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CONTINUITY OF SOLUTIONS OF A NONLINEAR ELLIPTIC EQUATION

Pierre Bousquet1

Abstract. We consider a nonlinear elliptic equation of the form div [a(∇u)] + F [u] = 0 on a domain
Ω, subject to a Dirichlet boundary condition tr u = φ. We do not assume that the higher order term
a satisfies growth conditions from above. We prove the existence of continuous solutions either when
Ω is convex and φ satisfies a one-sided bounded slope condition, or when a is radial: a(ξ) = l(|ξ|)

|ξ| ξ for
some increasing l : R

+ → R
+.
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1. Introduction

In this article, we consider the following nonlinear elliptic equation:{
div [a(∇u)] + F [u] = 0 on Ω,
u = φ on ∂Ω. (1.1)

Here, Ω is a bounded open Lipschitz set in R
n (n ≥ 2) and φ : ∂Ω → R is Lipschitz continuous. The vector field

a : R
n → R

n is continuous and elliptic:

〈a(ξ) − a(ξ′), ξ − ξ′〉 ≥ 0 ∀ ξ, ξ′ ∈ R
n. (1.2)

For x ∈ Ω and u ∈ C0(Ω), F [u](x) is a non linear functional of u. This term can be nonlocal. For instance, the
following variational problem is considered in [8]:

Minimize

{∫
Ω

L(∇u(x)) dx −
(∫

Ω

h(x, u(x)) dx
)β

}
.

The Euler equation can be written as in (1.1) with a(ξ) = ∇L(ξ) and

F [u](x) = β

(∫
Ω

h(x, u(x)) dx
)β−1

hu(x, u(x)).

Keywords and phrases. Nonlinear elliptic equations, continuity of solutions, lower bounded slope condition, Lavrentiev
phenomenon.

1 Université Aix-Marseille 1, LATP UMR6632 3 place Victor Hugo, 13331 Marseille Cedex 3, France. bousquet@cmi.univ-mrs.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2012

http://dx.doi.org/10.1051/cocv/2011194
http://www.esaim-cocv.org
http://www.edpsciences.org
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A solution of (1.1) is a function u ∈ W 1,1(Ω) such that a(∇u) ∈ L1
loc(Ω), F [u] ∈ L1

loc(Ω), tr u|∂Ω = φ and

(E)
∫

Ω

(
〈a(∇u(x)),∇η(x)〉 − F [u](x)η(x)

)
dx = 0, ∀ η ∈ C∞

c (Ω).

A natural approach to solve (1.1) is to consider it as a quasilinear elliptic equation to which Schauder’s theory
applies (see [6,9]). One then obtains a classical solution u. This requires however that a belong to C1,α(Ω) and
satisfies some structure conditions that we do not assume here.

Consider now the case when a satisfies the following growth assumptions: there exists p > 1 and α1, α2

and β1, β2 in (0,∞) such that
〈a(ξ), ξ〉 ≥ α1|ξ|p − β1 ∀ξ ∈ R

n, (1.3)

|a(ξ)| ≤ α2|ξ|p−1 + β2 ∀ξ ∈ R
n. (1.4)

Then, under suitable conditions on F [u], there exists a solution to (E) in W 1,p(Ω). This is the consequence
of a theory initiated by Visik and then developped by many authors, notably Minty et al. (see [10] and the
references therein). Once the existence of a W 1,p solution u is established, the question of the regularity of u
arises. Is the solution C1(Ω) or even C2(Ω), so that equation (1.1) is satisfied in a classical sense? Is the solution
continuous up to the boundary of Ω, so that the trace is a ‘true’ restriction to ∂Ω?

Another way to prove the existence of classical solutions of (E) has been considered by Hartman and Stam-
pacchia. In [8], they proved the existence of regular solutions to (E) without assuming any growth assumption
from above on a. Here, ‘regular’ means Lipschitz continuous. This is the key regularity property from which we
may deduce further regularity when the coefficients of the equation are smooth (see [8], Sect. 14).

We proceed to detail the strategy of Hartman and Stampacchia. We first introduce for K > 0 the set
Lipφ(Ω,K) of those functions u : Ω → R which are Lipschitz continuous on Ω, their Lipschitz rank being not
larger than K. This set is not empty except when K is lower than the Lipschitz rank Kφ of φ. We also denote
by Lipφ(Ω) the set of Lipschitz continuous functions on Ω. The set C0(Ω) is endowed with the L∞ norm. For
K ≥ Kφ, we say that uK ∈ Lipφ(Ω,K) is a K quasi solution of (E) if∫

Ω

〈a(∇uK),∇(v − uK)〉 − F [uK ](v − uK) ≥ 0, ∀v ∈ Lipφ(Ω,K). (1.5)

When a satisfies (1.2), there exists a K quasi solution uK for each K ≥ Kφ ([8] Thm. 1.1). Under a stronger
ellipticity condition on a, Hartman and Stampacchia prove that there exists C > 0 such that for any K ≥ Kφ,

||uK ||L∞(Ω) + ||∇uK ||L∞(Ω) ≤ C. (1.6)

In order to obtain such an estimate without any growth assumption from above on a, φ is required to satisfy
the bounded slope condition: there exists Q > 0 such that for any γ ∈ ∂Ω, there exist ζ−γ and ζ+

γ in R
n which

satisfy |ζ±γ | ≤ Q and
φ(γ) + 〈ζ−γ , y − γ〉 ≤ φ(y) ≤ φ(γ) + 〈ζ+

γ , y − γ〉, ∀y ∈ ∂Ω.

By using (1.6), one can extract from (uK)K≥Kφ
a subsequence which converges to a Lipschitz solution of (E).

In [2], we have generalized this result to a larger class of functions φ. The bounded slope condition used in [8]
is indeed quite restrictive. It requires that Ω be convex (except when φ is affine). It forces φ to be affine on ‘flat
parts’ of ∂Ω. Moreover, if Ω is smooth, then φ must be smooth as well (see Hartman [7] for precise statements;
see also [1]). Recently, Clarke [4] has introduced a new hypothesis on φ, the lower bounded slope condition of
rank Q (Q > 0): given any point γ ∈ ∂Ω, there exists an affine function

y �→ 〈ζγ , y − γ〉 + φ(γ)
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with |ζγ | ≤ Q such that
〈ζγ , y − γ〉 + φ(γ) ≤ φ(y), ∀y ∈ ∂Ω. (1.7)

The map φ : ∂Ω → R satisfies the lower bounded slope condition if and only if φ is the restriction to ∂Ω of a
convex function defined on R

n. When Ω is uniformly convex, φ satisfies the lower bounded slope condition if
and only if it is the restriction to ∂Ω of a semiconvex function (see [1] for details and further properties).

When φ satisfies the lower bounded slope condition (rather than the full two-sided bounded slope condition),
it can be proved (see [2]) that a solution u of (E) still exists in W 1,2(Ω) ∩W 1,∞

loc (Ω) when a satisfies

〈a(ξ) − a(ξ′), ξ − ξ′〉 ≥ μ|ξ − ξ′|2 (1.8)

and F satisfies growth assumptions similar to those of [8]. The convexity of Ω is also required here. The main
idea of the proof, inspired from [4], was that a ‘one sided barrier’ is enough to obtain local Lipschitz continuity.
Moreover, the result was optimal in the following sense: even when a(p) = p, F [u] = 0 and Ω is a disk in R

2, it
may happen that the corresponding solution is not globally Lipschitz on Ω if φ satisfies the mere lower bounded
slope condition.

In [2], the solution that we obtained satisfied the boundary condition only in the sense of traces. We were
unable at that time to prove the continuity of the solution up to the boundary, except when Ω was a polyhedron.
This is the content of our first main result Theorem 2.3 below to generalize this property to any convex domains
(under the same assumptions). As in [3], the proof uses ‘implicit barriers’. In contrast with classical barriers
which are explicitly defined in terms of the distance to the boundary and the function φ (see e.g. [6, 8]), the
implicit barriers are obtained as solutions of auxiliary problems stated on larger domains Ω0 ⊃ Ω with different
boundary conditions.

Up to now, only convex domains have been considered. It is an open problem to know whether Theorem 2.3
holds true on any smooth domain, even when φ is smooth. However, we prove in Theorem 2.5 that the Lipschitz
continuity of φ is enough to prove the existence of Hölder continuous solutions when a is radial: there exists
l : R

+ → R
+ such that a(ξ) = l(|ξ|)

|ξ| ξ, where | · | is the Euclidean norm in R
n. Once again, we only assume that l

satisfies a growth assumption from below which corresponds to (1.8).
The next section describes the hypotheses that we posit on the data. Each of the following sections is devoted

to the proof of Theorems 2.3 and 2.5 respectively.

2. Main results

Throughout the paper, Ω is a bounded open Lipschitz set. We denote by Γ the boundary of Ω. Hence, there
is a δ > 0 such that for every point γ ∈ Γ, Γ ∩ B(γ, δ) is the graph of a Lipschitz function (in an appropriate
coordinate system varying with γ). We also assume that the map φ : Γ → R is Lipschitz continuous of rank Kφ.

For the sake of clarity, we proceed to quote some results from [8]. Assume that F : C0(Ω) → L1(Ω) is
continuous:

(HF1) If uh ∈ C0(Ω) for h = 1, 2, . . . converges uniformly to u

on Ω as h→ ∞, then F [uh] → F [u] in L1(Ω).

We also assume that F is locally bounded: for every M > 0, there exists χ(M) > 0 such that

(HF2) |u(x)| ≤M on Ω ⇒ |F [u](x)| ≤ χ(M).

The existence of quasi solutions follows from

Theorem 2.1 ([8] Lem. 12.1). Assume that a is continuous and elliptic (see (1.2)), and that F satisfies (HF1)
and (HF2). Then for each K ≥ Kφ, there exists at least one uK ∈ Lipφ(Ω,K) such that∫

Ω

〈a(∇uK),∇(v − uK)〉 − F [uK ](v − uK) ≥ 0, ∀v ∈ Lipφ(Ω,K). (2.1)
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The a priori L∞ bound on quasi solutions can be obtained under the following assumptions (see [8] for more
general conditions): we assume that a ∈ C0(Rn,Rn) satisfy (1.3) for some 1 < p ≤ n, and that

(HF3) F [u](x) sgnu(x) ≤ c
m∑

i=1

||u||β(i)

Lα(i)(Ω)
|u(x)|γ(i)−1, x ∈ Ω a.e.

where c ≥ 0, α(i) ≥ 1, β(i) ≥ 0, γ(i) ≥ 1 and α(i) ≤ p∗, β(i) + γ(i) < p. Here, p∗ = np/(n− p) if n > p. When
n ≤ p, we replace the condition α(i) ≤ p∗ by α(i) <∞.
We then have

Theorem 2.2 ([8], Thm. 8.1). There exists a constant T such that for any K ≥ Kφ, for any K quasi solution
u, we have

||u||L∞(Ω) ≤ T.

The constant T depends on |Ω|, ||φ||L∞(Ω) and the parameters in (1.3) and (HF3).

For later use, we observe that (1.8) implies (1.3) for any p ≤ 2 (for p = 2, one can take e.g. α1 = μ/2 and
β1 = |a(0)|2/(2μ)).

We can now state our first main result:

Theorem 2.3. Assume that Ω is convex, φ satisfies the lower bounded slope condition as in (1.7), and a ∈
C0(Rn,Rn) is uniformly elliptic as in (1.8). If F satisfies (HF1), (HF2) and (HF3) with p = 2, then there
exists a solution u to (E) in W 1,2(Ω)∩L∞(Ω) which is locally Lipschitz in Ω. Moreover, u is Hölder continuous
on Ω and agrees with φ on ∂Ω.

As explained in the introduction, the first sentence of the above statement is proved in [2]. The continuity of
u is established in Section 3 below.

In the class of those functions which are locally Lipschitz on Ω and continuous up to the boundary, a unique-
ness result can be stated provided that a further condition is introduced on F [u] regarding its monotonicity.

Theorem 2.4. In addition to the assumptions of Theorem 2.3, assume that for any u1, u2 ∈ C0(Ω), we have∫
Ω

(F [u1] − F [u2])(u1 − u2) ≤ 0.

Then there exists one and only one locally Lipschitz solution u to the equation (E) which is continuous on the
closure of Ω.

Theorem 2.4 is proved at the end of Section 3.
When the domain Ω is not necessarily convex or when the Lipschitz function φ does not satisfy a one sided

bounded slope condition, it is still possible to prove the existence of a continuous solution when a is radial:

Theorem 2.5. Assume that a ∈ C0(Rn,Rn) can be written as a(ξ) = l(|ξ|)
|ξ| ξ where l : R

+ → R
+ satisfies:

(Hl) there exists μ > 0 and p ≥ 2 such that for any 0 < s < t,

l(t) − l(s) ≥ μ(t− s)p−1.

Assume that F satisfies (HF1), (HF2) and (HF3) (for the same exponent p). If Ω has the uniform exterior
sphere condition and φ is Lipschitz continuous, then there exists a solution u of (E) in W 1,p(Ω) which is Hölder
continuous on Ω.
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Please remember that a solution u is such that a(∇u) and F [u] belong to L1
loc(Ω), tru|∂Ω = φ and (E) is

satisfied. We say that Ω has the uniform exterior sphere condition if there exists r > 0 such that for any γ ∈ Γ,
there exists z ∈ R

n which satisfies:

(1) |z − γ| = r;
(2) B(z, r) ⊂ R

n \ Ω.

Since a is continuous, we necessarily have l(0) = 0.
One of the most classical examples of radial fields a satisfying the above assumptions is the p Laplacian

(p ≥ 2): a(ξ) = |ξ|p−2ξ. More generally, any C1 map l such that inft>0
l′(t)
tp−2 > 0 satisfies (Hl).

3. Proof of Theorem 2.3

Since φ satisfies the lower bounded slope condition, it is the restriction to Γ of a convex function which is
globally Lipschitz on R

n (see [1]). We still denote by φ this extension and by Kφ its Lipschitz rank on R
n.

By Theorem 2.1, for every K ≥ Kφ, there exists a K quasi solution to (1.5). By Theorem 2.2 and (HF2),
there exists a constant T (independent of K) such that if u is a K quasi solution, then

||u||L∞(Ω) ≤ T, ||F [u]||L∞(Ω) ≤ χ(T ).

It then easily follows from (1.8) that there exists S > 0 such that ||u||W 1,2(Ω) ≤ S for any K quasi solution
(see [2], Prop. 3.3 for details). Here, S depends on ||φ||W 1,∞(Ω), ||a(∇φ)||L∞(Ω), |Ω|, μ, T and χ(T ).

Barriers are the basic tool to control the behaviour of quasi solutions near the boundary.

Definition 3.1. Let K0 ≥ Kφ and γ ∈ ∂Ω. Then we say that a function w : Ω → R is a lower barrier for (E)
at γ in Lipφ(Ω,K0) if the following properties are satisfied:

• the function w is Lipschitz continuous on Ω of rank ≤ K0;
• w(γ) = φ(γ) and w ≤ φ on ∂Ω;
• for K ≥ K0, any K quasi solution u of (E) satisfies u ≥ w on Ω.

We define similarly an upper barrier. We can construct lower barriers for K quasi solutions by using the lower
bounded slope condition (see [2], Prop. 3.4):

Proposition 3.2. There exists K0 ≥ Kφ such that for any γ ∈ Γ, there exists a lower barrier w in Lipφ(Ω,K0).

This lower barrier was used to prove the following key estimate (see [2], inequality (3.10)):

Proposition 3.3. There exists Q ≥ 0 such that for any K ≥ Kφ, for any K quasi solution u, we have

u(x) ≤ u(y) +Q
|x− y|

|x− πΓ(x|y)| , x, y ∈ Ω. (3.1)

Here πΓ(x|y) denotes the unique point of Γ of the form x+ t(y − x), t > 0.

The constants K0 in Proposition 3.2 and Q in Proposition 3.3 depend on μ, T, χ(T ), ||φ||L∞(Ω), Kφ and the
diameter diam Ω of Ω. Moreover, (3.1) implies that on any compact subset Ω0 ⊂ Ω, the Lipschitz rank of uK is
bounded by Q/d (Ω0,Γ) (here, d (Ω0,Γ) denotes the distance between Ω0 and Γ).

The new result of this section is given by the following proposition:

Proposition 3.4. There exists C > 0 such that for any K ≥ Kφ, for any K quasi solution u, we have

|u(x) − u(y)| ≤ C|x− y|α x, y ∈ Ω, (3.2)

where α := 1
n+1 .
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Proof of Proposition 3.4. Estimate (3.2) will follow from

Lemma 3.5. [3] Let u ∈ W 1,p((−1, 1)n), p > 1. We assume that there exists Q > 0 such that for a.e.
t ∈ (−1, 1), for a.e. x′1, x

′
2 ∈ (−1, 1)n−1,

|u(x′1, t) − u(x′2, t)| ≤ Q|x′1 − x′2|. (3.3)

Then there exists C > 0 only depending on n, p, Q and ||∂tu||Lp((−1,1)n) such that for some representative ũ of
u, we have for any x1, x2 ∈ (−1, 1)n,

|ũ(x1) − ũ(x2)| ≤ C|x1 − x2|
p−1

n−1+p .

Proof. By reflection and regularisation, we can assume that u is the restriction to (−1, 1)n of a map in C∞(Rn)
still denoted by u. We introduce a smooth kernel ρ ∈ C∞

c (Rn−1,R+),
∫

Rn−1 ρ = 1, supp ρ ⊂ Bn−1(0, 1). We
denote by ρε the function defined by ρε(·) = ρ(·/ε)/εn−1. We consider

uε(x′, t) =
∫

Rn−1
u(x′ − y′, t)ρε(y′) dy′.

By (3.3), we have |uε(x′, t) − u(x′, t)| ≤ Qε.
Let x′ ∈ (−1, 1)n−1 and −1 < t1 < t2 < 1. Then

|u(x′, t1) − u(x′, t2)| ≤ |u(x′, t1) − uε(x′, t1)| + |uε(x′, t1) − uε(x′, t2)| + |uε(x′, t2) − u(x′, t2)|

≤ 2εQ+
∫

Rn−1
ρε(x′ − y′) dy′

∫ t2

t1

|∂tu(y′, t)| dt.

By Hölder’s inequality, we get

∫ t2

t1

dt
∫

Rn−1
ρε(x′ − y′)|∂tu(y′, t)| dy′ ≤ ||∂tu||Lp(Bn−1(x′,ε)×(−1,1))|t2 − t1|1− 1

p

||ρ||Lp′(Rn−1)

ε
n−1

p

·

Therefore,

|u(x′, t1) − u(x′, t2)| ≤ 2εQ+
||ρ||Lp′(Rn−1)

ε
n−1

p

||∂tu||Lp(Bn−1(x′,ε)×(−1,1))|t2 − t1|1− 1
p .

We now take ε := |t2 − t1|
p−1

n−1+p . This gives

|u(x′, t1) − u(x′, t2)| ≤ C|t2 − t1|
p−1

n−1+p (3.4)

where C depends only on n, p, Q and ||∂tu||Lp((−1,1)n). Lemma 3.5 follows from (3.3) and (3.4). �

We observe that the possibility to exploit the continuity of a map in one direction together with the integra-
bility properties in the other directions had already been used in [4].

The construction of upper barriers will be based on:

Lemma 3.6. Let Ω∗ be a bounded subset of R
n such that Ω∗ ⊃ Ω. Let φ∗ : R

n → R be a convex function
such that φ∗|Ω∗ ∈ C∞(Ω∗). We assume that φ∗ ≥ φ on Γ. Let u∗ ∈ Lipφ∗(Ω∗,K) be a K quasi solution in
Lipφ∗(Ω∗,K): ∫

Ω∗
〈a(∇u∗),∇(v − u∗)〉 − χ(T )(v − u∗) ≥ 0 , ∀v ∈ Lipφ∗(Ω∗,K). (3.5)

Then for any K quasi solution u of (E) in Lipφ(Ω,K), u∗ ≥ u on Ω.
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(The constant χ(T ) > 0 has been introduced at the beginning of Section 3: |F [u]| ≤ χ(T ) for any K quasi
solution u of (E) in Lipφ(Ω,K)).

Proof. We first prove that φ∗ ≤ u∗ on Ω∗ by inserting v(x) := max(u∗(x), φ∗(x)) in (3.5). This gives∫
[φ∗>u∗]

〈a(∇u∗),∇φ∗ −∇u∗〉 − χ(T )(φ∗ − u∗) ≥ 0.

Using (1.8), we obtain ∫
[φ∗>u∗]

〈a(∇φ∗),∇u∗ −∇φ∗〉 ≤ −χ(T )
∫

[φ∗>u∗]

(φ∗ − u∗). (3.6)

We claim that the left hand side is non negative.
Indeed, let

{
aε = (a1

ε , . . . , a
n
ε )

}
ε>0

be a family of smooth vector fields which converge locally uniformly to a
and satisfy (1.8) with the same μ (a convolution of a by a smooth kernel will do). For each ε, Stokes formula
implies ∫

[φ∗>u∗]

〈aε(∇φ∗),∇u∗ −∇φ∗〉 =
∫

[φ∗>u∗]

div [aε(∇φ∗)](φ∗ − u∗)

=
∫

[φ∗>u∗]

n∑
i,j=1

∂ai
ε

∂ξj
(∇φ∗) ∂2φ∗

∂xi∂xj
(φ∗ − u∗) ≥ 0,

by convexity of φ∗. By letting ε→ 0, we get∫
[φ∗>u∗]

〈a(∇φ∗),∇u∗ −∇φ∗〉 ≥ 0. (3.7)

The comparison of (3.6) and (3.7) implies that φ∗ ≤ u∗ on Ω∗.
In particular, u∗ ≥ φ∗ ≥ φ on Γ. We now prove that u∗ ≥ u on Ω, for any K quasi solution u of (E) in

Lipφ(Ω,K). The function
v(x) := min(u, u∗)(x)

belongs to Lipφ(Ω,K). The function

v∗(x) :=
{

max(u, u∗)(x) if x ∈ Ω,
u∗(x) otherwise

belongs to Lip(Ω∗,K) and agrees with u∗ on ∂Ω∗.
By inserting v in (1.5) and v∗ in (3.5), we get∫

[u>u∗]

(〈a(∇u(x)),∇u∗(x) −∇u(x)〉 − F [u](u∗(x) − u(x))) dx ≥ 0,∫
[u>u∗]

(〈a(∇u∗(x)),∇u(x) −∇u∗(x)〉 − χ(T )(u(x) − u∗(x))) dx ≥ 0.

This gives by (1.8) and the definition of χ(T )

μ

∫
[u>u∗]

|∇u −∇u∗|2 ≤
∫

[u>u∗]

〈a(∇u) − a(∇u∗),∇u −∇u∗〉

≤
∫

[u>u∗]

(F [u] − χ(T ))(u− u∗) ≤ 0,

which implies that u ≤ u∗ on Ω. This completes the proof of Lemma 3.6. �
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A first consequence of Lemma 3.6 is given by:

Lemma 3.7. There exists C1 > 0 such that for any K ≥ Kφ, any K quasi solution u and any γ ∈ Γ, x ∈ Ω,
we have

u(x) ≤ φ(γ) + C1|x− γ|α, (3.8)

where α = 1
n+1 .

Proof. Fix γ ∈ Γ. Since Ω is convex, there exists an open hypercube Ω∗ such that Ω∗ ⊃ Ω and γ is the center
of an n− 1 dimensional face Σ of Ω∗. We introduce

φ∗(x) := φ(γ) +Kφ|x− γ|.
Thus, φ∗ ≥ φ on Γ.

By Theorem 2.1, for any K ≥ Kφ, there exists a K quasi solution u∗ ∈ Lipφ∗(Ω∗,K) satisfying (3.5).
Moreover, there exist T ∗ > 0, S∗ > 0 (not depending on K) such that

||u∗||L∞(Ω∗) ≤ T ∗, ||u∗||W 1,2(Ω∗) ≤ S∗.

By Proposition 3.3, there exists Q∗ > 0 (not depending on K) such that

u∗(x) ≤ u∗(y) +Q∗ |x− y|
|x− π∂Ω∗(x|y)| , x, y ∈ Ω∗. (3.9)

Let Ω∗
1 = 1

2 (Ω∗ − γ) + γ. In view of (3.9), we can apply Lemma 3.5 on Ω∗
1 with p = 2. We get

|u∗(x) − u∗(γ)| ≤ C1|x− γ|α, x ∈ Ω∗
1 (3.10)

for some C1 > 0. By enlarging C1 if necessary, we can assume that this inequality holds true for any x ∈ Ω∗.
By Lemma 3.6 and the fact that u∗(γ) = φ∗(γ) = φ(γ), we have

u(x) ≤ u∗(x) ≤ φ(γ) + C1|x− γ|α, x ∈ Ω.

This completes the proof of Lemma 3.7. �

In order to exploit the estimate given by Lemma 3.7, we need the following maximum principle:

Lemma 3.8. There exists C0 > 0 such that for any K ≥ Kφ, any K quasi solution u and any x, y ∈ Ω,

|u(x) − u(y)| ≤ max
z∈Ω,γ∈Γ,

|z−γ|≤|x−y|
|u(z)− φ(γ)| + C0|x− y|. (3.11)

The constant C0 depends only on χ(T )/μ, and |Ω|. Lemma 3.8 is a consequence of the proof of [8] Lemma 10.0
(more precisely, it is a rephrasing of inequality (10.14) there). The lower bounded slope condition plays no role
here, neither does the convexity of Ω.

We now complete the proof of Proposition 3.4. For any K ≥ Kφ and any K quasi solution u, we have by
Proposition 3.2

u(z) ≥ w(x) ≥ φ(γ) −K0|z − γ|, γ ∈ Γ, z ∈ Ω. (3.12)

This gives a lower bound of u(z) − φ(γ) when z ∈ Ω.
From (3.12) and (3.8), for K ≥ Kφ, a K quasi solution u satisfies

max
z∈Ω,γ∈Γ,

|z−γ|≤|x−y|
|u(z) − φ(γ)| ≤ (K0(diam Ω)1−α + C1)|x− y|α.

By Lemma 3.8, this implies that for any x, y ∈ Ω,

|u(x) − u(y)| ≤ C|x− y|α,
with C := (K0 + C0)(diam Ω)1−α + C1. Hence, u is Hölder continuous. Proposition 3.4 follows at once. �
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Finally, we complete the proof of Theorem 2.3. For each K ≥ Kφ, let uK ∈ Lipφ(Ω,K) a K quasi solution,
so that ||uK ||L∞(Ω) ≤ T, ||uK ||W 1,2(Ω) ≤ S and the Lipschitz rank of uK on any compact subset Ω0 ⊂ Ω is
bounded by Q/d (Ω0,Γ). Finally, (3.2) holds true for any uK .

Then there exists a subsequence (uKi) which uniformly converges on Ω to a function u which is locally
Lipschitz on Ω, and Hölder continuous on Ω of order α. As in [2], Proposition 3.6, one can also prove that the
function u is a solution of (E). This completes the proof of Theorem 2.3. �

Proof of Theorem 2.4. Here, we assume further that if u1, u2 are two continuous functions on Ω, then∫
Ω

(F [u1](x) − F [u2](x))(u1(x) − u2(x)) dx ≤ 0. (3.13)

Let u1, u2 : Ω → R be such that:

(1) u1, u2 are locally Lipschitz on Ω;
(2) u1, u2 are continuous on Ω and agree with φ on Γ;
(3) u1, u2 are solutions of (E).

We then prove that u1 = u2. Let θ : R → R be a smooth odd nondecreasing function such that

θ(t) =
{

0 if |t| ≤ 1
t if |t| ≥ 2.

We define for each i ≥ 1, θi(t) = θ(it)/i and ηi(x) = θi(u2(x) − u1(x)). Then ηi is a Lipschitz continuous function
on Ω which vanishes on a neighborhood of Γ (here we use the fact that u1 and u2 are continuous up to the
boundary and agree on the boundary). Hence, we can insert ηi in (E), which yields:∫

Ω

〈a(∇u1),∇ηi〉 − F [u1]ηi = 0.

Since ∇ηi = θ′(i(u2 − u1))(∇u2 −∇u1), we get∫
Ω

θ′(i(u2 − u1))〈a(∇u1),∇u2 −∇u1〉 − F [u1]ηi = 0. (3.14)

Symetrically, we have (with u2,−ηi instead of u1, ηi)∫
Ω

θ′(i(u1 − u2))〈a(∇u2),∇u1 −∇u2〉 + F [u2]ηi = 0. (3.15)

The sum of (3.14) and (3.15) gives∫
Ω

θ′(i(u2 − u1))〈a(∇u2) − a(∇u1),∇u2 −∇u1〉 =
∫

Ω

(F [u1] − F [u2])
θ(i(u1 − u2))

i
·

Here, we have used the fact that θ(x) = −θ(−x) and θ′(x) = θ′(−x). Using (1.8), we get

μ

∫
Ω

θ′(i(u2 − u1))|∇u2 −∇u1|2 dx ≤
∫

Ω

(F [u1] − F [u2])
θ(i(u1 − u2))

i
·

By the dominated convergence theorem, the right hand side goes to
∫
Ω
(F [u1] − F [u2])(u1 − u2) when i→ ∞.

This quantity is nonpositive by (3.13). Hence, by Fatou’s Lemma in the left hand side, we have

lim inf
i→∞

θ′(i(u2 − u1)(x))|∇u2(x) −∇u1(x)|2 = 0, a.e. x ∈ Ω.

This implies that
(u2 − u1)(x)|∇u2(x) −∇u1(x)|2 = 0, a.e. x ∈ Ω

so that u1 = u2 on Ω. This completes the proof of Theorem 2.4. �
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4. Proof of Theorem 2.5

Exactly as in the proof of Theorem 2.3, for each K ≥ Kφ, there exists a K quasi solution uK ∈ Lipφ(Ω,K).
There exists T > 0 such that for any K ≥ Kφ,

||uK ||L∞(Ω) ≤ T, ||F [uK ]||L∞(Ω) ≤ χ(T ). (4.1)

We observe that for any ξ, ξ′ ∈ R
n,

〈a(ξ) − a(ξ′), ξ − ξ′〉 ≥ μ

2p
|ξ − ξ′|p. (4.2)

Indeed, let r = |ξ|, s = |ξ′| and b = 〈ξ/|ξ|, ξ′/|ξ′|〉. Then

〈a(ξ) − a(ξ′), ξ − ξ′〉 = rl(r) + sl(s) − b(sl(r) + rl(s))

and |ξ − ξ′|p = (r2 + s2 − 2brs)p/2. Then (4.2) is equivalent to

rl(r) + sl(s) − b(sl(r) + rl(s)) ≥ μ

2p
(r2 + s2 − 2brs)p/2, r, s ≥ 0,−1 ≤ b ≤ 1. (4.3)

By convexity of the right hand side with respect to b, we only need to prove (4.3) when b ∈ {−1, 1}. When
b = 1, this amounts to

(l(r) − l(s))(r − s) ≥ μ

2p
|r − s|p.

This follows from (Hl) at once. When b = −1, we have to prove that

(l(r) + l(s))(r + s) ≥ μ

2p
(r + s)p. (4.4)

By (Hl) and the fact that l(0) = 0, we have l(r) ≥ μrp−1, l(s) ≥ μsp−1. This implies (4.4) and thus (4.3) is also
true in that case. This completes the proof of (4.2).

Step 1: A variational setting. We proceed to prove that uK is the solution of a variational problem on
Lipφ(Ω,K). We introduce λ(t) :=

∫ t

0
l(s) ds and L(ξ) := λ(|ξ|). Then L is non negative, convex and differentiable

with ∇L(ξ) = l(|ξ|)ξ/|ξ| = a(ξ).
Let K ≥ Kφ and v ∈ Lipφ(Ω,K). For any x ∈ Ω, the function

t �→ L(∇uK(x) + t∇(v − uK)(x))

is convex. Hence, the function

g : t �→
∫

Ω

L(∇uK + t(∇v −∇uK)) − F [uK ](uK + t(v − uK))

is convex as well. Since v and uK are Lipschitz continuous, their gradients are uniformly bounded and we can
differentiate under the integral sign. We have

g′(0) =
∫

Ω

〈a(∇uK),∇v −∇uK〉 − F [uK ](v − uK).

Since uK is a K quasi solution, we get g′(0) ≥ 0 so that g is non decreasing on [0,+∞). Whence∫
Ω

L(∇uK) − F [uK ]uK ≤
∫

Ω

L(∇v) − F [uK ]v. (4.5)
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By (Hl), L(∇uK) ≥ μ
p |∇uK |p. By (4.5) with v = φ and (4.1), there exists S > 0 (independent of K) such

that ||uK ||W 1,p(Ω) ≤ S.

Step 2: A uniform Hölder continuity estimate for quasi solutions. In order to establish a Hölder
estimate, we need a generalization of Lemma 3.8:

Lemma 4.1. Assume that a ∈ C0(Rn,Rn) satisfies

〈a(ξ) − a(ξ′), ξ − ξ′〉 ≥ ν|ξ − ξ′|p, ξ, ξ′ ∈ R
n (4.6)

for some ν > 0, p > 1. Let φ : R
n → R be a Lipschitz map of rank Kφ, g ∈ L∞(Ω) and K ≥ Kφ. Let

u ∈ Lipφ(Ω,K) such that ∫
Ω

〈a(∇u),∇v −∇u〉 − g(x)(v − u) ≥ 0, v ∈ Lipφ(Ω,K). (4.7)

Then there exists C0 > 0 depending only on μ/||g||L∞(Ω) and |Ω| such that

|u(x) − u(y)| ≤ max
z∈Ω,γ∈Γ

|z−γ|≤|x−y|
|u(z)− φ(γ)| + C0|x− y| 1

p−1 . (4.8)

Proof. This is a mere adaptation of [8] Lemma 10.0. Fix x, y in Ω and set τ := y−x. We define uτ (·) = u(·+ τ)
on Ωτ := Ω − τ, as well as φτ (·) = φ(· + τ) and gτ (·) = g(· + τ). Then∫

Ωτ

〈a(∇uτ ),∇w −∇uτ 〉 − gτ (x)(w − uτ ) ≥ 0, w ∈ Lipφτ (Ωτ ,K). (4.9)

Let M ≥Mτ := maxz∈Ω,γ∈Γ
|z−γ|≤τ

|u(z) − φ(γ)|. We observe that for any x ∈ ∂(Ω ∩ Ωτ ), x ∈ ∂Ω or x + τ ∈ ∂Ω.

Hence, |u(x) − uτ (x)| ≤M on ∂(Ω ∩ Ωτ ).
In (4.7), we take

v :=
{
u on Ω \ Ωτ ,
max(u, uτ −M) on Ω ∩ Ωτ .

We get ∫
AM

〈a(∇u),∇uτ −∇u〉 − g(x)(uτ − u−M) ≥ 0 (4.10)

where AM := {x ∈ Ω ∩ Ωτ : u(x) ≤ uτ (x) −M}. Now, we define

w :=
{
uτ on Ωτ \ Ω,
min(u +M,uτ) on Ω ∩ Ωτ .

By inserting w in (4.9), we get∫
AM

〈a(∇uτ ),∇u−∇uτ 〉 − gτ (x)(u − uτ +M) ≥ 0. (4.11)

By adding (4.10) and (4.11) and in view of (4.6), we get

ν

∫
AM

|∇uτ −∇u|p ≤
∫

AM

(gτ (x) − g(x))v(x) dx (4.12)
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where v(x) := max(uτ (x) − u(x) −M, 0) ∈ Lip0(Ω ∩ Ωτ ). We extend g and v on R
n by 0. The right hand side

of (4.12) is equal to ∫
Rn

g(x)(v(x − τ) − v(x)) dx ≤ ||g||L∞(Ω)|τ |
∫

Rn

|∇v(x)| dx. (4.13)

By (4.12) and (4.13), we have

∫
AM

|∇u−∇uτ |p ≤ ||g||L∞(Ω)

ν
|τ |

∫
AM

|∇u −∇uτ |.

By Hölder inequality, this gives

(∫
AM

|∇u−∇uτ |p
) 1

p

≤
( ||g||L∞(Ω)

ν
|τ |

) 1
p−1

|AM | 1p .

Hence, by Fubini Theorem and the definition of AM , M ≥Mτ , we obtain

∫ +∞

M

|AM ′ | dM ′ =
∫

AM

(uτ (x) − u(x) −M) dx

≤
(∫

AM

|uτ − u−M |p∗
) 1

p∗

|AM |1− 1
p∗ ≤ C

(∫
AM

|∇uτ −∇u|p
) 1

p

|AM |1− 1
p∗

≤ C′|τ | 1
p−1 |AM |β ,

where β > 1 while C and C′ depend only on n, p, Ω and ||g||L∞(Ω)/ν. Here, we have used the Sobolev inequality
with p∗ = np/(n − p) if p < n (in that case, β = 1 + 1/n). When p ≥ n, we take for p∗ any exponent larger
than p.

This implies (see [8] Lem. 7.2) that |AM | = 0 for

M ≥ C′ β

β − 1
|τ | 1

p−1 |Ω|β−1 +Mτ .

In particular, uτ (x) ≤ u(x) + C0|τ |1/(p−1) + Mτ (C0 = C′|Ω|β−1β/(β − 1)). The other inequality can be
established similarly. Since τ = y − x, this completes the proof of Lemma 4.1. �

We can now state the Hölder estimate for K quasi solutions:

Proposition 4.2. There exists C > 0 such that for any K ≥ Kφ, for any K quasi solution uK,

|uK(x) − uK(y)| ≤ C|x − y|α ∀x, y ∈ Ω (4.14)

where α := min
(

p−1
n+p−1 ,

1
p−1

)
.

Proof. By Lemma 4.1, it is enough to prove that there exists a positive constant C such that for any γ ∈ Γ, for
any K ≥ Kφ and any K quasi solution u we have

|u(x) − u(γ)| ≤ C|x− γ| p−1
n+p−1 , ∀x ∈ Ω. (4.15)

We proceed to prove that u(x) − u(γ) ≤ C|x − γ|(p−1)/(n+p−1). The other inequality could be established
similarly.
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Fix γ ∈ Γ. There exists r > 0 not depending on γ and z ∈ R
n such that B(z, r) ⊂ R

n \ Ω and |z − γ| = r.
Let R := r + diam Ω. We define Ω∗ := B(z,R) \B(z, r) and

φ∗(x) := φ(γ) +Kφ|x− γ|.
Fix K ≥ Kφ and consider u a K quasi solution of (E).

There exists a K quasi solution solution v ∈ Lipφ∗(Ω∗,K) to the inequation∫
Ω∗

〈a(∇v),∇w −∇v〉 − χ(T )(w − v) ≥ 0, ∀w ∈ Lipφ∗(Ω∗,K). (4.16)

Moreover, there exist T ∗ > 0 and S∗ > 0 independent of K such that

||v||L∞(Ω∗) ≤ T ∗, ||v||W 1,p(Ω∗) ≤ S∗.

By Lemma 3.6 (wih u∗ = v), we get v ≥ u on Ω.
We claim that the Hölder norm of v can be estimated independently of K and γ. The proof is very similar to

the proof of Lemma 4.1 except that we replace translations by rotations. This is the main reason why we require
that a be radial. Without loss of generality, we can assume that z = 0. For any linear isometry I : R

n → R
n,

I(Ω∗) = Ω∗. For any w ∈ Lipφ∗(Ω∗), we denote by wI the map w ◦ I. By (4.16) and an obvious change of
variables, we have ∫

Ω∗
〈a(∇vI),∇wI −∇vI〉 − χ(T )(wI − vI) ≥ 0, ∀w ∈ Lipφ∗(Ω∗,K). (4.17)

Here, we have also used the fact that

〈a(∇vI),∇wI −∇vI〉 = 〈a(I∗(∇v ◦ I)), I∗(∇w ◦ I −∇v ◦ I)〉

=
l(|∇v ◦ I|)
|∇v ◦ I| 〈I∗(∇v ◦ I), I∗(∇w ◦ I −∇v ◦ I)〉

= 〈a(∇v ◦ I),∇w ◦ I −∇v ◦ I〉.
Let b := max|y|=1 |I(y) − y|. We now take w = max(vI −KφRb, v) ∈ Lipφ∗(Ω∗,K) in (4.16):∫

[vI−KφRb>v]

〈a(∇v),∇vI −∇v〉 − χ(T )(vI −KφRb− v) ≥ 0. (4.18)

With w = min(v, v ◦ I−1 +KφRb) ∈ Lipφ∗(Ω∗,K) in (4.17), we have:∫
[vI−KφRb>v]

〈a(∇vI),∇v −∇vI〉 + χ(T )(vI −KφRb− v) ≥ 0. (4.19)

The sum of (4.18) and (4.19) (see also (4.2)) leads to∫
[vI−KφRb>v]

|∇v −∇vI |p ≤ 0. (4.20)

Hence, for any x ∈ Ω∗, vI(x) − v(x) ≤ KφRb. Symetrically, we have v ≤ vI +KφRb.
Now, if x, y ∈ Ω∗ are such that |x| = |y|, there exists an isometry I such that I(x) = y and

|v(x) − v(y)| = |v(x) − vI(x)| ≤ KφRb ≤ Q|x− y|
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for some constant Q which depends only on Kφ, r and R. We now apply to v the following lemma which is a
‘spherical’ version of Lemma 3.5:

Lemma 4.3. Let v ∈ W 1,p(B(0, R)\B(0, r)). Assume that there exists Q > 0 such that for any x, y ∈ B(0, R)\
B(0, r), |x| = |y|, we have

|v(x) − v(y)| ≤ Q|x− y|.
Then there exists C > 0 depending only on Q, ||v||W 1,p(B(0,R)\B(0,r)), r and R such that for any x, y ∈ B(0, R)\
B(0, r),

|v(x) − v(y)| ≤ C|x− y| p−1
n+p−1 .

Lemma 4.3 easily follows from Lemma 3.5 by the change of variables formula (see [3], Lem. 5 for a detailed proof).
It gives an estimate of the Hölder norm of the quasi solution v of (4.16). Since u ≤ v on Ω and u(γ) = φ(γ)
= φ∗(γ) = v(γ), we thus get

u(x) − u(γ) ≤ C|x− γ| p−1
n+p−1 , x ∈ Ω,

where C depends neither on γ nor on K. This completes the proof of Proposition 4.2. �

By Proposition 4.2, a subsequence of quasi solutions (uKi) uniformly converges to a Hölder continuous function
u satisfying (4.14). Since (uKi) is bounded in W 1,p(Ω), we can further assume that (uKi) weakly converges to u
in W 1,p(Ω).

The convexity of L implies that
∫
Ω
L(∇u) ≤ lim infi→+∞

∫
Ω
L(∇uKi). From (4.5) and (HF1), we thus get for

any v ∈ Lipφ(Ω) ∫
Ω

L(∇u) − F [u]u ≤
∫

Ω

L(∇v) − F [u]v. (4.21)

In particular, L(∇u) ∈ L1(Ω). We proceed to prove that u is a solution of (E). The map u is not Lipschitz
continuous so that we cannot differentiate under the integral sign. Still, the minimum of a problem in the
calculus of variations is a solution of the corresponding Euler equation when the Lagrangian L is convex (and
does not depend on x and u). This result recently proved in [5] does not require any growth assumption on L.
We cannot directly apply it because in our situation, the admissible maps are Lipschitz continuous whereas u
only belongs to W 1,p(Ω). We have to prove somehow that no Lavrentiev phenomenon can occur.

Step 3: An approximation Lemma. We first state

Lemma 4.4. There exists a sequence (uk)k≥1 ⊂W 1,1
φ (Ω) converging to u in W 1,1(Ω) such that

(1) for each k ≥ 1, uk is Lipschitz continuous on a neighborhood of ∂Ω in Ω;
(2) for each k ≥ 1, L(∇uk) ∈ L1(Ω);
(3) (L(∇uk))k≥1 converges to L(∇u) in L1(Ω).

Proof of Lemma 4.4. Since Γ is locally the graph of Lipschitz maps, there exist δ > 0, and finitely many cubes
Q(xi, δ) of centers xi and radius δ > 0, i = 1, . . . ,M, such that Γ ⊂ ∪M

i=1Q(xi, δ/4) and for each i, there is an
isometry ζi of R

n which maps Q(xi, δ) onto (−δ, δ)n and Q(xi, δ) ∩ Ω onto

Ui := {(x′, xn) ∈ (−δ, δ)n−1 × (δ, δ) : xn > hi(x′)},

where hi : [−δ, δ]n−1 → R is Lipschitz continuous. We can further assume that

ζi(∂Ω ∩Q(xi, δ)) = {(y′, hi(y′)) : y′ ∈ (−δ, δ)n−1}. (4.22)
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Let θ ∈ C∞
c ((−δ, δ)n) be such that 0 ≤ θ ≤ 1 and θ = 1 on (−δ/2, δ/2)n. We introduce

ψk(x) := x− 1
k
θ(x)en

where en := (0, . . . , 0, 1). Clearly, for any k ≥ 1,

||ψk − Id||L∞ + ||Dψk − Id||L∞ ≤ C

k
· (4.23)

Moreover, ψk = Id outside (−δ, δ)n. We claim that there exists C′ > 0 such that for any k ≥ 1 and for any
i = 1, . . . ,M, we have

d(ψk(x), Ui) ≥ C′

k
when x ∈ (−δ/2, δ/2)n \ Ui, (4.24)

d(ψk(x), Ui) ≥ C′ d(x, Ui) when x ∈ (−δ, δ)n \ Ui. (4.25)

Indeed, let z = (z′, zn) ∈ (−δ, δ)n \ Ui. We then consider y = (y′, h(y′)) ∈ Ui such that |z − y| = d(z, Ui). Then
there exists B > 0 such that

hi(z′) − zn ≤ |zn − hi(y′)| + |hi(y′) − hi(z′)| ≤ B|z − y| = B d(z, Ui).

If z = ψk(x) for some x ∈ (−δ/2, δ/2)n \ Ui, then z′ = x′ and

1
k

= |x− z| ≤ hi(x′) − zn = hi(z′) − zn ≤ B d(z, Ui).

This implies (4.24) while (4.25) can be proved similarly.
We now introduce ψi

k = ζ−1
i ◦ψk◦ζi. Then ψi

k satisfies (4.23)−(4.25) in Q(xi, δ). We extend ψi
k by the identity

outside Q(xi, δ). Finally, we define
Φk := ψ1

k ◦ · · · ◦ ψM
k .

We easily get from (4.23)−(4.25), that the map Φk satisfies

||Φk − Id||L∞ + ||DΦk − Id||L∞ ≤ A0

k
, (4.26)

d(Φk(Γ),Ω) ≥ A

k
(4.27)

for some positive A0, A > 0. By relabelling the sequence Φk, we can assume that A0 = 1.
There exists a constant C0 > 0 such that for any k ≥ 1,

||DΦk||L∞ + ||D(Φk)−1||L∞ ≤ C0.

For each k ≥ 1, we define on Γ ∪ Φk(Γ)

φ̃k : y �→
{
φ(y) on Γ,
||DΦk||L∞φ(Φ−1

k (y)) on Φk(Γ).

We claim that φ̃k is Lipschitz continuous of rank not larger than

C := max(Kφ, C
2
0Kφ,Kφ(1 + 1/A) + ||φ||L∞/A).
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Indeed, we only need to prove that for any y, z ∈ Γ, we have |φ̃k(y) − φ̃k(Φk(z))| ≤ C|y − Φk(z)|. We have

|φ̃k(y) − φ̃k(Φk(z))| = |φ(y) − ||DΦk||L∞φ(z)|
≤ |φ(y) − φ(z)| + |φ(z) − ||DΦk||L∞φ(z)| ≤ Kφ|y − z| + ||φ||L∞ |1 − ||DΦk||L∞ |
≤ Kφ|y − Φk(z)| +Kφ|Φk(z) − z| + ||φ||L∞ ||Id−DΦk||L∞

≤ Kφ|y − Φk(z)| + Kφ + ||φ||L∞

k

by using (4.26). By (4.27), we get

|φ̃k(y) − φ̃k(Φk(z))| ≤ Kφ|y − Φk(z)| + 1
A

(Kφ + ||φ||L∞) d(Γ, Φk(Γ))

≤
(
Kφ

(
1 +

1
A

)
+

1
A
||φ||L∞

)
|y − Φk(z)|.

The claim is proved.
We still denote by φ̃k a Lipschitz extension on R

n of φ̃k with Lipschitz rank not larger than C. We then
introduce

ũk(x) :=
{
u(x) if x ∈ Ω,
φ̃k(x) if x ∈ R

n \ Ω.

Finally, we define for x ∈ Ω

uk(x) :=
1

||DΦk(x)||L∞
ũk ◦ Φk(x).

Since Φk converges to Id in the C1 topology, (uk) converges to u in W 1,1(Ω). There exists a subsequence that
we still denote by (uk) such that (∇uk) converges to ∇u almost everywhere in Ω.

Moreover, for any γ ∈ Γ, we have

uk(γ) =
1

||DΦk||L∞
ũk ◦ Φk(γ) =

1
||DΦk||L∞

φ̃k(Φk(γ)) = φ(γ).

For each k ≥ 1, there exists δk > 0 such that for any x ∈ Ω satisfying d(x,Γ) < δk, we have Φk(x) /∈ Ω.
Since uk(x) = 1

||DΦk||L∞ φ̃k ◦ Φk(x) when d(x,Γ) < δk, the map uk is Lipschitz continuous on a neighborhood
of Γ in Ω.

We claim that

lim sup
k→∞

∫
Ω

L(∇uk) ≤
∫

Ω

L(∇u). (4.28)

This follows from the fact that λ is non decreasing:∫
Ω

L(∇uk) =
∫

Ω

λ

(∣∣∣∣ 1
||DΦk||∞DΦk(x)∗(∇ũk(Φk(x))

∣∣∣∣
)

dx

≤
∫

Ω∩Φ−1
k (Ω)

λ(|∇u(Φk(x))|) dx + λ(C)
∣∣Ω \ Φ−1

k (Ω)
∣∣ .

By the change of variables formula, we then get∫
Ω

L(∇uk) ≤
∫

Ω

L(∇u(y))|JacΦ−1
k (y)| dy + λ(C)

∣∣Ω \ Φ−1
k (Ω)

∣∣ .
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By the dominated convergence theorem, the right hand side converges to
∫
Ω L(∇u). This implies inequality

(4.28). By Fatou Lemma,

lim inf
k→+∞

∫
Ω

L(∇uk) ≥
∫

Ω

L(∇u).

Hence, (L(∇uk))k≥1 converges to L(∇u) in L1(Ω). This completes the proof of Lemma 4.4. �

Finally, we have the following approximation lemma:

Lemma 4.5. There exists (um) ⊂ Lipφ(Ω) such that (um) converges to u in W 1,1(Ω) and (L(∇um)) converges
to L(∇u) in L1(Ω).

Proof. By Lemma 4.4, we can assume that u is Lipschitz continuous near the boundary. We extend u by a
Lipschitz continuous function outside Ω. Let K be a compact subset of Ω such that u is Lipschitz continuous on
Ω \K. Let K1 be a compact subset of Ω such that int K1 ⊃ K. We introduce θ ∈ C∞

c (Ω) such that 0 ≤ θ ≤ 1,
θ = 1 on K1. Let ρ ∈ C∞

c (B(0, 1)), ρ ≥ 0,
∫

Rn ρ = 1 and ρk(·) := knρ(k·). We then define

uk(x) := θ(x)(u ∗ ρk)(x) + (1 − θ(x))u(x).

Then uk is Lipschitz continuous on Ω. We have

∇uk(x) = θ(x)(∇u ∗ ρk)(x) + (1 − θ(x))∇u(x) + (u ∗ ρk(x) − u(x))∇θ(x).

This implies that (uk) converges in W 1,1(Ω) to u and (up to a subsequence), (∇uk) converges to ∇u a.e. We also
observe that when x ∈ K1, ∇uk(x) = (∇u∗ρk)(x). For k > 1/d(K, ∂K1), ||∇u∗ρk||L∞(Ω\K1) ≤ ||∇u||L∞(Rn\K).
Hence, by considering the two cases x ∈ K1 and x /∈ K1 separately, we get for any k > 1/d(K, ∂K1)

L(∇uk(x)) ≤ KL||∇θ||L∞(Ω)|u ∗ ρk(x) − u(x)| + L(θ(x)(∇u ∗ ρk)(x) + (1 − θ(x))∇u(x))

where KL is a Lipschitz rank for L on the ball B(0, 2||u||L∞(Ω)||∇θ||L∞(Ω) + ||∇u||L∞(Ω\K)). This gives
∫

Ω

L(∇uk) ≤ KL||∇θ||L∞ ||u ∗ ρk − u||L1 +
∫

Ω

θL(∇u ∗ ρk) +
∫

Ω

(1 − θ)L(∇u).

By Jensen Theorem, we have L(∇u ∗ ρk(x)) ≤ (L(∇u) ∗ ρk)(x). By letting k → +∞, we thus get:

lim sup
k→+∞

∫
Ω

L(∇uk) ≤
∫

Ω

L(∇u).

Since by Fatou Lemma lim inf
k→+∞

∫
Ω
L(∇uk) ≥ ∫

Ω
L(∇u), the sequence (L(∇uk)) converges to L(∇u) in L1(Ω).

This completes the proof of Lemma 4.5. �

It is worth noting that as a by-product of the proofs of Lemmas 4.4 and 4.5, we have proved the non occurence
of the Lavrentiev phenomenon in the following setting 2:

Theorem 4.6. Let L : R
n → R be a convex map of the form L(ξ) = l(|ξ|) for some l : R

+ → R. Then

inf
u∈W 1,1

φ (Ω)

∫
Ω

L(∇u) = inf
u∈Lipφ(Ω)

∫
Ω

L(∇u).

2A similar result has been recently obtained by Bonfanti and Cellina with a different method.
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Step 4: End of the proof of Theorem 2.5. Let α ∈ (0, 1) and w ∈ Lipφ(Ω). For the sequence (um) given
by Lemma 4.5, we write

0 ≤ L(α∇w + (1 − α)∇um) ≤ αL(∇w) + (1 − α)L(∇um).

By the dominated convergence theorem and up to a subsequence (we do not relabel), (L(α∇w+ (1−α)∇um))
converges to L(α∇w + (1 − α)∇u) in L1(Ω). Hence (4.21) remains true for any v of the form αw + (1 − α)u,
w ∈ Lipφ(Ω).

Let w ∈ Lipφ(Ω). For any k ≥ 1,

k

(
L

(
∇u+

1
k
∇(w − u)

)
− L(∇u)

)
≤ L(∇w) − L(∇u) ∈ L1(Ω).

This implies [〈∇L(∇u),∇(w − u)〉]+ ∈ L1(Ω) and by Fatou Lemma∫
Ω

〈∇L(∇u),∇(w − u)〉 − F [u](w − u) =
∫

Ω

(
lim sup
k→+∞

k

(
L(∇u+

1
k
∇(w − u)) − L(∇u)

)
− F [u]

1
k
(w − u)

)

≥ lim sup
k→+∞

k

∫
Ω

((
L(∇u+

1
k
∇(w − u)) − L(∇u)

)
− F [u]

1
k
(w − u)

)

= lim sup
k→+∞

k

{∫
Ω

L(∇u+
1
k
∇(w − u)) − F [u](u+

1
k

(w − u))

−
∫

Ω

L(∇u) − F [u]u
}

≥ 0 by (4.21) with v =
1
k
w +

(
1 − 1

k

)
u.

We have thus proved

〈∇L(∇u),∇(w − u)〉 ∈ L1(Ω) (4.29)∫
Ω

〈∇L(∇u),∇(w − u)〉 − F [u](w − u) ≥ 0 (4.30)

for any w ∈ Lipφ(Ω).
By taking w = (1 − η)φ + η where η ∈ C∞

c (Ω) is equal to 1 on an arbitrary compact subset of Ω, we get by
(4.29) 〈∇L(∇u),∇u〉 ∈ L1

loc(Ω). This implies that 〈∇L(∇u),∇w〉 ∈ L1
loc(Ω) for any w ∈ Lipφ(Ω). In particular,

when w = (1 − η)φ± ηxi (1 ≤ i ≤ n and η a bump function as above), we obtain ∇L(∇u) ∈ L1
loc(Ω).

Now let η ∈ C∞
c (Ω) and t > 0. We define w = φ+ tη ∈ Lipφ(Ω). By (4.30), we have∫

Ω

〈∇L(∇u),∇η〉 − F [u]η +
1
t

∫
Ω

〈∇L(∇u),∇(φ− u)〉 − F [u](φ− u) ≥ 0.

We now let t→ +∞. This gives ∫
Ω

〈∇L(∇u),∇η〉 − F [u]η ≥ 0.

We then take w = φ− tη to obtain the opposite inequality. Finally, we have∫
Ω

〈∇L(∇u),∇η〉 − F [u]η = 0.

We have thus proved that u is a solution of (E). This completes the proof of Theorem 2.5. �
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