 4Cθ|yε||yε − x|3.

Taking in to account
c+ d = 2β(tε − t).

So that by plugging into (5.12) and note that λ > 0 we obtain:

−2β(tε − t) + (1 − λ)u(tε, xε) − w(tε, yε) ≤ C

ε
|xε − yε|2 + 4Cθ|xε||xε − x|3 + 4Cθ|yε||yε − x|3

+ sup
τ

(1 − λ) exp(tε)ψ(tε, xε, τ) − exp(tε)ψ(tε, yε, τ)]. (5.12)

By sending ε → 0, λ → 0, θ → 0 and taking into account of the continuity of ψ, we obtain η ≤ 0 which is a
contradiction. The proof of Theorem 5.1 is now complete. �

As an example of a use of this result in mathematical finance, one may consider the option pricing problem
of references [4,5]. If the piecewise linear transaction costs are replaced by a more realistic piecewise affine cost,
i.e. a fixed cost is charged for any transaction in addition to a variable part, then the problem at hand is exactly
that considered here.

Acknowledgements. The author thanks gratefully Prof. A. Popier for the fructuous discussions during the preparation of
this paper. I also would like to thank the referees for their careful reading and for their helpful comments and suggestions
that led to considerable improvements in the paper.

References

[1] G. Barles, Deterministic impulse control problems. SIAM J. Control Optim. 23 (1985) 419–432.

[2] E.N. Barron, L.C. Evans and R. Jensen, Viscosity solutions of Isaaes’ equations and differential games with Lipschitz controls.
J. Differential Equations 53 (1984) 213–233.

[3] A. Bensoussan and J.L. Lions, Impulse Control and Quasi-Variational Inequalities. Bordes, Paris (1984)

[4] P. Bernhard, A robust control approach to option pricing including transaction costs. Annals of International Society of
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