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CONTROLLABILITY PROBLEMS FOR THE 1-D WAVE EQUATION
ON A HALF-AXIS WITH THE DIRICHLET BOUNDARY CONTROL

LARISSA V. FARDIGOLA!

Abstract. In this paper necessary and sufficient conditions of L*-controllability and approximate
L-controllability are obtained for the control system ws; = wee —q?w, w(0,t) = u(t), z > 0,t € (0,T),
where ¢ > 0, T > 0, u € L*(0,7) is a control. This system is considered in the Sobolev spaces.
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1. INTRODUCTION

Consider the wave equation on a half-axis
Wit = Waz — W, x>0, te(0,T), (1.1)
controlled by the Dirichlet boundary condition
w(0,t) = u(t), te (0,7), (1.2)

where ¢ > 0 is a given constant, v € L°°(0,T) is a control, T' > 0.

We should note that most of the papers investigating controllability of the wave equation deal with bounded
domains and consider LP-controllability (2 < p < +00) [6,8-11,17] and many others. Controllability problems
for distributed parameter systems on domains unbounded with respect to the space variables are investigated
not enough. These problems for the wave equation on a half-plane in the context of controls bounded by a hard
constant were investigated in [3]. Controllability of the wave equation in R? were studied in [1]. Note that only
L*°-controls can be realized practically. Controllability of the wave equation on a half-axis in the context of
controls bounded by a hard constant were investigated in [4,5,15,16]. In [15,16] the wave equation on a half-axis
controlled by the Dirichlet boundary condition was studied for ¢ = 0. In [4,5] the wave equation on a half-axis
controlled by the Neumann boundary condition was studied for ¢ > 0. In the present paper the most of the
results of [15,16] are extended to the case ¢ > 0. Moreover, in the case ¢ > 0 the results [4] on controllability
of the wave equation (1.1) controlled by the Neumann boundary condition are also extended to the case of the
Dirichlet boundary control here.
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Moore-Penrose inverse.
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In Section 3 we obtain necessary and sufficient conditions for L°°-controllability and approximate L°°-
controllability of system (1.1), (1.2) at a given time T° > 0. The operator ¥p, D(¥r) = {g € H§ |
g is odd and suppg C [T, T]} describing the influence of a control on a target state is introduced and studied
in the Sobolev spaces Hj, s < 0. It is proved that ¥ is a bounded invertible operator, and \I/;l is also
bounded. This influence operator is similar to the one considered in [4], but it differs from it. The properties
of the operator Wy obtained in Section 3 allows us to investigate the L°°-controllability and the approximate
L°°-controllability problems at a given time. Controls solving these problems are found explicitly.

In the case ¢ = 0 necessary and sufficient conditions for approximate L°°-controllability of control sys-
tem (1.1), (1.2) were also established at a free time 7' > 0 in [15]. Analogues result for the wave equation
controlled by the Neumann boundary condition was obtained in [5] for ¢ = 0 too. Therein the time 7' > 0 was
not fixed, i.e. an appropriate time 7" and a control v had to be chose to solve approximate L°°-controllability
problem. In the case ¢ > 0 the question whether an initial state of control system (1.1), (1.2) was approximately
L*-controllable at a free time was open. In Section 4, to solve this problem, we consider an extension W of
the operator ¥7. The domain of ¥ contains functions with non-compact support. Unfortunately, this new
influence operator ¥ is not invertible. To solve the approximate L°°-controllability problem at a free time,
we have to find an appropriate “inverse” operator for W. We use the Moore-Penrose inverse (the generalized
inverse) U for the operator ¥ [2,12,13]. Application of the Moore-Penrose inverse operator is a key point
of the present paper. Without loss of generality, we may consider the odd extension W of the solution w
to (1.1), (1.2) and consider system (3.2) instead of (1.1), (1.2) because these control systems are equivalent.

) (W
Let ¢ > 0, W (W?
of odd functions in H§, s < 0. The state W is approximately L>-controllable iff W — \/I\/‘I/JFWS € \/I\/(N(\I/)),
where the closure is considered in Hy ', N(¥) is the null space of ¥, Ug = Ud(sgnayg), g € HY, (Thm. 4.8).
It is proved that the operator YU+ can be continued on the whole ﬁg (Lem. A.16), and ﬁo_l is the closure
of U(N(¥)) with respect to the norm ||H071 (Thm. 5.10). Thus, if ¢ > 0, then each state WO € HY x I;'(;l is
approximately L>°-controllable at a free time. It follows from [15] that if ¢ = 0, then the state W° € ﬁg X ﬁgl
is approximately L>°-controllable at a free time iff W9 — %(sgnxwg) = 0. We see that in the case ¢ > 0 the
behavior of control system (1.1), (1.2) (and (3.2)) essentially differs from its behavior in the case ¢ = 0. This
difference is generated by the properties of the influence operator . Indeed, N(¥) = {0} and v (N(9)) ={0}

if ¢ =0, and N(¥)\{0} # 0 and ¥ (N (¥)) = I?(;l if ¢ > 0. Here the closure is considered with respect to the
norm HHJl

In Section 5 properties of N(¥), U(N(¥)) and N (W), U(N(¥)) are studied. In fact, the main results of the
present paper are based on the results of this section.

In Sections 3 and 6 the approximate L°°-controllability problem is studied at a given time and a free time
respectively when a control u € L>*(0,T) is bounded by a given constant U > 0 ([|u/[« o 7) < U).

In Section 7 the results of Sections 3-6 are illustrated by examples.

In the Appendix some properties of the operator ¥ are proved.

) € I;'g X ﬁgl be the initial state of control system (3.2), where ﬁg is the subspace

2. NOTATION

Let us give definitions of the spaces used in the paper. Let 8 be the Schwartz space [14]
8 = {ga €C®(R)|VmeNVIeN sup{‘Dmcp(x)‘ (1+ |:c|2)l |z e R} < +oo} :

and let 8 be the dual space, here D = —id/0x, | - | is the Euclidean norm.
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Denote by Hf (s,l € R) the following Sobolev spaces:
Hy ={pes | (1+]DPR)" (1+12)"* p e 1* ®)}

llelli = (/Oo ‘(1 + |D|2)s/2 (1+ |I|2)z/2 @(x)r dx)l/Q.

— 00

It is well known [7], Chapter 1, that ||¢]|; < ”‘leS’l’ s<s§, 1<l pe Hf,/. Therefore, H D Hﬁ/, s<d, 1<,

Let F: 8 — 8’ be the Fourier transform operator. For ¢ € § we have (Fp) (o) = (2m) "2 [*_e™@9p(z) dx
and (Ff, ) = (f,F 1) for f € 8,1 € 8. It is well known [7], Chapter 1, that FH§ = H? and ||¢[|; = ||3"<p|\2,
if o € H§. A distribution f € 8’ is said to be odd if (f,¢©(£)) = —(f, p(—€)), ¢ € 8. We also use the spaces

Hi ={pe H} |pisodd}, H=HYx H;"

1/2 -
with the norms || - ||7, [[|¢]]] = ((H<P0||8)2 + (||501H61)2) respectively, s,l € R. Evidently, H} is a (closed)

subspace of Hf, s,l € R. Control system (1.1), (1.2) is considered in the spaces Hj, s < 0.

Further, for each function defined on a subset ) of R we assume everywhere that it is extended on the whole
R and vanish on R\@. Throughout the paper the domain, the range and the null space (the kernel) of an
operator A are denoted by D(A), R(A) and N(A) respectively.

3. CONDITIONS FOR (APPROXIMATE) CONTROLLABILITY AT A GIVEN TIME

Consider control system (1.1), (1.2) with the initial conditions
w(z,0) =W
we(z,0) =W

0 _ .
where WY = %8 € H. Let W(-,t) be the odd extension of (;}U( ’ t)) One can see that control prob-

, x>0, (3.1)

1
lem (1.1), (1.2), (3.1) is equivalent to the following Cauchy problem

dw 0 1 0

5 = (((%)2—&) 0>W_(25’(z)) u, te€(0,7T), (3.2)
W(z,0) = W° (3.3)

where u € L°°(0,T) is a parameter (a control). Here ¢ is the Dirac distribution, 6 = H’, H is the Heaviside

function: H(§) =1if £ > 0, and H(§) = 0 otherwise.
Let « >0, ¥, :8 =8, D(V,)={g€8|gisoddand suppg C [—a, o]},

\Ijag = S:;L;c <\/02:+q2 (Sjg) (\/ o? +q2)> ) g€ D(\Ija) (34)

d q— —i d .
We have Vo9 = SF, 1, (m (Fg) (\/02 + q2>) = 1 (®g), g € D(¥,), where ® was introduced and
investigated in [4]. Evidently, if ¢ = 0, then ¥, = Id (where Id is the identity operator).
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Theorem 3.1. Let a > 0. Then the following assertions hold:
() R(Va) = D(Wa);
(ii) R(‘I/ |Hg) C Hg, Walyy is bounded from Hg to Hi and H‘I/ s
(ili) W, is invertible, D(V 1) = R(V,) = D(¥,);
—1
) v 1‘Hg = (\Ila|H8) and \IIQI‘HS is bounded from H§ to H§, s < 0;
4 [ ~ J (W=
(v) (Yag) = "1z ‘ Jo (q 2 — 552) g(t)dt = g(z) — qu /Il‘l %

|z

—5/2

<(1+¢%) 77, s<0;

(iv

g(t)dt, g € D(¥,) N HY;

N

76+t [ 2R f(a) de, £ € D(WSY) 0 HY:
) gl S 0 ol 8 € DUO) 1 =(0v0)
(6 95 oy < 000 1y € DO 0 L (01, 0);

w9 (e (5 Geur9:19) ) ) ) = Ganar @) + gsna [ s 2L

x| —
(sgnaf(z))' + &sgna (f(z) * (L(gx)H(~x))) (|z]), f € D(T).
Here J, (&) is the Bessel function, and I,(§) =i~ J,(i§) is the modified Bessel function.

(vi) (¥31) =9, (wa)(m—q?)):—% Iy (av/22 = 2) f () dz =

¢ =

Assertions (i)—(vi) follow immediately from properties of ® [4], Appendix. Assertions (vii), (viii) can be
easily obtained by analogy with the corresponding properties of ® [4], Appendix. Assertion (ix) is proved in
Appendix of the present paper (Lem. A.15).

Taking into account [4], Proposition 3.2, Lemma 6.7, we conclude that the following theorem holds.

Theorem 3.2. Let W0 € 8’ x 8, u € L>(0,T). Then

W(a,T) = E(z,T) + [Wo(x) - ( ‘dei:I’(TS :n tu)) (x)} , (3.5)

where W(t) = u(t) (H{t)— Ht—T)) —u(—t) (H(t+T)— H(t)), W is the unique solution to (3.2)—(3.3), * is
the convolution with respect to x,

=3 o) o) o

In addition, || E(z,t) = f||| < ML, ME= /(22 +6)(1+¢2), t €R, f € HY x Hy''. Moreover, if W° € H,
then W(-,t) € H, t € [0, T).
Let U > 0, T > 0. Denote BY(0,T) = {v € L*>(0,T) | V]l 0,7y < U} Obviously, Uy~ BY(0,T) =

L>(0,T). For a given T > 0, W’ € H denote by RY(WP) the set of the states W' € H for which there exists
a control u € BY(0,T) such that problem (3.2)—(3.3) has a unique solution W and W(-,T) = WT. Denote also
RF (WO) = UU>O Rg(wo)~

Definition 3.3. A state WO € H is called BU-controllable at a given time 7 > 0 if 0 belongs to RY(W?) and
approximately BY-controllable at a given time 7' > 0 if 0 belongs to the closure of RY.(W?) in H.

Definition 3.4. A state WO € H is called L*-controllable at a given time T > 0 if 0 belongs to R (WY) and
approximately L>-controllable at a given time 7' > 0 if 0 belongs to the closure of R®(W?) in H.
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With regard to Theorem 3.2 we have

VU

RE(WY) = {E(x,T) - [WO(:C) —Ur (\PT% (sgntU)) (x)} | Uis odd, |Ullpe=®) < U, suppU € [T, T]}.

The following theorem give us necessary and sufficient conditions for (approximate) BY-controllability.

Theorem 3.5. Let WO € H and a time T > 0 be giwven. Then the following three assertions are equivalent
(i) WO is BY-controllable at the time T;
(i) WO is approzimately BY -controllable at the time T';
(iii) WY satisfies the conditions

supp Wg C [T, T; (3.7)
WY — \I/T% (sgnt (V7'WP)) = 0; (3.8)
@7 Wol| o ) < U- (3.9)

Moreover, the solution of the BY -controllability problem (the control u) is unique and

u(t) = 7% tTIO (av/a? = 2) Wi(a) da wg(t)Jrqt/tTIl(q— va;tQ)Wg(x)d:c te(0,T).  (3.10)

22 —
Under conditions (3.7)—~(3.8) T\ = maxsupp W{ is the optimal time and u of the form (3.10) (for T = T.) is
the time-optimal control for the BY -controllability problem.

Proof. Let (3.7)~(3.8) hold. Put U = W, 'W{. Tt follows from Theorem 3.1: (i), (iii), (viii) that U is odd,
suppU C [-T,T] and ||U[|;, gy < U. Denote by u(t) its restriction on [0,7]. Then U(t) = u(t)(H(t) — H(t —
T)) —u(—t)(H(t+T)— H(t)). Using (3.9), we conclude that u € BY(0,T) and assertion (3.10) is true for it.
Taking into account (3.8), we get

WY = \IIT% (sgnt (P"WP)) = \IIT% (sgnt (P TrU)) = \IIT% (sgn tQU) . (3.11)
Therefore, (3.5) yields W(-,T) = 0. Here W is the solution to (3.2), (3.3). Thus, W is BY-controllable at the
time T. Therefore, it is approximately BY-controllable at this time. Put 7. = maxsupp WJ. With regard to
(3.5), we conclude that T' = Ty is the optimal time and w of the form (3.10) (for T' = T)) is the time-optimal
control for BY-controllability problem.

Let W{ be approximately BY-controllable at the time 7. For each n € N there exists a state W € RY(W?)
such that ||[W"||| < 1/n. Using Theorem 3.2, we get

q -1
HWg—\IITUnHS — 0 and HW?—‘I’T&(sgntun) -0 as n — oo

0

for some u,, € BY(0,T), where W, (t) = un(t)(H(t) — H(t —T)) — un(—t)(H(t +T) — H(t)), n € N. According
to Theorem 3.1: (i), (i), we have supp W9 C [0, 7] (i.e. (3.7) holds) and

H‘I/;lwg - uan — 0 and H\I/;lW(f - (sgntun)lngl -0 as n — oo. (3.12)

PutU = \11;1W8. With regard to Theorem 3.1: (i), (iii), we get suppU C [T, 7], Uis odd. Since u,, € BY(0,T),
we have [|U[[«g) < U. According to Theorem 3.1: (i), we obtain from here that (3.7), (3.9) are true. Taking
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into account (3.12), we obtain
I — unllg — 0 and ||(sgntu)/ — (sgntun)/HO_1 — 0 as n — 0o.

Hence, (sgntU)’ = ¥,"W¢ and (3.8) holds. The theorem is proved. O

Remark 3.6. According to Theorem 3.1: (ix), condition (3.8) is equivalent to

L CICEEI))
r—£

Remark 3.7. Let ¢ = 0. Then (3.8) is of the form W{ = (sgnz W)’ and (3.10) is of the form u(t) = W{(t)
on [0,T]. These conditions were obtained in [15] (for ¢ = 0).

Wo(z) = (sgnach(x))/ + qsgnac/o<> WY (€) d¢, =>0. (3.8

Remark 3.8. With regard to Theorem 3.1: (vii), (viii), condition

U
<

W < o7

(3.13)

is sufficient for (3.9) but it is not necessary for (3.9), according to Example 7.1, if ¢ > 0. Due to the same
theorem, condition

||W8||LW(R) <U(1+4qT) (3.14)
is necessary for (3.9) but it is not sufficient for (3.9), according to Example 7.1, if ¢ > 0. If ¢ = 0, then we

obtain from here that (3.9), (3.13), and (3.14) are equivalent to HWSHLOO(R) <U.

Corollary 3.9. Let W° € H and a time T > 0 be giwven. Then

(i) WO is approzimately L°°-controllable at the time T iff (3.7) and (3.8) hold;
(ii) WO is L>°-controllable at the time T iff W) € L>°(0,T) and (3.7), (3.8) hold.

Proof. Let us prove (i). Reasoning as in the proof of Theorem 3.5, we conclude that (3.7) and (3.8) are necessary
for approximate L°°-controllability. To prove their sufficiency, we consider a sequence {Wg'}, .y C L*°(R) such
that supp Wy C [-T,7], n € N, and ||W8—Wgug — 0asn — oo. Put U = U'WJ, W, = U,'Wp,
n € N. According to Theorem 3.1: (i), (i), (iv), (viii), we have U € L*(R), U, € L*(R), suppU C [-T,T],
suppU, C [-T,T],n €N, and || U — un||8 — 0 as n — oco. With regard to Theorem 3.1: (ii) and (3.8), we get

—1
= U -U,[|g =0 asn— 0.
0

sgntls,)

1 d
o [ wr gy e -y

d
Wi — U
| =l

Applying Theorem 3.2, we conclude that W is approximately L>-controllable at the time 7' > 0.
Theorem 3.5 and Remark 3.8 yield assertion (ii). The corollary is proved. O

Examples 7.2, 7.6 illustrate Theorem 3.5 and Corollary 3.9.

4. CONDITIONS FOR APPROXIMATE L®°-CONTROLLABILITY AT A FREE TIME
Consider control system (1.1), (1.2), (3.1) and equivalent system (3.2), (3.3), where T > 0 is a parameter.

Definition 4.1. A state W° € H is called approximately L*-controllable (at a free time) if 0 belongs to the
closure of [y o R (WY) in H.

Definition 4.2. System (3.2), (3.3) is called approximately L°-controllable if each state W9 € H is approxi-
mately L°°-controllable.
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Let us consider an extension of W, on a space of functions with non-compact support. Let ¥ : H — HJ,
D(V) = Hy,

/2 + ¢2
Evidently, ¥g = U,g, g € D(V) N D(T,). Oneqcan see that if ¢ = 0, then ¥ = Id.
Theorem 4.3. Let ¢ > 0. Then the following assertions hold:
() R(W) = {s e A3 |3] € B;* 57 = /o5, R(W) = H{;
(il) U is bounded and ||¥| < 1;
(ii}) N(¥) = {g € Y | suppFg C [~q.]}

vy =5,L, (L (Fq) (Vo2 +q2)> . geD). (4.1)

() (¥9) () = - [~ gy (VP ) glt)dt = g(a) gz / h "(% Lﬂxf)gw dt, g € D(W);

|| ||
Proof. Lemma A.13 implies (i). By analogy with properties of ® [4], Appendix, we obtain assertions (ii), (iv).
With regard to the definition of ¥, we conclude that (iii) is true. The theorem is proved. O

Taking into account (3.5), consider an extension of \I/a% sgnt on a space of functions with non-compact
support. Let W : HY — Hy', D(¥) = D(V) = HY,

Ug = %S’Jix ((F(Sgntg)) (\/02 + q2)) ,  gE€DW). (4.2)

Evidently, g = U, (sgntg), g € D(‘i) N D(¥,). One can see that if ¢ = 0, then U= L sgna.
If WO e H, T >0, u € L>(0,T), then formula (3.5) can be represented in the form

W(z,T) = E(x,T) * |:WO(I) - (gﬁ) (x)} : (3.5")

where U(t) = u(t)(H(t) — H(t —T)) —u(—t)(H{t+T) — H(t)).
By analogy with Theorem 4.3, we obtain

Theorem 4.4. Let ¢ > 0. Then the following assertions hold:
() RO) = {f e Hy"|3f € Hy'/* Ff = /oI5 f . R(V) = Hy '
(ii) U is bounded and H@H <1;
(iii) N(U) = {g € ﬁg | supp F (sgntg) C [fq,q]};

(iv) (@g) (z) = % <sgnx9(x) - Q/oo Mg(t) dt), g€ D(V);

2| 12 — 2

We have used the inverse operator for ¥, to solve controllability problem at a given time. But ¥ is not
invertible according to Theorem 4.3. Let us use the Moore-Penrose inverse for the operator ¥ [2,12,13] to solve
approximate controllability problem at a free time. Decompose the space ﬁg into a direct sum of subspaces.
Denote L; = (N(¥))t, Ly = N(¥). Evidently, L; = {g € ﬁg | suppFg € R\(—¢,q)}, Ls = {g € ﬁg |
suppFg C [—¢,q]}. We have H? =L, P Lo. According to Theorem 4.3, the restriction ¥y, is an invertible
operator. Denote U+ = (W], )", D(U+) = R(¥). Here Ut is called the Moore-Penrose inverse for U. We
have WWT =Id, UTW = P, where Py, is the projector on Lj in ﬁg, 7 =1,2. One can see that

v =9,1, <M @) (Vir = q?)) ., feD) (4.3)

,LLQ*(]2
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Denote
2 > /sin(qu)\’ dv
t,r) = —s nacHxQ—tQt/ ( ) , t,z) € R,
2 4 i ! d
Yo(t,x) = = sgnaH(t? — :c2)t/ (sm(qv)) ! , (t,z) € R%
T VT2 v Vo? 4 22 — 12

Due to Lemma A.14, (4.3) and the definition of U, we have
Theorem 4.5. Let ¢ > 0. Then the following assertions hold:

(i) R(¥*) =Ly;
(i) U+ ds invertible, (U+) " = |y , D((¥)"" = R(¥F) = Ly;

e3¢} t
(i) (1) (1) = F(t) = fi7} Yoot 2) f(2) Az + [y o (t, 2) f(2) d, f € R(D);
The operator YU+ = \II% sgntW¥T is a generalization of ‘I/a% sgntW; L. To investigate approximate control-

lability at a free time, we study the operator UU+ because the operator \I/a% sgntW ! play an important role
in the study of the controllability problem at a given time. Taking into account Lemma A.16, we can continue

the operator UU+ on HY. Denote Y : H) — H;', D(YT) = HY,

<||g+— %) —sma L, (iso V@ AEN@). e D),

According to Lemma A.16, Tf = \f/\Iﬁf, f € R(¥). One can see that if ¢ = 0, then T = % sgnx. By analogy

Tf = (senx ) + P sena ¥,

with the modified Bessel function

P ! —1/2
I(z) = 1-¢3)P h(¢x)d >0 4.4
we introduce the following cylindric function
Ly(z) = 2 /1 (1) simn(er)de,  p>0. (4.5)
P 2-10(1/2)T(p+1/2) Jo ’ -
Using the definition of T, Lemmas A.16, A.18, and Corollary A.19, we obtain
Theorem 4.6. Let ¢ > 0. Then the following assertions hold:
(i) R(Y)=Hy';
(ii) Y is bounded and || Y| < /1+ ¢3;
F ~
(iii) Y is invertible, Y tg = F, 1 _Flsgnég)lo) LgeD(Y Y =R(Y)=Hy";
isgno /o2 + ¢2
/11 o2
(iv) Y1 is bounded, | T~ < J;
q
I —L ~
) 1f = el @) + Ssgne (o)« LD =2 e iy
Theorem 4.7. Let ¢ =0. A state W° € H is approzimately L°-controllable at a free time iff
(4.6)

WY — (sgnxwg)/ = 0.

We obtain this assertion from [15], Theorem 1.1. Note also that W — (sgnxwg)/ =W} - TWJ if ¢ = 0.
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Theorem 4.8. A state W° € H is approzimately L°-controllable at a free time iff
W) — TWY € U (N (D)), (4.7)

where the closure is considered with respect to the norm || - ||y

Proof. Let ¢ = 0. Theorem 4.7 yields the assertion of this theorem because condition (4.7) is equivalent to
condition (4.6) in this case. Now let ¢ > 0.

Necessity of (4.7). Let W° € H be approximately L>°-controllable. Then for any n € N there exist T,, > 0
and u, € L°(0,T),) such that for the solution W,, to (3.2), (3.3) we have ||[W,(-,T,)|] — 0 as n — oc.
Taking into account Lemma A.12 and (3.5"), we obtain ||W8 — WZ}HS — 0 and HW? — VV]IH;1 — 0 as n — oo,
where W2 = Wl,,, W? = WU, Wy, (£) = wy(8)(H(t) — H(t — T)) — up(—t)(H(t + T) — H(t)), n € N. Hence,

n = UP, U, + UPLU, = WUTWE 4+ UPL,U,. Therefore, WP — YW2 € U (N(¥)), n € N. Taking into
account Theorem 4.6: (ii), we obtain from here that (4.7) holds.

Sufficiency of (4.7). Denote W§ = H(n? — z*)WJ, n € N. Obviously, ||W§ fWGHS — 0 as n — oo.
Due to the Paley—Wiener theorem, we conclude that FW{ can be extended to an odd entire function. Hence,

ﬁf}'wg € Hf/Q. According to Theorem 4.3: (i), we have W € R(¥), n € N. For each n € N put

UL = U*W? € L, and find U2 € N(¥) = Ly such that HWQ—ng—@ug

~ n
W, = UL +UZ, WP = DU, WP = (Wg
Wi

With regard to Theorem 4.6: (ii), we get

1
— 0 as n — oo. Put

0

n’

),nGN. We have W2 = QUL = DU, WP = YW + U2, n € N.

H|WO—W”|H—>O as n — 0o, (4.8)

U,
U,
[—k,k], k > 2, and ||U, — UZHS — 0 as k — oo. Determine k,, > 2 such that ||U, — UZ”HE < ||[WO —wn||,
n € N. Theorems 4.3: (ii), 4.4: (ii) and (4.8) imply

k

where W" = ( ), n € N. For each n € N consider a sequence {U% C L*°(R) such that suppUF C

}k22

0 \I/ufzn 0 n Ky || 0 n
WO (G N < WO =Wl + V2 [t =2 [fy < (14 V) [[WO = W[ 0 as n— cc.
n

Using Lemma A.12 and (3.5), we obtain that for the solution W to (3.2), (3.3) we have [|[[W(-, k)|l — 0 as
n — 00. The theorem is proved. ]

According to Theorem 5.10 (see below Sect. 5), we have U (N(0)) = Hy' (the closure is considered in Hy').
Hence the following corollary is true.

Corollary 4.9. Let ¢ > 0. Each state W° ¢ H is approzimately L°°-controllable at a free time, i.e. sys-
tem (3.2), (3.3) is approzimately L>°-controllable.

In the case ¢ > 0 the behavior of system (3.2), (3.3) essentially differs from its behavior in the case ¢ = 0. This
difference is generated by the properties of the influence operator ¥. Indeed, N(¥) = {0} and ¥ (N (¥)) = {0}
if ¢ =0, and N(¥)\{0} # () and ¥ (N(¥)) = H; ' otherwise.

Remark 4.10. Let WO € H and supp WO C [~a,a], a > 0. With regard to Corollaries 3.9, 4.9 and Theo-
rems 4.7, 4.8, we obtain the following assertions.

(i) In the case ¢ = 0 a state WY is approximately L>°-controllable at a free time iff condition (3.8) (or (4.6))
holds, and under this condition the state WY is L°°-controllable at a given time T > «.
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(i) In the case ¢ > 0 a state W? is always approximately L>°-controllable at a free time, but it is (approx-
imately) L*-controllable at a given time T > « iff condition (3.8) holds.

The case (ii) is illustrated by Example 7.6.

By analogy with the operators ¥+ and T, we introduce the symmetrlc operators U+ and T. Decompose
again the space HY into a direct sum of subspaces. Denote M; = (N(¥)), My = N(¥). Evidently, M; =
{g€ HY | suppTF (sgntg) C R\(—q,q)}, My = {g € H{ | supp F (sgnt g) C [—q,q]}. We have HY = M; @ Ms,.
Taking into account Theorem 4.4, we conclude that the restriction W|pg, is an invertible operator. Denote
~ ~ -1 ~ ~ ~ ~ ~
Ut = (\II|M1) , D(U*) = R(¥). Here U is the Moore-Penrose inverse for ¥. We have YU+ = Id,
U+ = Py, , where Py, is the projector on Mj in IA{TS, 7 =1,2. One can see that

~ _ —iH(u? — ¢* ~
\I/+f:sgnt37u_,t <% (Ff) (‘/N2q2)> , fe D). (4.9)
Denote T : Hy' — HY, D(Y) = IA{TJI,

e 1 (Ff)(o) %
Tffsgn:cf}ﬂaﬂx <ngIlO'\/O'27+q2>7 f€ D(T)

With regard to Lemma A.17, we have Yf = \I/‘/I}"’f, fe R(‘/I})
By analogy with Theorem 4.5, we obtain
Theorem 4.11. Let g > 0. Then the following assertions hold:
(i) R(UT) =My,
(ii) U is invertible, (\Tﬁ)*l - @’Ml, D ((\iﬂr))*l = R(T+) = My;

(G 5 T (aVP —a?) - e (FN) e
(iii) (‘Il+f> (t) = sgnt f(t) —q/O Wf(ac)dx, =9 <m = sgnzx Vf =

%f(ac) * (sgna lo(qx) — Lo(qx)), [ € R(@);

To obtain (iii), we use (A.8) and [4], (3.11). Taking into account the definition of T, Lemmas A.17, A.18,
and Corollary A.19, we obtain

Theorem 4.12. Let g > 0. Then the following assertions hold:
(i) R(Y) = H{;
1+q¢%
q )

(ii) Y is bounded and HTH

(iii) '/f is invertible, Y 'g = F1 (isgna Vo2 + ¢ (F(sgnég)) (0)), geD ('f’l) =R (?) = HY;
) T
)

(iv is bounded,

H S VIt
1 ~
(v) Tf == 5 Sene (f(x) % (sgnx Iy(gx) — Lo(qx))), f € Hy .
By analogy w1th Theorem 4.8, we obtain
Theorem 4.13. A state W° € H is approzimately L°-controllable at a free time iff

WI—TW? € ¥ (N(\T/)), (4.10)

where the closure is considered with respect to the norm || - [|9.
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Remark 4.14. Theorems 4.8 and 4.13 give us a practical method for solving the approximate L>-controllability
problem at a free time for system (3.2), (3.3). Let us split the initial state W° € H:

- () () (&)

With regard to Theorems 5.10, 5.12, we can find sequences {U?}5° ; € L>°(R), U? is odd, n = 0,00, s = 0,1,
such that

UQEN(\T/), n =0, 00, and \IIH%HWO:WSfTO as n — oo;
UL € N(¥), n=0,00, and UL - W9 =W? — 10 as n — Q.

Therefore, for U,, = U2 + UL, n =0, 0o, we have
vUu, — W8 @un — W(l) as n — oo.

Choosing an appropriate approximation of U,, by a function of the form U* = (H(t+k)— H(t—k))U,, k = 2, oo,
n = 0,00, we get a solution of the approximate L*°-controllability problem at a free time for system (3.2), (3.3).

~

5. PROPERTIES OF THE SETS N(V), \TI(N(\I/)) AND N(V), \II(N(\T/))

According to Theorems 4.8 and 4.13, investigation of conditions (4.7) and (4.10) is a key point in the
study of the approximate L°°-controllability problem for the wave equation on a half-axis at a free time.
That is why we investigate the sets N(¥), l/I\/(N(‘I/)) and N(‘i), ‘P(N(@)) here. Since for ¢ = 0 we have
N(¥) = U(N(¥)) = N(¥) = ¥(N(¥)) = {0}, we suppose ¢ > 0 throughout the section. Theorems 5.10
and 5.12 are the main results of this section. They assert that Hy ! is the closure of U(N(T)) in Hy', and HY
is the closure of U(N(¥)) in HY.

Applying the Paley—Wiener theorem, Theorems 4.3: (iii), 4.4: (iii), the definitions of ¥ and \Tl, we obtain
two theorems.

Theorem 5.1. The following four assertions are equivalent
(i) g€ N(¥);
(ii) Vn =0,00 g™ € N(V).
(iii) g € HY and suppFg C [—q,q];
(iv) g € HY and g can be extended to an entire function of the order < 1 and the type < q.
Theorem 5.2. The following four assertions are equivalent

~

(i) g€ N(¥); R
(i) Vn =0,1 g™ € N(D).
(iii) g € HY and supp F(sgntg) C [~q,ql;
(iv) g € H and sgntg can be extended to an entire function of the order < 1 and the type < q.

The following two theorems give us properties of @(N ().
Theorem 5.3. The following assertions hold

i \Tf‘ HO c H '
(1)R< N(m))c 0 Ho

(i) N (@‘N(m) = {0}.
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Proof. (i) If g € N(¥), then (sgntg) = sgntg’ € HY because of Theorem 5.1: (i), (ii). According to Theo-
rem 4.3: (i), we get Ug = W ((sgnt g)') € HY.

(i) Let G = F(sgntg), g € N( ) and Ug = 0. Then G(o) = 0, |o| > ¢. Taking into account Theorem
5.1: (i), (iil), we conclude that G(o fq (Fg) E)JT is holomorphic on C\[—g, ¢]. Therefore, G = 0. Hence,
g = 0. The theorem is proved. O

Theorem 5.4. Let [ € I?(;l. Then f € @(N(‘P)) iff there exists ® € H{ such that
(i) supp ® C [0, g];
(i) €1/2 (¢~ ¢2) " @ € H;

(i) f—ff;%< /Oq 5)2(2§2> 1sgn:c\/7/ e &=l dg.

Moreover, under conditions (i)—(iii) we have Vg =f forg= 9?_1”5 (sgn§ d(\V? — )/ * — 52) € N(U).

Proof. Sufficiency of (i)—(iii). Put G(§) = sgn& ® (\/q2 - €2> /@ — €2. According to (i) and (ii), we have

suppG C [—q,q] and G € ﬁg. Due to Theorem 5.1: (i), (iii), we get ¢ = FG € N(¥). With regard to (4.2), we
obtain

Vg = %&’;i,l (a (G(y) x %) (\/m))
g (o [ Sy 20 (o w@(vie) .

02 +q2 — 2 oo o2 + €2

Then (iii) implies f € ¥ (N(¥)).
Necessity of (1)-(iii). If f € U (N(¥)), then there exists g € N(¥) such that f = ¥g. Setting G = Fg

and applying Theorem 5.1: (i), (iii), we conclude that supp G C [—q,q], G € HY. With regard to (5.1), we get
f=Ug= 25‘“;Hx ( g%). Put (&) = H()EG (\/q — 52) Then (i)—(iii) are true. The theorem is
proved. ]

Analogously, we obtain properties of W(N (\Tl))
Theorem 5.5. The following assertions hold

() B (¥ly)) € H:
(i) N (Wly) = {0}
Theorem 5.6. Let f € H). Then f € W(N(@)) iff there exists ® € H{ such that

(i) supp ® C [0, ql;
(ii) €~ 1/2( e o e HY;

- 1 ®(£)dg el
(iii) f= —EFU_,l ( /o = +£2) —1Sgnac\/7/ o€zl ge.
Moreover, under conditions (i)—(iii) we have Wg = f for g = sgntF . gﬁt ( 1€|®(V a2 — €2)/ /> — §2> e N(¥
1

<(I)7 V(Uv )>

Remark 5.7. Condition (iii) in Theorems 5.4 and 5.6 can be represented in the form (Ff) (o) =
where v(0,§) = 022—&2, ceR, £eR

With regard to Theorems 5.4 and 5.6, we see that the following theorem is useful for investigation of (N (W)
and U(N(¥)). Due to [7], Chapter 2, the Paley~Wiener Theorem, and Lemma A.20, we get
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Theorem 5.8. Let ® € HY and supp® € [0,q]. Then f(z) = isgn:c\/g foq d(Ee Elelde, > 0 iff

(i) f € L*0,+00);
(ii) f can be extended to an entire function and e’zq/Qf(z) is of the order <1 and the type < q/2;
(i) Vz > 0 f@ € HY, where fa(y) = f(z +iy), y € R;

. 0 0
(i) sup {llfally | = > 0} < || foll5-
Under conditions (1)-(iv) we have fg= 2iF¢_,P.

The following two theorems give us properties of ¥(N ().
Theorem 5.9. Let n =0,00. Then sgnz |z|["e~ 2%l € U(N(V)) (the closure is considered in H').

Proof. Let n =0, 00 be fixed. Put v(0,§) = 022—4‘_’52, 0,6 €R, f(z) = sgnz |z|"e~ 9%l 2 € R. We have
F(0) = (Fomaf) (0) = =iy | 5= (-1 (€~ @) v(0.)),  o€R (5.2)

Let p € C™(R), suppu C [~1,1], [1, u(€)dé = 1 and p > 0, € € R. Put p, = mpu(m(€ — q) + 2),
& € R, m € N. Then p,, € C°(R) and supp ptm, C [¢ —3/m,q — 1/m], m € N. For m € N set F,,,(0) =
—iy/5=((— 1)”u§,?), v(o,+)), o € R. With regard to Theorem 5.4, we conclude that f,, = F 1 F,, € U (N(D)),

m € N. Set i(¢) = [*_p(u)du, ¢ € R. Then 0 < fi(€) < 1 for & € R, fi(¢) = 0 for £ < —1 and
) =1 for & z 1. Put iy, = a(m(€ —q) +2), € € R, m € N. Evidently, (fi,) = pm, m € N. We

1/2 n—2
have |\H(§,q),ﬁm”8 < (qu 31//;'1 fim (€ dg) < /2, m € N. Therefore,

<
/2 —on—2 (,(n) _ s(n) T2 /2 1 et L
=. Hence, Hf (um -0 (ffq)) - </ <1+ m) , m € N. Taking into account
Lemma A.20 and (5.2), we conclude that

(n) (n)]| 2
(€ —q) — pm 0

T 1 n+1
F — Fn|9 < Loy, (= 1+ . .
I Ho_ 2n+2 m( +(q3/m)2) —0 asm — oo (5.3)
Therefore, f,, — f asm — oo in Hy '. Since f,, = T, 1, F, € v (N(¥)), m € N, then f belongs to the closure
U (N(¥)) in Hy'. That was to be proved. O

Theorem 5.10. H ' is the closure of W (N (W) with respect to to the norm -1

Proof. Let [ € IA:?O_I. Due to [7], Chapter 1, ﬁo_l is the closure of ﬁg with respect to the norm H||O_1 Since
{sgnx|x|"e*q\r\}zo:0 is a basis of I;"g, then f can be approximated in ﬁo_l by the functions of the form
fn(z) = sgnae 9l Z'r]:]:O Nz, where fN € R, n =0,N, N =0, 00. Taking into account Theorem 5.9, we
conclude that f belongs to the closure of U (N (¥)) with respect to the norm H||61 That was to be proved. O

Analogously, we obtain properties of U(N (\Tl))

Theorem 5.11. Let n = 0,00. Then sgna |z|"e~ 47l € W(N(W)) (the closure is considered in HY).
Theorem 5.12. ﬁg is the closure of W(N(W)) with respect to to the norm H||g

Remark 5.13. Let 8o = {9 € 8 | ¢"(0) =0, k = 0,00}, 8° = FS,. By formulae (4.1) and (4.2), the operators
¥ and U can be extended on 8°. Denote these extensions as U and \I/OO respectively. We have

n
(?H; (Sgnx |I|ne-q|x|)> (0) = \EZA;;W, o ER,
p=0
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where Aj € C, p=0,n, n =0, 00. Therefore,

(=D 1
2p)! +2 sgnt) <Z 2p+ o 120+ ) .

=0

n
sgna |z]"e” 1l = W, (z E Ay
p=0

6. CONDITIONS FOR APPROXIMATE BY-CONTROLLABILITY AT A FREE TIME
Consider control system (1.1), (1.2), (3.1) and equivalent system (3.2), (3.3) where T > 0 is a parameter.

Definition 6.1. Let U > 0. A state WO € H is called approximately BY-controllable at a free time if 0 belongs
to the closure of (J,- o RY(W?) in H.

In [15] Theorem 1.1, the following assertion was proved.

Theorem 6.2. Let ¢ = 0. A state W° € H is approzimately BY -controllable at a free time iff HWO U

and condition (4.6) holds.

ooy <

Let ¢ > 0. Analyzing the proof of Theorem 4.8 and Examples 7.3-7.9, we see that the approximate BY-
controllability problem at a free time is essentially more complicated than the approximate L°°-controllability
problem at a free time. Moreover, the method that allows us to solve the second of these problems is not
applicable to the first one. However, using the results of Section 5, we can obtain a sufficient condition for
approximate BY-controllability at a free time.

Theorem 6.3. Let ¢ > 0, W9 € U(N(T )) WO € U(N(V)). Then for WO and WY conditions (i)~(iv) of

Theorem 5.8 are valid and the state W° = is approzimately BY -controllable at a free time for

WO

vz 7= (e 8

HF (W) /v =e|

L1<R>) . (6.1)

L (R)

Proof. Taking into account Theorems 5.4, 5.6, 5.8, put

: /= &2 ~
@0:7%9(\7\78)@, go=sgntF, <|§|%> € N(V), Wgo = W

. P 2 _ ¢2 ~

B =~ (T (WD) — 571, < an¢ % Vf?) e N(w), T
2 —

Applying again these theorems, we conclude that ||go||;, gy < \/g [P0l 1) and (g1l @) < \/g

H(b q? — &2 L Therefore, for U = go + g1 we have U € ﬁg, U is odd, YU = WY, U = WY, and

2 P
||u||Loe(R) < \/;<||CI)0|L1(R)+H® q & L1(R)

up(t) = U(t) (H(t) — H(t—k)), t € R, k € N, we obtain controls solving the approximate BY-controllability
problem at a free time for the state W, if U satisfies (6.1). The theorem is proved. O

). Taking into account Theorems 4.3, 4.4 and setting

Example 7.3 demonstrates that the conditions of the Theorem 6.3 is not necessary for approximate BU-
controllability at a free time. Examples 7.10, 7.10 illustrate Theorem 6.3. In particular, we see that estimate (6.1)
is not sharp for each W° € H satisfying the conditions of Theorem 6.3 (see Ex. 7.11). But there exists W’ € H
satisfying the conditions of this theorem such that estimate (6.1) is sharp for W° (see Ex. 7.10).
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7. EXAMPLES

In this section we consider examples illustrating the results of Sections 3—6.

Example 7.1. Let ¢ > 0, T > 0, a > 0. Put f(¢) = at(H(t +T)—H(t—-T)), h(z) = (\I/Tf)(ac

axJo(qV/T? — 22)(H(x+T) — H(z —T)). Therefore, f(t) = (¥ h)(t). Evidently, sup {|f(z)| | z € (=T T)}
oT, sup{|h(t)| |t € (-T,T)} = aT. Setting o = U/T we conclude that (3.13) is not necessary for (3 9) for

each T > 0. Setting o = (14 ¢T)U/T, we conclude that (3.14) is not sufficient for (3.9) for each T' > 0.

/12 2
Example 7.2. Let ¢ > 0, W) = 2.Jy (V1 —22) H(1—2?), W) = L (H(l —z?) (|:c| — qf‘ t? ]1(\%;—12 ) dt)).
Theorem 3.1: (v) yields W9 = U, U, where U(t) = tH(1 — t?), t € R. With regard to Theorem 3.1: (iii),(v), we
obtain

d —1yx70) _ ,_d = Slave —a?) _ wo
\Illdt (sgnt U7 'WQ) = ¥y (sgntU) = 1 <U(z)sgnzq/|xl tW dt | = Wy.

Wi
u(t) = U(t)H (t), t € R, solves the BY-controllability problem at the time T for this state.

0
Due to Theorem 3.5, the state W° = <W > is BV-controllable at a given time T' > 1 for U > 1. The control

0

With regard to Remark 4.14, we may consider the states of the form (V\(;O) and (VSO)’ without loss of
1

generality, when we investigate approximate L°°-controllability at a free time.

Example 7.3. Let ¢ > 0, n = 0,00, W) = |:c|"e_q“”‘ sgnz, WY = 0. Due to Corollary 4.9, the state W =
0

(%8 is approximately L°°-controllable at a free time. Let us find controls solving the approximate L>°-
1

controllability problem for this state.
Let F, Fp, pt, fim, m = 1,00, be the functions from the proof of Theorem 5.9. Then (5.3) holds and

. +4 n+1 6
W8 — w0 = 1P - F|0<L2n+2\f (q ) mzd (7.1)

q2

where W' = F71F,,,, m =1, 00. Put g% = \/g(—l)” sentF 5_,75 |§|,u \/q 52)/\/q2 —&2),m=1,00. With
regard to Theorem 5.6 and Remark 5.7, we conclude that g € N(‘I/ N L®(R), g7 is odd and g, = WO |
m = 1,00. Set Up ,(t) = g5, (t)(H(t + k) — H(t —k)), t € R, m,k =1,00. Then U}, ;, € L=(R), U}, , is odd,
m,k =1,00, and

0o 1/2
n n 0 n
Hgm - um,kHQ S (2/k |gm(t)|2 dt> — 0 ask — oo. (7'2)

Taking into account Theorem 4.3: (ii) and Theorem 4.4: (ii), we conclude that

W5 w0 < o —wnall), o B < lon Gl mk=Twm (73)

Estimates (7.1)—(7.3), (A.16) yield

4\ oo 1/2
W~ 0tz ) < Loy [ (L2) (2T lnof @) L m

. 1 1/2
HW ‘IlumkH < (2/k |gm( | dt) ’

where Lo, o < 2(4(n+ 1))/ (8(n + 1))!152(»+1) /7.

vV
™
vV
“}—‘
—
~
=~
SN~—

3
Y
QIO Qo

™
IV
“}—‘
—

=~

<t
~
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. 6 7 [ ¢*+4 il € :
Let € > 0 be fixed. Determine m, > 1 such that L2n+2‘/E (q—Q) < 5. Then for this me find ke > 1

o0 1/2 N :
such that (2 I lgm_(t ‘ dt) < 5. Taking into account (7.4), (7.5), we obtain

—1

W6 — WU, . <e.

me,ke

g<5 and HWO U

Thus, the controls uy, , = = U xH(t) € L*(R), m, k = 1, 00, solve the approximate L>°-controllability problem
at a free time for the state W0.
In the case n = 0 the state WY is also BY-controllable at a free time for U > 1 because

g—1/m 1
1980 e ey < / L, (e dc= [ @ =1~ lsgntlhe sy (7.6)

With regard to Remark 5.13, we also have W, sgnt = W9 and Ug? — W9 as m — oo.
Example 7.4. Let ¢ > 0, n = 0,00, W) = 0, W) = |x|"e’q‘z‘sgnx. Due to Corollary 4.9, the state

0
WO = O) is approximately L°°-controllable at a free time. Let us find controls solving the approximate

WY
L°-controllability problem for this state. Reasoning as in Example 7.3 and using Theorem 5.4 instead of
Theorem 5.6, we conclude that

0 1/2
We -t < (2 ool ar)

N _ 44 n+1 0o ) 1/2
WO — Ju” H < Loy ¢ 2/ nEde)
[We - o, < Lo/ (B )+ (2 e

where g7 = \/g(— )”‘Hsz . sgngu (V@ — €2)/\/q? — €2), ), U, g = g (H (t+k)—H(t—k)), Uy, ;. € L=(R),
Uy, . is odd, m,k = 1,00, Loyta < 2(4(n+ 1))1\/(8(n + 1)).52(”+1)/7T. Thus7 the controls uy, ;= WUy, 1 H(t) €
L>°(R), m, k = 1, 00, solve the approximate L>-controllability problem at a free time for the state WP,

3

%
ol
W
\.H
=~
=

3
Y
QI o

Remark 7.5. It is known that {\/21—(1“6(196 (%) (acle_Q‘”)}l:O is an orthonormal basis in L*°(0,+oc0). Put
vi() f S, (! )( 207 | p|re4l*l sgna, 2 € R, | = 0,00. Then {11};°, is an orthonormal basis in HY. Let

WY e HY, W9 = 0. Put W9 = S owi, W = Zz]\;owl’/lv WY = WV =0, N =1, 00, where w; = (WY, 1),

I =0,00. Then we have HW8 — Wévug — 0 and ||W? — W{VHS — 0 as N — oo. Using the result of Example 7.3,

N
we can find controls solving the approximate L°°-controllability problem at a free time for (g%)’ N =1,

0
) In the following

Therefore, we can find controls solving the approximate L°°-controllability problem for (WO

example we realize this scheme.

0
Example 7.6. Let ¢ > 0, W) = 2H(1 — 2?), W9 = 0. According to Corollary 3.9, the state W0 = <$§>

is approximately L°-controllable at a given time 7' > 0 iff T > 1 and condition (3.8) holds. With regard to
Theorem 3.1: (vi), we have

jt (sgnt U'W) = dt (|t|Io (g 1_ t2)) £0=WY.
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Therefore, for all T > 0 the state W is not approximately L>°-controllable at the time 7. But due to

Corollary 4.9, this state is approximately L°°-controllable at a free time. Taking into account Remark 7.5, we can
find controls solving the approximate L>-controllability problem for the state WY. We have W = 220 wyy,

where
(L) 2 [amreroras - y Z (1) o (dgq)+ (=)
- 23 (Dermen 3 Lo =7 -,

m=n+2

Put W) = Z{iowlw, N =1,00. Then ||W8 —W{)VHS — 0 as N — oo. Let ¢ > 0 be fixed. Set N =1, 00 such
that

W8 —w[ly < 5- (7.10)

We have

1%2131(72(1)” 2 i a

Wo = g 2 ( )7|‘T|neq Usgnz = QF|a|"e 1" sgnz,

Vi =0 n=o \" n! 0

where
N _ (_2q)n ! _ (_1)n n+l _n—3 l l s qm —q —
Q, = Jan! Z(n W= 2" g Z " Z < (—=2)%(s+1) et n=0,N,

l=n l=n s=0 m=s+2

here we use (7.9). According to Example 7.3, for each n = 0, N we can find an odd function UZ € L*°(R) such

~ -1
W)‘Qm, and HO—‘I’U? 0 <

U = YN ONUL we have U, € L®(R), U is odd, suppUs is finite, [|W) — W10 < £, and Ho —

Hence, for

1
E.
<2

that supp UZ is finite, |||z|"e~ 4"/ sgna — ‘IIUQHS <

€
2(N+1)[QN "

0

N -1

With regard to (7.10), we get ||W8 — \IIUEHS < ¢ and HW? — YU, < &. Thus, the controls u. = U.H(t) €
0

L>*(R), € > 0, solve the approximate L>-controllability problem at a free time for the state WP.

Remark 7.7. It is known that ﬂ’o—l is the closure of HY with respect to the norm H||O_1 [7] Chapter 1. That
. ~_ o0 ~ WY w
is why for W) =0, W) € Hy' we can find a sequence {WM} ' C H{ such that H <W§> - <W({)\/j> m — 0

WM WM’N _
‘(W({)VI) - <W?VI’N> —0as N — oo, M =1, 00,

it Wl = WM =0, WM = S Wi, Wi — Zl]\iowl’/la M,N = 1,00. Here oM = (WM 1), | =0, 0.
Then, using the result of Example 7.4, we can find controls solving the approximate L°°-controllability problem
M,N

. Wy wH W) . . .
at a free time for % N |, therefore, for W | and for o |- In the following example we realize this
Wi Wi Wi

as M — oo, where W) = W{ = 0. Moreover, we have

scheme.

0
Example 7.8. Let ¢ > 0, W) = 0, W) = 2. Due to Corollary 4.9, this state W0 = <$§
L°-controllable at a free time. Taking into account Remark 7.7, we can find controls solving the approximate
Le°-controllability problem for the state W°. Put V{ = FW{ = —i, /T sgno, VI = V)(H (o +M)—H (o — M)),

WM = 5N, WY =0, M = T,0c. Evidently, V) € HY, hence, WM € HS. Then ||[W) - W' =
1/2
HV? — V{MHO_1 = ﬁ( ;[o %) = Vmarccot M. Let ¢ > 0 be fixed. Set M > 0 such that v7arccot M < £-

> is approximately
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WY wM €
I GV) - W)l <5 1)

Then

We have WM =3~ wMy;, where

= (WM u) Z ( ) (75?)71 /Z WM ()|z|"e*l sgn 2 da

n 0
l n . l n
2 1 d oo —io -1 N\ (2¢)" [/ d M? + ¢?
[ z( JE () [ vt = Ly (1) ()
n! dq oo o2 +q ﬁnzo n) n! dq q
—2 M2+q () Dn—1) () (—2¢)(n — 1) n
=— | In Z Z 72 Z < )(M2)kqn—2k
\/a n=1 = q +M) 0<2k<n 2k
(7.12)
_ 0 -
Put W{W’N = Z{iowlw, N =1,00. Then HW{V[ —WiVI’NHO — 0as N — oco. Set N =1, 00 such that
0
HW{” —W{VI’NH = (7.13)
o 3
We have
1 X Lo/ (—2¢)" N
M,N _ _* M n |z _ M,N |, .n,—q|z|
Wit = qul Z <n> oy |z|"e” " sgnx = ZQ" |z|"e” 1" sgn
=0 n=0 n=0
where
M? +q <n— 1)
M,N _ n+1 n 1
o= s ) S () (n e ()
n Z —2¢){n—1) Z n (= M2)k g2k 0N
qn(q® + M2)" 0<2k<n 2k 7 o

here we use (7.12). According to Example 7.4, for each n = 0, N we can find an odd function U? € L>*(R)
—1
such that supp U is finite, U is odd, ||0 — U2 g < W)IQM and H|$|ne alel ggn oz — YUP < 3(N++)|Qﬁl
Hence, for U, = Z'r]:]:O QMNY? we have U. € L*®(R), supp U, is finite, U. is odd, [|0 — \IIUE||8 < £, and
-1 -1
HW{VIN < £- With regard to (7.11), (7.13), we get |[W§ —‘I/uaug < e and ‘W? -

< €.
Thus, the controls u. = U.H(t) € L>(R), € > 0, solve the approximate L>°-controllability problem at a free
time for the state W9,

Example 7.9. Let ¢ > 0, W) = e~ Ul ggnz, W9 = 0. In Example 7.3 we have proved that the state W9 =
0

0
w1
problem has been also constructed for this state. But these controls are of a rather complicated form. Due
to Remark 5.13, we have U, (sgnt) = WY. We may suppose that for the state W° controls solving the

was approximately L>°-controllable at a free time. Controls solving the approximate L -controllability
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approximate L°°-controllability problem at a free time can be constructed in the “natural” form wu,,(t) =
sgnt (H(t) — H(t —m)), t € R, m = 1,00. Unfortunately, ¥'U,, does not tend to W{ = 0 as m — oo because

~ -1 1 q 3T
\I/umH > L > o 7.14
H o —w\V1+g? = 2q ( )

where Uy, (t) = um (t) — um(—t), m = 1, 00. Therefore, controls w,,, m = 1,00, do not solve the problem under
consideration. Let us prove estimate (7.14). We have

2
R N R 0\ 2 0o osin(m 02+q2)
(o) - (oo ) =2 [l
0 ~1 T Jo o2 + ¢2 o2 +1

4¢* /°° 9 £2 — ¢? q 2mq? ‘/‘X’ p—mgq
> = d¢ > — 2 dp| .
(g +1) J, sin”(m¢) £ <2 (@ +1) 7@ +1) | cos(2p) P

Now estimate the later integral. Determine n,, € Z such that § + mn,;, <gq < 5% 4 7n,,. Then

oo . 0 57 /4 o § 4oam
m }/ cos(2p)p ?:mq dp} <m Z / cos(2p) — g dp < E Z 3 T
mq 4 n=n,y, /37/4 P’ 7T n=nm, (+ %)
oS 5 qm 2 _ 3w
n R Sl an 2 — asm — 0.

T

Hence, mf | cos(2p) B dp <

< q, m >3 3” . With regard to (7.15), we conclude that estimate (7.15) is valid.

In the following examples we use Theorem 6.3 to investigate the approximate BY-controllability problem at
a free time.

_ Ne—alzl —iqy
Example 7.10. Let ¢ > 0, W) = sgnxz T OLELLLY WY = 0. Then (W8)© = diy (ke—>, (W?)© =0,

x Y
Dy = —15°! (W8)© = J3EH(E) — H(E - q), ®1 = 0. Since &y and ®; satisfy the conditions of the
Theorems 5.6 and 5.4 respectively, we have W) € (N (¥)) and WY € U(N(¥)). Due to Theorem 6.3, the
0
state W9 = <$8> is approximately BY-controllable at a free time for
1
e
U>2U"= ||(I)O||L1(1R) — 9 (7.16)

Now let us find controls solving the approximate BY-controllability problem at a free time for W°. To this

sy

aid, we use the scheme from the proof of Theorem 6.3. Put U = go = sgntEngt (i|§|W

sgnt (l_cfzs(qt) quingqt)). Then the controls ug(t) = W(t)(H(t) — H(t — k)), t € R, k = 1,00, solve the
approximate BY-controllability problem at a free time for W°. Moreover, we have

q> q "
5= Wk (40) < Uk llpoe ) < W10 m) = 90100 @) < /0 £d§ = 3

Therefore, estimate (7.16) is sharp for this W°.
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Example 7.11. Let ¢ > 0, W) = 0, W) = sgnxz foqsgn (5— @) Vg2 — €2e~¢l71d¢. Then (W8)© = 0,

(W) g = Jo'sen (€~ ¥51) Vo — e dg, @ = 0, &1 = iy/Fsgn (€~ 51) /? — E(H(€) - H(E - q)).

Since @y and ®; satisfy the conditions of the Theorems 5.6 and 5.4 respectively, we have W) € ¥(N (1)) and
0

W9 € U(N(¥)). Due to Theorem 6.3 the state WO = (WO

WO) is approximately BY-controllable at a free time
1

for

UZU" =il r) = ¢ (7.17)

Moreover, the controls uy(t) = U(t)(H(t)— H(t—k)), t € R, k =1, o0, solve the approximate BY-controllability

(Sg ng E/qjﬁf )) = 2902) (1 cos(gt)). We have

sin(qt/2)
t

problem at a free time for W°. Here U = g, = 5‘“§Ht

Ui = ||u||Loe(R) ||91HLOC(R) = sup 2

(1-— cos(qt))‘ <q=U"

Therefore, estimate (7.17) is not sharp for this W°.

APPENDIX A

Lemma A.12. Let ¢ > 0. Then

1+q

[|E(t) = f]| < teR, feH)xH;" (A.1)

Proof. With regard to [4], we have

: 2. 2
/ot 1 >sm<t 0+q)
FE(- 1)) (0) = — VY "/ {eR oceR
(FE(,1)) (0) ((a/at)z ofor) — =
. Fy 0 0
Put F =3 f. Obviously, F' = I € Hj x H? | .Hence,
IIE (1) = fI
1/2
9 sin (ty/02 + ¢2 0\ 2 2 1_|_
q
<vz | (Iml5)” + %F s(vewen|” )+ (me) | =22
0
The lemma is proved. O

Lemma A.13. Let ¢ > 0. Then R(V) = {f € HY|3f e HY? 5f = ,/|a|fff} and R(¥) = HY

Proof. With regard to the definition of ¥, we conclude that R(¥) C {f € HY | 3f € Hl/2 Ff=/[0]Ff}. As-
sume that for f € HY there exists fe H3/2 such that Ff =/ |a|5‘“f. Put g= 3‘;_,,5 (M‘;I(u% (gf) (\/ u? - q2)) .
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1/2 >
We have Hg||8 < \4/1+q2Hf”0 . Hence, g € D(V). Moreover, ¥g = F—1 <\/|0|3"f) = f. Therefore,
R(¥) = {f € HY|3f e HY? Ff = ,/|a|fff}. Let f € HO\R(V). Put f,(z) = H(n* — 22)f(z). Evidently,

IIf— fn||8 — 0 as n — oo. Due to the Paley-Wiener Theorem, we conclude that Ff,, can be extended
to an entire function hence ﬁ&"fn € H10/2. Therefore, f, € R(V). Thus, f € R(V). The lemma is

Vel

proved. O

Lemma A.14. Let ¢ > 0. Then
00 |t]
lI/Jrf = f(t) - " woo(ta I)f(x) dz + 0 wO(ta I)f(x) dI, f € R(‘Il)a (A'Z)

where Yy, Vs are defined in Section 4.

Proof. Let f € R(V). According to (4.3), we obtain

Ut f= _1d /O:O f(x) (g /oo cos(tp) i (SE - QQ) du) dz. (A.3)

2dt T 12 — 2

Let us study the internal integral. We have

9 [o0 ( )sin (:c\/uQ - q2) 1 oo sin (:coth o2 +q2)
1= —/ cos(tu /
q 0

dp = — d
T M2 _ q2 H T /0-2 + q2 g
1 oosin(xa—t 02+q2)
+ —/ do.
T Jo Vo2 +q?
Put v = % (:ca +t\/o? + q2) in the first integral and v = % (:ca —ty\/o? + q2) in the second one. Then we
obtain
92 oo . |t] .
I=2sema H(x2_t2)/ M_H(tz_xz)/ _sin(gr)dv_ (AA)
™ it Vo2 +ax? 12 Viz—gz Vot a2 — 2
By substituting (A.4) in (A.3) and integrating by parts, we obtain (A.2). The lemma is proved. O
Lemma A.15. Let o« > 0. Then
d _ o I (q(|x] — &
(e gy (o090 ) ) = (e @) +asens [ oG ae senma). (4
x

Proof. Let f € D(—a,a) = {p € C(R) : suppy C (—a, @) be odd}, h = U, < (sgnt¥ ! f). We have

: d - “ipl E(?f)(V’EQ_qQ) —2 oo(SrAqf)( u2—q2>
6 = g (G bomtu ) ) = S0+ e = v [ e
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where Ay = — (%)2 — ¢°. Therefore,

d ., 24
h= ES‘"JHQEG (\/02 + q2) = —1\/;(1— (

Va1 ginh (1/ q% — uQ)
d

\F & ge
=4/ —sgnx / A f(v / n
m 0 o/ (V) 0 q% — 12

ool

0 q 1%

= Lsa ( | auw [ - [ susw) [ ad Gl A %) du) (A6)

w2 —q?

According to (4.4) and (4.5), we get

q —£
2 / © ' du=I(g) - Lo(g€),  E€R. (A7)

We also have

7 gulg]
F (sgné (Lo(qlé]) — Lo(qlél))) = =F <Sgnf ; du)

2

™
B (g)w/q (—io) du\/?(isgno)
T 0 (02+u2) 2 —u? T /02+q2

Therefore,

, lsgno

O—2+q2

u27q2 T

do — — sz— =sgné (lo(ql¢]) — Lo(ql€])) . (A.8)

™

z/qoo sin({x/ug—QQ) 2/000 sin o€

ﬁ
+
QN)
o

Comparing (A.6)—(A.8), we obtain

h = % sgnz ((Aqf) * (Io(qz) — Lo(gx)) (|z]) — ((Agf) * (sgna (lo(gz) — Lo(glz]))) (x))
=sgna (f * (Aq (H(—2)lo(qx)))) (Jx]) = sgna (f'(x) + f * (H(=z)Aglo(qz))) -

Since AgIo(q€) = (¢2/2) (Io(q€) — 12(q€)) = qI1(q€)/&, we conclude that (A.5) is true for f € R(¥o)ND(—a, ).
Let us extend this formula on R(¥,). Let f € R(¥,). Since D(—a,a) is dense in L?(—a, ), we can find a
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sequence {fptnen C D(—a, @) such that ||f — ang — 00 as n — oo. We have

[ () g ae

=] —

00 1/2 00
< e*(l|x| (/O o248 |f(€) _ fn(€)|2 d§) </O e 24

where K = eqa (fo e 24

9 1/2
% d€> =2qKe 1| f — f.ll0,  zER,

1/2
L (‘15) ‘ d§) . Therefore,

0
o0 I -
‘/ A (1(©) — fule)) de| < K1F = Rl "
’ 0
Since ||(sgnz(f — fn))/H(;l <|f- fn”& then (A.9) yields (A.5) for f € R(¥,). The lema is proved. O

Lemma A.16. Let f € HY. Then UUtf € Ht,

x

< isgno (Ff) (o)
lo| + \/0274—(]2

and H(I\/‘I/"’H < +/1+ ¢%. Moreover, the operator TUF can be continued on ﬁg with the same norm by (A.10).

JUtf = (sgnaf) + %sgnx (f(ac) . I (qlz]) — L1(q$)) sgnz Il (1sgna /o2 + ¢ (Ff) (U)>

= (sgnzf) +¢?sgnaF, L,

) . fERY), (A.10)

Proof. Let f €D =, D(—a, ) be odd. With regard to (4.3), (A.6), and (A.8), we conclude that

a>0
s \/5 d /OO sin (lex/u —q ) (FAGS) (\//ﬂ —q2) . (A1)
=i 1 )
dw Vi = ¢ Vi? = ¢
Setting o = \/u2 — ¢2, we obtain
GUtf = sna (% (FA, f) (a))

= S“Jix (1sgna Vo2 +q2(Ff) (a)) = (sgnxf) +q¢? Sgnwg;ﬂx <M> .

o] + Vo2 + ¢
It also follows from (A.11) that
Ut = —% sgna ((Aqf) * (sgnz (Io(gx) — Lo(glz))))) (z) = sgnz (f'(x) + [ * (sgna (Aglo(gx)) — AqLo(gz)))

— G f () + s () LA D007,
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Thus, (A.10) is true for f € DN HY. Let us extend this formula on HY and continue the operator VU on HY.
Since D is dense in L?(R), we can find a sequence { f, }nen C D such that ||f — fn||8 — 00 as n — oo. We have

%nﬂyl< {(F(f = 1)) (0) ) | et

o +sgno\/o? + q¢>

0
1
<=\ f = falld- (A.12)
0 q

o +sgno\/o? + q¢> -

0

Since ||(sgnz(f — fn))’Hg1 <|f- fn||8, then WUt f € ﬁgl and (A.12) implies (A.10) for f € HY. The lemma
is proved. ]

By analogy with Lemma A.16, we obtain

Lemma A.17. Let f € Hy'. Then WU f € HY

(Ff)(o)

g—m) fER@),  (A13)

DUt f = %sgnx (f * (sgnz Io(qx) — Lo(qx))) = sgnax F, 1, <

and and H‘I/\/I\”‘H < —”1:[12. Moreover, the operator WU+ can be continued on ﬁo_l with the same norm by (A.13).

Lemma A.18. Let f € IA{TO_I. Then sgnz f € IA{TO_I and ||sgnz fllgt < 2| fllg*

Proof. Let ¢ € Hy. Then | sgna ¢l|g < || sgna @|[g+(I(sgnz ) [I5 < llellg+1#l < 2[l¢ll5- Hence, sgnz ¢ € Hg.
Since (sgnz f, ) = (f,sgnz ), then sgnz f € Hy ' and ||sgnz f[l;" < 2|/ f]lo* O

In Section 4 the continuation of WU on ﬁg has been denoted by T, D(T) = ﬁg, and the continuation of
WU+ on Hy' has been denoted by Y, D(T) = H;'. Lemmas A.16-A.18 yield

S e [ (Femea)(o) Sy Fl o1,
Corollary A.19. The operators Y, Y are invertible, Y=1g =F,1 <m>, DY Y)Y=H;', T lg=

F,L, (isgnm/a2 +¢% (F(sgnég)) (a)), D(YY) = HY, and [T~ < X2 7Y < /T+ ¢

Lemma A.20. Let m = 0,00, £2™® € H, ™, supp® C [0, ¢], v(0,&) = 022—_&2 and F(o) = (®,v(0,)). Then

1Fll < L €772, (A.14)
where L,, > 0.
Proof. We have 0_1i€ € H*%  (with respect to £), o € R, and
Flo) =~ <<I><£> +0(—g), — > =1 <<1>1, 1+ (14 DP)" - >
m o—i€ T o — i€
= %/OOO ®1(€)(1+€)7 (1+ (D)™ % d¢, oER,
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where () = (14 &)™ (14 |D|2)7m (72 (@(&) + ®(—¢))) € HY and @, is even. Then

(1e16)" = [ "m0 [ #G

xa+§%”%1+u%”%1+umﬂm(LHDuﬂmﬁmfmA

> o?do
T+ E) (07 + 1)
m €2mﬂ2m

E+p

dpde

5 [T w© [ G+ (D) (14 D)
0 0

dudg. (A.15)

For £ > 0, 4 > 0 we have

2m . 2m m m d2(k+p) £2mu2m
L4 D)™ (14D, )" S Cn><wv —1)k+p
( | §| ) ( | u| ) E+u 1;)1; k p ( ) d§2kd,u2p E+

£ (1) (1) () () R e

k=0 p=0 s=0 1=0

Therefore,

7 (Lm)2
206+ p)’

m nguQm
§+p

‘ﬂ+€ﬂ’W1+u%7”@*4Dd%m@4ﬂDM% ‘S £>0, >0,

where
1 T ECSE L () (m) (2K (2p (2m))? (s +1)! v 2 m
= (EESS ()0 (N Ees) < femvmm o
With regard to (A.15), we get

(1F1B)” =2 Lo (I0a(©@ H @) or(-O)H(-6)] + )
<2 (Lo (10 @HE) = 3 (Lo (12113)" < (Lo (62,2
That was to be proved. ]
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