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LINEARIZATION TECHNIQUES FOR L
∞-CONTROL PROBLEMS
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AND L

∞-CONTROL PROBLEMS
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Abstract. The aim of the paper is to provide a linearization approach to the L
∞-control problems.

We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized
formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the
dynamic programming principle. Then, we use the L

p approach and the associated linear formula-
tions. This seems to be the most appropriate tool for treating L

∞ problems in continuous and lower
semicontinuous setting.
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1. Introduction

Linear programming techniques proved to be very useful in dealing with deterministic and stochastic control
problems. A wide literature is available on the subject both in the deterministic setting ([11,12,17,22]) and
in the stochastic framework ([6–9,14]). Recently, the authors of [8,11,17] have provided linearized versions
of the standard continuous infinite horizon discounted control problems. Their method is entirely based on
Hamilton-Jacobi-Bellman equations and occupational measures. In [14], the authors give linearized primal
and dual formulations for the stochastic Mayer or optimal stopping control problems. In finite horizon, the set
of constraints turns out to be convex and compact with respect to the weak convergence of probability measures.
These properties allow extending the control problem to a semicontinuous setting (see [14]). The method is
used to characterize the (stochastic) value function as a viscosity solution of the associated HJB system in some
generalized sense (cf. [16,18,19]).

For the different definition of discontinuous viscosity solutions see also Ishii solutions (exposed in [2]) based
on semicontinuous envelopes of functions, semicontinuous solutions introduced by Frankowska in [10] and by
Barron and Jensen in [5] for convex Hamiltonians, and envelope solutions [1] which are related to Subbotin
minimax solution [20] (called bilateral solutions in [1]).

Keywords and phrases. Dynamic programming principle, essential supremum, HJ equations, occupational measures,
L

p approximations.
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In the first part of the paper, we investigate further properties of the set of constraints appearing in classical
(deterministic) control problems. Identification of standard formulation to linearized problems leads to charac-
terizing the set of constraints as the closed convex envelope of the family of occupational measures associated
to the dynamic system. Using this property, we prove a semigroup behavior of the set of constraints. As
application we provide a simple proof for the dynamic programming principle in classical control problems with
bounded cost. In the semicontinuous and continuous framework, more precise assertions are proved.

In the second part, we aim at linearizing the value function of an L
∞-control problem with either continuous or

lower semicontinuous cost. The study of this kind of problems is a very difficult task because, in general, it leads
to strongly non-linear equations for which classical solutions may not and generally do not exist. Nevertheless,
we succeed to deal with this problem by using an L

p approximating method. The first step consists in providing
appropriate linearized primal and dual formulations for L

p-problems. The dual formulations are somewhat
different from those in the first part. They allow the passage to the limit as p→ ∞. Both Lipschitz-continuous
and the lower semicontinuous L

p-problems are considered. Identifying the limit of primal and dual problems
gives an alternative characterization of the value function in L

∞-control problems. In the Lipschitz-continuous
case, the standard L

∞-value function, its primal and dual formulations coincide. This is generally not the case
for nonconvex dynamics and semicontinuous cost functions. We provide an Example in this direction. The dual
problem is a linear formulation of the L

∞-control problem. The techniques in the proofs rely mainly on the
theory of Hamilton-Jacob equations and occupational measures. We use the semigroup property of the set of
constraints to prove a dynamic programming principle in bounded or continuous setting.

Our paper is organized as follows: in Section 2 we study the standard control problems with running and
terminal cost. We begin by recalling the notion of occupational measures in finite-horizon in Section 2.1.
The family of occupational measures is embedded in a more general set of probability measures which will be
referred to as the set of constraints. This set is convex and compact with respect both to the weak convergence
of probability measures and the Wasserstein distance of order 2. Its definition only depends on the coefficient
function f . In Section 2.2, we recall some results on the linearized primal and dual formulation of standard
control problems. Proof of these results can be found in [14], but, for reader’s convenience, we provide a proof
in Appendix A. As Corollary, we prove that the set of constraints is the closed convex envelope of the family of
occupational measures. Using this characterization, a semigroup-type property of the set of constraints is given
in Section 2.3, Proposition 2.9. We apply this result to prove dynamic programming principles (Thm. 2.11). In
Section 3.1 we give linearized versions of the L

p-control problems with Lipschitz continuous cost. Using a method
based on inf convolutions, we extend the results to the lower semicontinuous setting in Section 3.2. Passing to
the limit as p → ∞, we give a primal and linear dual formulation for the L

∞-control problem (Sect. 3.3). In
the continuous case, these formulations coincide with the usual value function (Thm. 3.5). A counter example
is given for l.s.c. costs if no convexity assumption is made on the dynamics (Ex. 3.6). Finally, using the
semigroup property of the set of constraints, we prove a dynamic programming principle for the L

∞-control
problem (Sect. 3.4).

Throughout the paper, we will be dealing with the following control system{
dxt0,x0,u

t = f
(
t, xt0,x0,u

t , ut

)
dt, t0 ≤ t ≤ T,

xt0,x0,u
t0 = x0 ∈ R

N ,
(1.1)

where T > 0 is a finite time horizon, t0 ∈ [0, T ] and the control u takes its values in a compact, metric space
U . We recall that a control (ut)t0≤t≤T is said to be admissible on [t0, T ] if it is Lebesgue-measurable on [t0, T ]
and we let U denote the family of all admissible controls on [0, T ]. We assume that the coefficient function
f : R × R

N × U −→ R
N satisfies{

f is bounded and uniformly continuous on R × R
N × U,

|f (s, x, u) − f (t, y, u)| ≤ c (|x− y| + |s− t|) , (1.2)

for all (s, t, x, y, u) ∈ R
2 × R

2N × U, for some positive real constant c > 0.



838 D. GOREAC AND O.-S. SEREA

2. Linear formulations and the dynamic programing principle for classical

control problems

2.1. Occupational measures

We begin by giving some properties of the linear formulations associated to control problems. Let us suppose
that T > 0 is a fixed time horizon. We fix t ≥ 0 and x0 ∈ R

N . To every r > t and u ∈ U , one can associate
a couple of occupational measures γt,r,x0,u =

(
γt,r,x0,u
1 , γt,r,x0,u

2

) ∈ P ([t, r] × R
N × U

)× P (RN
)

defined by

{
γt,r,x0,u
1 (A× B × C) = 1

r−t

∫ r

t
1A×B×C (s, xt,x0,u

s , us) ds,

γt,r,x0,u
2 = δxt,x0,u

r
,

for all Borel sets A ⊂ [t, r] , B ⊂ R
N and C ⊂ U . When x ∈ R

N , δx stands for the Dirac measure. One can also
define

(
γt,t,x0,u
1 , γt,t,x0,u

2

) ∈ P ({t} × R
N × U

)× P (RN
)

by setting

γt,t,x0,u
1 = δt,x0,ut , γ

t,t,x0,u
2 = δx0 .

For every r ≥ t, the family of occupational measures

Γ (t, r, x0) =
{ (

γt,r,x0,u
1 , γt,r,x0,u

2

)
, for all u ∈ U }

, (2.1)

can be embedded into a larger set

Θ (t, r, x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(γ1, γ2) ∈ P ([t, r] × R

N × U
)× P (RN

)
, ∀φ ∈ C1,1

2

(
R+ × R

N
)
,∫

[t,r]×RN×U×RN

(φ (t, x0) + (r − t)Luφ (s, y) − φ (r, z)) γ1 (dsdydu)γ2 (dz) = 0,∫
RN

|y|2+δ
γ1 ([t, r] , dy, U) ≤ cT,x0 ,

∫
RN

|z|2+δ
γ2 (dz) ≤ cT,x0 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where

Luφ (s, y) = 〈f (s, y, u) , Dφ (s, y)〉 + ∂tφ (s, y) ,

for all φ ∈ C1,1
(
R+ × R

N
)

and all s ≥ 0, y ∈ R
N . Here, δ > 0 is fixed and cT,x0 is a positive constant depending

on x0 and, eventually, on T, δ. This constant can be chosen of the form cecT
(
1 + |x0|2+δ

)
, where c > 0 depends

only on the Lipschitz coefficient of f (but not on T , nor x0). The set C1,1
2

(
R+ × R

N
)

stands for the set
of continuously differentiable functions such that the function and its first order derivatives with respect to t
and x have at most quadratic growth.

Remark 2.1. The set Θ (t, r, x0) contains all occupational measures γt,r,x0,u(·) issued from x0 at time t. This
follows from the following equality

−φ (t, x0) +
∫

RN

φ (r, z)γt,r,x0,u
2 (dz) = −φ (t, x0) + φ

(
r, xt,x0,u

r

)
=
∫ r

t

(
∂tφ

(
s, xt,x0,u

s

)
+
〈
f
(
s, xt,x0,u

s , us

)
, Dφ

(
s, xt,x0,u

s

)〉)
ds

=
∫

[t,r]×RN×U

(r − t)Luφ (s, y)γt,r,x0,u
1 (dsdydu) ,
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for regular test functions φ ∈ C1,1
(
R+ × R

N
)
. Also, standard estimates and (1.2) show that

sup
s∈[t,T ]

∣∣xt,x0,u
s

∣∣2+δ0 ≤ CeCT
(
T + |x0|2+δ

)
≤ cecT

(
1 + |x0|2+δ

)
,

for some constant C > 0 independent of T (and choosing c = C + 1). Therefore, the occupational measures
satisfy the inequalities in the definition of Θ (t, r, x0) . In particular,

γt,r,x0,u
1

(
[t, r] ,

{
y ∈ R

N : |y| > K
}
, U
)

+ γt,r,x0,u
2

({
y ∈ R

N : |y| > K
})

≤ cecT
(
1 + |x0|2+δ

) 1
K2+δ0

,

for all K > 0. The set Θ (t, r, x0) is also relatively compact with respect to the weak convergence of probability
measures (due to Prohorov’s Theorem). One notices that the equality constraint in the definition of Θ (t, r, x0)
can alternatively be written

φ (t, x0) +
∫

[t,r]×RN×U

(r − t)Luφ (s, y) γ1 (dsdydu) −
∫

RN

φ (r, z)γ2 (dz) = 0.

It follows that Θ (t, r, x0) is also convex.

We recall the following

Definition 2.2. Let (X , d) be a Polish metric space.
1. For any two probability measures γ, μ ∈ P (X ), the Wasserstein distance of order 2 between γ, μ is defined

by the formula

W2 (γ, μ) =

⎛⎝ inf
π∈Π(γ,μ)

∫
X×X

d (x, y)2 π (dxdy)

⎞⎠
1
2

,

where Π (γ, μ) is the family of probability measures π on X × X such that π (dx,X ) = γ (dx) and π (X , dy) =
μ (dy) .

2. The Wasserstein space of order 2 is defined as

P2 (X ) =

⎧⎨⎩γ ∈ P (X ) :
∫
X

d (x0, x)
2 γ (dx) <∞

⎫⎬⎭ ,

where x0 ∈ X is arbitrary. It is known that W2 defines a distance on P2 (X ) .

Remark 2.3. It follows that the set Θ (t, r, x0) ⊂ P2

(
[t, r] × R

N × U
)× P2

(
R

N
)
. Moreover:

1. The family Θ (t, r, x0) is weakly closed in P2

(
[t, r] × R

N × U
) × P2

(
R

N
)
, hence, closed with respect to

the distance W2.
2. The set Θ (t, r, x0) is compact with respect to the topology induced by W2. This is a simple consequence

of the fact that Θ (t, r, x0) is relatively compact w.r.t. the weak convergence of probability measures, and that∫
|y|>R

|y|2 γ1 ([t, r] , dy, U) ≤ 1
Rδ

cT,x0 and
∫

|z|>R

|z|2 γ2 (dz) ≤ 1
Rδ

cT,x0 .

3. One deduces that Θ (t, r, x0) is also compact in P ([t, r] × R
N × U

) × P (RN
)
.(For more details on

Wasserstein distance, the reader is referred to [21]).
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2.2. Linearized formulation for classical control problems

We consider two functions g : R × R
N × U −→ R and g′ : R

N −→ R assumed to satisfy⎧⎨⎩
(i) the functions g and g′ are bounded and uniformly continuous,
(ii) there exists a real constant c > 0 such that
|g (s, x, u) − g (t, y, u)| + |g′ (x) − g′ (y)| ≤ c (|x− y| + |t− s|) ,

(2.2)

for all (s, t, x, y) ∈ R
2 ×R

2N and all u ∈ U. To every (t, x) ∈ [0, r]×R
N and u ∈ U , one associates the criterion

Jr
g,g′ (t, x, u) =

∫ r

t

g
(
s, xt,x,u

s , us

)
ds+ g′

(
xt,x,u

r

)
and the corresponding value function

V r
g,g′ (t, x) = inf

u∈U
Jr

g,g′ (t, x, u) . (2.3)

Under the assumptions (1.2) and (2.2), the value function V r is the unique bounded, uniformly continuous
viscosity solution of the HJ equation

∂tV
r
g,g′ (t, x) +H

(
t, x,DV r

g,g′ (t, x)
)

= 0, (2.4)

for all (t, x) ∈ (0, r) × R
N , and V r

g,g′ (r, ·) = g′ (·) on R
N , where the Hamiltonian is given by

H (t, x, p) = inf
u∈U

{〈f (t, x, u) , p〉 + g (t, x, u)} , (2.5)

for all (t, x, p) ∈ R × R
N × R

N . For proofs of the connection between V r
g,g′ and (2.4), the reader is referred to

[1] and the references therein.
We also consider the linearized problems

Λr
g,g′ (t, x) = inf

γ=(γ1,γ2)∈Θ(t,r,x)

⎛⎜⎝(r − t)
∫

[t,r]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫

RN

g′ (z) γ2 (dz)

⎞⎟⎠
and its dual

ηr
g,g′ (t, x) = sup

{
η ∈ R : ∃φ ∈ C1,1

2

(
R+ × R

N
)

s.t. ∀ (s, y, v, z) ∈ [t, r] × R
N × U × R

N ,
η ≤ (r − t) [Lvφ (s, y) + g (s, y, v)] + g′ (z) − φ (T, z) + φ (t, x) .

}
, (2.6)

for all (t, x) ∈ [0, r] × R
N . The following result links the three quantities. Its proof follows the ideas in [8,13].

For reader’s convenience, we give the proof in the appendix.

Proposition 2.4. If (1.2) and (2.2) hold true, then, for every (t, x) ∈ [0, r] × R
N , one has

V r
g,g′ (t, x) = Λr

g,g′ (t, x) = ηr
g,g′ (t, x) .

As consequence, we have the following characterization of the set of constraints Θ (t, r, x0):

Corollary 2.5. The set Θ (t, r, x0) is the closed convex hull of the family of occupational couples Γ (t, r, x0)

Θ (t, r, x0) = cl (co (Γ (t, r, x0))) = clW2 (co (Γ (t, r, x0))) ,

for all r ≥ t ≥ 0. The operator cl designates the closure with respect to the topology induced by the weak
convergence of probability measures and clW2 designates the closure w.r.t. the metric W2.

For further details, the reader is referred to [11].
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Remark 2.6. In view of the Corollary 2.5, Proposition 2.4 extends to continuous functions g and g′ with at
most quadratic growth w.r.t. the state variable x. Similar arguments can be used for polynomial growth cost
functions.

2.3. Semigroup property of the set of constraints. Application to the dynamic programing
principle

We fix x0 ∈ R
N . Let us consider t1, t2 ≥ 0 such that t1 + t2 ≤ T, where T > 0 is a terminal time. If

γ ∈ P ([0, t1] × R
N × U

)× P (RN
)
, we define the set

Θ (t1, t1 + t2, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ̃ = (γ̃1, γ̃2) ∈ P ([t1, t1 + t2] × R
N × U

)× P (RN
)

: ∀φ ∈ C1,1
2

(
R+ × R

N
)
,∫

RN

φ (t1, x) γ2 (dx) +
∫

[t1,t1+t2]×RN×U

t2Luφ (s, y) γ̃1 (dsdydu)

− ∫
RN

φ (t1 + t2, z) γ̃2 (dz) = 0,∫
RN

|y|2+δ
γ̃1 ([t1, t1 + t2] , dy, U) ≤ cT,x0 ,

∫
RN

|z|2+δ
γ̃2 (dz) ≤ cT,x0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Proposition 2.7. For every t1, t2 ≥ 0 such that t1 + t2 ≤ T and every γ = (γ1, γ2) ∈ Θ (0, t1, x0) , the set
Θ (t1, t1 + t2, γ) is nonempty, convex and compact (with respect to the weak convergence of probability measures
and to W2).

Proof. We only need to prove that Θ (t1, t1 + t2, γ) is nonempty. The fact that Θ (t1, t1 + t2, γ) is convex and
compact is obvious from the definition. Firstly, let us suppose that γ = γ0,t1,x0,u is an occupational couple
associated to x0 and u ∈ U . We consider an arbitrary test function φ ∈ C1,1

2

(
R+ × R

N
)
. We define a couple

of probability measures by setting

γ̃1 (A, dydu) =
t1 + t2
t2

γ0,t1+t2,x0,u
1 (A, dydu) , γ̃2 = γ0,t1+t2,x0,u

2 ,

for all Borel sets A ⊂ [t1, t1 + t2]. One has∫
RN

φ (t1, x) γ2 (dx) +
∫

[t1,t1+t2]×RN×U

t2Luφ (s, y) γ̃1 (dsdydu) −
∫

RN

φ (t1 + t2, z) γ̃2 (dz)

= φ
(
t1, x

0,x0,u
t1

)
+

t1+t2∫
t1

Lusφ
(
s, x0,x0,u

s

)
ds− φ

(
t1 + t2, x

0,x0,u
t1+t2

)
= 0. (2.7)

Therefore, the assertion holds true for occupational couples.
To prove the result for general couples γ = (γ1, γ2) ∈ Θ (0, t1, x0) , we will use Corollary 2.5. Whenever

γ = (γ1, γ2) ∈ Θ (0, t1, x0) , there exists a family of convex combinations(
kn∑
i=1

αi
nγ

0,t1,x0,ui
n

)
n≥0

converging to γ. One defines

γ̃1,n =
t1 + t2
t2

kn∑
i=1

αi
nγ

0,t1+t2,x0,ui
n

1 , γ̃2,n =
kn∑
i=1

αi
nγ

0,t1+t2,x0,ui
n

2 ,

for n ≥ 0. There exists a subsequence (still denoted by (γ̃1,n, γ̃2,n)) converging to some γ̃ = (γ̃1, γ̃2) ∈
P ([t1, t1 + t2] × R

N × U
)× P (RN

)
. One notices that γ̃ ∈ Θ (t1, t1 + t2, γ) . �
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Definition 2.8. Whenever γ ∈ Θ (0, t1, x0) and γ̃ ∈ Θ (t1, t1 + t2, γ) , we define

γ̃ ◦ γ ∈ P ([0, t1 + t2] × R
N × U

)× P (RN
)

by setting:{
(γ̃ ◦ γ)1 (A, dydu) = t1

t1+t2
γ1 (A ∩ [0, t1] , dydu) + t2

t1+t2
γ̃1 (A ∩ [t1, t1 + t2] , dydu) ,

(γ̃ ◦ γ)2 = γ̃2,

for all Borel sets A ⊂ [0, t1 + t2] .

We introduce the following notation:

Θ (t1, t1 + t2, ·) ◦ Θ (0, t1, x0) = {γ̃ ◦ γ : γ ∈ Θ (0, t1, x0) , γ̃ ∈ Θ (t1, t1 + t2, γ)} .
Proposition 2.9.

1. We have the following semigroup property

Θ (t1, t1 + t2, ·) ◦ Θ (0, t1, x0) = Θ (0, t1 + t2, x0) ,

for all t1, t2 ≥ 0 such that t1 + t2 ≤ T.
2. Θ (t1, t1 + t2, ·) ◦ Γ (0, t1, x0) ⊃ Γ (0, t1 + t2, x0) , for all t1, t2 ≥ 0 such that t1 + t2 ≤ T.

Proof. We only prove the first assertion. Whenever γ ∈ Θ (0, t1, x0) and γ̃ ∈ Θ (t1, t1 + t2, γ) ,it is clear that
γ̃ ◦ γ ∈ Θ (0, t1 + t2, x0) . Indeed, if φ ∈ C1,1

2

(
R+ × R

N
)
, one gets

φ (t, x0) +
∫

[0,t1]×RN×U

t1Luφ (s, y) γ1 (dsdydu) −
∫

RN

φ (t1, z) γ2 (dz) = 0, and

∫
RN

φ (t1, z) γ2 (dz) +
∫

[t1,t1+t2]×RN×U

t2Luφ (s, y) γ̃1 (dsdydu) −
∫

RN

φ (t1 + t2, z) γ̃2 (dz) = 0.

The conclusion follows by summing the two equalities and recalling Definition 2.8.
Let us suppose that γ = (γ1, γ2) ∈ Θ (0, t1 + t2, x0) is an occupational measure associated to (x0, u) ∈ R

N×U .
We define ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1 (A, dydu) = γ0,t1,x0,u
1 (A, dydu) = t1+t2

t1
γ1 (A, dydu) ,

γ2 = γ0,t1,x0,u
2 ,

γ̃1 (A′, dydu)
def
= t1+t2

t2
γ0,t1+t2,x0,u
1 (A′, dydu) = t1+t2

t2
γ1 (A′, dydu) ,

γ̃2 = γ0,t1+t2,x0,u
2 = γ2,

for all Borel sets A ⊂ [0, t1] , A′ ⊂ [t1, t1 + t2] . It is clear that

γ = (γ1, γ2) ∈ Θ ( 0, t1, x0) , γ̃ = (γ̃1, γ̃2) ∈ Θ (t1, t1 + t2, γ) and γ = γ̃ ◦ γ.
Whenever (γ1, γ2) ∈ Θ (0, t1 + t2, x0) , there exists a sequence of convex combination of occupational measures(∑mn

i=1 α
i
nγ

0,t1+t2,x0,ui
n

)
n

converging to γ in the weak topology. We define

γn
1 =

t1 + t2
t1

mn∑
i=1

αi
nγ

0,t1,x0,ui
n

1 , γn
2 =

mn∑
i=1

αi
nγ

0,t1,x0,ui
n

2 ,

γ̃n
1 (A′, dydu) =

t1 + t2
t2

mn∑
i=1

αi
nγ

0,t1+t2,x0,ui
n (A′, dydu) , γ̃n

2 =
mn∑
i=1

αi
nγ

0,t1+t2,x0,ui
n

2 .

It follows that γn = (γn
1 , γ

n
2 ) ∈ Θ (0, t1, x0) and γ̃n = (γ̃n

1 , γ̃
n
2 ) ∈ Θ (t1, t1 + t2, γ

n) for all n ≥ 0. The conclusion
follows using compactness arguments and passing to the limit as n→ ∞. �
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We recall the linear formulation of the value function Λr
g,g′

Λr
g,g′ (t0, x0) = inf

(γ1,γ2)∈Θ(t0,r,x0)

⎛⎜⎝(r − t0)
∫

[t,r]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫
N

g′ (z)γ2 (dz)

⎞⎟⎠ , (2.8)

for all 0 ≤ t0 ≤ r ≤ T. If the functions g and g′ are l.s.c. (respectively u.s.c.), the function Λr
g,g′ inherits the

semicontinuity. Also, in the u.s.c. case, the infimum can be taken on Γ (t0, r, x0). To prove these results, one can
use an inf (resp. sup) convolution to approximate the cost functional (see [14]). If γ = (γ1, γ2) ∈ Θ (t0, t0, x) ,
then γ2 = δx and it seems natural to impose Λr

g,g′ (t0, γ) = Λr
g,g′ (t0, x0) . If t0 < t ≤ r and γ ∈ Θ (t0, t, x0) we

make the following natural notation

Λr
g,g′ (t, γ) = inf

γ̃∈Θ(t,r,γ)

⎛⎜⎝(r − t)
∫

[t,r]×RN×U

g (s, y, u) γ̃1 (dsdydu) +
∫

RN

g′ (z) γ̃2 (dz)

⎞⎟⎠ . (2.9)

Remark 2.10. If γ = γt0,t,x0,u is an occupational couple associated to x0 and u ∈ U , then, Θ (t, T, γ) =
Θ
(
t, T, xt0,x0,u

t

)
and, by definition,∫

RN

ΛT
g,g′ (t, x) γ2 (dx) = ΛT

g,g′
(
t, xt0,x0,u

t

)
= ΛT

g,g′ (t, γ) . (2.10)

This result gives a simple proof for the dynamic programming principle for the value function (2.3).

Theorem 2.11 (dynamic programming principles).
1. Let us suppose that the functions g and g′ are bounded. Then, the following equality holds true

ΛT
g,g′ (t0, x0) = inf

γ∈Θ(t0,t,x0)

⎛⎜⎝(t− t0)
∫

[t0,t]×RN×U

g (s, y, u)γ1 (dsdydu) + ΛT
g,g′ (t, γ)

⎞⎟⎠ , (2.11)

for all x0 ∈ R
N and all t ∈ (t0, T ) . Also

ΛT
g,g′ (t0, x0) ≤ inf

γ∈Γ(t0,t,x0)

⎛⎜⎝(t− t0)
∫

[t0,t]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫
RN

ΛT
g,g′ (t, x) γ2 (dx)

⎞⎟⎠ ,

for all x0 ∈ R
N and all t ∈ (t0, T ) .

2. If the functions g and g′ are bounded and l.s.c., one also has

ΛT
g,g′ (t0, x0) ≤ inf

γ∈coΓ(t0,t,x0)

⎛⎜⎝(t− t0)
∫

[t0,t]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫
RN

ΛT
g,g′ (t, x) γ2 (dx)

⎞⎟⎠ ,

for all x0 ∈ R
N and all t ∈ (t0, T ) .

3. If g and g′ are bounded and upper semicontinuous, one also has

ΛT
g,g′ (t0, x0) = inf

γ∈Γ(t0,t,x0)

⎛⎜⎝(t− t0)
∫

[t0,t]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫

RN

ΛT
g,g′ (t, x) γ2 (dx)

⎞⎟⎠ ,

for all x0 ∈ R
N and all t ∈ (t0, T ) .
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4. If g and g′ are bounded and continuous,

ΛT
g,g′ (t0, x0) = inf

γ∈Θ(0,t,x0)

⎛⎜⎝(t− t0)
∫

[t0,t]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫

RN

ΛT
g,g′ (t, x) γ2 (dx)

⎞⎟⎠ ,

for all x0 ∈ R
N and all t ∈ (t0, T ) .

Proof. Let us fix x0 ∈ R
N and t ∈ (0, T ] . To simplify notation, we assume that t0 = 0.

1. Proposition 2.9 and Definition 2.8 yield

ΛT
g,g′ (0, x0) = inf

γ∈Θ(0,t,x0)
γ̃∈Θ(t,T,γ)

⎛⎜⎝T ∫
[0,T ]×RN×U

g (s, y, u) (γ̃ ◦ γ)1 (dsdydu) +
∫

RN

g′ (z) (γ̃ ◦ γ)2 (dz)

⎞⎟⎠
= inf

γ∈Θ(0,t,x0)

⎛⎜⎝t ∫
[0,t]×RN×U

g (s, y, u)γ1 (dsdydu) + ΛT
g,g′ (t, γ)

⎞⎟⎠ .

The second inequality follows from the previous Remark, by recalling that Γ (0, t, x0) ⊂ Θ (0, t, x0) .
2. We introduce the functional χ : P ([t, T ]× R

N × U
)× P (RN

) −→ R given by

χ (γ̃) = (T − t)
∫

[t,T ]×RN×U

g (s, y, u) γ̃1 (dsdydu) +
∫

RN

g′ (z) γ̃2 (dz) ,

for all γ̃ ∈ P ([t, T ]× R
N × U

)× P (RN
)
. Then

ΛT
g,g′ (t, γ) = inf

γ̃∈Θ(t,T,γ)
χ (γ̃) ,

for all γ ∈ Θ (0, t, x0) . The functional χ is convex and l.s.c. (consequence of the l.s.c. of g and g′). Whenever
γ ∈ Θ (0, t, x0) , using the compactness of Θ (t, T, γ), one gets the existence of some γ̃ ∈ Θ (t, T, γ) such that

ΛT
g,g′ (t, γ) = χ (γ̃) .

If γ1, γ2 ∈ Θ (0, t, x0) and α ∈ [0, 1] , then there exist γ̃i ∈ Θ
(
t, T, γi

)
such that ΛT

g,g′
(
t, γi

)
= χ

(
γ̃i
)
. Moreover,

αγ̃1 + (1 − α) γ̃2 ∈ Θ
(
t, T, αγ1 + (1 − α) γ2

)
. This implies that the functional γ �→ ΛT

g,g′ (t, γ) is convex. As
consequence, using (2.10), we have

ΛT
g,g′ (t, γ) ≤

∫
RN

ΛT
g,g′ (t, x) γ2 (dx) , (2.12)

for all γ ∈ co (Γ (0, t, x0)). Using the equality (2.11) and the inequality (2.12), one gets

ΛT
g,g′ (0, x0) ≤ inf

γ∈co(Γ(0,t,x0))

⎛⎜⎝t ∫
[0,t]×RN×U

g (s, y, u)γ1 (dsdydu) + ΛT
g,g′ (t, γ)

⎞⎟⎠
≤ inf

γ∈co(Γ(0,t,x0))

⎛⎜⎝t ∫
[0,t]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫

RN

ΛT
g,g′ (t, x) γ2 (dx)

⎞⎟⎠ .
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3. Whenever g and g′ are upper semicontinuous, one easily proves that ΛT
g,g′ is u.s.c. Moreover, using

Proposition 2.9 2. and the previous remark, we have

ΛT
g,g′ (0, x0) = inf

γ∈Γ(0,T,x0)

⎛⎜⎝T ∫
[0,T ]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫

RN

g′ (z) γ2 (dz)

⎞⎟⎠
≥ inf

γ∈Γ(0,t,x0)
γ̃∈Θ(t,T,γ)

⎛⎜⎝t ∫
[0,t]×RN×U

g (s, y, u)γ1 (dsdydu) + χ (γ̃)

⎞⎟⎠
≥ inf

γ∈Γ(0,t,x0)

⎛⎜⎝t ∫
[0,t]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫
RN

ΛT
g,g′ (t, x) γ2 (dx)

⎞⎟⎠ .

4. In the continuous case, the proof follows by combining 2. and 3. and recalling that ΛT
g,g′ is continuous

and Θ (0, t, x0) = cl(co(Γ (0, t, x0))). The proof of our theorem is now complete. �

3. The L
∞
-control problem

We let h : R×R
N ×U −→ R be a bounded function. We are interested in characterizing the following value

function:

V∞
h (t0, x0) = inf

u∈U
ess sup
t∈[t0,T ]

∣∣h (t, xt0,x0,u
t , ut

)∣∣ ,
for every t0 ∈ [0, T ] and every x0 ∈ R

N . Firstly, let us suppose that

{
h is uniformly continuous on R × R

N × U and
|h (s, x, u) − h (t, y, u)| ≤ c (|x− y| + |s− t|) , (3.1)

for all (s, t, x, y) ∈ R
2 × R

2N , and all u ∈ U. Then, the value function can be approximated by considering the
following sequence of value functions with L

p-cost

V p
h (t0, x0) = inf

u∈U

(∫ T

t0

∣∣h (t, xt0,x0,u
t , u (t)

)∣∣p dt

) 1
p

,

for every t0 ∈ [0, T ], every x0 ∈ R
N and for p ≥ 1. Under the Assumption (3.1), V p

h is known to satisfy, in the
viscosity sense, the associated Hamilton Jacobi partial differential equation

⎧⎪⎨⎪⎩
∂tV (t, x) + min

u∈U

(
〈∂xV (t, x) , f (t, x, u)〉 + 1

p

(
|h(t,x,u)|

V (t,x)

)p

V (t, x)
)

= 0,

if t ∈ [0, T ) , x ∈ R
N ,

V (T, x) = 0, x ∈ R
N .

(3.2)

For further comments and proofs on the previous assertions, the reader is referred to [4] (Prop. 4.1).
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3.1. Linear formulation of continuous L
p-control problems

We begin by giving linear formulations for the L
p control problem. For the primal problem, the formulation

is similar to the previous Section. However, for the purpose of our paper, the dual formulation will be slightly
different.

We assume that

h0 ≥ sup
(t,x,u)∈R×RN×U

|h (t, x, u)| ≥ inf
(t,x,u)∈R×RN×U

|h (t, x, u)| ≥ 2h0 > 0.

It is easy to verify the following equality

V p
h (t0, x0) = inf

u∈U

(∫ T

t0

∣∣h (t, xt0,x0,u
t , ut

)∣∣p dt

) 1
p

= inf
u∈U

⎛⎜⎝(T − t0)
∫

[t0,T ]×RN×U

|h (s, y, u)|p γt0,T,x0,u
1 (dsdydu)

⎞⎟⎠
1
p

,

for all (t0, x0) ∈ [0, T ]× R
N .

We also consider the linearized problem

Λp
h (t0, x0) = inf

γ∈Θ(t0,T,x0)

⎛⎜⎝(T − t0)
∫

[t0,T ]×RN×U

|h (s, y, u)|p γ1 (dsdydu)

⎞⎟⎠
1
p

, (3.3)

together with its dual formulation

ηp
h (t0, x0) = sup

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ (t0, x0) − supz∈R N φ (T, z) : φ ∈ C1,1
b

(
R+ × R

N ; R+

)
s.t.

φ <
(
1 + T

p

)−1

(1 + T ) (2T ∨ 1)h0, inf
(s,y)∈[0,T ]×RN

φ (s, y) > 0, and

∀ (s, y, v) ∈ [t0, T ] × R
N × U,

0 ≤ Lvφ (s, y) + 1
p

(
|h(s,y,v)|

φ(s,y)

)p

φ (s, y) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (3.4)

for all (t0, x0) ∈ [0, T ]× R
N .

The main result of this section is the following:

Proposition 3.1. We have that

V p
h (t0, x0) = Λp

h (t0, x0) = ηp
h (t0, x0) ,

for all (t0, x0) ∈ [0, T ]× R
N .

Proof. We have

V p
h (t0, x0) ≥ Λp

h (t0, x0) ,

because Γ (t0, T, x0) ⊂ Θ (t0, T, x0) .
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We notice that the value function V p
h can be approximated by a sequence of regular subsolutions of (3.2)

denoted by (φn)n ⊂ C1,1
b

(
R+ × R

N ; R+

)
(see for instance [3]). By construction, φn can be chosen such that

⎧⎪⎪⎨⎪⎪⎩
0 < inf(s,y)∈[0,T ]×RN φn (s, y) ≤ sup(s,y)∈[0,T+n−1]×RN φn (s, y) < (2T ∨ 1)h0, and

|φn (s, y) − V p
h (s, y)| ≤ cn− 1

p , for all (s, y) ∈ [0, T ]× R
N ,

|φn (s, y)| ≤ cn− 1
p , for all (s, y) ∈ [T, T + n−1

]× R
N ,

for all n ≥ 1. The constant c can be chosen independent of n. Moreover, every φn satisfies the following
inequality

Lvφn (s, y) +
|h (s, y, v)|p
pφp

n (s, y)
φn (s, y) ≥ 0

for all (s, y, v) ∈ [t0, T ] × R
N × U . One notices that

− sup
z∈RN

φn (T, z) + φn (t0, x0) ≥ φn (t0, x0) − cn− 1
p .

We obtain that

φn (t0, x0) − cn− 1
p ≤ ηp (t0, x0) .

Consequently,

V p
h (t0, x0) = lim

n
φn (t0, x0) ≤ ηp (t0, x0) .

We consider an arbitrary γ ∈ Θ (t0, T, x0) and φ ∈ C1,1
b

(
R+ × R

N
)

such that

∀ (s, y, v) ∈ [t0, T ] × R
N × U, 0 ≤ pφp−1 (s, y)Lvφ (s, y) + |h (s, y, v)|p . (3.5)

If φ (t0, x0) − sup
z∈RN

φ (T, z) < 0, then, one has

φ (t0, x0) − sup
z∈RN

φ (T, z) < Λp
h (t0, x0) .

Otherwise,(
φ (t0, x0) − sup

z∈RN

φ (T, z)
)p

≤ − sup
z∈RN

φp (T, z) + φp (t0, x0)

≤
∫

[t0,T ]×RN×U×RN

(
(T − t0)

[
pφp−1 (s, y)Lvφ (s, y) + |h (s, y, v)|p]

− φp (T, z) + φp (t0, x0)) γ1 (dsdydv) γ2 (dz)

≤ (T − t0)
∫

[t0,T ]×RN×U

|h (s, y, v)|p γ1 (dsdydv) .

Consequently,

ηp
h (t0, x0) ≤ Λp

h (t0, x0) .

The proof of our Proposition is now complete. �
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3.2. Linear formulation of lower semicontinuous L
p-control problems

Due to the first assertion of Proposition 3.1, it appears natural to extend the L
p-control problem to a general

bounded cost h by considering the linear formulation (3.3) for all (t0, x0) ∈ [0, T ]×R
N and its dual formulation

(3.4). Throughout the subsection, we assume that the function h : R × R
N × U −→ R satisfies⎧⎪⎪⎨⎪⎪⎩

h0 ≥ sup(t,x,u)∈R×RN×U |h (t, x, u)| ≥ inf(t,x,u)∈R×RN×U |h (t, x, u)| ≥ 2h0 > 0,

|h (t, ·, u)| is lower semicontinuous, for all (t, u) ∈ R × U,

supx∈RN |h (s, x, u) − h (t, x, v)| ≤ c |t− s| + ω (|u− v|) ,
(3.6)

for some real constant c > 0 and some continuity modulus ω. The main result of the Subsection is the following:

Proposition 3.2. If (1.2) and (3.6) hold true, then

Λp
h (t0, x0) = ηp

h (t0, x0) ,

for all (t0, x0) ∈ [0, T ]× R
N .

Proof. It is obvious that, for every t ∈ R, x ∈ R
N and u ∈ U,(

hn (t, x, u) = inf
y∈RN

(|h (t, y, u)| + n |y − x|)
)

n∈N∗

is a nondecreasing real sequence and limn→∞ hn (t, x, u) = |h (t, x, u)| . Moreover, hn are bounded, uniformly
continuous on R × R

N × U and Lipschitz-continuous w.r.t. the time and the space variable x, uniformly w.r.t.
the control variable u. Proposition 3.1 yields

V p
hn

(t, x) = inf
γ∈Θ(t,T,x)

⎛⎜⎝(T − t)
∫

[t,T ]×RN×U

(hn (s, y, u))p
γ1 (dsdydu)

⎞⎟⎠
1
p

= ηp
hn

(t, x) ,

for all (t, x) ∈ [0, T )× R
N and all n ≥ 1.

One easily notices that
V p

hn
(t, x) ≤ ηp

h (t, x) , (3.7)

for all (t, x) ∈ [0, T )× R
N . Also, arguments similar to those in the proof of Proposition 3.1 yield

ηp
h (t, x) ≤ Λp

h (t, x) ,

for all (t, x) ∈ [0, T )× R
N . Combining the previous inequalities, one has

lim
n
V p

hn
(t, x) ≤ ηp

h (t, x) ≤ Λp
h (t, x) , (3.8)

for all (t, x) ∈ [0, T )× R
N .

Let us fix (t, x) ∈ [0, T ) × R
N . Due to the compactness of Θ (t, T, x) , for every n ≥ 1, there exists γn ∈

Θ (t, T, x) such that

V p
hn

(t, x) =

⎛⎜⎝(T − t)
∫

[t,T ]×RN×U

(hn (s, y, u))p
γn
1 (dsdydu)

⎞⎟⎠
1
p

.
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For every m ≥ n,

V p
hm

(t, x) ≥

⎛⎜⎝(T − t)
∫

[t,T ]×RN×U

(hn (s, y, u))p
γm
1 (dsdydu)

⎞⎟⎠
1
p

.

Again, due to the compactness of Θ (t, T, x) , there exists a subsequence (still denoted by (γn)n) converging to
some γ ∈ Θ (t, T, x). Then,

lim
m
V p

hm
(t, x) ≥ lim

m→∞

⎛⎜⎝(T − t)
∫

[t,T ]×RN×U

(hn (s, y, u))p
γm
1 (dsdydu)

⎞⎟⎠
1
p

=

⎛⎜⎝(T − t)
∫

[t,T ]×RN×U

(hn (s, y, u))p γ1 (dsdydu)

⎞⎟⎠
1
p

.

Passing to the limit as n→ ∞ and using a dominated convergence argument, one obtains

lim
m
V p

hm
(t, x) ≥

⎛⎜⎝(T − t)
∫

[t,T ]×RN×U

(h (s, y, u))p
γ1 (dsdydu)

⎞⎟⎠
1
p

≥ Λp
h (t, x) . (3.9)

The assertion of our proposition follows from (3.8) and (3.9). �

3.3. L
∞-control problems

In the previous Subsections, we have linearized the L
p-control problem. Both the primal and dual formulation

will allow a passage to the limit as the parameter p → ∞. The limit dual problem will be similar to those in
the case of L

p-control problems and provides a linear formulation for the L
∞-control problem. Motivated by

the previous results, we introduce, for bounded functions h, the L
∞-value function Λ∞

h given by

Λ∞
h (t0, x0) = inf

γ∈Θ(t0,T,x0)
‖h‖

L∞([t0,T ]×RN×U,γ1)
, (3.10)

for all (t0, x0) ∈ [0, T ]× R
N . Here,

‖h‖
L∞([t0,T ]×RN×U,γ1) = inf {r ≥ 0 : γ1 ({(s, y, u) : |h (s, y, u)| > r}) = 0}

is the usual ess sup norm with respect to γ1.

Proposition 3.3. Let us fix (t0, x0) ∈ [0, T ) × R
N and suppose that (1.2) and (3.6) hold true. Then

lim
p→∞ Λp

h (t0, x0) = lim
p→∞ ↑ (T − t0)

− 1
p Λp

h (t0, x0) = Λ∞
h (t0, x0) .

Proof. It is obvious that Λ∞
h (t0, x0) ≥ (T − t0)

− 1
p Λp

h (t0, x0) , for all p ≥ 1. We recall that Θ (t0, T, x0) is
compact w.r.t. the weak convergence of probability measures and h is lower semicontinuous. Then, for every
p ≥ 1, there exists some γp ∈ Θ (t0, T, x0) such that

(T − t0)
− 1

p Λp
h (t0, x0) =

⎛⎜⎝ ∫
[t0,T ]×RN×U

|h (s, y, u)|p γp
1 (dsdydu)

⎞⎟⎠
1
p

.
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For every q ≥ p ≥ 1,

(T − t0)
− 1

q Λq
h (t0, x0) ≥

⎛⎜⎝ ∫
[t0,T ]×RN×U

|h (s, y, u)|p γq
1 (dsdydu)

⎞⎟⎠
1
p

.

The compactness of Θ (t0, T, x0) yields the existence of some γ ∈ Θ (t0, T, x0) such that γp (or, at least some
subsequence of (γp)p) converges weakly to γ as p→ ∞. Then, using the l.s.c. of h, one gets

lim inf
q→∞ (T − t0)

− 1
q Λq

h (t0, x0) ≥

⎛⎜⎝ ∫
[t0,T ]×RN×U

|h (s, y, u)|p γ1 (dsdydu)

⎞⎟⎠
1
p

.

The conclusion follows by letting p→ ∞. Notice that γ is optimal for the linearized L
∞-control problem. �

We also introduce the dual problem

η∞h (t0, x0) = sup

⎧⎪⎪⎨⎪⎪⎩
φ (t0, x0) − supz∈R N φ (T, z) : φ ∈ C1,1

b

(
R+ × R

N ; R+

)
s.t.

φ < (1 + T ) (2T ∨ 1)h0, inf
(s,y)∈[0,T ]×RN

φ (s, y) > 0,

0 ≤ Lvφ (s, y) , ∀ (s, y, v) ∈ [t0, T ]× R
N × U s.t. |h (s, y, v)| ≤ φ (s, y) ,

⎫⎪⎪⎬⎪⎪⎭ (3.11)

for (t0, x0) ∈ [0, T )× R
N .

Before stating the main result, we recall the following proposition due to [3]:

Proposition 3.4. We assume that (1.2) and (3.1) hold true. Then, the following assertions hold true:
(i) limp→∞ (T − t)−

1
p V p

h (t, x) = V∞
h (t, x) for all t < T and all x ∈ R

N ,

(ii) (T − t)−
1
p V p

h (t, x) ≤ (T − t)−
1
p′ V p

h (t, x) for all t < T and all x ∈ R
N , whenever p < p′,

(iii) limt→T (T − t)−
1
p V p

h (t, x) = min
u∈U

|h (T, x, u)| .

The main result of the subsection is

Theorem 3.5.
1. (L.s.c. case) We assume that (1.2) and (3.6) hold true. Then,

Λ∞
h (t0, x0) = η∞h (t0, x0) ,

for all (t0, x0) ∈ [0, T )× R
N .

2. (Continuous case) Moreover, if (3.1) holds true, then

V∞
h (t0, x0) = Λ∞

h (t0, x0) = η∞h (t0, x0) ,

for all (t0, x0) ∈ [0, T )× R
N .

Proof. Let us fix (t0, x0) ∈ [0, T ) × R
N . Firstly, we prove that Λ∞

h (t0, x0) ≤ η∞h (t0, x0) . Let us fix p > 1. We
let φ ∈ C1,1

b

(
R+ × R

N ; R+

)
s.t.

φ <

(
1 +

T

p

)−1

(1 + T ) (2T ∨ 1)h0, inf
(s,y)∈[0,T ]×RN

φ (s, y) > 0,
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and
[c]l∀ (s, y, v) ∈ [t0, T ]× R

N × U,

0 ≤ Lvφ (s, y) +
1
p

( |h (s, y, v)|
φ (s, y)

)p

φ (s, y) .

We define ψ (s, y) = φ (s, y) + s
p ‖φ‖ . Then, ψ < (1 + T ) (2T ∨ 1)h0. Moreover,

0 ≤ Lvφ (s, y) +
1
p

( |h (s, y, v)|
φ (s, y)

)p

φ (s, y) ≤ Lvψ (s, y) +
φ (s, y) − ‖φ‖

p
≤ Lvψ (s, y) ,

for every (s, y, v) ∈ [t0, T ] × R
N × U such that |h (s, y, v)| ≤ φ (s, y) . It follows that

φ (t0, x0) − sup
z∈R N

φ (T, z)− T (1 + T ) (2T ∨ 1)h0

p
≤ ψ (t0, x0) − sup

z∈R N

ψ (T, z) ≤ η∞h (t0, x0) .

The conclusion follows from Propositions 3.2 and 3.3.
For the converse, let us consider φ ∈ C1,1

b

(
R+ × R

N ; R+

)
s.t. φ < (1 + T ) (2T ∨ 1)h0, inf

(s,y)∈[0,T ]×RN
φ (s, y) ≥

2φ0 > 0, and

∀ (s, y, v) ∈ [t0, T ] × R
N × U, whenever |h (s, y, v)| ≤ φ (s, y) , 0 ≤ Lvφ (s, y) .

Since φ < (1 + T ) (2T ∨ 1)h0, for every p great enough, φ <
(
1 + T

p

)−1

(1 + T ) (2T ∨ 1)h0. Also, for every p
great enough,

‖φ‖√
p+ 1

=

sup
(s,y)∈[t0,T ]×RN

φ (s, y)

√
p+ 1

< φ0.

The function ψ given by

ψ (s, y) = φ (s, y) − ‖φ‖√
p+ 1

is such that ψ <
(
1 + T

p

)−1

(1 + T ) (2T ∨ 1)h0 and inf
(s,y)∈[t0,T ]×RN

ψ (s, y) > φ0 > 0. Due to the fact that

φ ∈ C1,1
b

(
R+ × R

N ; R+

)
, there exists some real constant c such that

Lvφ (s, y) > c, for all (s, y, v) ∈ [t0, T ]× R
N × U.

One notices

Lvψ (s, y) +
1
p

( |h (s, y, v)|
ψ (s, y)

)p

ψ (s, y)

≥ Lvφ (s, y) 1|h(s,y,v)|≤φ(s,y) +
(
c+

1
p

(
1 +

1√
p

)p

φ0

)
1|h(s,y,v)|>φ(s,y)

≥ 0,

for all (s, y, v) ∈ [0, T ]× R
N × U and all p great enough. One gets

φ (t0, x0) − sup
z∈R N

φ (T, z) = ψ (t0, x0) − sup
z∈R N

ψ (T, z) ≤ lim
p→∞Λp

h (t0, x0) = Λ∞
h (t0, x0) ,

and the proof of our assertion follows by recalling the definition of η∞h (t0, x0) .
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2. In the continuous case (Assumption 3.1),

Λ∞
h (t0, x0) = lim

p→∞ (T − t)−
1
p Λp

h (t0, x0) = lim
p→∞ (T − t)−

1
p V p

h (t0, x0) = V∞
h (t0, x0) . �

The equality between V∞
h and Λ∞

h is generally not true if the cost functional is not continuous and no
convexity assumption is made on the dynamics.

Example 3.6. We consider the case of R
2, the control set is U = {−1, 1} and f : R

3 × U −→ R
2 is given by

f (t, x, y, u) =
(
u, x2 ∧ 1

)
,

for all t, x, y ∈ R and all u ∈ U . We consider the control system{
dxt0,x0,y0,u

t = utdt,

dyt0,x0,y0,u
t =

(
x

t0,x0,y0,u(·)
t

)2

∧ 1dt,

for every t0 ∈ [0, 1], all (x0, y0) ∈ R
2 and all U -valued measurable functions u (·) . We also consider the lower

semicontinuous cost function h : R × R
2 × U −→ R defined by

h (t, x, y, u) =
{

1, if (x, y) �= (0, 0) ,
1
2 , if (x, y) = (0, 0) ,

for all t ∈ R and all u ∈ U . One notices that, (0, 0) /∈
{
x0,0,0,,u

t : t ∈ (0, 1]
}
. Thus,

V∞
h (0, 0, 0) = 1.

On the other hand, for n ≥ 1, we introduce the control

un =
n−1∑
k=0

1[ 2k
2n ,

(2k+1)
2n ) − 1[ (2k+1)

2n ,
(2k+2)

2n ) + 1{1}.

Then Supp
(
γ0,0,0,un

1

)
⊂ [0, t0] ×

[
0, 1

n

] × [0, 1
n2

] × U. We recall that Θ (0, 1, (0, 0)) is compact and get the

existence of some subsequence
(
γ0,0,0,un)

n
converging to some γ ∈ Θ (0, 1, (0, 0)). It follows that Supp(γ1) ⊂

[0, t0] × {(0, 0)} × U and

Λ∞
h (0, 0, 0) =

1
2
< V∞

h (0, 0, 0) .

3.4. Dynamic programming principle for L
∞-control problems

Using the primal formulation for the L
∞-control problem and the semigroup property of the set of constraints,

we give a simple proof for the dynamic programming principle (DPP).
If t0 < t < T, x0 ∈ R

N and γ ∈ Θ (t0, t, x0) we make the following natural notation

Λ∞
h (t, γ) = inf

γ̃∈Θ(t,T,γ)
‖h‖

L∞([t,T ]×RN×U,γ̃1)
. (3.12)

Remark 3.7. If γ = γt0,t,x0,u is an occupational couple associated to x0 and u ∈ U , then, Θ (t, T, γ) =
Θ
(
t, T, xt0,x0,u

t

)
and, by definition,∫

RN

Λ∞
h (t, x) γ2 (dx) = Λ∞

h

(
t, xt0,x0,u

t

)
= Λ∞

h (t, γ) .
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Theorem 3.8.
1. Let us assume that (1.2) holds true and h is a bounded function. For every t0 < t < T, and every x0 ∈ R

N ,

Λ∞
h (t0, x0) = inf

γ∈Θ(t0,t,x0)
max

(
‖h‖

L∞([t0,t]×RN×U,γ1)
,Λ∞

h (t, γ)
)
.

Moreover,

Λ∞
h (t0, x0) ≤ inf

γ∈Γ(t0,t,x0)
max

⎛⎝‖h‖
L∞([t0,t]×RN×U,γ1)

,

∫
RN

Λ∞
h (t, x) γ2 (dx)

⎞⎠
2. Moreover, if (1.2) and (3.1) hold true, then,

Λ∞
h (t0, x0) = inf

γ∈Γ(t0,t,x0)
max

⎛⎝‖h‖
L∞([t0,t]×RN×U,γ1)

,

∫
RN

Λ∞
h (t, x) γ2 (dx)

⎞⎠ ,

for every t0 < t < T, and every x0 ∈ R
N .

Proof. We assume, without loss of generality, that t0 = 0.
1. We recall that whenever γ ∈ Θ (0, t, x0) , γ̃ ∈ Θ (t, T, γ) , one has

(γ̃ ◦ γ)1 (A, dydu) =
t

T
γ1 (A ∩ [0, t] , dydu) +

T − t

T
γ̃1 (A ∩ [t, T ] , dydu) ,

for all Borel sets A ⊂ [0, T ] . Using Proposition 2.9 and the previous Remark, one gets

Λ∞
h (0, x0) = inf

γ∈Θ(0,t,x0)
γ̃∈Θ(t,T,γ)

(γ̃ ◦ γ)1 -ess sup |h|

= inf
γ∈Θ(0,t,x0)

max (γ1-ess sup |h| ,Λ∞
h (t, γ)) .

The inequality follows from the previous remark and the fact that Γ (0, t, x0) ⊂ Θ (0, t, x0) .
2. In the continuous case, Theorem 3.5 and Proposition 2.9 2. yield

Λ∞
h (0, x0) = V∞

h (0, x0) = inf
γ∈Γ(0,T,x0)

‖h‖
L∞([0,T ]×RN×U,γ1)

≥ inf
γ∈Γ(0,T,x0)
γ̃∈Θ(t,T,γ)

max (γ1-ess sup |h| ,Λ∞
h (t, γ))

= inf
γ∈Γ(0,T,x0)

(
‖h‖

L∞([0,t]×RN×U,γ1)
,Λ∞

h (t, γ)
)
.

Using the previous remark and the inequality in the first part, one has

Λ∞
h (0, x0) = inf

γ∈Γ(0,t,x0)
max

⎛⎝‖h‖
L∞([0,t]×RN×U,γ1)

,

∫
RN

Λ∞
h (t, x) γ2 (dx)

⎞⎠ . �
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Appendix A.

We prove the Proposition 2.4. We will make use of the following result due to Krylov (cf. [15], Thm. 2.1):

Proposition A.1. There exists a constant C > 0 such that, for every ε ∈ (0, 1] , there exists a function
V ε ∈ C1,1

b

(
[0, r + ε] × R

N
)

(classical) subsolution of (2.4) defined on [0, r + ε] × R
N satisfying

(i) |V ε (t, ·) − g′ (·)| ≤ Cε, for t ∈ [r, r + ε] , and

(ii)
∣∣V ε (·) − V r

g,g′ (·)∣∣ ≤ Cε, on [0, r] × R
N .

Proof of Proposition 2.4. We have seen that γt,r,x,u ∈ Θ ( t, r, x) , for all (t, x) ∈ [0, r] × R
N and all u ∈ U . It

follows that
V r

g,g′ (t, x) ≥ Λr
g,g′ (t, x) . (A.1)

For any γ ∈ Θ (t, r, x) , whenever (η, φ) ∈ R × C1,1
2

(
R+ × R

N
)

satisfies

η ≤ (r − t) (Lvφ (s, y) + g (s, y, v)) + g′ (z) − φ (r, z) + φ (t, x) ,

for all (s, y, v, z) ∈ [t, r] × R
N × U × R

N , we have

η ≤ (r − t)
∫

[t,r]×RN×U

g (s, y, u)γ1 (dsdydu) +
∫

RN

g′ (z)γ2 (dz) .

Hence,
ηr

g,g′ (t, x) ≤ Λr
g,g′ (t, x) <∞. (A.2)

To complete the proof, one only needs to show that

V r
g,g′ (t, x) ≤ ηr

g,g′ (t, x) . (A.3)

To this purpose, we apply the previous proposition and get, for every ε > 0, the existence of some regular V ε

such that
∂tV

ε (t, x) +H (t, x,DV ε (t, x)) ≥ 0,

for all (t, x) ∈ [0, r] × R
N . Thus, choosing C as in Proposition A.1, for every (t, s, x, y, z) ∈ [0, r]2 × R

3N and
every v ∈ U , one has

V ε(t, x) − Cε ≤ (T − t) (LvV ε (s, y) + g (s, y, v)) + g′ (z) − V ε (r, z) + V ε(t, x).

Hence,
V ε(t, x) − Cε ≤ ηr

g,g′ (t, x) .
The inequality (A.3) follows by passing to the limit as ε→ 0 and recalling that Proposition A.1 (ii) holds true.
The proof of our theorem is now complete. �
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