
ESAIM: COCV 18 (2012) 748–773 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2011169 www.esaim-cocv.org

CONTROLLABILITY PROBLEMS FOR THE 1-D WAVE EQUATION
ON A HALF-AXIS WITH THE DIRICHLET BOUNDARY CONTROL

Larissa V. Fardigola1

Abstract. In this paper necessary and sufficient conditions of L∞-controllability and approximate
L∞-controllability are obtained for the control system wtt = wxx−q2w, w(0, t) = u(t), x > 0, t ∈ (0, T ),
where q ≥ 0, T > 0, u ∈ L∞(0, T ) is a control. This system is considered in the Sobolev spaces.
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1. Introduction

Consider the wave equation on a half-axis

wtt = wxx − q2w, x > 0, t ∈ (0, T ), (1.1)

controlled by the Dirichlet boundary condition

w(0, t) = u(t), t ∈ (0, T ), (1.2)

where q ≥ 0 is a given constant, u ∈ L∞(0, T ) is a control, T > 0.
We should note that most of the papers investigating controllability of the wave equation deal with bounded

domains and consider Lp-controllability (2 ≤ p ≤ +∞) [6,8–11,17] and many others. Controllability problems
for distributed parameter systems on domains unbounded with respect to the space variables are investigated
not enough. These problems for the wave equation on a half-plane in the context of controls bounded by a hard
constant were investigated in [3]. Controllability of the wave equation in R3 were studied in [1]. Note that only
L∞-controls can be realized practically. Controllability of the wave equation on a half-axis in the context of
controls bounded by a hard constant were investigated in [4,5,15,16]. In [15,16] the wave equation on a half-axis
controlled by the Dirichlet boundary condition was studied for q = 0. In [4,5] the wave equation on a half-axis
controlled by the Neumann boundary condition was studied for q ≥ 0. In the present paper the most of the
results of [15,16] are extended to the case q ≥ 0. Moreover, in the case q ≥ 0 the results [4] on controllability
of the wave equation (1.1) controlled by the Neumann boundary condition are also extended to the case of the
Dirichlet boundary control here.
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In Section 3 we obtain necessary and sufficient conditions for L∞-controllability and approximate L∞-
controllability of system (1.1), (1.2) at a given time T > 0. The operator ΨT , D(ΨT ) = {g ∈ Hs

0 |
g is odd and supp g ⊂ [−T, T ]} describing the influence of a control on a target state is introduced and studied
in the Sobolev spaces Hs

0 , s ≤ 0. It is proved that ΨT is a bounded invertible operator, and Ψ−1
T is also

bounded. This influence operator is similar to the one considered in [4], but it differs from it. The properties
of the operator ΨT obtained in Section 3 allows us to investigate the L∞-controllability and the approximate
L∞-controllability problems at a given time. Controls solving these problems are found explicitly.

In the case q = 0 necessary and sufficient conditions for approximate L∞-controllability of control sys-
tem (1.1), (1.2) were also established at a free time T > 0 in [15]. Analogues result for the wave equation
controlled by the Neumann boundary condition was obtained in [5] for q = 0 too. Therein the time T > 0 was
not fixed, i.e. an appropriate time T and a control u had to be chose to solve approximate L∞-controllability
problem. In the case q > 0 the question whether an initial state of control system (1.1), (1.2) was approximately
L∞-controllable at a free time was open. In Section 4, to solve this problem, we consider an extension Ψ of
the operator ΨT . The domain of Ψ contains functions with non-compact support. Unfortunately, this new
influence operator Ψ is not invertible. To solve the approximate L∞-controllability problem at a free time,
we have to find an appropriate “inverse” operator for Ψ. We use the Moore-Penrose inverse (the generalized
inverse) Ψ+ for the operator Ψ [2,12,13]. Application of the Moore-Penrose inverse operator is a key point
of the present paper. Without loss of generality, we may consider the odd extension W of the solution w
to (1.1), (1.2) and consider system (3.2) instead of (1.1), (1.2) because these control systems are equivalent.

Let q > 0, W0 =
(

W0
0

W0
1

)
∈ H̃0

0 × H̃−1
0 be the initial state of control system (3.2), where H̃s

0 is the subspace

of odd functions in Hs
0 , s ≤ 0. The state W0 is approximately L∞-controllable iff W0

1 − Ψ̂Ψ+W0
0 ∈ Ψ̂(N(Ψ)),

where the closure is considered in H̃−1
0 , N(Ψ) is the null space of Ψ, Ψ̂g = Ψ d

dt (sgnx g), g ∈ H̃0
0 , (Thm. 4.8).

It is proved that the operator Ψ̂Ψ+ can be continued on the whole H̃0
0 (Lem. A.16), and H̃−1

0 is the closure
of Ψ̂(N(Ψ)) with respect to the norm ‖·‖−1

0 (Thm. 5.10). Thus, if q > 0, then each state W0 ∈ H̃0
0 × H̃−1

0 is
approximately L∞-controllable at a free time. It follows from [15] that if q = 0, then the state W0 ∈ H̃0

0 × H̃−1
0

is approximately L∞-controllable at a free time iff W0
1 − d

dx (sgnxW0
0) = 0. We see that in the case q > 0 the

behavior of control system (1.1), (1.2) (and (3.2)) essentially differs from its behavior in the case q = 0. This
difference is generated by the properties of the influence operator Ψ. Indeed, N(Ψ) = {0} and Ψ̂ (N(Ψ)) = {0}
if q = 0, and N(Ψ)\{0} �= ∅ and Ψ̂ (N(Ψ)) = H̃−1

0 if q > 0. Here the closure is considered with respect to the
norm ‖·‖−1

0 .
In Section 5 properties of N(Ψ), Ψ̂(N(Ψ)) and N(Ψ̂), Ψ(N(Ψ̂)) are studied. In fact, the main results of the

present paper are based on the results of this section.
In Sections 3 and 6 the approximate L∞-controllability problem is studied at a given time and a free time

respectively when a control u ∈ L∞(0, T ) is bounded by a given constant U > 0 (‖u‖L∞(0,T ) ≤ U).
In Section 7 the results of Sections 3–6 are illustrated by examples.
In the Appendix some properties of the operator Ψ are proved.

2. Notation

Let us give definitions of the spaces used in the paper. Let S be the Schwartz space [14]

S =
{
ϕ ∈ C∞ (R) | ∀m ∈ N ∀l ∈ N sup

{∣∣∣Dmϕ(x)
∣∣∣ (1 + |x|2)l | x ∈ R

}
< +∞

}
,

and let S′ be the dual space, here D = −i∂/∂x, | · | is the Euclidean norm.
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Denote by Hs
l (s, l ∈ R) the following Sobolev spaces:

Hs
l =

{
ϕ ∈ S′ | (1 + |D|2)s/2 (

1 + |x|2)l/2
ϕ ∈ L2 (R)

}
,

‖ϕ‖s
l =

(∫ ∞

−∞

∣∣∣(1 + |D|2)s/2 (
1 + |x|2)l/2

ϕ(x)
∣∣∣2 dx

)1/2

.

It is well known [7], Chapter 1, that ‖ϕ‖s
l ≤ ‖ϕ‖s′

l′ , s ≤ s′, l ≤ l′, ϕ ∈ Hs′
l′ . Therefore, Hs

l ⊃ Hs′
l′ , s ≤ s′, l ≤ l′.

Let F : S′ → S′ be the Fourier transform operator. For ϕ ∈ S we have (Fϕ) (σ) = (2π)−1/2
∫∞
−∞ e−ixσϕ(x) dx

and 〈Ff, ψ〉 = 〈f,F−1ψ〉 for f ∈ S′, ψ ∈ S. It is well known [7], Chapter 1, that FHs
0 = H0

s and ‖ϕ‖s
0 = ‖Fϕ‖0

s,
if ϕ ∈ Hs

0 . A distribution f ∈ S′ is said to be odd if 〈f, ϕ(ξ)〉 = −〈f, ϕ(−ξ)〉, ϕ ∈ S. We also use the spaces

H̃s
l = {ϕ ∈ Hs

l | ϕ is odd} , H̃ = H̃0
0 × H̃−1

0

with the norms ‖ · ‖s
l , |||ϕ||| =

((‖ϕ0‖0
0

)2
+
(‖ϕ1‖−1

0

)2)1/2

respectively, s, l ∈ R. Evidently, H̃s
l is a (closed)

subspace of Hs
l , s, l ∈ R. Control system (1.1), (1.2) is considered in the spaces Hs

0 , s ≤ 0.
Further, for each function defined on a subset Q of R we assume everywhere that it is extended on the whole

R and vanish on R\Q. Throughout the paper the domain, the range and the null space (the kernel) of an
operator A are denoted by D(A), R(A) and N(A) respectively.

3. Conditions for (approximate) controllability at a given time

Consider control system (1.1), (1.2) with the initial conditions{
w(x, 0) = W0

0(x)

wt(x, 0) = W0
1(x)

, x > 0, (3.1)

where W0 =
(

W0
0

W0
1

)
∈ H̃. Let W(·, t) be the odd extension of

(
w(·, t)
wt(·, t)

)
. One can see that control prob-

lem (1.1), (1.2), (3.1) is equivalent to the following Cauchy problem

dW
dt

=

(
0 1((

d
dx

)2 − q2
)

0

)
W −

(
0

2δ′(x)

)
u, t ∈ (0, T ), (3.2)

W(x, 0) = W0 (3.3)

where u ∈ L∞(0, T ) is a parameter (a control). Here δ is the Dirac distribution, δ = H ′, H is the Heaviside
function: H(ξ) = 1 if ξ > 0, and H(ξ) = 0 otherwise.

Let α > 0, Ψα : S′ → S′, D(Ψα) = {g ∈ S′ | g is odd and supp g ⊂ [−α, α]},

Ψαg = F−1
σ→x

(
σ√

σ2 + q2
(Fg)

(√
σ2 + q2

))
, g ∈ D(Ψα). (3.4)

We have Ψαg = d
dxF−1

σ→x

(
−i√

σ2+q2
(Fg)

(√
σ2 + q2

))
= d

dx (Φg), g ∈ D(Ψα), where Φ was introduced and

investigated in [4]. Evidently, if q = 0, then Ψα = Id (where Id is the identity operator).
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Theorem 3.1. Let α > 0. Then the following assertions hold:
(i) R(Ψα) = D(Ψα);
(ii) R

(
Ψα|Hs

0

)
⊂ Hs

0 , Ψα|Hs
0

is bounded from Hs
0 to Hs

0 and
∥∥∥Ψα|Hs

0

∥∥∥ ≤ (1 + q2
)−s/2, s ≤ 0;

(iii) Ψα is invertible, D(Ψ−1
α ) = R(Ψα) = D(Ψα);

(iv) Ψ−1
α

∣∣
Hs

0
=
(

Ψα|Hs
0

)−1

and Ψ−1
α

∣∣
Hs

0
is bounded from Hs

0 to Hs
0 , s ≤ 0;

(v) (Ψαg) = − d
dx

∫ ∞

|x|
J0

(
q
√
t2 − x2

)
g(t) dt = g(x) − qx

∫ ∞

|x|

J1

(
q
√
t2 − x2

)
√
t2 − x2

g(t) dt, g ∈ D(Ψα) ∩H0
0 ;

(vi)
(
Ψ−1

α f
)

= F−1
μ→t

(
μ√

μ2 − q2
(Ff)(

√
μ2 − q2)

)
= − d

dt

∫ ∞

|t|
I0

(
q
√
x2 − t2

)
f(x) dx =

f(t) + qt
∫∞
|t|

I1(q
√

x2−t2)√
x2−t2

f(x) dx, f ∈ D(Ψ−1
α ) ∩H0

0 ;

(vii) ‖Ψαg‖L∞(−α,α) ≤ (1 + qα) ‖g‖L∞(−α,α), g ∈ D(Ψα) ∩ L∞(−α, α);
(viii)

∥∥Ψ−1
α f
∥∥

L∞(−α,α)
≤ I0(qα) ‖f‖L∞(−α,α), f ∈ D(Ψ−1

α ) ∩ L∞(−α, α);

(ix)
(

Ψα

(
d
dt
(
sgn tΨ−1

α f
)))

(x) = (sgnxf(x))′ + q sgnx
∫ ∞

|x|
f(ξ)

I1 (q(|x| − ξ))
|x| − ξ

dξ =

(sgnxf(x))′ + q
2 sgnx (f(x) ∗ (I1(qx)H(−x))) (|x|), f ∈ D(Ψ−1

α ).
Here Jν(ξ) is the Bessel function, and Iν(ξ) = i−νJν(iξ) is the modified Bessel function.

Assertions (i)–(vi) follow immediately from properties of Φ [4], Appendix. Assertions (vii), (viii) can be
easily obtained by analogy with the corresponding properties of Φ [4], Appendix. Assertion (ix) is proved in
Appendix of the present paper (Lem. A.15).

Taking into account [4], Proposition 3.2, Lemma 6.7, we conclude that the following theorem holds.

Theorem 3.2. Let W0 ∈ S′ × S′, u ∈ L∞(0, T ). Then

W(x, T ) = E(x, T ) ∗
[
W0(x) −

(
ΨT U

ΨT
d
dt (sgn tU)

)
(x)
]
, (3.5)

where U(t) = u(t) (H(t) −H(t− T )) − u(−t) (H(t+ T )−H(t)), W is the unique solution to (3.2)–(3.3), ∗ is
the convolution with respect to x,

E(x, t) =
1
2

(
∂/∂t 1

(∂/∂t)2 ∂/∂t

)(
J0

(
q
√
t2 − |x|2

)
sgn t H

(
t2 − x2

))
. (3.6)

In addition, |||E(x, t) ∗ f ||| ≤M t
q |||f |||, M t

q =
√

(2t2 + 6)(1 + q2), t ∈ R, f ∈ H0
0 ×H−1

0 . Moreover, if W0 ∈ H̃,
then W(·, t) ∈ H̃, t ∈ [0, T ].

Let U > 0, T > 0. Denote BU (0, T ) = {v ∈ L∞(0, T ) | ‖v‖L∞(0,T ) ≤ U}. Obviously,
⋃

U>0 BU (0, T ) =

L∞(0, T ). For a given T > 0, W0 ∈ H̃ denote by RU
T (W0) the set of the states WT ∈ H̃ for which there exists

a control u ∈ BU (0, T ) such that problem (3.2)–(3.3) has a unique solution W and W(·, T ) = WT . Denote also
R∞

T (W0) =
⋃

U>0 RU
T (W0).

Definition 3.3. A state W0 ∈ H̃ is called BU -controllable at a given time T > 0 if 0 belongs to RU
T (W0) and

approximately BU -controllable at a given time T > 0 if 0 belongs to the closure of RU
T (W0) in H̃.

Definition 3.4. A state W0 ∈ H̃ is called L∞-controllable at a given time T > 0 if 0 belongs to R∞
T (W0) and

approximately L∞-controllable at a given time T > 0 if 0 belongs to the closure of R∞
T (W0) in H̃.
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With regard to Theorem 3.2 we have

RU
T (W0) =

{
E(x, T ) ∗

[
W0(x) − ΨT

(
ΨT U

ΨT
d
dt (sgn tU)

)
(x)
]
| U is odd, ‖U‖L∞(R) ≤ U, supp U ∈ [−T, T ]

}
.

The following theorem give us necessary and sufficient conditions for (approximate) BU -controllability.

Theorem 3.5. Let W0 ∈ H̃ and a time T > 0 be given. Then the following three assertions are equivalent
(i) W0 is BU -controllable at the time T ;
(ii) W0 is approximately BU -controllable at the time T ;
(iii) W0 satisfies the conditions

supp W0
0 ⊂ [−T, T ]; (3.7)

W0
1 − ΨT

d
dt
(
sgn t

(
Ψ−1

T W0
0

))
= 0; (3.8)∥∥Ψ−1

T W0
0

∥∥
L∞(R)

≤ U. (3.9)

Moreover, the solution of the BU -controllability problem (the control u) is unique and

u(t) = − d
dt

∫ T

t

I0

(
q
√
x2 − t2

)
W0

0(x) dx = w0
0(t) + qt

∫ T

t

I1
(
q
√
x2 − t2

)
√
x2 − t2

W0
0(x) dx t ∈ (0, T ). (3.10)

Under conditions (3.7)–(3.8) T∗ = max supp W0
0 is the optimal time and u of the form (3.10) (for T = T∗) is

the time-optimal control for the BU -controllability problem.

Proof. Let (3.7)–(3.8) hold. Put U = Ψ−1
T W0

0. It follows from Theorem 3.1: (i), (iii), (viii) that U is odd,
supp U ⊂ [−T, T ] and ‖U‖L∞(R) ≤ U . Denote by u(t) its restriction on [0, T ]. Then U(t) = u(t)(H(t) −H(t−
T )) − u(−t)(H(t+ T ) −H(t)). Using (3.9), we conclude that u ∈ BU (0, T ) and assertion (3.10) is true for it.
Taking into account (3.8), we get

W0
1 = ΨT

d
dt
(
sgn t

(
Ψ−1

T W0
0

))
= ΨT

d
dt
(
sgn t

(
Ψ−1

T ΨT U
))

= ΨT
d
dt

(sgn tΩU) . (3.11)

Therefore, (3.5) yields W(·, T ) = 0. Here W is the solution to (3.2), (3.3). Thus, W0 is BU -controllable at the
time T . Therefore, it is approximately BU -controllable at this time. Put T∗ = max supp W0

0. With regard to
(3.5), we conclude that T = T∗ is the optimal time and u of the form (3.10) (for T = T∗) is the time-optimal
control for BU -controllability problem.

Let W0
0 be approximately BU -controllable at the time T . For each n ∈ N there exists a state Wn ∈ RU

T (W0)
such that |||Wn||| < 1/n. Using Theorem 3.2, we get

∥∥W0
0 − ΨT Un

∥∥0
0
→ 0 and

∥∥∥∥W0
1 − ΨT

d
dt

(sgn tUn)
∥∥∥∥−1

0

→ 0 as n→ ∞

for some un ∈ BU (0, T ), where Un(t) = un(t)(H(t) −H(t− T )) − un(−t)(H(t+ T )−H(t)), n ∈ N. According
to Theorem 3.1: (i), (ii), we have supp W0

0 ⊂ [0, T ] (i.e. (3.7) holds) and∥∥Ψ−1
T W0

0 − Un

∥∥0

0
→ 0 and

∥∥Ψ−1
T W0

1 − (sgn tUn)′
∥∥−1

0
→ 0 as n→ ∞. (3.12)

Put U = Ψ−1
T W0

0. With regard to Theorem 3.1: (i), (iii), we get supp U ⊂ [−T, T ], U is odd. Since un ∈ BU (0, T ),
we have ‖U‖L∞(R) ≤ U . According to Theorem 3.1: (ii), we obtain from here that (3.7), (3.9) are true. Taking
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into account (3.12), we obtain

‖U − Un‖0
0 → 0 and

∥∥(sgn tU)′ − (sgn tUn)′
∥∥−1

0
→ 0 as n→ ∞.

Hence, (sgn tU)′ = Ψ−1
T W0

1 and (3.8) holds. The theorem is proved. �
Remark 3.6. According to Theorem 3.1: (ix), condition (3.8) is equivalent to

W0
1(x) =

(
sgnxW0

0(x)
)′

+ q sgnx
∫ ∞

x

W0
0(ξ)

I1 (q(x− ξ))
x− ξ

dξ, x > 0. (3.8′)

Remark 3.7. Let q = 0. Then (3.8) is of the form W0
1 = (sgnxW0

0)
′ and (3.10) is of the form u(t) = W0

0(t)
on [0, T ]. These conditions were obtained in [15] (for q = 0).

Remark 3.8. With regard to Theorem 3.1: (vii), (viii), condition

∥∥W0
0

∥∥
L∞(R)

≤ U

I0(qT )
(3.13)

is sufficient for (3.9) but it is not necessary for (3.9), according to Example 7.1, if q > 0. Due to the same
theorem, condition ∥∥W0

0

∥∥
L∞(R)

≤ U(1 + qT ) (3.14)

is necessary for (3.9) but it is not sufficient for (3.9), according to Example 7.1, if q > 0. If q = 0, then we
obtain from here that (3.9), (3.13), and (3.14) are equivalent to

∥∥W0
0

∥∥
L∞(R)

≤ U .

Corollary 3.9. Let W0 ∈ H̃ and a time T > 0 be given. Then
(i) W0 is approximately L∞-controllable at the time T iff (3.7) and (3.8) hold;
(ii) W0 is L∞-controllable at the time T iff W0

0 ∈ L∞(0, T ) and (3.7), (3.8) hold.

Proof. Let us prove (i). Reasoning as in the proof of Theorem 3.5, we conclude that (3.7) and (3.8) are necessary
for approximate L∞-controllability. To prove their sufficiency, we consider a sequence {Wn

0 }n∈N
⊂ L∞(R) such

that supp Wn
0 ⊂ [−T, T ], n ∈ N, and

∥∥W0
0 − Wn

0

∥∥0

0
→ 0 as n → ∞. Put U = Ψ−1

T W0
0, Un = Ψ−1

T Wn
0 ,

n ∈ N. According to Theorem 3.1: (i), (ii), (iv), (viii), we have U ∈ L2(R), Un ∈ L∞(R), supp U ⊂ [−T, T ],
supp Un ⊂ [−T, T ], n ∈ N, and ‖U − Un‖0

0 → 0 as n→ ∞. With regard to Theorem 3.1: (ii) and (3.8), we get∥∥∥∥W1
0 − ΨT

d
dt

(sgn tUn)
∥∥∥∥−1

0

=
∥∥∥∥ΨT

d
dt

(sgn t (U − Un))
∥∥∥∥−1

0

= ‖U − Un‖0
0 → 0 as n→ 0.

Applying Theorem 3.2, we conclude that W0
0 is approximately L∞-controllable at the time T > 0.

Theorem 3.5 and Remark 3.8 yield assertion (ii). The corollary is proved. �
Examples 7.2, 7.6 illustrate Theorem 3.5 and Corollary 3.9.

4. Conditions for approximate L∞-controllability at a free time

Consider control system (1.1), (1.2), (3.1) and equivalent system (3.2), (3.3), where T > 0 is a parameter.

Definition 4.1. A state W0 ∈ H̃ is called approximately L∞-controllable (at a free time) if 0 belongs to the
closure of

⋃
T>0 R∞

T (W0) in H̃.

Definition 4.2. System (3.2), (3.3) is called approximately L∞-controllable if each state W0 ∈ H̃ is approxi-
mately L∞-controllable.
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Let us consider an extension of Ψα on a space of functions with non-compact support. Let Ψ : H0
0 → H0

0 ,
D(Ψ) = H̃0

0 ,

Ψg = F−1
σ→x

(
σ√

σ2 + q2
(Fg)

(√
σ2 + q2

))
, g ∈ D(Ψ). (4.1)

Evidently, Ψg = Ψαg, g ∈ D(Ψ) ∩D(Ψα). One can see that if q = 0, then Ψ = Id.

Theorem 4.3. Let q > 0. Then the following assertions hold:

(i) R(Ψ) =
{
f ∈ H̃0

0 | ∃f̃ ∈ H
1/2
0 Ff =

√|σ|Ff̃
}
, R(Ψ) = H̃0

0 ;
(ii) Ψ is bounded and ‖Ψ‖ ≤ 1;
(iii) N(Ψ) =

{
g ∈ H̃0

0 | supp Fg ⊂ [−q, q]
}
;

(iv) (Ψg) (x) = − d
dx

∫ ∞

|x|
J0

(
q
√
t2 − x2

)
g(t) dt = g(x) − qx

∫ ∞

|x|

J1

(
q
√
t2 − x2

)
√
t2 − x2

g(t) dt, g ∈ D(Ψ);

Proof. Lemma A.13 implies (i). By analogy with properties of Φ [4], Appendix, we obtain assertions (ii), (iv).
With regard to the definition of Ψ, we conclude that (iii) is true. The theorem is proved. �

Taking into account (3.5), consider an extension of Ψα
d
dt sgn t on a space of functions with non-compact

support. Let Ψ̂ : H0
0 → H−1

0 , D(Ψ̂) = D(Ψ) = H̃0
0 ,

Ψ̂g =
d
dx

F−1
σ→x

(
(F (sgn t g))

(√
σ2 + q2

))
, g ∈ D(Ψ̂). (4.2)

Evidently, Ψ̂g = Ψα
d
dt (sgn tg), g ∈ D(Ψ̂) ∩D(Ψα). One can see that if q = 0, then Ψ̂ = d

dx sgnx.
If W0 ∈ H̃, T > 0, u ∈ L∞(0, T ), then formula (3.5) can be represented in the form

W(x, T ) = E(x, T ) ∗
[
W0(x) −

(
ΨU

Ψ̂U

)
(x)
]
, (3.5′)

where U(t) = u(t)(H(t) −H(t− T )) − u(−t)(H(t+ T )−H(t)).
By analogy with Theorem 4.3, we obtain

Theorem 4.4. Let q > 0. Then the following assertions hold:

(i) R(Ψ̂) =
{
f ∈ H̃−1

0 | ∃f̃ ∈ H
−1/2
0 Ff =

√|σ|Ff̃
}
, R(Ψ̂) = H̃−1

0 ;

(ii) Ψ̂ is bounded and
∥∥∥Ψ̂∥∥∥ ≤ 1;

(iii) N(Ψ̂) =
{
g ∈ H̃0

0 | supp F (sgn t g) ⊂ [−q, q]
}
;

(iv)
(
Ψ̂g
)

(x) =
d
dx

(
sgnx g(x) − q

∫ ∞

|x|

tJ1

(
q
√
t2 − x2

)
√
t2 − x2

g(t) dt

)
, g ∈ D(Ψ̂);

We have used the inverse operator for Ψα to solve controllability problem at a given time. But Ψ is not
invertible according to Theorem 4.3. Let us use the Moore-Penrose inverse for the operator Ψ [2,12,13] to solve
approximate controllability problem at a free time. Decompose the space H̃0

0 into a direct sum of subspaces.
Denote L1 = (N(Ψ))⊥, L2 = N(Ψ). Evidently, L1 = {g ∈ H̃0

0 | supp Fg ⊂ R\(−q, q)}, L2 = {g ∈ H̃0
0 |

supp Fg ⊂ [−q, q]}. We have H̃0
0 = L1

⊕
L2. According to Theorem 4.3, the restriction Ψ|L1 is an invertible

operator. Denote Ψ+ = (Ψ|L1)
−1, D(Ψ+) = R(Ψ). Here Ψ+ is called the Moore-Penrose inverse for Ψ. We

have ΨΨ+ = Id, Ψ+Ψ = PL1 , where PLj is the projector on Lj in H̃0
0 , j = 1, 2. One can see that

Ψ+f = F−1
μ→t

(
μH(μ2 − q2)√

μ2 − q2
(Ff)

(√
μ2 − q2

))
, f ∈ D(Ψ+). (4.3)
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Denote

ψ∞(t, x) =
2
π

sgnxH(x2 − t2)t
∫ ∞

|t|

(
sin(qv)
v

)′ dv√
v2 + x2 − t2

, (t, x) ∈ R
2,

ψ0(t, x) =
2
π

sgnxH(t2 − x2)t
∫ |t|
√

t2−x2

(
sin(qv)
v

)′ dv√
v2 + x2 − t2

, (t, x) ∈ R
2.

Due to Lemma A.14, (4.3) and the definition of Ψ+, we have

Theorem 4.5. Let q > 0. Then the following assertions hold:
(i) R(Ψ+) = L1;
(ii) Ψ+ is invertible, (Ψ+)−1 = Ψ|L1

, D ((Ψ+))−1 = R(Ψ+) = L1;

(iii) (Ψ+f) (t) = f(t) − ∫∞
|t| ψ∞(t, x)f(x) dx +

∫ |t|
0 ψ0(t, x)f(x) dx, f ∈ R(Ψ);

The operator Ψ̂Ψ+ = Ψ d
dt sgn tΨ+ is a generalization of Ψα

d
dt sgn tΨ−1

α . To investigate approximate control-
lability at a free time, we study the operator Ψ̂Ψ+ because the operator Ψα

d
dt sgn tΨ−1

α play an important role
in the study of the controllability problem at a given time. Taking into account Lemma A.16, we can continue
the operator Ψ̂Ψ+ on H̃0

0 . Denote Υ : H0
0 → H−1

0 , D(Υ) = H̃0
0 ,

Υf = (sgnx f)′ + q2 sgnxF−1
σ→x

(
i sgnσ (Ff)(σ)
|σ| +√σ2 + q2

)
= sgnxF−1

σ→x

(
i sgnσ

√
σ2 + q2(Ff)(σ)

)
, f ∈ D(Υ).

According to Lemma A.16, Υf = Ψ̂Ψ+f , f ∈ R(Ψ). One can see that if q = 0, then Υ = d
dx sgnx. By analogy

with the modified Bessel function

Ip(x) =
xp

2p−1Γ(1/2)Γ(p+ 1/2)

∫ 1

0

(
1 − ξ2

)p−1/2
cosh(ξx) dξ, p ≥ 0, (4.4)

we introduce the following cylindric function

Lp(x) =
xp

2p−1Γ(1/2)Γ(p+ 1/2)

∫ 1

0

(
1 − ξ2

)p−1/2
sinh(ξx) dξ, p ≥ 0. (4.5)

Using the definition of Υ, Lemmas A.16, A.18, and Corollary A.19, we obtain

Theorem 4.6. Let q > 0. Then the following assertions hold:
(i) R(Υ) = H̃−1

0 ;
(ii) Υ is bounded and ‖Υ‖ ≤

√
1 + q2;

(iii) Υ is invertible, Υ−1g = F−1
σ→x

(
F(sgn ξ g)(σ)

i sgnσ
√
σ2 + q2

)
, g ∈ D

(
Υ−1

)
= R (Υ) = H̃−1

0 ;

(iv) Υ−1 is bounded,
∥∥Υ−1

∥∥ ≤ √1 + q2

q
;

(v) Υf = (sgnxf(x))′ +
q

2
sgnx

(
f(x) ∗ I1(q|x|) − L1(qx)

x

)
, f ∈ H̃0

0 .

Theorem 4.7. Let q = 0. A state W0 ∈ H̃ is approximately L∞-controllable at a free time iff

W0
1 −
(
sgnxW0

0

)′
= 0. (4.6)

We obtain this assertion from [15], Theorem 1.1. Note also that W0
1 −
(
sgnxW0

0

)′ = W0
1 − ΥW0

0 if q = 0.
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Theorem 4.8. A state W0 ∈ H̃ is approximately L∞-controllable at a free time iff

W0
1 − ΥW0

0 ∈ Ψ̂ (N(Ψ)), (4.7)

where the closure is considered with respect to the norm ‖ · ‖−1
0 .

Proof. Let q = 0. Theorem 4.7 yields the assertion of this theorem because condition (4.7) is equivalent to
condition (4.6) in this case. Now let q > 0.

Necessity of (4.7). Let W0 ∈ H̃ be approximately L∞-controllable. Then for any n ∈ N there exist Tn > 0
and un ∈ L∞(0, Tn) such that for the solution Wn to (3.2), (3.3) we have |||Wn(·, Tn)||| → 0 as n → ∞.
Taking into account Lemma A.12 and (3.5′), we obtain

∥∥W0
0 − Wn

0

∥∥0
0
→ 0 and

∥∥W0
1 − Wn

1

∥∥−1

0
→ 0 as n → ∞,

where Wn
0 = ΨUn, Wn

1 = Ψ̂Un, Un(t) = un(t)(H(t) −H(t − T )) − un(−t)(H(t + T ) −H(t)), n ∈ N. Hence,
Wn

1 = Ψ̂PL1Un + Ψ̂PL2Un = Ψ̂Ψ+Wn
0 + Ψ̂PL2Un. Therefore, Wn

1 − ΥWn
0 ∈ Ψ̂ (N(Ψ)), n ∈ N. Taking into

account Theorem 4.6: (ii), we obtain from here that (4.7) holds.
Sufficiency of (4.7). Denote Wn

0 = H(n2 − x2)W0
0, n ∈ N. Obviously,

∥∥W0
0 − Wn

0

∥∥0
0
→ 0 as n → ∞.

Due to the Paley–Wiener theorem, we conclude that FWn
0 can be extended to an odd entire function. Hence,

1√
|σ|FWn

0 ∈ H0
1/2. According to Theorem 4.3: (i), we have Wn

0 ∈ R(Ψ), n ∈ N. For each n ∈ N put

U1
n = Ψ+Wn

0 ∈ L1 and find U2
n ∈ N(Ψ) = L2 such that

∥∥∥W0
1 − ΥW0

0 − Ψ̂U2
n

∥∥∥−1

0
→ 0 as n → ∞. Put

Un = U1
n + U2

n, Wn
1 = Ψ̂Un, Wn =

(
Wn

0

Wn
1

)
, n ∈ N. We have Wn

0 = Ψ̂U1
n = Ψ̂Un, Wn

1 = ΥWn
0 + Ψ̂U2

n, n ∈ N.

With regard to Theorem 4.6: (ii), we get∣∣∣∣∣∣W0 − Wn
∣∣∣∣∣∣→ 0 as n→ ∞, (4.8)

where Wn =
(

ΨUn

Ψ̂Un

)
, n ∈ N. For each n ∈ N consider a sequence

{
Uk

n

}
k≥2

⊂ L∞(R) such that suppUk
n ⊂

[−k, k], k ≥ 2, and
∥∥Un − Uk

n

∥∥0
0
→ 0 as k → ∞. Determine kn ≥ 2 such that

∥∥Un − Ukn
n

∥∥0
0
<
∣∣∣∣∣∣W0 − Wn

∣∣∣∣∣∣,
n ∈ N. Theorems 4.3: (ii), 4.4: (ii) and (4.8) imply∣∣∣∣∣∣∣∣∣∣∣∣W0 −

(
ΨUkn

n

Ψ̂Ukn
n

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣W0 − Wn
∣∣∣∣∣∣+ √

2
∥∥Un − Ukn

n

∥∥0
0
≤
(
1 +

√
2
) ∣∣∣∣∣∣W0 − Wn

∣∣∣∣∣∣→ 0 as n→ ∞.

Using Lemma A.12 and (3.5′), we obtain that for the solution W to (3.2), (3.3) we have |||W(·, kn)||| → 0 as
n→ ∞. The theorem is proved. �

According to Theorem 5.10 (see below Sect. 5), we have Ψ̂ (N(Ψ)) = H̃−1
0 (the closure is considered in H̃−1

0 ).
Hence the following corollary is true.

Corollary 4.9. Let q > 0. Each state W0 ∈ H̃ is approximately L∞-controllable at a free time, i.e. sys-
tem (3.2), (3.3) is approximately L∞-controllable.

In the case q > 0 the behavior of system (3.2), (3.3) essentially differs from its behavior in the case q = 0. This
difference is generated by the properties of the influence operator Ψ. Indeed, N(Ψ) = {0} and Ψ̂ (N(Ψ)) = {0}
if q = 0, and N(Ψ)\{0} �= ∅ and Ψ̂ (N(Ψ)) = H̃−1

0 otherwise.

Remark 4.10. Let W0 ∈ H̃ and supp W0 ⊂ [−α, α], α > 0. With regard to Corollaries 3.9, 4.9 and Theo-
rems 4.7, 4.8, we obtain the following assertions.

(i) In the case q = 0 a state W0 is approximately L∞-controllable at a free time iff condition (3.8) (or (4.6))
holds, and under this condition the state W0 is L∞-controllable at a given time T ≥ α.
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(ii) In the case q > 0 a state W0 is always approximately L∞-controllable at a free time, but it is (approx-
imately) L∞-controllable at a given time T ≥ α iff condition (3.8) holds.

The case (ii) is illustrated by Example 7.6.

By analogy with the operators Ψ+ and Υ, we introduce the “symmetric” operators Ψ̂+ and Υ̂. Decompose
again the space H̃0

0 into a direct sum of subspaces. Denote M1 = (N(Ψ̂))⊥, M2 = N(Ψ̂). Evidently, M1 =
{g ∈ H̃0

0 | supp F (sgn t g) ⊂ R\(−q, q)}, M2 = {g ∈ H̃0
0 | supp F (sgn t g) ⊂ [−q, q]}. We have H̃0

0 = M1

⊕
M2.

Taking into account Theorem 4.4, we conclude that the restriction Ψ̂|M1 is an invertible operator. Denote

Ψ̂+ =
(
Ψ̂|M1

)−1

, D(Ψ̂+) = R(Ψ̂). Here Ψ̂+ is the Moore-Penrose inverse for Ψ̂. We have Ψ̂Ψ̂+ = Id,

Ψ̂+Ψ̂ = PM1 , where PMj is the projector on Mj in H̃0
0 , j = 1, 2. One can see that

Ψ̂+f = sgn tF−1
μ→t

(
−iH(μ2 − q2)√

μ2 − q2
(Ff)

(√
μ2 − q2

))
, f ∈ D(Ψ̂+). (4.9)

Denote Υ̂ : H−1
0 → H0

0 , D(Υ̂) = H̃−1
0 ,

Υ̂f = sgnxF−1
σ→x

(
(Ff)(σ)

i sgnσ
√
σ2 + q2

)
, f ∈ D(Υ̂).

With regard to Lemma A.17, we have Υ̂f = ΨΨ̂+f , f ∈ R(Ψ̂).
By analogy with Theorem 4.5, we obtain

Theorem 4.11. Let q > 0. Then the following assertions hold:
(i) R(Ψ̂+) = M1;

(ii) Ψ̂+ is invertible,
(
Ψ̂+
)−1

= Ψ̂
∣∣∣
M1

, D
(
(Ψ̂+)

)−1

= R(Ψ̂+) = M1;

(iii)
(
Ψ̂+f

)
(t) = sgn t f̃(t) − q

∫ |t|

0

J1

(
q
√
t2 − x2

)
√
t2 − x2

f̃(x) dx, f̃ = F−1

(
(Ff)(σ)

i sgnσ
√
σ2 + q2

)
= sgnx Υ̂f =

1
2
f(x) ∗ (sgnx I0(qx) − L0(qx)), f ∈ R(Ψ̂);

To obtain (iii), we use (A.8) and [4], (3.11). Taking into account the definition of Υ, Lemmas A.17, A.18,
and Corollary A.19, we obtain

Theorem 4.12. Let q > 0. Then the following assertions hold:
(i) R(Υ̂) = H̃0

0 ;

(ii) Υ̂ is bounded and
∥∥∥Υ̂∥∥∥ ≤ √1 + q2

q
;

(iii) Υ̂ is invertible, Υ̂−1g = F−1
σ→x

(
i sgnσ

√
σ2 + q2 (F(sgn ξ g)) (σ)

)
, g ∈ D

(
Υ̂−1

)
= R

(
Υ̂
)

= H̃0
0 ;

(iv) Υ̂−1 is bounded,
∥∥∥Υ̂−1

∥∥∥ ≤√1 + q2;

(v) Υ̂f =
1
2

sgnx (f(x) ∗ (sgnx I0(qx) − L0(qx))), f ∈ H̃−1
0 .

By analogy with Theorem 4.8, we obtain

Theorem 4.13. A state W0 ∈ H̃ is approximately L∞-controllable at a free time iff

W0
0 − Υ̂W0

1 ∈ Ψ
(
N(Ψ̂)

)
, (4.10)

where the closure is considered with respect to the norm ‖ · ‖0
0.
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Remark 4.14. Theorems 4.8 and 4.13 give us a practical method for solving the approximate L∞-controllability
problem at a free time for system (3.2), (3.3). Let us split the initial state W0 ∈ H̃:

W0 =
(

W0
0

W0
1

)
=
(

W0
0

0

)
+
(

0
W0

1

)
.

With regard to Theorems 5.10, 5.12, we can find sequences {Us
n}∞n=0 ⊂ L∞(R), Us

n is odd, n = 0,∞, s = 0, 1,
such that

U0
n ∈ N(Ψ̂), n = 0,∞, and ΨU0

n → W0
0 = W0

0 − Υ̂0 as n→ ∞;

U1
n ∈ N(Ψ), n = 0,∞, and Ψ̂U1

n → W0
1 = W0

1 − Υ0 as n→ ∞.

Therefore, for Un = U0
n + U1

n, n = 0,∞, we have

ΨUn → W0
0 Ψ̂Un → W0

1 as n→ ∞.

Choosing an appropriate approximation of Un by a function of the form Uk
n = (H(t+k)−H(t−k))Un, k = 2,∞,

n = 0,∞, we get a solution of the approximate L∞-controllability problem at a free time for system (3.2), (3.3).

5. Properties of the sets N(Ψ), Ψ̂(N(Ψ)) and N(Ψ̂), Ψ(N(Ψ̂))

According to Theorems 4.8 and 4.13, investigation of conditions (4.7) and (4.10) is a key point in the
study of the approximate L∞-controllability problem for the wave equation on a half-axis at a free time.
That is why we investigate the sets N(Ψ), Ψ̂(N(Ψ)) and N(Ψ̂), Ψ(N(Ψ̂)) here. Since for q = 0 we have
N(Ψ) = Ψ̂(N(Ψ)) = N(Ψ̂) = Ψ(N(Ψ̂)) = {0}, we suppose q > 0 throughout the section. Theorems 5.10
and 5.12 are the main results of this section. They assert that H̃−1

0 is the closure of Ψ̂(N(Ψ)) in H−1
0 , and H̃0

0

is the closure of Ψ(N(Ψ̂)) in H0
0 .

Applying the Paley—Wiener theorem, Theorems 4.3: (iii), 4.4: (iii), the definitions of Ψ and Ψ̂, we obtain
two theorems.

Theorem 5.1. The following four assertions are equivalent
(i) g ∈ N(Ψ);
(ii) ∀n = 0,∞ g(n) ∈ N(Ψ).
(iii) g ∈ H̃0

0 and supp Fg ⊂ [−q, q];
(iv) g ∈ H̃0

0 and g can be extended to an entire function of the order ≤ 1 and the type ≤ q.

Theorem 5.2. The following four assertions are equivalent

(i) g ∈ N(Ψ̂);
(ii) ∀n = 0, 1 g(n) ∈ N(Ψ̂).
(iii) g ∈ H̃0

0 and supp F(sgn t g) ⊂ [−q, q];
(iv) g ∈ H̃0

0 and sgn t g can be extended to an entire function of the order ≤ 1 and the type ≤ q.

The following two theorems give us properties of Ψ̂(N(Ψ)).

Theorem 5.3. The following assertions hold

(i) R
(

Ψ̂
∣∣∣
N(Ψ)

)
⊂ H̃0

0 ⊂ H̃−1
0 ;

(ii) N

(
Ψ̂
∣∣∣
N(Ψ)

)
= {0}.
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Proof. (i) If g ∈ N(Ψ), then (sgn t g)′ = sgn t g′ ∈ H̃0
0 because of Theorem 5.1: (i), (ii). According to Theo-

rem 4.3: (i), we get Ψ̂g = Ψ
(
(sgn t g)′

) ∈ H̃0
0 .

(ii) Let G = F (sgn t g), g ∈ N(Ψ) and Ψ̂g = 0. Then G(σ) = 0, |σ| > q. Taking into account Theorem
5.1: (i), (iii), we conclude that G(σ) =

∫ q

−q
(Fg) (ξ) dξ

σ−ξ is holomorphic on C\[−q, q]. Therefore, G = 0. Hence,
g = 0. The theorem is proved. �

Theorem 5.4. Let f ∈ H̃−1
0 . Then f ∈ Ψ̂(N(Ψ)) iff there exists Φ ∈ H0

0 such that
(i) supp Φ ⊂ [0, q];
(ii) ξ−1/2

(
q2 − ξ2

)−1/4 Φ ∈ H0
0 ;

(iii) f =
2
π

F−1
σ→x

(
σ

∫ q

0

Φ(ξ) dξ
σ2 + ξ2

)
= i sgnx

√
2
π

∫ q

0

Φ(ξ)e−ξ|x| dξ.

Moreover, under conditions (i)–(iii) we have Ψ̂g = f for g = F−1
ξ→t

(
sgn ξΦ(

√
q2 − ξ2)/

√
q2 − ξ2

)
∈ N(Ψ).

Proof. Sufficiency of (i)–(iii). Put G(ξ) = sgn ξΦ
(√

q2 − ξ2
)
/
√
q2 − ξ2. According to (i) and (ii), we have

suppG ⊂ [−q, q] and G ∈ H̃0
0 . Due to Theorem 5.1: (i), (iii), we get g = FG ∈ N(Ψ). With regard to (4.2), we

obtain

Ψ̂g =
1
π

F−1
σ→x

(
σ

(
G(ν) ∗ 1

ν

)(√
σ2 + q2

))

=
2
π

F−1
σ→x

(
σ

∫ q

0

μG(μ) dμ
σ2 + q2 − μ2

)
=

2
π

F−1
σ→x

⎛⎝σ ∫ q

0

ξG
(√

q2 − ξ2
)

σ2 + ξ2
dξ

⎞⎠ (5.1)

Then (iii) implies f ∈ Ψ̂ (N(Ψ)).
Necessity of (i)–(iii). If f ∈ Ψ̂ (N(Ψ)), then there exists g ∈ N(Ψ) such that f = Ψ̂g. Setting G = Fg

and applying Theorem 5.1: (i), (iii), we conclude that suppG ⊂ [−q, q], G ∈ H̃0
0 . With regard to (5.1), we get

f = Ψ̂g = 2
π F−1

σ→x

(
σ
∫ q

0
μG(μ) dμ

σ2+q2−μ2

)
. Put Φ(ξ) = H(ξ)ξG

(√
q2 − ξ2

)
. Then (i)–(iii) are true. The theorem is

proved. �

Analogously, we obtain properties of Ψ(N(Ψ̂)).

Theorem 5.5. The following assertions hold

(i) R
(

Ψ|N(Ψ̂)

)
⊂ H̃0

0 ;

(ii) N
(

Ψ|N(Ψ̂)

)
= {0}.

Theorem 5.6. Let f ∈ H̃0
0 . Then f ∈ Ψ(N(Ψ̂)) iff there exists Φ ∈ H0

0 such that
(i) supp Φ ⊂ [0, q];
(ii) ξ−1/2

(
q2 − ξ2

)1/4 Φ ∈ H0
0 ;

(iii) f =
2
π

F−1
σ→x

(
σ

∫ q

0

Φ(ξ) dξ
σ2 + ξ2

)
= i sgnx

√
2
π

∫ q

0

Φ(ξ)e−ξ|x| dξ.

Moreover, under conditions (i)–(iii) we have Ψg = f for g = sgn tF−1
ξ→t

(
i|ξ|Φ(

√
q2 − ξ2)/

√
q2 − ξ2

)
∈ N(Ψ̂).

Remark 5.7. Condition (iii) in Theorems 5.4 and 5.6 can be represented in the form (Ff) (σ) = 1
π 〈Φ, ν(σ, ·)〉

where ν(σ, ξ) = 2σ
σ2+ξ2 , σ ∈ R, ξ ∈ R.

With regard to Theorems 5.4 and 5.6, we see that the following theorem is useful for investigation of (ΨN(Ψ̂))
and Ψ̂(N(Ψ)). Due to [7], Chapter 2, the Paley–Wiener Theorem, and Lemma A.20, we get
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Theorem 5.8. Let Φ ∈ H0
0 and supp Φ ∈ [0, q]. Then f(x) = i sgnx

√
2
π

∫ q

0
Φ(ξ)e−ξ|x| dξ, x > 0 iff

(i) f ∈ L2(0,+∞);
(ii) f can be extended to an entire function and e−zq/2f(z) is of the order ≤ 1 and the type ≤ q/2;
(iii) ∀x > 0 f©x ∈ H0

0 , where f©x(y) = f(x+ iy), y ∈ R;

(iv) sup
{
‖f©x‖0

0 | x > 0
}
≤ ‖f©0‖0

0.

Under conditions (i)–(iv) we have f©0 = 2iFξ→yΦ.

The following two theorems give us properties of Ψ̂(N(Ψ)).

Theorem 5.9. Let n = 0,∞. Then sgnx |x|ne−q|x| ∈ Ψ̂(N(Ψ)) (the closure is considered in H−1
0 ).

Proof. Let n = 0,∞ be fixed. Put ν(σ, ξ) = 2σ
σ2+ξ2 , σ, ξ ∈ R, f(x) = sgnx |x|ne−q|x|, x ∈ R. We have

F (σ) = (Fx→σf) (σ) = −i

√
1
2π

〈
(−1)nδ(n)(ξ − q), ν(σ, ξ)

〉
, σ ∈ R. (5.2)

Let μ ∈ C∞(R), suppμ ⊂ [−1, 1],
∫ 1

−1
μ(ξ) dξ = 1 and μ ≥ 0, ξ ∈ R. Put μm = mμ(m(ξ − q) + 2),

ξ ∈ R, m ∈ N. Then μm ∈ C∞(R) and suppμm ⊂ [q − 3/m, q − 1/m], m ∈ N. For m ∈ N set Fm(σ) =

−i
√

1
2π 〈(−1)nμ

(n)
m , ν(σ, ·)〉, σ ∈ R. With regard to Theorem 5.4, we conclude that fm = F−1

σ→xFm ∈ Ψ̂ (N(Ψ)),

m ∈ N. Set μ̂(ξ) =
∫ ξ

−∞ μ(u) du, ξ ∈ R. Then 0 ≤ μ̂(ξ) ≤ 1 for ξ ∈ R, μ̂(ξ) = 0 for ξ ≤ −1 and
μ̂(ξ) = 1 for ξ ≥ 1. Put μ̂m = μ̂(m(ξ − q) + 2), ξ ∈ R, m ∈ N. Evidently, (μ̂m)′ = μm, m ∈ N. We

have ‖H(ξ − q) − μ̂m‖0
0 ≤

(∫ q−1/m

q−3/m μ̂m(ξ) dξ
)1/2

≤
√

2
m , m ∈ N. Therefore,

∥∥∥δ(n)(ξ − q) − μ
(n)
m

∥∥∥−2n−2

0
≤√

2
m . Hence,

∥∥∥ξ−2n−2
(
μ

(n)
m − δ(n)(ξ − q)

)∥∥∥−2n−2

2n+2
≤
√

2
m

(
1 + 1

(q−3/m)2

)n+1

, m ∈ N. Taking into account

Lemma A.20 and (5.2), we conclude that

‖F − Fm‖0
0 ≤ L2n+2

√
π

m

(
1 +

1
(q − 3/m)2

)n+1

→ 0 as m→ ∞. (5.3)

Therefore, fm → f as m→ ∞ in H−1
0 . Since fm = F−1

σ→xFm ∈ Ψ̂ (N(Ψ)), m ∈ N, then f belongs to the closure
Ψ̂ (N(Ψ)) in H−1

0 . That was to be proved. �

Theorem 5.10. H̃−1
0 is the closure of Ψ̂ (N(Ψ)) with respect to to the norm ‖·‖−1

0 .

Proof. Let f ∈ H̃−1
0 . Due to [7], Chapter 1, H̃−1

0 is the closure of H̃0
0 with respect to the norm ‖·‖−1

0 . Since{
sgnx |x|ne−q|x|}∞

n=0
is a basis of H̃0

0 , then f can be approximated in H̃−1
0 by the functions of the form

fN (x) = sgnx e−q|x|∑N
n=0 f

N
n |x|n, where fN

n ∈ R, n = 0, N , N = 0,∞. Taking into account Theorem 5.9, we
conclude that f belongs to the closure of Ψ̂ (N(Ψ)) with respect to the norm ‖·‖−1

0 . That was to be proved. �

Analogously, we obtain properties of Ψ(N(Ψ̂)).

Theorem 5.11. Let n = 0,∞. Then sgnx |x|ne−q|x| ∈ Ψ(N(Ψ̂)) (the closure is considered in H0
0 ).

Theorem 5.12. H̃0
0 is the closure of Ψ(N(Ψ̂)) with respect to to the norm ‖·‖0

0.

Remark 5.13. Let S0 =
{
ϕ ∈ S | ϕ(k)(0) = 0, k = 0,∞}, S0 = FS0. By formulae (4.1) and (4.2), the operators

Ψ and Ψ̂ can be extended on S0′. Denote these extensions as Ψ∞ and Ψ̂∞ respectively. We have(
Fx→σ

(
sgnx |x|ne−q|x|

))
(σ) =

√
2
π

n∑
p=0

An
p

σ

(σ2 + q2)p+1
, σ ∈ R,
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where An
p ∈ C, p = 0, n, n = 0,∞. Therefore,

sgnx |x|ne−q|x| = Ψ∞

(
i

n∑
p=0

An
p

(−1)p

(2p)!
t2p sgn t

)
= Ψ̂∞

(
n∑

p=0

An
p

(−1)p+1

(2p+ 1)!
t2p+1

)
.

6. Conditions for approximate BU-controllability at a free time

Consider control system (1.1), (1.2), (3.1) and equivalent system (3.2), (3.3) where T > 0 is a parameter.

Definition 6.1. Let U > 0. A state W0 ∈ H̃ is called approximately BU -controllable at a free time if 0 belongs
to the closure of

⋃
T>0 RU

T (W0) in H̃.

In [15] Theorem 1.1, the following assertion was proved.

Theorem 6.2. Let q = 0. A state W0 ∈ H̃ is approximately BU -controllable at a free time iff
∥∥W0

0

∥∥
L∞(R)

≤ U

and condition (4.6) holds.

Let q > 0. Analyzing the proof of Theorem 4.8 and Examples 7.3–7.9, we see that the approximate BU -
controllability problem at a free time is essentially more complicated than the approximate L∞-controllability
problem at a free time. Moreover, the method that allows us to solve the second of these problems is not
applicable to the first one. However, using the results of Section 5, we can obtain a sufficient condition for
approximate BU -controllability at a free time.

Theorem 6.3. Let q > 0, W0
0 ∈ Ψ(N(Ψ̂)), W0

1 ∈ Ψ̂(N(Ψ)). Then for W0
0 and W0

1 conditions (i)–(iv) of

Theorem 5.8 are valid and the state W0 =
(

W0
0

W0
1

)
is approximately BU -controllable at a free time for

U ≥ 1√
2π

(∥∥∥F (W0
0

)
©0

∥∥∥
L1(R)

+
∥∥∥F ((W0

1

)
©0

)
/
√
q2 − ξ2

∥∥∥
L1(R)

)
. (6.1)

Proof. Taking into account Theorems 5.4, 5.6, 5.8, put

Φ0 = − i
2
F
(
W0

0

)
©0 , g0 = sgn tF−1

ξ→t

(
i|ξ|Φ0(

√
q2 − ξ2)√
q2 − ξ2

)
∈ N(Ψ̂), Ψg0 = W0

0;

Φ1 = − i
2

(
F
(
W0

1

)
©0

)
, g1 = F−1

ξ→t

(
sgn ξ

Φ1(
√
q2 − ξ2)√
q2 − ξ2

)
∈ N(Ψ), Ψ̂g1 = W0

1.

Applying again these theorems, we conclude that ‖g0‖L∞(R) ≤
√

2
π ‖Φ0‖L1(R) and ‖g1‖L∞(R) ≤

√
2
π∥∥∥Φ1/

√
q2 − ξ2

∥∥∥
L1(R)

. Therefore, for U = g0 + g1 we have U ∈ H̃0
0 , U is odd, ΨU = W0

0, Ψ̂U = W0
1, and

‖U‖L∞(R) ≤
√

2
π

(
‖Φ0‖L1(R) +

∥∥∥Φ1/
√
q2 − ξ2

∥∥∥
L1(R)

)
. Taking into account Theorems 4.3, 4.4 and setting

uk(t) = U(t) (H(t) −H(t− k)), t ∈ R, k ∈ N, we obtain controls solving the approximate BU -controllability
problem at a free time for the state W0, if U satisfies (6.1). The theorem is proved. �

Example 7.3 demonstrates that the conditions of the Theorem 6.3 is not necessary for approximate BU -
controllability at a free time. Examples 7.10, 7.10 illustrate Theorem 6.3. In particular, we see that estimate (6.1)
is not sharp for each W0 ∈ H̃ satisfying the conditions of Theorem 6.3 (see Ex. 7.11). But there exists W0 ∈ H̃
satisfying the conditions of this theorem such that estimate (6.1) is sharp for W0 (see Ex. 7.10).
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7. Examples
In this section we consider examples illustrating the results of Sections 3–6.

Example 7.1. Let q > 0, T > 0, α > 0. Put f(t) = αt(H(t + T ) − H(t − T )), h(x) = (ΨT f)(x) =
αxJ0(q

√
T 2 − x2)(H(x+T )−H(x−T )). Therefore, f(t) = (Ψ−1

T h)(t). Evidently, sup {|f(x)| | x ∈ (−T, T )} =
αT , sup {|h(t)| | t ∈ (−T, T )} = αT . Setting α = U/T , we conclude that (3.13) is not necessary for (3.9) for
each T > 0. Setting α = (1 + qT )U/T , we conclude that (3.14) is not sufficient for (3.9) for each T > 0.

Example 7.2. Let q > 0, W0
0 = xJ0

(√
1 − x2

)
H(1−x2), W0

1 = d
dx

(
H(1 − x2)

(
|x| − q

∫ 1

|x| t
2 J1(q

√
t2−x2)√

t2−x2 dt
))

.

Theorem 3.1: (v) yields W0
0 = Ψ1U, where U(t) = tH(1 − t2), t ∈ R. With regard to Theorem 3.1: (iii),(v), we

obtain

Ψ1
d
dt
(
sgn tΨ−1

1 W0
0

)
= Ψ1(sgn tU)′ =

d
dx

(
U(x) sgnx− q

∫ ∞

|x|
t
J1(q

√
t2 − x2)√

t2 − x2
dt

)
= W0

1.

Due to Theorem 3.5, the state W0 =
(

W0
0

W0
1

)
is BU -controllable at a given time T ≥ 1 for U ≥ 1. The control

u(t) = U(t)H(t), t ∈ R, solves the BU -controllability problem at the time T for this state.

With regard to Remark 4.14, we may consider the states of the form
(

W0
0

0

)
and

(
0

W0
1

)
, without loss of

generality, when we investigate approximate L∞-controllability at a free time.

Example 7.3. Let q > 0, n = 0,∞, W0
0 = |x|ne−q|x| sgnx, W0

1 = 0. Due to Corollary 4.9, the state W0 =(
W0

0

W0
1

)
is approximately L∞-controllable at a free time. Let us find controls solving the approximate L∞-

controllability problem for this state.
Let F , Fm, μ, μm, m = 1,∞, be the functions from the proof of Theorem 5.9. Then (5.3) holds and∥∥W0

0 − Wm
0

∥∥0
0

= ‖F − Fm‖0
0 ≤ L2n+2

√
π

m

(
q2 + 4
q2

)n+1

, m ≥ 6
q
, (7.1)

where Wm
0 = F−1Fm, m = 1,∞. Put gn

m =
√

π
2 (−1)n sgn tF−1

ξ→t(|ξ|μ(n)
m (
√
q2 − ξ2)/

√
q2 − ξ2), m = 1,∞. With

regard to Theorem 5.6 and Remark 5.7, we conclude that gn
m ∈ N(Ψ̂) ∩ L∞(R), gn

m is odd and Ψgn
m = W0

m,
m = 1,∞. Set Un

m,k(t) = gn
m(t)(H(t + k) −H(t − k)), t ∈ R, m, k = 1,∞. Then Un

m,k ∈ L∞(R), Un
m,k is odd,

m, k = 1,∞, and ∥∥gn
m − Un

m,k

∥∥0
0
≤
(

2
∫ ∞

k

|gn
m(t)|2 dt

)1/2

→ 0 as k → ∞. (7.2)

Taking into account Theorem 4.3: (ii) and Theorem 4.4: (ii), we conclude that∥∥Wm
0 − ΨUn

m,k

∥∥0
0
≤ ∥∥gn

m − Un
m,k

∥∥0
0
,
∥∥∥0 − Ψ̂Un

m,k

∥∥∥−1

0
≤ ∥∥gn

m − Un
m,k

∥∥0
0
, m, k = 1,∞. (7.3)

Estimates (7.1)–(7.3), (A.16) yield∥∥W0
0 − ΨUn

m,k

∥∥0
0
≤ L2n+2

√
π

m

(
q2 + 4
q2

)n+1

+
(

2
∫ ∞

k

|gn
m(t)|2 dt

)1/2

, m ≥ 6
q
, k ≥ 1, (7.4)

∥∥∥W0
1 − Ψ̂Un

m,k

∥∥∥−1

0
≤
(

2
∫ ∞

k

|gn
m(t)|2 dt

)1/2

, m ≥ 6
q
, k ≥ 1, (7.5)

where L2n+2 ≤ 2(4(n+ 1))!
√

(8(n+ 1))!52(n+1)/π.
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Let ε > 0 be fixed. Determine mε ≥ 6
q such that L2n+2

√
π
m

(
q2+4

q2

)n+1

< ε
2 . Then for this mε find kε ≥ 1

such that
(
2
∫∞
kε

∣∣gn
mε

(t)
∣∣2 dt

)1/2

< ε
2 . Taking into account (7.4), (7.5), we obtain

∥∥W0
0 − ΨUn

mε,kε

∥∥0
0
< ε and

∥∥∥W0
1 − Ψ̂Un

mε,kε

∥∥∥−1

0
< ε.

Thus, the controls un
m,k = Um,kH(t) ∈ L∞(R), m, k = 1,∞, solve the approximate L∞-controllability problem

at a free time for the state W0.
In the case n = 0 the state W0 is also BU -controllable at a free time for U > 1 because

∥∥g0
m

∥∥
L∞(R)

≤
∫ q−1/m

q−3/m

μ0
m(ξ) dξ =

∫ 1

−1

μ(ξ) dξ = 1 = ‖sgn t‖L∞(R) . (7.6)

With regard to Remark 5.13, we also have Ψ∞ sgn t = W0
0 and Ψg0

m → W0
0 as m→ ∞.

Example 7.4. Let q > 0, n = 0,∞, W0
0 = 0, W0

1 = |x|ne−q|x| sgnx. Due to Corollary 4.9, the state

W0 =
(

W0
0

W0
1

)
is approximately L∞-controllable at a free time. Let us find controls solving the approximate

L∞-controllability problem for this state. Reasoning as in Example 7.3 and using Theorem 5.4 instead of
Theorem 5.6, we conclude that

∥∥W0
0 − ΨUn

m,k

∥∥0
0
≤
(

2
∫ ∞

k

|gn
m(t)|2 dt

)1/2

, m ≥ 6
q
, k ≥ 1, (7.7)

∥∥∥W0
1 − Ψ̂Un

m,k

∥∥∥−1

0
≤ L2n+2

√
π

m

(
q2 + 4
q2

)n+1

+
(

2
∫ ∞

k

|gn
m(t)|2 dt

)1/2

, m ≥ 6
q
, k ≥ 1, (7.8)

where gn
m =

√
π
2 (−1)n+1iF−1

ξ→t(sgn ξ μ(n)
m (
√
q2 − ξ2)/

√
q2 − ξ2), Un

m,k = gn
m(H(t+k)−H(t−k)), Un

m,k ∈ L∞(R),
Un

m,k is odd, m, k = 1,∞, L2n+2 ≤ 2(4(n+ 1))!
√

(8(n+ 1))!52(n+1)/π. Thus, the controls un
m,k = Um,kH(t) ∈

L∞(R), m, k = 1,∞, solve the approximate L∞-controllability problem at a free time for the state W0.

Remark 7.5. It is known that
{

1√
2ql!

eqx
(

d
dx

)l (
xle−2qx

)}∞

l=0
is an orthonormal basis in L∞(0,+∞). Put

νl(x) = 1√
q

∑l
n=0

(
l
n

) (−2q)n

n! |x|ne−q|x| sgnx, x ∈ R, l = 0,∞. Then {νl}∞l=0 is an orthonormal basis in H̃0
0 . Let

W0
0 ∈ H̃0

0 , W0
1 = 0. Put W0

0 =
∑∞

l=0 ωlνl, WN
0 =

∑N
l=0 ωlνl, W0

1 = WN
1 = 0, N = 1,∞, where ωl = 〈W0

0, νl〉,
l = 0,∞. Then we have

∥∥W0
0 − WN

0

∥∥0

0
→ 0 and

∥∥W0
1 − WN

1

∥∥0
0
→ 0 as N → ∞. Using the result of Example 7.3,

we can find controls solving the approximate L∞-controllability problem at a free time for
(

WN
0

WN
1

)
, N = 1,∞.

Therefore, we can find controls solving the approximate L∞-controllability problem for
(

W0
0

W0
1

)
. In the following

example we realize this scheme.

Example 7.6. Let q > 0, W0
0 = xH(1 − x2), W0

1 = 0. According to Corollary 3.9, the state W0 =
(

W0
0

W0
1

)
is approximately L∞-controllable at a given time T > 0 iff T > 1 and condition (3.8) holds. With regard to
Theorem 3.1: (vi), we have

Ψ1
d
dt
(
sgn tΨ−1

1 W0
0

)
= Ψ1

d
dt

(
|t|I0

(
q
√

1 − t2
))

�= 0 = W0
1.
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Therefore, for all T > 0 the state W0 is not approximately L∞-controllable at the time T . But due to
Corollary 4.9, this state is approximately L∞-controllable at a free time. Taking into account Remark 7.5, we can
find controls solving the approximate L∞-controllability problem for the state W0. We have W0

0 =
∑∞

l=0 ωlνl,
where

ωl = 〈W0
0, νl〉 =

2√
q

l∑
n=0

(
l

n

)
(−2q)n

n!

∫ 1

0

xn+1e−qx dx =
2√
q

l∑
n=0

(
l

n

)
(2q)n

n!

(
d
dq

)n+1(e−q − 1
q

)

=
2
q5/2

l∑
n=0

(
l

n

)
(−2)n(n+ 1)

∞∑
m=n+2

qm

m!
e−q, l = 0,∞. (7.9)

Put WN
0 =

∑N
l=0 ωlνl, N = 1,∞. Then

∥∥W0
0 − WN

0

∥∥0
0
→ 0 as N → ∞. Let ε > 0 be fixed. Set N = 1,∞ such

that ∥∥W0
0 − WN

0

∥∥0
0
<
ε

2
. (7.10)

We have

WN
0 =

1√
q

N∑
l=0

ωl

l∑
n=0

(
l

n

)
(−2q)n

n!
|x|ne−q|x| sgnx =

N∑
n=0

ΩN
n |x|ne−q|x| sgnx,

where

ΩN
n =

(−2q)n

√
qn!

N∑
l=n

(
l

n

)
ωl =

(−1)n

n!
2n+1qn−3

N∑
l=n

(
l

n

) l∑
s=0

(
l

s

)
(−2)s(s+ 1)

∞∑
m=s+2

qm

m!
e−q, n = 0, N,

here we use (7.9). According to Example 7.3, for each n = 0, N we can find an odd function Un
ε ∈ L∞(R) such

that supp Un
ε is finite,

∥∥|x|ne−q|x| sgnx− ΨUn
ε

∥∥0
0
< ε

2(N+1)|ΩN
n | , and

∥∥∥0 − Ψ̂Un
ε

∥∥∥−1

0
< ε

2(N+1)|ΩN
n | . Hence, for

Uε =
∑N

n=0 ΩN
n Un

ε we have Uε ∈ L∞(R), Uε is odd, suppUε is finite,
∥∥WN

0 − ΨUε

∥∥0
0
< ε

2 , and
∥∥∥0 − Ψ̂Uε

∥∥∥−1

0
< ε

2 ·
With regard to (7.10), we get

∥∥W0
0 − ΨUε

∥∥0
0
< ε and

∥∥∥W0
1 − Ψ̂Uε

∥∥∥−1

0
< ε. Thus, the controls uε = UεH(t) ∈

L∞(R), ε > 0, solve the approximate L∞-controllability problem at a free time for the state W0.

Remark 7.7. It is known that H̃−1
0 is the closure of H̃0

0 with respect to the norm ‖·‖−1
0 [7] Chapter 1. That

is why for W0
0 = 0, W0

1 ∈ H̃−1
0 we can find a sequence

{
WM

1

}∞
M=1

⊂ H̃0
0 such that

∣∣∣∣∣∣∣∣∣∣∣∣(W0
0

W0
1

)
−
(

WM
0

WM
1

)∣∣∣∣∣∣∣∣∣∣∣∣ → 0

as M → ∞, where WM
0 = W0

0 = 0. Moreover, we have
∣∣∣∣∣∣∣∣∣∣∣∣(WM

0

WM
1

)
−
(

WM,N
0

WM,N
1

)∣∣∣∣∣∣∣∣∣∣∣∣ → 0 as N → ∞, M = 1,∞,

if WM,N
0 = WM

0 = 0, WM
1 =

∑∞
l=0 ωlνl, WM,N

1 =
∑N

l=0 ωlνl, M,N = 1,∞. Here ωM
l = 〈WM

1 , νl〉, l = 0,∞.
Then, using the result of Example 7.4, we can find controls solving the approximate L∞-controllability problem

at a free time for
(

WM,N
0

WM,N
1

)
, therefore, for

(
WM

0

WM
1

)
and for

(
W0

0

W0
1

)
. In the following example we realize this

scheme.

Example 7.8. Let q > 0, W0
0 = 0, W0

1 = 2
x . Due to Corollary 4.9, this state W0 =

(
W0

0

W0
1

)
is approximately

L∞-controllable at a free time. Taking into account Remark 7.7, we can find controls solving the approximate
L∞-controllability problem for the state W0. Put V0

1 = FW0
1 = −i

√
π
2 sgnσ, VM

1 = V0
1(H(σ+M)−H(σ−M)),

WM
1 = F−1VM

1 , WM
0 = 0, M = 1,∞. Evidently, VM

1 ∈ H̃0
0 , hence, WM

1 ∈ H̃0
0 . Then

∥∥W0
1 − WM

1

∥∥−1

0
=∥∥V0

1 − VM
1

∥∥0
−1

=
√
π
(∫∞

M
dσ

1+σ2

)1/2

=
√
π arccotM . Let ε > 0 be fixed. Set M > 0 such that

√
π arccotM < ε

3 ·
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Then ∣∣∣∣∣∣∣∣∣∣∣∣(W0
0

W0
1

)
−
(

WM
0

WM
1

)∣∣∣∣∣∣∣∣∣∣∣∣ < ε

3
· (7.11)

We have WM
1 =

∑∞
l=0 ω

M
l νl, where

ωM
l = 〈WM

1 , νl〉 =
1√
q

l∑
n=0

(
l

n

)
(−2q)n

n!

∫ ∞

−∞
WM

1 (x)|x|ne−q|x| sgnxdx

=

√
2
π

1√
q

l∑
n=0

(
l

n

)
(2q)n

n!

(
d
dq

)n ∫ ∞

−∞
VM

1 (x)
−iσ

σ2 + q2
=

−1√
q

l∑
n=0

(
l

n

)
(2q)n

n!

(
d
dq

)n

ln
M2 + q2

q2

=
−2√
q

⎛⎝ln
M2 + q2

q2
+

l∑
n=1

(
l

n

)
(−2)(n− 1)

qn
+

l∑
n=1

(
l

n

)
(−2q)(n− 1)
qn(q2 +M2)n

∑
0≤2k≤n

(
n

2k

)
(−M2)kqn−2k

⎞⎠ .

(7.12)

Put WM,N
1 =

∑N
l=0 ωlνl, N = 1,∞. Then

∥∥∥WM
1 − WM,N

1

∥∥∥0
0
→ 0 as N → ∞. Set N = 1,∞ such that

∥∥∥WM
1 − WM,N

1

∥∥∥0
0
<
ε

3
· (7.13)

We have

WM,N
1 =

1√
q

N∑
l=0

ωM
l

l∑
n=0

(
l

n

)
(−2q)n

n!
|x|ne−q|x| sgnx =

N∑
n=0

ΩM,N
n |x|ne−q|x| sgnx,

where

ΩM,N
n =

(−2q)n

√
qn!

N∑
l=n

(
l

n

)
ωM

l =
(−1)n

n!
2n+1qn−1

N∑
l=n

(
l

n

)(
ln
M2 + q2

q2
+

l∑
n=1

(
l

n

)
(−2)(n− 1)

qn

+
l∑

n=1

(
l

n

)
(−2q)(n− 1)
qn(q2 +M2)n

∑
0≤2k≤n

(
n

2k

)
(−M2)kqn−2k

⎞⎠ , n = 0, N,

here we use (7.12). According to Example 7.4, for each n = 0, N we can find an odd function Un
ε ∈ L∞(R)

such that suppUn
ε is finite, Un

ε is odd, ‖0 − ΨUn
ε ‖0

0 <
ε

3(N+1)|ΩN
n | , and

∥∥∥|x|ne−q|x| sgnx− Ψ̂Un
ε

∥∥∥−1

0
< ε

3(N+1)|ΩN
n | .

Hence, for Uε =
∑N

n=0 ΩM,N
n Un

ε we have Uε ∈ L∞(R), supp Uε is finite, Uε is odd, ‖0 − ΨUε‖0
0 < ε

3 , and∥∥∥WM,N
1 − Ψ̂Uε

∥∥∥−1

0
< ε

3 · With regard to (7.11), (7.13), we get
∥∥W0

0 − ΨUε

∥∥0
0
< ε and

∥∥∥W0
1 − Ψ̂Uε

∥∥∥−1

0
< ε.

Thus, the controls uε = UεH(t) ∈ L∞(R), ε > 0, solve the approximate L∞-controllability problem at a free
time for the state W0.

Example 7.9. Let q > 0, W0
0 = e−q|x| sgnx, W0

1 = 0. In Example 7.3 we have proved that the state W0 =(
W0

0

W0
1

)
was approximately L∞-controllable at a free time. Controls solving the approximate L∞-controllability

problem has been also constructed for this state. But these controls are of a rather complicated form. Due
to Remark 5.13, we have Ψ∞(sgn t) = W0

0. We may suppose that for the state W0 controls solving the
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approximate L∞-controllability problem at a free time can be constructed in the “natural” form um(t) =
sgn t (H(t) −H(t−m)), t ∈ R, m = 1,∞. Unfortunately, Ψ̂Um does not tend to W0

1 = 0 as m→ ∞ because∥∥∥Ψ̂Um

∥∥∥−1

0
≥ 1
π

√
q

1 + q2
, m ≥ 3π

2q
, (7.14)

where Um(t) = um(t) − um(−t), m = 1,∞. Therefore, controls um, m = 1,∞, do not solve the problem under
consideration. Let us prove estimate (7.14). We have

(∥∥∥Ψ̂Um

∥∥∥−1

0

)2

=
(∥∥∥FΨ̂Um

∥∥∥0
−1

)2

=
4
π

∫ ∞

0

∣∣∣∣∣∣
σ sin

(
m
√
σ2 + q2

)
√
σ2 + q2

∣∣∣∣∣∣
2

dσ
σ2 + 1

≥ 4q2

π(q2 + 1)

∫ ∞

q

sin2(mξ)

√
ξ2 − q2

ξ3
dξ ≥ q

π(q2 + 1)
− 2mq2

π(q2 + 1)

∣∣∣∣∫ ∞

mq

cos(2p)
p−mq

p3
dp
∣∣∣∣ .

(7.15)

Now estimate the later integral. Determine nm ∈ Z such that π
4 + πnm ≤ q < 5π

4 + πnm. Then

m

∣∣∣∣∫ ∞

mq

cos(2p)
p−mq

p3
dp
∣∣∣∣ ≤ m

∞∑
n=nm

∫ 5π/4

3π/4

cos(2p)
p−mq

p3
dp ≤ m

π2

∞∑
n=nm

n+ 5
4 + qm

π(
n+ 3

4

)3
≤ m

π2

∫ ∞

nm

x+ 5
4 + qm

π(
x+ 3

4

)3 dx ≤ qm2 − 3π
2

2π
(
qm− π

2

) → 1
2πq

as m→ ∞.

Hence, m
∫∞
mq

| cos(2p)|p−mq
p3 dp ≤ 1

πq , m ≥ 3π
2q . With regard to (7.15), we conclude that estimate (7.15) is valid.

In the following examples we use Theorem 6.3 to investigate the approximate BU -controllability problem at
a free time.

Example 7.10. Let q > 0, W0
0 = sgnx 1−(1+q|x|)e−q|x|

x2 , W0
1 = 0. Then

(
W0

0

)
©0 = d

dy

(
1−e−iqy

y

)
,
(
W0

1

)
©0 = 0,

Φ0 = − 1
2F−1

(
W0

0

)
©0 =

√
π
2 iξ(H(ξ) − H(ξ − q)), Φ1 = 0. Since Φ0 and Φ1 satisfy the conditions of the

Theorems 5.6 and 5.4 respectively, we have W0
0 ∈ Ψ(N(Ψ̂)) and W0

1 ∈ Ψ̂(N(Ψ)). Due to Theorem 6.3, the

state W0 =
(

W0
0

W0
1

)
is approximately BU -controllable at a free time for

U ≥ U∗ = ‖Φ0‖L1(R) =
q2

2
· (7.16)

Now let us find controls solving the approximate BU -controllability problem at a free time for W0. To this

aid, we use the scheme from the proof of Theorem 6.3. Put U = g0 = sgn tF−1
ξ→t

(
i|ξ|Φ0

(√
q2−ξ2

)
√

q2−ξ2

)
=

sgn t
(

1−cos(qt)
t2 − q sin(qt)

t

)
. Then the controls uk(t) = U(t)(H(t) − H(t − k)), t ∈ R, k = 1,∞, solve the

approximate BU -controllability problem at a free time for W0. Moreover, we have

q2

2
= Uk(+0) ≤ ‖Uk‖L∞(R) ≤ ‖U‖L∞(R) = ‖g0‖L∞(R) ≤

∫ q

0

ξ dξ =
q2

2
·

Therefore, estimate (7.16) is sharp for this W0.
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Example 7.11. Let q > 0, W0
0 = 0, W0

1 = sgnx
∫ q

0
sgn
(
ξ −

√
3q
2

)√
q2 − ξ2e−ξ|x| dξ. Then

(
W0

0

)
©0 = 0,(

W0
1

)
©0 =

∫ q

0 sgn
(
ξ −

√
3q
2

)√
q2 − ξ2e−iξy dξ, Φ0 = 0, Φ1 = i

√
π
2 sgn

(
ξ −

√
3q
2

)√
q2 − ξ2(H(ξ) − H(ξ − q)).

Since Φ0 and Φ1 satisfy the conditions of the Theorems 5.6 and 5.4 respectively, we have W0
0 ∈ Ψ(N(Ψ̂)) and

W0
1 ∈ Ψ̂(N(Ψ)). Due to Theorem 6.3 the state W0 =

(
W0

0

W0
1

)
is approximately BU -controllable at a free time

for

U ≥ U∗ = ‖Φ1‖L1(R) = q. (7.17)

Moreover, the controls uk(t) = U(t)(H(t)−H(t−k)), t ∈ R, k = 1,∞, solve the approximate BU -controllability

problem at a free time for W0. Here U = g1 = F−1
ξ→t

(
sgn ξ

Φ1

(√
q2−ξ2

)
√

q2−ξ2

)
= 2 sin(qt/2)

t (1 − cos(qt)). We have

U∗ = ‖U‖L∞(R) = ‖g1‖L∞(R) = sup
t>0

∣∣∣∣2sin(qt/2)
t

(1 − cos(qt))
∣∣∣∣ < q = U∗.

Therefore, estimate (7.17) is not sharp for this W0.

Appendix A

Lemma A.12. Let q > 0. Then

|||E(·, t) ∗ f ||| ≤ 2
1 + q2

q
|||f ||| , t ∈ R, f ∈ H0

0 ×H−1
0 (A.1)

Proof. With regard to [4], we have

(FE(·, t)) (σ) =
(

∂/∂t 1
(∂/∂t)2 ∂/∂t

) sin
(
t
√
σ2 + q2

)
√
σ2 + q2

, t ∈ R, σ ∈ R.

Put F = Ff . Obviously, F =
(
F0

F1

)
∈ H0

0 ×H0
−1.Hence,

|||E(·, t) ∗ f |||

≤ √
2

⎛⎜⎜⎝(‖F0‖0
0

)2

+

⎛⎜⎝
∥∥∥∥∥∥

sin
(
t
√
σ2 + q2

)
√
σ2 + q2

F1

∥∥∥∥∥∥
0

0

⎞⎟⎠
2

+
(∥∥∥√σ2 + q2F0

∥∥∥0
−1

)2

+
(
‖F1‖0

−1

)2

⎞⎟⎟⎠
1/2

= 2
1 + q2

q
|||f ||| .

The lemma is proved. �

Lemma A.13. Let q > 0. Then R(Ψ) =
{
f ∈ H̃0

0 | ∃f̃ ∈ H
1/2
0 Ff =

√|σ|Ff̃
}

and R(Ψ) = H̃0
0 .

Proof. With regard to the definition of Ψ, we conclude that R(Ψ) ⊂ {f ∈ H̃0
0 | ∃f̃ ∈ H

1/2
0 Ff =

√|σ|Ff̃}. As-

sume that for f ∈H̃0
0 there exists f̃ ∈H1/2

0 such that Ff=
√|σ|Ff̃ . Put g=F−1

μ→t

(
μH(μ2−q2)

4
√

μ2−q2

(
Ff̃
)(√

μ2 − q2
))

.
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We have ‖g‖0
0 ≤ 4

√
1 + q2

∥∥∥f̃∥∥∥1/2

0
. Hence, g ∈ D(Ψ). Moreover, Ψg = F−1

(√|σ|Ff̃
)

= f . Therefore,

R(Ψ) =
{
f ∈ H̃0

0 | ∃f̃ ∈ H
1/2
0 Ff =

√|σ|Ff̃
}
. Let f ∈ H̃0

0\R(Ψ). Put fn(x) = H(n2 − x2)f(x). Evidently,

‖f − fn‖0
0 → 0 as n → ∞. Due to the Paley-Wiener Theorem, we conclude that Ffn can be extended

to an entire function hence 1√
|σ|Ffn ∈ H0

1/2. Therefore, fn ∈ R(Ψ). Thus, f ∈ R(Ψ). The lemma is

proved. �

Lemma A.14. Let q > 0. Then

Ψ+f = f(t) −
∫ ∞

|t|
ψ∞(t, x)f(x) dx +

∫ |t|

0

ψ0(t, x)f(x) dx, f ∈ R(Ψ), (A.2)

where ψ0, ψ∞ are defined in Section 4.

Proof. Let f ∈ R(Ψ). According to (4.3), we obtain

Ψ+f = −1
2

d
dt

∫ ∞

−∞
f(x)

⎛⎝ 2
π

∫ ∞

q

cos(tμ)
sin
(
x
√
μ2 − q2

)
√
μ2 − q2

dμ

⎞⎠ dx. (A.3)

Let us study the internal integral. We have

I =
2
π

∫ ∞

q

cos(tμ)
sin
(
x
√
μ2 − q2

)
√
μ2 − q2

dμ =
1
π

∫ ∞

0

sin
(
xσ + t

√
σ2 + q2

)
√
σ2 + q2

dσ

+
1
π

∫ ∞

0

sin
(
xσ − t

√
σ2 + q2

)
√
σ2 + q2

dσ.

Put v = 1
q

(
xσ + t

√
σ2 + q2

)
in the first integral and v = 1

q

(
xσ − t

√
σ2 + q2

)
in the second one. Then we

obtain

I =
2
π

sgnx

(
H
(
x2 − t2

) ∫ ∞

|t|

sin(qv) dv√
v2 + x2 − t2

−H
(
t2 − x2

) ∫ |t|
√

t2−x2

sin(qv) dv√
v2 + x2 − t2

)
· (A.4)

By substituting (A.4) in (A.3) and integrating by parts, we obtain (A.2). The lemma is proved. �

Lemma A.15. Let α > 0. Then(
Ψα

d
dt
(
sgn tΨ−1

α f
))

(x) = (sgnx f(x))′ + q sgnx
∫ ∞

|x|
f(ξ)

I1 (q(|x| − ξ))
|x| − ξ

dξ, f ∈ R(Ψα). (A.5)

Proof. Let f ∈ D(−α, α) = {ϕ ∈ C∞(R) : suppϕ ⊂ (−α, α) be odd}, h = Ψα
d
dt

(
sgn tΨ−1

α f
)
. We have

G =
1
iξ

Ft→ξ

(
d
dt
(
sgn t(Ψ−1

α f)(t)
))

=
−i
π

P
1
ξ
∗
ξ(Ff)

(√
ξ2 − q2

)
√
ξ2 − q2

=
−2i
π

V.p.
∫ ∞

0

(FΔqf)
(√

μ2 − q2
)

(ξ2 − μ2)
√
μ2 − q2

dμ,
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where Δq = − ( d
dx

)2 − q2. Therefore,

h =
d
dx

F−1
σ→xG

(√
σ2 + q2

)
= −i

√
2
π

d
dx

⎛⎝∫ q

0

e−|x|
√

q2−μ2√
q2 − μ2

(FΔqf)
(√

μ2 − q2
)

√
μ2 − q2

dμ

−
∫ ∞

q

sin
(
|x|
√
μ2 − q2

)
√
μ2 − q2

(FΔqf)
(√

μ2 − q2
)

√
μ2 − q2

dμ

⎞⎠
=

√
2
π

sgnx

⎛⎝∫ ∞

0

Δqf(ν)
∫ q

0

e−|x|
√

q2−μ2 sinh
(
ν
√
q2 − μ2

)
√
q2 − μ2

dμ

+
∫ ∞

0

Δqf(ν)
∫ ∞

q

cos
(
x
√
μ2 − q2

)
sin
(
ν
√
μ2 − q2

)
√
μ2 − q2

dμ

⎞⎠
=

1
π

sgnx

⎛⎝∫ ∞

−∞
Δqf(ν)

∫ q

0

e−(|x|−ν)μ√
q2 − μ2

dμ dν −
∫ ∞

−∞
Δqf(ν)

∫ ∞

q

sin
(
(x− ν)

√
μ2 − q2

)
√
μ2 − q2

dμ dν

⎞⎠ (A.6)

According to (4.4) and (4.5), we get

2
π

∫ q

0

e−ξμ√
q2 − μ2

dμ = I0(qξ) − L0(qξ), ξ ∈ R. (A.7)

We also have

F (sgn ξ (I0(q|ξ|) − L0(q|ξ|))) =
2
π

F

(
sgn ξ

∫ q

0

e−u|ξ|√
q2 − u2

du

)

=
(

2
π

)3/2 ∫ q

0

(−iσ)

(σ2 + u2)
√
q2 − u2

du =

√
2
π

(−i sgnσ)√
σ2 + q2

·

Therefore,

2
π

∫ ∞

q

sin
(
ξ
√
μ2 − q2

)
√
μ2 − q2

=
2
π

∫ ∞

0

sinσξ√
σ2 + q2

dσ = −
√

2
π

F−1 i sgnσ√
σ2 + q2

= sgn ξ (I0(q|ξ|) − L0(q|ξ|)) . (A.8)

Comparing (A.6)–(A.8), we obtain

h =
1
2

sgnx ((Δqf) ∗ (I0(qx) − L0(qx)) (|x|) − ((Δqf) ∗ (sgnx (I0(qx) − L0(q|x|)))) (x))

= sgnx (f ∗ (Δq (H(−x)I0(qx)))) (|x|) = sgnx (f ′(x) + f ∗ (H(−x)ΔqI0(qx))) .

Since ΔqI0(qξ) =
(
q2/2

)
(I0(qξ) − I2(qξ)) = qI1(qξ)/ξ, we conclude that (A.5) is true for f ∈ R(Ψα)∩D(−α, α).

Let us extend this formula on R(Ψα). Let f ∈ R(Ψα). Since D(−α, α) is dense in L2(−α, α), we can find a
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sequence {fn}n∈N ⊂ D(−α, α) such that ‖f − fn‖0
0 → ∞ as n→ ∞. We have

∣∣∣∣∣
∫ ∞

|x|

I1 (q(|x| − ξ))
|x| − ξ

(f(ξ) − fn(ξ)) dξ

∣∣∣∣∣
≤ e−q|x|

(∫ ∞

0

e2qξ |f(ξ) − fn(ξ)|2 dξ
)1/2

(∫ ∞

0

e−2qξ

∣∣∣∣I1(qξ)ξ

∣∣∣∣2 dξ

)1/2

= 2qKe−q|x| ‖f − fn‖0
0 , x ∈ R,

where K = eqα

2q

(∫∞
0

e−2qξ
∣∣∣ I1(qξ)

ξ

∣∣∣2 dξ
)1/2

. Therefore,

∥∥∥∥∥
∫ ∞

|x|

I1 (q(|x| − ξ))
|x| − ξ

(f(ξ) − fn(ξ)) dξ

∥∥∥∥∥
0

0

≤ K ‖f − fn‖0
0 . (A.9)

Since ‖(sgnx(f − fn))′‖−1
0 ≤ ‖f − fn‖0

0, then (A.9) yields (A.5) for f ∈ R(Ψα). The lema is proved. �

Lemma A.16. Let f ∈ H̃0
0 . Then Ψ̂Ψ+f ∈ H̃−1

0 ,

Ψ̂Ψ+f = (sgnxf)′ +
q

2
sgnx

(
f(x) ∗ I1(q|x|) − L1(qx)

x

)
= sgnxF−1

σ→x

(
i sgnσ

√
σ2 + q2 (Ff) (σ)

)
= (sgnxf)′ + q2 sgnxF−1

σ→x

(
i sgnσ (Ff) (σ)

|σ| +
√
σ2 + q2

)
, f ∈ R(Ψ), (A.10)

and
∥∥∥Ψ̂Ψ+

∥∥∥ ≤√1 + q2. Moreover, the operator Ψ̂Ψ+ can be continued on H̃0
0 with the same norm by (A.10).

Proof. Let f ∈ D =
⋃

α>0 D(−α, α) be odd. With regard to (4.3), (A.6), and (A.8), we conclude that

Ψ̂Ψ+f = i

√
2
π

d
dx

⎛⎝∫ ∞

q

sin
(
|x|
√
μ2 − q2

)
√
μ2 − q2

(FΔqf)
(√

μ2 − q2
)

√
μ2 − q2

dμ

⎞⎠ (A.11)

Setting σ =
√
μ2 − q2, we obtain

Ψ̂Ψ+f = sgnxF−1
σ→x

(
i sgnσ√
σ2 + q2

(FΔqf) (σ)

)

= F−1
σ→x

(
i sgnσ

√
σ2 + q2 (Ff) (σ)

)
= (sgnxf)′ + q2 sgnxF−1

σ→x

(
i sgnσ (Ff) (σ)

|σ| +
√
σ2 + q2

)
·

It also follows from (A.11) that

Ψ̂Ψ+f = −1
2

sgnx ((Δqf) ∗ (sgnx (I0(qx) − L0(q|x|)))) (x) = sgnx (f ′(x) + f ∗ (sgnx (ΔqI0(qx)) − ΔqL0(qx)))

= (sgnxf(x))′ +
q

2
sgnx

(
f(x) ∗ I1(q|x|) − L1(qx)

x

)
·
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Thus, (A.10) is true for f ∈ D∩ H̃0
0 . Let us extend this formula on H̃0

0 and continue the operator Ψ̂Ψ+ on H̃0
0 .

Since D is dense in L2(R), we can find a sequence {fn}n∈N ⊂ D such that ‖f − fn‖0
0 → ∞ as n→ ∞. We have

∥∥∥∥∥sgnxF−1

(
i (F(f − fn)) (σ)

σ + sgnσ
√
σ2 + q2

)∥∥∥∥∥
0

0

=

∥∥∥∥∥ (F(f − fn)) (σ)

σ + sgnσ
√
σ2 + q2

∥∥∥∥∥
0

0

≤ 1
q
‖f − fn‖0

0 . (A.12)

Since ‖(sgnx(f − fn))′‖−1
0 ≤ ‖f − fn‖0

0, then Ψ̂Ψ+f ∈ H̃−1
0 and (A.12) implies (A.10) for f ∈ H̃0

0 . The lemma
is proved. �

By analogy with Lemma A.16, we obtain

Lemma A.17. Let f ∈ H̃−1
0 . Then ΨΨ̂+f ∈ H̃0

0

ΨΨ̂+f =
1
2

sgnx (f ∗ (sgnx I0(qx) − L0(qx))) = sgnxF−1
σ→x

(
(Ff)(σ)

i sgnσ
√
σ2 + q2

)
, f ∈ R(Ψ̂), (A.13)

and and
∥∥∥ΨΨ̂+

∥∥∥ ≤ √
1+q2

q . Moreover, the operator ΨΨ̂+ can be continued on H̃−1
0 with the same norm by (A.13).

Lemma A.18. Let f ∈ H̃−1
0 . Then sgnx f ∈ H̃−1

0 and ‖ sgnx f‖−1
0 ≤ 2‖f‖−1

0 .

Proof. Let ϕ ∈ H̃1
0 . Then ‖ sgnxϕ‖1

0 ≤ ‖ sgnxϕ‖0
0+‖(sgnxϕ)′‖0

0 ≤ ‖ϕ‖0
0+‖ϕ′‖0

0 ≤ 2‖ϕ‖1
0. Hence, sgnxϕ ∈ H̃1

0 .
Since 〈sgnx f, ϕ〉 = 〈f, sgnxϕ〉, then sgnx f ∈ H̃−1

0 and ‖ sgnx f‖−1
0 ≤ 2‖f‖−1

0 . �

In Section 4 the continuation of Ψ̂Ψ+ on H̃0
0 has been denoted by Υ, D(Υ) = H̃0

0 , and the continuation of
ΨΨ̂+ on H̃−1

0 has been denoted by Υ̂, D(Υ̂) = H̃−1
0 . Lemmas A.16–A.18 yield

Corollary A.19. The operators Υ, Υ̂ are invertible, Υ−1g = F−1
σ→x

(
(F(sgn ξ g))(σ)

i sgn σ
√

σ2+q2

)
, D(Υ−1) = H̃−1

0 , Υ̂−1g =

F−1
σ→x

(
i sgnσ

√
σ2 + q2 (F(sgn ξ g)) (σ)

)
, D(Υ̂−1) = H̃0

0 , and ‖Υ−1‖ ≤
√

1+q2

q , ‖Υ̂−1‖ ≤
√

1 + q2.

Lemma A.20. Let m = 0,∞, ξ−2mΦ ∈ H−2m
2m , supp Φ ⊂ [0, q], ν(σ, ξ) = 2σ

σ2+ξ2 and F (σ) = 〈Φ, ν(σ, ·)〉. Then

‖F‖0
0 ≤ Lm

∥∥ξ−2mΦ
∥∥−2m

2m
, (A.14)

where Lm > 0.

Proof. We have 1
σ−iξ ∈ H2m−2m (with respect to ξ), σ ∈ R, and

F (σ) =
1
π

〈
Φ(ξ) + Φ(−ξ), 1

σ − iξ

〉
=

1
π

〈
Φ1, (1 + ξ2)−m

(
1 + |D|2)m ξ2m

σ − iξ

〉
=

2
π

∫ ∞

0

Φ1(ξ)(1 + ξ2)−m
(
1 + |D|2)m ξ2mσ

σ2 + ξ2
dξ, σ ∈ R,
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where Φ1(ξ) = (1 + ξ2)m
(
1 + |D|2)−m (

ξ−2m (Φ(ξ) + Φ(−ξ))) ∈ H0
0 and Φ1 is even. Then

(
‖F‖0

0

)2

=
4
π2

∫ ∞

0

Φ1(ξ)
∫ ∞

0

Φ1(μ)

× (1 + ξ2)−m(1 + μ2)−m
(
1 + |Dξ|2

)m (
1 + |Dμ|2

)m
ξ2mμ2m

∫ ∞

0

σ2 dσ
(σ2 + ξ2) (σ2 + μ2)

dμ dξ

=
4
π2

∫ ∞

0

Φ1(ξ)
∫ ∞

0

Φ1(μ)(1 + ξ2)−m(1 + μ2)−m
(
1 + |Dξ|2

)m (
1 + |Dμ|2

)m ξ2mμ2m

ξ + μ
dμ dξ. (A.15)

For ξ > 0, μ > 0 we have

(
1 + |Dξ|2

)m (
1 + |Dμ|2

)m ξ2mμ2m

ξ + μ
=

m∑
k=0

m∑
p=0

(
m

k

)(
m

p

)
(−1)k+p d2(k+p)

dξ2kdμ2p

ξ2mμ2m

ξ + μ

=
m∑

k=0

m∑
p=0

2k∑
s=0

2p∑
l=0

(
m

k

)(
m

p

)(
2k
s

)(
2p
l

)
((2m)!)2 (s+ l)!
(2k − s)!(2p− l)!

(−1)k+p+s+l ξ
2(m−k)+sμ2(m−p)+l

(ξ + μ)s+l+1
·

Therefore,∣∣∣∣(1 + ξ2)−m(1 + μ2)−m
(
1 + |Dξ|2

)m (
1 + |Dμ|2

)m ξ2mμ2m

ξ + μ

∣∣∣∣ ≤ π2 (Lm)2

2(ξ + μ)
, ξ > 0, μ > 0,

where

Lm =
1
π

(
m∑

k=0

m∑
p=0

2k∑
s=0

2p∑
l=0

(
m

k

)(
m

p

)(
2k
s

)(
2p
l

)
((2m)!)2 (s+ l)!
(2k − s)!(2p− l)!

)1/2

≤ 2
π

(2m)!
√

(4m)!5m. (A.16)

With regard to (A.15), we get(
‖F‖0

0

)2

= 2 (Lm)2
〈
|Φ1(ξ)H(ξ)| , |Φ1(−ξ)H(−ξ)| ∗ 1

ξ

〉
≤ 2 (Lm)2

(
‖Φ1(ξ)H(ξ)‖0

0

)2

=
1
2

(Lm)2
(
‖Φ1‖0

0

)2

≤ (Lm)2
(∥∥ξ−2mΦ

∥∥−2m

2m

)2

.

That was to be proved. �
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