
ESAIM: COCV 18 (2012) 583–610 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2011107 www.esaim-cocv.org

HOMOGENIZATION OF QUASILINEAR OPTIMAL CONTROL PROBLEMS
INVOLVING A THICK MULTILEVEL JUNCTION OF TYPE 3 : 2 : 1 ∗

Tiziana Durante
1
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Abstract. We consider quasilinear optimal control problems involving a thick two-level junction Ωε

which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of
order O(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics,
the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively.
In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the thin cylinders
from each level are ε-periodically alternated. Using the Buttazzo–Dal Maso abstract scheme for varia-
tional convergence of constrained minimization problems, the asymptotic analysis (as ε → 0) of these
problems are made for different values of α and β and different kinds of controls. We have showed
that there are three qualitatively different cases. Application for an optimal control problem involving
a thick one-level junction with cascade controls is presented as well.

Mathematics Subject Classification. 49J20, 35B27, 35B40, 74K30.

Received July 1st, 2010. Revised December 6, 2010.
Published online August 26, 2011.

Introduction and statement of the problem

A thick junction of type k : p : d is the union of some domain in Rn, which is called the junction’s body, and
a large number of ε-periodically situated thin domains along some manifold on the boundary of the junction’s
body. This manifold is called the joint zone. Here ε is a small parameter, which characterizes the distance
between neighboring thin domains and their thickness. The type k : p : d of a thick junction refers to the
limiting dimensions of the body, the joint zone, and each of the attached thin domains, respectively.

This classification of thick junctions was given in [17,18,21–23], where rigorous mathematical methods were
developed (homogenization, approximation, asymptotic expansions) for analyzing the main boundary-value
problems in thick junctions of different types. It was pointed out that qualitative properties of solutions
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essentially depend on the junction type and on the conditions given on the boundaries of the attached thin
domains.

Various constructions of thick junction type are successfully used in nanotechnologies (e.g. [13,14]), microt-
echnique (e.g. [16]), modern engineering constructions (microstrip radiator, ferrite-filled rod radiator), as well
as many physical and biological systems such as, for example, the structure of the intestine lining with different
levels of absorption of nutrients on different part of the tissues.

Therefore boundary-value problems in thick junctions of different types are very extensively investigated at
present (see [1–3,6,8,10], [19,20,24,25] and references therein). The aim of these researches is to develop rigorous
methods to study the asymptotic behavior of solutions when the number of the attached thin domains of a thick
junction infinitely increases and their thickness vanishes.

It should be noted here that such problems lose coercitivity in the limit passage. Secondly, thick junctions have
special character of the connectedness and, as a result, there are no extension operators that would be bounded
uniformly in the corresponding Sobolev spaces. At the same time the availability of an uniformly bounded
family of extension operators is typical supposition in overwhelming majority of the existing homogenization
schemes for problems in perforated domains with the Neumann boundary conditions (see e.g. [12]). Thirdly,
thick junctions are non-convex domains with non-smooth boundaries. Therefore, solutions of boundary-value
problems in such domains have only minimal H1-smoothness and we have to take admissible boundary controls
with more smoothness (for comparison see [15], where the Dirichlet boundary controls belong to L2 but the
boundary is smooth). All these factors create special difficulties in the asymptotic investigation.

A thick multilevel junction is a thick junction in which the thin domains are divided into a finite number
of levels depending on their geometrical and other characteristics (boundary conditions and controls for our
problem); in addition the thin domains from each level are ε-periodically alternated along the joint zone.
In [8,10,24] it was shown that processes in thick multi-level junctions behave as a “many-phase system” in the
region which is filled up by the thin domains from each level in the limit passage.

In this paper we continue our investigation of optimal control problems in thick multilevel junctions, which we
have begun in [10]. Here we improve and generalize our results in the case of the perturbed nonlinear boundary
multi-phase interactions and more complicated structure of a thick multilevel junction.

There are two different approaches to homogenize optimal control problems. One consists in the passage
to the limit in the corresponding adjoint problem and then recover an optimal control problem which is called
the homogenized control problem to the initial one (see e.g. [7,11,12]). The other one (so-called direct method)
is based on the theory of Γ-convergence (see [4,5]) and is more expedient since it keeps convergence of the
optimal solutions of the initial problem to the similar characteristics of the corresponding homogenized optimal
control problem. The main difficulty of the second approach consists in the mathematical description of the
homogenized optimal control problem and in the identification of the effective set of its cost functional. This
approach was improved by Denkowski and Mortola in [9] using the Kuratovski convergence of solution sets and
applying the Buttazzo–Dal Maso abstract scheme [5].

The main assumption in [9] is G-convergence (or PG-convergence for parabolic problem) of the sequence
operators, which describe the sequence of perturbed boundary-value problems in concrete case. Therefore,
the crucial point and the first step in the homogenization of an optimal control problem involving perturbed
domains is the proof of the convergence theorem for the state. On the second step, with the help of the
convergence theorem we get Kuratowskii convergence of solution sets which is equivalent to the Γ-convergence
of the corresponding indicator functions. Then we deduce the Γ-convergence of cost functionals. Finally,
applying the Buttazzo–Dal Maso abstract scheme, we obtain results for the asymptotic behavior of the optimal
solutions, thereby we correctly define the homogenized optimal control problem, and results for the convergence
of minimal values, thereby we prove the stability result of this direct method.

Statement of the problem. Let B be a finite union of smooth plane domains which are not crossed and
touched. In addition, the set B is strongly situated in the square � := {ξ′ = (ξ1, ξ2) : 0 < ξ1 < 1, 0 < ξ2 < 1}.
Let us arbitrarily divide B into two classes: B(1) =

K1⋃
k=1

B
(1)
k and B(2) =

K2⋃
k=1

B
(2)
k (see Fig. 1).
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Figure 1. Subsets of B.

A model thick two-level junction Ωε of type 3 : 2 : 1 consists of the junction’s body

Ω0 = {x ∈ R3 : x′ = (x1, x2) ∈ Q := (0, a) × (0, a), 0 < x3 < γ(x′)},

and a large number of the thin cylinders

G(m)
ε =
⋃Km

k=1
G(m)

ε (k), m = 1, 2,

where γ ∈ C1(Q) and minx′∈Q γ(x′) = γ0 > 0,

G(m)
ε (k) =

⋃N−1

i,j=0

{
x :
(x1

ε
− i,

x2

ε
− j
)
∈ B

(m)
k , x3 ∈ (−dm, 0]

}
.

Here N is a large natural number, ε = a/N is a small discrete parameter that characterizes the distance between
nearby thin cylinders and their thickness; 0 < d2 ≤ d1. Thus,

Ωε = Ω0

⋃
Gε, Gε = G(1)

ε

⋃
G(2)

ε .

The thin cylinders Gε are divided into two levels G(1)
ε and G(2)

ε . Cylinders G(m)
ε (k) are ε-periodically alternated

along the Ox1-direction and Ox2-direction and they are joined with Ω0 over the ε-homothetic images ε
(
(i, j) +

B
(m)
k

)
, i, j = 0, 1, . . . , N − 1, of B(m)

k ⊂ B(m), m = 1, 2, k = 1, . . . ,Km. Some example of the cell of the
alternation is shown in Figure 2.

Denote by S(m)
ε (k) the union of the lateral surfaces of the thin cylinders G(m)

ε (k), by Γ(m)
ε (k) the union of

the bases of G(m)
ε (k); in addition, S(m)

ε :=
⋃Km

k=0 S
(m)
ε (k), Γ(m)

ε :=
⋃Km

k=0 Γ(m)
ε (k), m = 1, 2.

Consider two classes of admissible controls

K(1)
ε =
{
θ |

Γ
(1)
ε

: θ ∈ Hδ1(Γd1), ‖θ‖Hδ1 (Γd1 ) ≤ Cd1

}
, (0.1)

K(2)
ε =
{
ϑ |

Γ
(2)
ε

: ϑ ∈ Hδ2(Γd2), ‖ϑ‖Hδ2 (Γd2) ≤ Cd2

}
, (0.2)

where Γdm = {x : x′ ∈ Q, x3 = −dm} (m = 1, 2), δ1 > 1 and δ2 > 1, Cd1 and Cd2 are some fixed positive
constants that independent of ε.
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Figure 2. The cell of alternation.

Let f0, �1 and �2 be given functions such that f0 ∈ L2(Ω0), �m : R → R,m = 1, 2, are Lipschitz continuous
(it is equivalent that �m ∈W 1,∞

loc (R)) and such that

∃ c1 > 0 ∃ c2 > 0 : c1 ≤ �′m ≤ c2 a.e. in R (m = 1, 2). (0.3)

Using the approach of paper [19], we can state that for fixed values of the parameters ε, α ∈ R, β ∈ R, and
for every function θε ∈ K(1)

ε and ϑε ∈ K(2)
ε there exists a unique weak solution uε to the following problem

−Δxuε(x) = f0(x), x ∈ Ω0;
−Δxuε(x) = 0, x ∈ Gε;

−∂νuε(x) = εα�1

(
uε(x)
)
, x ∈ S

(1)
ε ;

−∂νuε(x) = εβ�2

(
uε(x)
)
, x ∈ S

(2)
ε ;

uε(x′,−d1) = θε(x′), (x′,−d1) ∈ Γ(1)
ε ;

uε(x′,−d2) = ϑε(x′), (x′,−d2) ∈ Γ(2)
ε ;

uε(x) = 0, x ∈ Υ1;
∂νuε(x) = 0, x ∈ Υε;

[uε]|x3=0
= [∂x3uε]|x3=0

= 0, x′ ∈ Qε,

(0.4)

where ∂ν = ∂/∂ν is the outward normal derivative, Υ1 = {x : x3 = γ(x′), x′ ∈ Q}, Υε = ∂Ωε \
(
∂Gε ∪ Υ1

)
,

Qε = ∂Ω0 ∩ ∂Gε; the brackets denote the jump of the enclosed quantities.
Recall that a function uε ∈ H1(Ωε; Υ1) = {u ∈ H1(Ωε) : u|Υ1 = 0} is a weak solution to problem (0.4) if for

any function ψ ∈ H1(Ωε; Υ1) such that ψ|
Γ

(1)
ε ∪Γ

(2)
ε

= 0 the following integral identity∫
Ωε

∇xuε · ∇xψ dx + εα

∫
S

(1)
ε

�1

(
uε

)
ψ dσx + εβ

∫
S

(2)
ε

�2

(
uε

)
ψ dσx =

∫
Ω0

f0 ψ dx (0.5)

holds and the traces of uε on Γ(1)
ε and Γ(2)

ε are equal to θε and ϑε respectively.
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As usual, functions θε, ϑε are called “controls”, the corresponding solution uε = uε(x, θε, ϑε) is said “state” of
the system to be controlled. We look for optimal controls θ∗ε ∈ K(1)

ε and ϑ∗ε ∈ K(2)
ε , which with the corresponding

state u∗ε, minimize the following cost functional

Jε (θε, ϑε) =
1
2

∫
Ω0

(uε−q0)2dx+
N1

2

∫
Γ

(1)
ε

(
θε(x′)−η1(x′)

)2 dx′ +
N2

2

∫
Γ

(2)
ε

(
ϑε(x′)−η2(x′)

)2 dx′ + Eε(uε;α, β), (0.6)

that is,
Jε (θ∗ε , ϑ

∗
ε) = inf

θε∈K(1)
ε , ϑε∈K(2)

ε

Jε (θε, ϑε) . (0.7)

In other words, we want to optimally control the state in Ω0 and the energy

Eε(uε;α, β) =
N3

2

( ∫
Ωε

|∇uε|2 dx+ εα

∫
S

(1)
ε

(
�1

(
uε

)− �1

(
0
))
uε dσx + εβ

∫
S

(2)
ε

(
�2

(
uε

)− �2

(
0
))
uε dσx

)

of the all complex system using controls from the different classes K(1)
ε and K(2)

ε given respectively on the
different bases Γ(1)

ε and Γ(2)
ε of the thin cylinders that are ε-periodically alternated along the surface Q. Here

N1, N2, N3 are positive constants, the given functions q0 ∈ L2(Ω0) and ηi ∈ L2(Q), i = 1, 2. This optimal
control problem will be denoted by CPε.

The aim of this paper is: (i) to find the corresponding homogenized optimal control problem CP0 for problem
CPε as ε → 0 (N → +∞), i.e., when the number of attached thin cylinders from each level infinitely increases
and their thickness vanishes; (ii) to prove that the optimal solutions to CPε converge to an optimal solution to
the homogenized problem CP0 and that the minimal values of Jε converge to the minimal value of J0 as ε→ 0.

Remark 0.1. Recall that ε = a/N is the small discrete parameter and we always mean the elements of this
sequence when we write ε→ 0 or ε > 0.

In a typical interpretation the solution to the boundary-value problem (0.4) represents the density of some
quantity (chemical concentration, temperature, electronic potential) at equilibrium within the junction Ωε. We
considered the nonlinear Fourier boundary conditions on the boundaries of the thin cylinders. These conditions
mean that there is a flux of this quantity through the surfaces of the cylinders. In fact very small activity holds
always on the surface of some material (therefore the Fourier boundary conditions are more natural for applied
mathematical problems).

For instance, in [13] the following experimental data were obtained: the electron microphotographs of the
surface of a thick absorber (its structure has the form of a thick junction) have shown that these structures
exhibit the chemical activity without interference of an external fields in reactions of degradation of organic
solutes in water; in addition, the analysis of the absorption spectra has shown that mainly oxidative degradation
of organic molecules takes place. Mathematical justification of this fact is presented in [19] with due regard for
the very small chemical activity between the surface of a thick absorber and water.

Therefore to study the influence of the boundary interactions on the asymptotic behavior of problem CPε

we introduce special intensity factors εα and εβ in the Fourier boundary conditions on the lateral surfaces of
the thin cylinders from the first and second level respectively. We will show that there are three qualitatively
different cases: (1) α ≥ 1 and β ≥ 1; (2) α ≥ 1 and β < 1 (the same when α < 1 and β ≥ 1); and (3) α < 1
and β < 1.

To homogenize problem CPε in the first case we will use the direct method and approach of our previous
paper [10], where we studied a linear optimal control problem involving a plane thick two-level junction of type
2 : 1 : 1. Nevertheless, here we essentially simplify this approach, namely, we prove the convergence results
without any special constructions of multilevel extension operators and without any additional assumptions of
smoothness for the right-hand sides and controls. These studies we do in Section 3.
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The second case is characterized by the fact that we are only partially able to control our system for very
small values of ε. This case is considered in Section 4.

In the third case, even the formulation of the optimal control problem becomes meaningless. In fact, we can
not completely control our system for ε small enough. Therefore in Section 5, we prove only the convergence of
the corresponding solutions of problem (0.4) and the convergence of the energy integrals.

All these results are discussed in the last Section 6, where application for an optimal control problem involving
a thick one-level junction with cascade controls is presented as well.

1. Auxiliary integral identities and estimates

In what follows we will often use the following identities (see [18])

ε

∫
S

(m)
ε (k)

v dσx =
l
(m)
k

|B(m)
k |

∫
G

(m)
ε (k)

v dx+ ε

∫
G

(m)
ε (k)

∇ξ′Y
(m)
k (ξ′)|ξ′= x′

ε
· ∇x′v dx (1.1)

for arbitrary function v ∈ H1
(
G

(m)
ε (k)
)
, k = 1, . . . ,Km, m = 1, 2. Here |B(m)

k | is the area of the plane domain
B

(m)
k , l(m)

k is the perimeter of B(m)
k , Y

(m)
k is the unique solution to the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΔξY
(m)
k (ξ′) = l

(m)
k

∣∣∣B(m)
k

∣∣∣−1

, ξ′ = (ξ1, ξ2) ∈ B
(m)
k ,

∂ν(ξ′)Y
(m)
k (ξ′) = 1, ξ′ ∈ ∂B

(m)
k ,∫

B
(m)
k

Y
(m)
k (ξ′)dξ′ = 0,

and then it is 1-periodically continued in ξ1 and ξ2. Due to the regularity properties of solutions to elliptic
problems we have

sup
ξ′∈B

(m)
k

|∇ξ′Y
(m)
k (ξ′)| ≤ ck,m. (1.2)

Using Cauchy’s inequality with δ (ab ≤ δa2 + b2

4δ , a, b, δ > 0) and (1.2), we deduce from (1.1) the following
estimates

ε

∫
S

(m)
ε (k)

v2 dσx ≤ C1

(
ε2
∫

G
(m)
ε (k)

|∇x′v|2 dx+
∫

G
(m)
ε (k)

v2 dx

)
, (1.3)

∫
G

(m)
ε (k)

v2 dx ≤ C2

(
ε2
∫

G
(m)
ε (k)

|∇x′v|2 dx+ ε

∫
S

(m)
ε (k)

v2 dσx

)
(1.4)

for arbitrary function v ∈ H1
(
G

(m)
ε (k)
)
, k = 1, . . . ,Km, m = 1, 2.

Remark 1.1. In (1.3), (1.4) and in what follows all constants {Ci} and {ci} in inequalities are independent of
the parameter ε.

Similarly as in [19] we get from (0.3) the following inequalities

c1t
2 + �m(0) t ≤ �m(t) t ≤ c2t

2 + �m(0) t ∀t ∈ R, m = 1, 2. (1.5)
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With standard approach and with the help of (1.3), (1.4) and (1.5) we deduce the following a priori estimate
for the solution to problem (0.4):

‖uε‖H1(Ωε) ≤ C3

{
‖f0‖L2(Ω0) + εα−1|�1(0)| + εβ−1|�2(0)| + ‖θε‖H1(Γ

(1)
ε )

+ ‖ϑε‖H1(Γ
(2)
ε )

+ εα−1
(
1 + |�1(0)|) (ε‖∇x′θε‖L2(Γ

(1)
ε )

+ ‖θε‖L2(Γ
(1)
ε )

)
+ εβ−1

(
1 + |�2(0)|) (ε‖∇x′ϑε‖L2(Γ

(2)
ε )

+ ‖ϑε‖L2(Γ
(2)
ε )

)}
, (1.6)

where the constant C3 is independent both of ε and of uε, f0, θε, ϑε, uε.
From (1.6) it follows that we have to consider different values of the parameter α and β, namely α < 1,

α = 1, α > 1 (similarly for β), to study the asymptotic behavior of problem CPε.

2. Properties of problem CPε for a fixed value ε

Obviously, that the sets K(1)
ε and K(2)

ε are non-empty and convex. Let us show that they are closed with
respect to the weak topology of Hδ1(Γ(1)

ε ) and Hδ2(Γ(2)
ε ) respectively. We do this for K(1)

ε . Let {θ(n)
ε }n∈N ⊂ K(1)

ε

be a sequence of control functions such that θ(n)
ε → θ∗ε weakly in Hδ1(Γ(1)

ε ) as n→ +∞. From definitions of the
sets K(1)

ε and K(2)
ε (see (0.1), (0.2)) it follows that these controls are restrictions of functions from the following

sets

K(1)
0 =
{
θ ∈ Hδ1(Γd1) : ‖θ‖Hδ1 (Γd1) ≤ Cd1

}
, (2.1)

K(2)
0 =
{
ϑ ∈ Hδ2(Γd2) : ‖ϑ‖Hδ2(Γd2 ) ≤ Cd2

}
, (2.2)

on Γ(1)
ε and Γ(2)

ε respectively. Therefore, there exists a sequence {θ̂ (n)
ε }n∈N ⊂ K(1)

0 such that
(
θ̂

(n)
ε

)|
Γ

(1)
ε

= θ
(n)
ε .

Note that such a sequence is not unique. Then for any such sequence we can choose a subsequence such that
θ̂

(nk)
ε → θ̂ ∗

ε ∈ K(1)
0 weakly in Hδ1(Γd1) as k → +∞. From this we immediately conclude that the sequence of

corresponding restrictions {θ(nk)
ε }k∈N is weakly convergent to

(
θ̂ ∗

ε

)|
Γ

(1)
ε

in Hδ1(Γ(1)
ε ). Therefore, θ∗ε =

(
θ̂ ∗

ε

)|
Γ

(1)
ε

,

i.e., θ∗ε belongs to the set K(1)
ε .

Proposition 2.1. If for some sequences of controls {θ(n)
ε }n∈N ⊂ K(1)

ε and {ϑ(n)
ε }n∈N ⊂ K(2)

ε

θ(n)
ε → θ∗ε weakly in Hδ1(Γ(1)

ε ) as n→ +∞,

ϑ(n)
ε → ϑ∗ε weakly in Hδ2(Γ(2)

ε ) as n→ +∞,

then the corresponding sequence of states {u(n)
ε }n∈N weakly in H1(Ωε; Υ1) converges to a function u∗ε that is the

unique state corresponding to the controls θ∗ε and ϑ∗ε .

Proof. Let u(n)
ε be a state that corresponds to the controls θ(n)

ε ∈ K(1)
ε and ϑ(n)

ε ∈ K(2)
ε , n ∈ N. Then from uniform

estimate (1.6) and the compactness of trace operators it follows that there exists a subsequence {u(nk)
ε }k∈N of

{u(n)
ε }n∈N such that u(nk)

ε → u∗ε weakly in H1(Ωε; Υ1) and u
(nk)
ε |

S
(m)
ε

→ u∗ε|S(m)
ε

a.e. in S
(m)
ε (m = 1, 2) as

k → +∞. Since functions �1 and �2 are continuous,

�m

(
u(nk)

ε |
S

(m)
ε

)→ �m

(
u∗ε|S(m)

ε

)
as k → +∞ (m = 1, 2).

Now, passing to the limit in the integral identity (0.5) for u(nk)
ε , we conclude that u∗ε is the weak solution to

problem (0.4) with the Dirichlet condition u∗ε = θ∗ε on Γ(1)
ε and u∗ε = ϑ∗ε on Γ(2)

ε . Due to the uniqueness of the
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weak solution to problem (0.4), the above arguments hold for any subsequence {u(nk)
ε }k∈N of {u(n)

ε }n∈N chosen
at the beginning of the proof. Therefore, the proposition is proved. �

From definition of the sets of admissible controls and Proposition 2.1 it follows the compactness property of
problem CPε.

Proposition 2.2. For any sequences of controls {(θ(n)
ε , ϑ

(n)
ε )}n∈N ⊂ K(1)

ε × K(2)
ε there exist subsequences such

that

θ(nk)
ε → θ∗ε weakly in Hδ1(Γ(1)

ε ) as k → +∞, (2.3)

ϑ(nk)
ε → ϑ∗ε weakly in Hδ2(Γ(2)

ε ) as k → +∞, (2.4)

and the corresponding sequence of the states {u(nk)
ε }k∈N weakly in H1(Ωε; Υ1) converges to the state u∗ε that

corresponds to the controls θ∗ε and ϑ∗ε .

Theorem 2.3. For every value of ε the optimal control problem CPε has a solution, i.e., there exist a pair of
controls

(
θ∗ε , ϑ

∗
ε

) ⊂ K(1)
ε ×K(2)

ε and the corresponding unique state such that the equality (0.7) is satisfied.

Proof. Let {(θ(n)
ε , ϑ

(n)
ε )}n∈N be any minimizing sequence for the cost functional (0.6). Due to the compactness

property of problem CPε (Prop. 2.2) there exist subsequences such that (2.3) and (2.4) hold and the correspond-
ing sequence of the states {u(nk)

ε }k∈N weakly in H1(Ωε; Υ1) converges to the state u∗ε that corresponds to the
controls θ∗ε and ϑ∗ε. In virtue of the weakly lower-semicontinuity of the cost functional Jε, we have

inf
(θε,ϑε)∈K(1)

ε ×K(2)
ε

Jε (θε, ϑε) = lim
k→∞

Jε

(
θ(nk)

ε , ϑ(nk)
ε

)
≥ Jε(θ∗ε , ϑ

∗
ε),

i.e. the equality (0.7) holds. �

3. The main results in the case α ≥ 1 and β ≥ 1

It follows from (1.6) that if α ≥ 1 and β ≥ 1 then

‖uε‖H1(Ωε) ≤ C1. (3.1)

3.1. Convergence results for the admissible controls

Since the classes of admissible controls K(1)
ε and K(1)

ε are defined on variable spaces depending on ε, we should
introduce the special convergence of controls.

Definition 3.1. We say that a sequence of control pairs
{
(θε, ϑε) ∈ K(1)

ε ×K(2)
ε

}
is weakly convergent with

respect to the space Hδ1
(
Γd1

)×Hδ2
(
Γd2

)
as ε → 0 (we will denote this convergence by (θε, ϑε)

w� (θ0, ϑ0)), if
there are sequences {θ̂ε}ε>0 ⊂ K(1)

0 and {ϑ̂ε}ε>0 ⊂ K(2)
0 such that

(
θ̂ε

)|
Γ

(1)
ε

= θε,
(
ϑ̂ε

)|
Γ

(2)
ε

= ϑε and

θ̂ε
w−→ θ0 weakly in Hδ1

(
Γd1

)
as ε→ 0, (3.2)

ϑ̂ε
w−→ ϑ0 weakly in Hδ2

(
Γd2

)
as ε→ 0. (3.3)

Obviously, that the pair (θ0, ϑ0) ∈ K(1)
0 × K(2)

0 . To show the correctness of this definition we suppose that
there are other sequences {θ̃ε}ε>0 ⊂ K(1)

0 and {ϑ̃ε}ε>0 ⊂ K(2)
0 such that

(
θ̃ε

)|
Γ

(1)
ε

= θε,
(
ϑ̃ε

)|
Γ

(2)
ε

= ϑε and

(
θ̃ε, ϑ̃ε

) w� (θ̃0, ϑ̃0) as ε→ 0.
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Let us define 1-periodic functions χ1 and χ2 such that

χm(ξ′) =

{
1, ξ′ ∈ B(m),

0, ξ′ ∈ � \B(m),
m = 1, 2.

It is well known that χm(x′
ε ) → |B(m)| weakly in L2(Q) as ε → 0, where |B(m)| =

∑K1
k=1 |B(m)

k |, |B(m)
k | is the

area of the plane domain B(m)
k ,m = 1, 2.

Then, passing to the limit (ε→ 0) in the following integral identity∫
Q

χ1(x′/ε) θ̃ε(x′)ϕ(x′) dx′ =
∫

Q

χ1(x′/ε) θ̂ε(x′)ϕ(x′) dx′ ∀ϕ ∈ C∞
0

(
Q
)
,

we get

|B(m)|
∫

Q

θ̃0 ϕdx′ = |B(m)|
∫

Q

θ0 ϕdx′ ∀ϕ ∈ C∞
0

(
Q
)
,

i.e., θ̃0 = θ0 a.e. in Γd1 . Similarly we can prove that ϑ̃0 = ϑ0 a.e. in Γd2 .
From results obtained above we have as follows.

Proposition 3.2. The following statements hold:

(1) Every sequence of control pairs
{
(θε, ϑε) ∈ K(1)

ε ×K(2)
ε

}
ε>0

is compact with respect to the weak conver-

gence introduced above and all its partial limits belong to K(1)
0 ×K(2)

0 .

(2) For any pair (θ0, ϑ0) ∈ K(1)
0 × K(2)

0 there exists a sequence of admissible control pairs
{
(θε, ϑε) ∈

K(1)
ε ×K(2)

ε

}
ε>0

such that (θε, ϑε)
w� (θ0, ϑ0) as ε→ 0.

3.2. Convergence results for the states and the cost functionals

Let us introduce the following extensions by zero:

ỹε
(m,k)(x) =

{
yε, x ∈ G

(m)
ε (k),

0, x ∈ Dm \G(m)
ε (k),

k = 1, . . . ,Km, m = 1, 2, (3.4)

where Dm = Q×(−dm, 0) is the parallelepiped that filled up with the thin cylinders G(m)
ε (k) in the limit passage

as ε → 0. It is obvious, that the extension ỹε
(m,k) belongs to the anisotropic Sobolev space W 0,0,1(Dm) ={

v ∈ L2(Dm) : ∃ weak derivative ∂x3v ∈ L2(Dm)
}
.

Theorem 3.3 (the case α ≥ 1 and β ≥ 1). Let
{
(θε, ϑε) ∈ K(1)

ε ×K(2)
ε

}
ε>0

be a sequence of admissible control

pairs such that (θε, ϑε)
w� (θ0, ϑ0) as ε→ 0

(
obviously, (θ0, ϑ0) ∈ K(1)

0 ×K(2)
0

)
. Then the corresponding sequence

of the solutions {uε} ε>0 to problem (0.4) satisfies the following relations

uε|Ω0

w−→ v+
0 weakly in H1(Ω0; Υ1),

ũε
(m,k) w−→ |B(m)

k | v(m,k)
0 weakly in W 0,0,1(Dm),

∂̃xiuε

(m,k) w−→ 0 weakly in L2(Dm), i = 1, 2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ as ε→ 0 (3.5)

for m = 1, 2 and k = 1, . . . ,Km. Here the multi-valued function

V0(x) =

⎧⎨⎩v
+
0 (x), x ∈ Ω0,

v
(m,k)
0 (x), x ∈ Dm, k = 1, . . . ,Km, m = 1, 2,

(3.6)
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is a weak solution to the following problem

−Δv+
0 (x) = f0(x), x ∈ Ω0,

v+
0 (x) = 0, x ∈ Υ1,

∂νv
+
0 (x) = 0, x ∈ ∂Ω0 \ (Q ∪ Υ1);

−|B(1)
k | ∂2

x3
v
(1,k)
0 (x) + δα1l

(1)
k �1

(
v
(1,k)
0 (x)

)
= 0, x ∈ D1, k = 1, . . . ,K1,

v
(1,k)
0 (x′,−d1) = θ0, x′ ∈ Q, k = 1, . . . ,K1,

−|B(2)
k | ∂2

x3
v
(2,k)
0 (x) + δβ1l

(2)
k �2

(
v
(2,k)
0 (x)

)
= 0, x ∈ D2, k = 1, . . . ,K2,

v
(2,k)
0 (x′,−d2) = ϑ0, x′ ∈ Q, k = 1, . . . ,K2;

v
(m,k)
0 (x′, 0) = v+

0 (x′, 0), x′ ∈ Q, k = 1, . . . ,Km,∑2
m=1

∑Km

k=1 |B(m)
k | ∂x3v

(m,k)
0 (x′, 0) = ∂x3v

+
0 (x′, 0), x′ ∈ Q,

(3.7)

which is called homogenized problem for problem (0.4). Here |B(m)
k | is the area of the plane domain B

(m)
k , l

(m)
k

is the perimeter of B(m)
k , m = 1, 2.

In addition, limε→0 Jε (θε, ϑε) = J0 (θ0, ϑ0) , where

J0(θ0, ϑ0) =
1
2

∫
Ω0

(v+
0 − q0)2dx+

N1

2
|B(1)|
∫

Γd1

(θ0 − η1)2 dx′ +
N2

2
|B(2)|
∫

Γd2

(ϑ0 − η2)2 dx′

+
N3

2

( ∫
Ω0

|∇v+
0 |2dx+

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

∣∣∂x3v
(m,k)
0

∣∣2dx
+ δα,1

K1∑
k=1

l
(1)
k

∫
D1

(
�1

(
v
(1,k)
0 (x)

) − �1

(
0
))
v
(1,k)
0 (x) dx

+ δβ,1

K2∑
k=1

l
(2)
k

∫
D2

(
�2

(
v
(2,k)
0 (x)

)− �2

(
0
))
v
(2,k)
0 (x) dx

)
. (3.8)

Here |B(m)| =
∑Km

k=1 |B(m)
k |, m = 1, 2.

Proof. It follows from (3.1) and (1.5) that the values ‖uε‖H1(Ω0), ‖ũε
(m,k)‖L2(Dm), ‖∂̃xiuε

(m,k)

‖L2(Dm) (i =
1, 2, 3), ‖�m

(
ũ

(m,k)
ε

)‖L2(Dm) (k = 1, . . . ,Km, m = 1, 2) are uniformly bounded with respect to ε. Hence, there
exists a subsequence {ε′} ⊂ {ε}, again denoted by {ε}, such that

uε|Ω0

w−→ v+
0 inH1(Ω0; Υ1),

ũε
(m,k) w−→ |B(m)

k |(|B(m)
k |−1v(m,k)

)
=: |B(m)

k | v(m,k)
0 inL2(Dm),

∂̃xiuε

(m,k) w−→ γ
(m,k)
i inL2(Dm),

�m

(
ũ

(m,k)
ε

) w−→ ζ(m,k) inL2(Dm),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
as ε→ 0, (3.9)

where v+
0 , v

(m,k)
0 , γ

(m,k)
i , ζ(m,k), k = 1, . . . ,Km,m = 1, 2, i = 1, 2, 3, are certain functions which will be deter-

mined in what follows.
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1. At first we determine functions {γ(m,k)
i }. Consider an arbitrary function ψ ∈ C∞

0 (Dm) (m = 1, 2). Since

∂x3

(
ũε

(m,k)) = ∂̃x3uε

(m,k)

, k = 1, . . . ,Km,m = 1, 2 (for curvilinear cylinder we should use special integral
identities (see [19])), ∫

Dm

∂̃x3uε

(m,k)

ψ dx = −
∫

Dm

ũε
(m,k)

∂x3ψ dx ∀ψ ∈ C∞
0 (Dm). (3.10)

Passing to the limit as ε→ 0 in this equality, we obtain the following integral identity∫
Dm

γ
(m,k)
3 ψ dx = −|B(m)

k |
∫

Dm

v
(m,k)
0 ∂x3ψ dx ∀ψ ∈ C∞

0 (Dm),

which implies that v(m,k)
0 has the weak derivative in x3 and γ(m,k)

3 = |B(m)
k | ∂x3v

(m,k)
0 a.e. in Dm, m = 1, 2, k =

1, . . . ,Km.

Let (b(m)
1 (k), b(m)

2 (k)) is the geometric center of gravity of the domain B(m)
k . Consider the functions

Z
(m,k)
j (ξj) = −ξj + b

(m)
j (k) + [ξj ], k = 1, . . . ,Km, m = 1, 2, j = 1, 2,

where [t] is the integer part of t. With the help of this functions we determine the following test-functions

Φ(m,k)
j (x) =

{
0, x ∈ Ωε \G(m)

ε (k),

εZ
(m,k)
j

(xj

ε

)
ψm(x), x ∈ G

(m)
ε (k),

k = 1, . . . ,Km, m = 1, 2, j = 1, 2, where ψ1 and ψ2 are arbitrary functions from C∞
0 (D1) and C∞

0 (D2)
respectively. It is easy to see that functions {Φ(m,k)

j } belong to H1(Ωε; Υ1) and

∇Φ(m,k)
1 = (−ψm, 0, 0) + εZ

(m,k)
1 ∇ψm inG(m)

ε (k),

∇Φ(m,k)
2 = (0,−ψm, 0) + εZ

(m,k)
2 ∇ψm inG(m)

ε (k).

Substituting the functions {Φ(1,k)
j } into the integral identity (0.5), we get

−
∫

G
(1)
ε (k)

∂xjuε ψ1 dx+ ε

∫
G

(1)
ε (k)

Z
(1,k)
j ∇uε · ∇ψ1 dx = −ε1+α

∫
S

(1)
ε (k)

�1

(
uε

)
Z

(1,k)
j ψ1 dσx (3.11)

for k = 1, . . . ,K1, j = 1, 2. Here S(m)
ε (k) is the union of the lateral surfaces of cylinders G(m)

ε (k)(m = 1, 2).
Since for any k ∈ {1, . . . ,K1} and j ∈ {1, 2} maxx′∈Q |Z(1,k)

j | ≤ 1,

ε

∣∣∣∣∣
∫

G
(1)
ε (k)

Z
(1)
j,k ∇uε · ∇ψ1 dx

∣∣∣∣∣ ≤ c1ε‖∇uε‖L2(G
(1)
ε )

‖ψ1‖L2(D1) ≤ c2ε. (3.12)

Taking (1.2), (1.5) and (3.1) into account, with the help of (1.3) we estimate the right-hand side in (3.11):

ε1+α

∣∣∣∣∣
∫

S
(1)
ε (k)

�1(uε)Z
(1,k)
j ψ1 dσx

∣∣∣∣∣ ≤ εαC1

∫
G

(1)
ε (k)

|�1(uε)ψ1| dx

+ ε1+αC2

∫
G

(1)
ε (k)

(|�′1(uε)| |∇x′uε| |ψ1| + |�1

(
uε

)||∇x′ψ1|
)
dx

≤ εαC3‖ψ1‖L2(D1) + ε1+αC4‖ψ1‖H1(D1) ≤ εαC5‖ψ1‖H1(D1). (3.13)
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In virtue of (3.12) and (3.13) we deduce from (3.11) that∣∣∣∣∫
D1

∂̃xjuε

(1,k)

ψ1 dx
∣∣∣∣ ≤ εC5 ‖ψ1‖H1(D1), j = 1, 2, (3.14)

whence we get that γ(1,k)
1 = γ

(1,k)
2 = 0 a.e. in D1, k = 1, . . . ,K1. Analogously, we obtain that γ(2,k)

1 = γ
(2,k)
2 = 0

a.e. in D2, k = 1, . . . ,K2.

Thus the limits (3.5) hold up to subsequence. Now it remains to find v+
0 , v

(m,k)
0 , k = 1, . . . ,Km, m = 1, 2.

2. At first we find the traces of v(m,k)
0 at x3 = −dm, m = 1, 2, k = 1, . . . ,Km. Since

(
θε, ϑε

) w� (θ0, ϑ0) as
ε→ 0, we have ∫

Q

χ
(k)
1

(
x′

ε

)
θε(x′)ϕ(x′) dx′ → |B(1)

k |
∫
Q

θ0(x′)ϕ(x′) dx′ as ε→ 0 (3.15)

for any function ϕ ∈ C∞(Q). Here {χ(k)
m (ξ′), ξ′ ∈ R2 : k = 1, . . . ,Km, m = 1, 2} are 1-periodic functions such

that

χ(k)
m (ξ′) =

{
1, ξ′ ∈ B

(m)
k ,

0, ξ′ ∈ � \B(m)
k .

On the other hand, since uε|Γ(1)
ε

= θε, we get∫
Q

χ
(k)
1

(
x′

ε

)
θε(x′)ϕ(x′) dx′ = − 1

d1

∫
D1

ũε
(1,k)

ϕ(x′) dx− 1
d1

∫
D1

x3 ∂x3 ũε
(1,k)

ϕ(x′) dx. (3.16)

Passing to the limit in (3.16) as ε→ 0 and taking (3.15) and the second relation in (3.5) into account, we obtain

|B(1)
k |
∫
Q

θ0(x′)ϕ(x′) dx′ = −|B(1)
k |
d1

∫
D1

(
v
(1,k)
0 + x3 ∂x3v

(1,k)
0

)
ϕ(x′) dx = |B(1)

k |
∫
Q

v
(1,k)
0 (x′,−d1)ϕ(x′) dx′

for any function ϕ ∈ C∞(Q). This means that

v
(1,k)
0 (x′,−d1) = θ0(x′) for a.e. x′ ∈ Q, k = 1, . . . ,K1. (3.17)

By the same arguments we can prove

v
(2,k)
0 (x′,−d2) = ϑ0(x′) for a.e. x′ ∈ Q, k = 1, . . . ,K2. (3.18)

3. By virtue of the continuity of the trace operator, compact imbedding H1/2(Q) ⊂ L2(Q) and the first relation
in (3.9), we have

uε(x′, 0 + 0) s−→ v+
0 (x′, 0) inL2(Q) as ε→ 0. (3.19)

Since ũε
(m,k)(x′, 0 − 0) = χ

(k)
m

(
x′
ε

)
uε(x′, 0 + 0) for a.e. x′ ∈ Q,

ũε
(m,k)(x′, 0 − 0) w−→ |B(m)

k | v+
0 (x′, 0) weakly inL2(Q) as ε→ 0, m = 1, 2.

On the other hand, for each k ∈ {1, . . . ,Km}, m ∈ {1, 2} and any ψ ∈ C∞
0 (Q)∫

Q

ũε
(m,k)(x′, 0)ψ(x′) dx′ =

1
dm

∫
Dm

(
ũε

(m,k)
ψ(x′) + (x3 + dm)∂x3 ũε

(m,k)
ψ(x′)
)

dx.
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Passing to the limit in these equalities and take the second relation in (3.5) into account, we find that

ũε
(m,k)(x′, 0) w−→ |B(m)

k | v(m,k)
0 (x′, 0) weakly inL2(Q) as ε→ 0.

Thus,

v+
0 (x′, 0) = v

(m,k)
0 (x′, 0) for a.e. x′ ∈ Q, k = 1, . . . ,Km, m = 1, 2. (3.20)

4. Consider the following space of multi-valued functions

C∞(Ω0, D1, D2) :=
{
Φ =
(
ϕ0, ϕ

(1)
1 , . . . , ϕ

(1)
K1
, ϕ

(2)
1 , . . . , ϕ

(2)
K2
,
)

:

ϕ0 ∈ C∞(Ω0) and ϕ0|Υ1 = 0;

ϕ
(m)
k ∈ C∞(Dm) and ϕ

(m)
k |Γdm

= 0, k = 1, . . . ,Km, m = 1, 2;

ϕ+
0 (x′, 0) = ϕ

(m)
k (x′, 0) for x′ ∈ Q, k = 1, . . . ,Km, m = 1, 2

}
.

Obviously, the restriction(
ϕ0, ϕ

(1)
1 |

G
(1)
ε (1)

, . . . , ϕ
(1)
K1

|
G

(1)
ε (K1)

, ϕ
(2)
1 |

G
(2)
ε (1)

, . . . , ϕ
(2)
K2

|
G

(2)
ε (K2)

)
of any multi-valued function Φ from C∞(Ω0, D1, D2) belongs to H1

ε (Ωε; Υ1) and ϕ(m)
k |

Γ
(m)
ε (k)

= 0, k = 1, . . . ,Km,

m = 1, 2.
With the help of the identities (1.1) we rewrite the integral identity (0.5) in the following way

∫
Ω0

f0 ϕ0 dx =
∫
Ω0

∇uε · ∇ϕ0 dx+
2∑

m=1

Km∑
k=1

∫
Dm

∇̃uε

(m,k) · ∇ϕ(m)
k dx

+
K1∑
k=1

∫
G

(1)
ε (k)

(
εα−1 l

(1)
k

|B(1)
k |

�1(uε)ϕ
(1)
k + εα∇ξY

(1)
k |ξ= x′

ε
· ∇x′
(
�1(uε)ϕ

(1)
k

))
dx

+
K2∑
k=1

∫
G

(2)
ε (k)

(
εβ−1 l

(2)
k

|B(2)
k |

�2(uε)ϕ
(2)
k + εβ∇ξY

(2)
k |ξ= x′

ε
· ∇x′
(
�2(uε)ϕ

(2)
k

))
dx (3.21)

for each multi-valued function Φ ∈ C∞(Ω0, D1, D2).
Let us pass to the limit in (3.21) as ε→ 0. Taking into account (1.2) and that α ≥ 1 and β ≥ 1, the integrals

with factors εα and εβ vanish in the limit passage. By virtue of results obtained in the previous items, we have

∫
Ω0

f0 ϕ0 dx =
∫
Ω0

∇v+
0 · ∇ϕ0 dx+

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

∂x3v
(m,k)
0 ∂x3ϕ

(m)
k dx

+ δα,1

K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

ζ(1,k) ϕ
(1)
k dx+ δβ,1

K2∑
k=1

l
(2)
k

|B(2)
k |

∫
D2

ζ(2,k) ϕ
(2)
k dx. (3.22)
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Since the space C∞(Ω0, D1, D2) is dense in the anisotropic Sobolev space of multi-valued functions

H(Ω0, D1, D2) :=
{
Φ =
(
ϕ0, ϕ

(1)
1 , . . . , ϕ

(1)
K1
, ϕ

(2)
1 , . . . , ϕ

(2)
K2
,
)

: ϕ0 ∈ H1(Ω0,Υ1);

ϕ
(m)
k ∈W 0,0,1(Dm) and ϕ

(m)
k |Γdm

= 0, k = 1, . . . ,Km, m = 1, 2;

ϕ+
0 (x′, 0) = ϕ

(m)
k (x′, 0) for a.e. x′ ∈ Q, k = 1, . . . ,Km, m = 1, 2

}
,

the identity (3.22) is valid for each multi-valued function Φ ∈ H(Ω0, D1, D2).

5. Consider the following functions

q(1)ε (x) =
{ −x3 d

−1
1 θε(x′), x ∈ D1,

0, x ∈ Ω0,
and q(2)ε (x) =

{ −x3 d
−1
2 ϑε(x′), x ∈ D2,

0, x ∈ Ω0.

Due to the definition of classes of admissible controls (see (0.1) and (0.2)) we can regard that θε and ϑε are
defined respectively on Γd1 and Γd2 .

With the help of (0.5), (3.5), (3.14), (3.17), (3.18) and (3.22) we get that

lim
ε→0

(∫
Ωε

|∇uε|2 dx+
2∑

m=1

εαδ1m+βδ2m

∫
S

(m)
ε

�m(uε)uεdσx

)
(3.23)

= lim
ε→0

(∫
Ω0

|∇uε|2 dx+
2∑

m=1

(∫
G

(m)
ε

∇uε · ∇(uε − q(m)
ε ) dx + εαδ1m+βδ2m

∫
S

(m)
ε

�m(uε) (uε − q(m)
ε ) dσx

))
+ lim

ε→0

2∑
m=1

(∫
G

(m)
ε

∇uε · ∇q(m)
ε dx+ εαδ1m+βδ2m

∫
S

(m)
ε

�m(uε) q(m)
ε dσx

)
= lim

ε→0

(∫
Ω0

f0 uε dx
)
+

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

∂x3v
(m,k)
0 ∂x3q

(m)
0 dx

+ δα,1

K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

ζ(1,k) q
(1)
0 dx+ δβ,1

K2∑
k=1

l
(2)
k

|B(2)
k |

∫
D2

ζ(2,k) q
(2)
0 dx

=
∫

Ω0

|∇v+
0 |2 dx+

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

|∂x3v
(m,k)
0 |2dx

+ δα,1

K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

ζ(1,k) v
(1,k)
0 dx+ δβ,1

K2∑
k=1

l
(2)
k

|B(2)
k |

∫
D2

ζ(2,k) v
(2,k)
0 dx. (3.24)

It should be commented here the passage to the limit in the integrals∫
G

(m)
ε (k)

∇uε · ∇q(m)
ε dx =

∫
Dm

∇̃uε

(m,k) · ∇q(m)
ε dx, k = 1, . . . ,Km, m = 1, 2.

For definiteness we take m = 1 and some k ∈ {1, . . . ,K1}. Since (θε, ϑε)
w� (θ0, ϑ0) as ε → 0 and due to the

compactness of the embedding Hδ1(Γd1) ⊂ H1(Γd1) (δ1 > 1),

q(m)
ε → q

(m)
0 strongly in H1(Dm) as ε→ 0, m = 1, 2,
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where q
(1)
0 (x) = −x3 d

−1
1 θ0(x′), x ∈ D1; q

(2)
0 (x) = −x3 d

−1
2 ϑ0(x′), x ∈ D2. Therefore, by virtue of the

convergences obtained in the first item of the proof, we have

lim
ε→0

∫
D1

∇̃uε

(1,k) · ∇q(1)ε dx = |B(1)
k |
∫

D1

∂x3v
(1,k)
0 ∂x3q

(1)
0 dx. (3.25)

6. Now it remains to determine the functions {ζ(1,k)} if α = 1 and {ζ(2,k)} if β = 1. We will do this in the
most complicate case α = β = 1. For this we use the method of Browder and Minty, which somehow applies to
the corresponding inequality of monotonicity to justify passing to a weak limit within a nonlinearity. Thanks
to (0.3), the inequality of monotonicity in our case reads as follows

∫
Ω0

|∇uε −∇ϕ0|2 dx+
∫

Gε

|∇x′uε|2 dx+
2∑

m=1

Km∑
k=1

∫
G

(m)
ε (k)

|∂x3uε − ∂x3ϕ
(m)
k |2 dx

+ ε
2∑

m=1

Km∑
k=1

∫
S

(m)
ε (k)

(
�m(uε) − �m(ϕ(m)

k )
) (
uε − ϕ

(m)
k

)
dσx ≥ 0 (3.26)

for any multi-valued function Φ =
(
ϕ0, ϕ

(1)
1 , . . . , ϕ

(1)
K1
, ϕ

(2)
1 , . . . , ϕ

(2)
K2
,
)

such that ϕ0 ∈ H1(Ω0,Υ1), ϕ
(m)
k ∈

W 0,0,1(Dm), ϕ0(x′, 0) = ϕ
(m)
k (x′, 0) for a.e. x′ ∈ Q and k = 1, . . . ,Km, m = 1, 2.

The inequality (3.26) is equivalent to

∫
Ωε

|∇uε|2 dx+
2∑

m=1

ε

∫
S

(m)
ε

�m(uε)uεdσx − 2
∫

Ω0

∇uε · ∇ϕ0 dx+
∫

Ω0

|∇ϕ0|2 dx

+
2∑

m=1

Km∑
k=1

∫
Dm

(
χ(k)

m (x′
ε ) |∂x3ϕ

(m)
k |2 − 2∂̃x3uε

(m,k)

· ∂x3ϕ
(m)
k

)
dx

− ε

2∑
m=1

Km∑
k=1

∫
S

(m)
ε (k)

(
�m

(
uε

)
ϕ

(m)
k + �m

(
ϕ

(m)
k

)
uε − �m

(
ϕ

(m)
k

)
ϕ

(m)
k

)
dσx ≥ 0. (3.27)

The limit of the first three summands in the first line of (3.27) is given by (3.24). With regard to the results
obtained above we know the limit of the other ones in the first and second line of (3.27). And with the help
of (1.1) we can find the limits of the summands in the third line. As a result we get

∫
Ω0

|∇v+
0 −∇ϕ0|2 dx+

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

(
∂x3v

(m,k)
0 − ∂x3ϕ

(m)
k

)2 dx

+
2∑

m=1

Km∑
k=1

l
(m)
k

|B(m)
k |

∫
Dm

(
ζ(m,k)(x) − |B(m)

k | �m(ϕ(m)
k )
)
(v(m,k)

0 − ϕ
(m)
k ) dx ≥ 0. (3.28)

Take arbitrary multi-valued function Ψ =
(
ψ0, ψ

(1)
1 , . . . , ψ

(1)
K1
, ψ

(2)
1 , . . . , ψ

(2)
K2

)
such that ψ0 ∈ C∞(Ω0), ψ0|Υ1 =

0, ψ(m)
k ∈ C∞(Dm), ψ0(x′, 0) = ψ

(m)
k (x′, 0) for x′ ∈ Q and for k = 1, . . . ,Km, m = 1, 2. Then substitute the

following function Φ0 := V0 − λΨ (λ > 0) instead of Φ in (3.28), where V0 is defined by formula (3.6). We
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then obtain

λ

∫
Ω0

|∇ψ0|2 dx+ λ

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

|∂x3ψ
(m)
k |2 dx

+
2∑

m=1

Km∑
k=1

l
(m)
k

|B(m)
k |

∫
Dm

(
ζ(m,k)(x) − |B(m)

k | �m

(
v
(m,k)
0 − λψ

(m)
k

))
ψ

(m)
k dx ≥ 0.

In the limit (as λ→ 0) we get

2∑
m=1

Km∑
k=1

l
(m)
k

|B(m)
k |

∫
Dm

(
ζ(m,k)(x) − |B(m)

k | �m

(
v
(m,k)
0

))
ψ

(m)
k dx ≥ 0.

Replacing the multi-valued function Ψ with −Ψ and taking into account that Ψ is arbitrary, we conclude that,
in fact, the last inequality turns into the following equalities:

ζ(m,k)(x) = |B(m)
k | �m

(
v
(m,k)
0 (x)

)
for a.e. x ∈ Dm, k = 1, . . . ,Km, m = 1, 2. (3.29)

7. Thus function V0 defined by (3.6) satisfies the following integral identity

∫
Ω0

∇v+
0 · ∇ϕ0 dx+

2∑
m=1

Km∑
k=1

|B(m)
k |
∫

Dm

∂x3v
(m,k)
0 ∂x3ϕ

(m)
k dx+ δα,1

K1∑
k=1

l
(1)
k

∫
D1

�1

(
v
(1,k)
0 (x)

)
ϕ

(1)
k dx

+ δβ,1

K2∑
k=1

l
(2)
k

∫
D2

�2

(
v
(2,k)
0 (x)

)
ϕ

(2)
k dx =

∫
Ω0

f0 ϕ0 dx ∀Φ ∈ H(Ω0, D1, D2). (3.30)

Thanks to (3.17), (3.18) and (3.20) the integral identity (3.30) means that the multi-valued function V0 is
a weak solution to the homogenized problem (3.7).

Assume that V0 and U0 are two weak solutions to problem (3.7). Then with the help of (0.3) we deduce
that V0 = U0. Due to the uniqueness of the solution to problem (3.7), the above argumentations hold for any
subsequence of {ε} chosen at the beginning of the proof.

8. Now let us prove the convergence of the cost functionals. At first we note that from the first limit in (3.5)
and the condition of this theorem, we get the limits of the first three summands in (0.6). The energy functional
we can represent as follows

Eε(uε;α, β) =
N3

2

(∫
Ωε

|∇uε|2 dx+
2∑

m=1

εαδ1m+βδ2m

∫
S

(m)
ε

�m(uε)uε dσx −
2∑

m=1

εαδ1m+βδ2m�m(0)
∫

S
(m)
ε

uε dσx

)
.

The limit of the first three summands was found in the 5th and 6th items (see (3.24) and (3.29)). The limit of
the last two integrals can be found with the help of (1.1) and the second limit in (3.5) (similarly as in (3.21)
and (3.22)). As a result we get (3.8). �

From Theorem 3.3 and the second part of Proposition 3.2 the following statement ensues.

Proposition 3.4. For any pair (θ0, ϑ0) ∈ K(1)
0 × K(2)

0 , there exists a sequence of admissible control pairs{
(θε, ϑε) ∈ K(1)

ε ×K(2)
ε

}
ε>0

, such that

(1) (θε, ϑε)
w� (θ0, ϑ0) as ε→ 0;
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(2) the sequence of the corresponding solutions {uε(x, θε, ϑε), x ∈ Ωε} ε>0 to problem (0.4) satisfies re-
lations (3.5), where the multi-valued function V0 defined by (3.6) is the unique weak solution to the
homogenized problem (3.7) such that v(1,k)

0 |Γd1
= θ0, k = 1, . . . ,K1, and v(2,k)

0 |Γd2
= ϑ0, k = 1, . . . ,K1;

(3) Jε (θε, ϑε) → J0 (θ0, ϑ0) as ε→ 0.

3.3. Homogenized optimal control problem CP0

The results obtained are crucial point in the asymptotic investigation of problem CPε. Using these results we
define the following homogenized optimal control problem CP0:

• Find optimal controls θ∗ ∈ K(1)
0 , ϑ∗ ∈ K(2)

0 and the corresponding multi-valued solution V∗(θ∗, ϑ∗) of
the homogenized problem (3.7) to minimize the cost functional J0, i.e.,

J0 (θ∗, ϑ∗) = inf
(θ,ϑ)∈K(1)

0 ×K(2)
0

J0 (θ, ϑ) . (3.31)

Here the control sets K(1)
0 and K(2)

0 are defined in (2.1) and (2.2) respectively, the cost functional J0 is defined
by (3.8).

Since K(1)
0 ×K(2)

0 is convex and closed with respect to the weak topology in H1(Γd1)×H1(Γd2) and the cost
functional J0 is weakly lower-semicontinuous, we can prove by standard way (see for instance [15]) the existence
of minimizer for problem CP0. In the case if α > 1 and β > 1 the cost functional J0 is strictly convex and
therefore the problem CP0 has the unique solution.

To justify the definition of the homogenized problem for problem CPε, we prove the following theorem.

Theorem 3.5. (1) If α > 1 and β > 1, then for any sequence of the optimal control pairs
{
(θ∗ε , ϑ∗ε) ∈

K(1)
ε ×K(2)

ε

}
ε>0

of problem CPε the following convergences hold (as ε→ 0)

(θ∗ε , ϑ
∗
ε)

w� (θ∗0 , ϑ
∗
0), Jε (θ∗ε , ϑ

∗
ε) → J0 (θ∗0 , ϑ

∗
0) , (3.32)

where (θ∗0 , ϑ
∗
0) is the unique solution to problem CP0.

In addition, for the sequence of the corresponding solutions {u∗ε := uε(θ∗ε , ϑ∗ε)} ε>0 to problem (0.4) we have

u∗ε|Ω0

w−→ v+
∗ weakly in H1(Ω0,Γ1),

ũ∗ε
(m,k) w−→ |B(m)

k | v(m,k)
∗ weakly in W 0,0,1(Dm),

∂̃xiu
∗
ε

(m,k) w−→ 0 weakly in L2(Dm), i = 1, 2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ as ε→ 0 (3.33)

for k = 1, . . . ,Km, m = 1, 2, where the multi-valued function

V∗(x) =

{
v+
∗ (x), x ∈ Ω0,

v
(m,k)
∗ (x), x ∈ Dm, m = 1, 2, k = 1, . . . ,Km,

(3.34)

is the unique weak solution to problem (3.7) such that

v
(1,k)
∗ |Γd1

= θ∗0 , k = 1, . . . ,K1; v
(2,k)
∗ |Γd2

= ϑ∗0, k = 1, . . . ,K2. (3.35)

(2) In the other cases (when one or two of the parameters α and β can be equal one), for any sequence of
the optimal control pairs

{
(θ∗ε , ϑ∗ε) ∈ K(1)

ε × K(2)
ε

}
ε>0

of problem CPε there exists a subsequence
{
(θ∗εn

, ϑ∗εn
) ∈

K(1)
εn ×K(2)

εn

}
such that the limits (3.32) hold as εn → 0 (n→ +∞) and (θ∗0 , ϑ

∗
0) is a minimizer of problem CP0.
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In addition, the sequence of the corresponding solutions {u∗εn
:= uεn(θ∗εn

, ϑ∗εn
)} to problem (0.4) satisfies

relations (3.33) as εn → 0 (n → +∞) and the corresponding multi-valued function V∗ defined by (3.34) is the
unique weak solution to problem (3.7) with the boundary conditions (3.35).

Proof. (1) Let
{
(θ∗εn

, ϑ∗εn
)
}

εn>0
be any convergent subsequence of the sequence of minimizers

{
(θ∗ε , ϑ

∗
ε) ∈ K(1)

ε ×
K(2)

ε

}
ε>0

such that (θ∗εn
, ϑ∗εn

) w� (θ0, ϑ0) as n → ∞. In view of Proposition 3.2 such choice is always possible

and (θ0, ϑ0) ∈ K(1)
0 ×K(2)

0 . In addition, due to Theorem 3.3 the corresponding solutions {u∗εn
} to problem (0.4)

satisfies relations (3.5), where the multi-valued function V0 defined by (3.6) is the unique weak solution to the
homogenized problem (3.7) such that v(1,k)

0 |Γd1
= θ0, k = 1, . . . ,K1, v

(2,k)
0 |Γd2

= ϑ0, k = 1, . . . ,K1, and

lim
n→∞ Jεn

(
θ∗εn

, ϑ∗εn

)
= J0 (θ0, ϑ0) ≥ inf

(θ,ϑ)∈K(1)
0 ×K(2)

0

J0 (θ, ϑ) = J0 (θ∗0 , ϑ
∗
0) ,

where (θ∗0 , ϑ
∗
0) is the unique solution of problem (3.31).

On the other hand, from Proposition 3.4 it follows that there exists a sequence of control pairs
{
(θ


ε, ϑ


ε) ∈

K(1)
ε × K(2)

ε

}
ε>0

such that (θ

ε, ϑ



ε)

w� (θ∗0 , ϑ
∗
0) and Jε

(
θ


ε, ϑ


ε

) → J0 (θ∗0 , ϑ
∗
0) as ε → 0, and the corresponding

solutions {uε(x, θ

ε, ϑ



ε)} ε>0 to problem (0.4) satisfies relations (3.33), where the multi-valued function V∗ defined

by (3.34) is the unique weak solution to problem (3.7) such that v(1,k)
0 |Γd1

= θ∗0 , k = 1, . . . ,K1, and v(2,k)
0 |Γd2

=
ϑ∗0, k = 1, . . . ,K1.

Taking these facts into account, we deduce

min
(θ,ϑ)∈K(1)

0 ×K(2)
0

J0 (θ, ϑ) = J0 (θ∗0 , ϑ
∗
0) = lim

ε→0
Jε

(
θ


ε, ϑ


ε

)
≥ lim sup

ε→0
min

(θε,ϑε)∈K(1)
ε ×K(2)

ε

Jε (θε, ϑε)

≥ lim sup
n→∞

min
(θεn ,ϑεn )∈K(1)

εn ×K(2)
εn

Jε (θεn , ϑεn) = lim
n→∞Jεn

(
θ∗εn

, ϑ∗εn

)
= J0 (θ0, ϑ0) .

Thus, J0 (θ0, ϑ0) = J0 (θ∗0 , ϑ
∗
0) . Thanks to the uniqueness of the solutions to problem (3.31) and to prob-

lem (3.7), we have θ0 = θ∗0 , ϑ=ϑ
∗
0, V0 = V∗.

Since all these relations are valid for any converging subsequence chosen at the beginning of the proof, the
convergences (3.32) and (3.33) hold.

(2) Due to the first statement of Proposition 3.2 we can extract from any sequence of the optimal control pairs{
(θ∗ε , ϑ

∗
ε) ∈ K(1)

ε × K(2)
ε

}
ε>0

of problem CPε a subsequence
{
(θ∗εn

, ϑ∗εn
) ∈ K(1)

εn × K(2)
εn

}
such that (θ∗εn

, ϑ∗εn
) w�

(θ∗0 , ϑ
∗
0) as εn → 0. By the same arguments as in the first item we can prove that (θ∗0 , ϑ

∗
0) is one of minimizers

of problem CP0. �

4. The main results in the case α ≥ 1 and β < 1

In this section we additionally assume that �2(0) = 0. Even under this assumption we cannot apply esti-
mate (1.6) to obtain the uniform boundedness for the states as in the previous case (see (3.1)).

4.1. Reformulation of the problem

We have known that for every ε > 0 problem CPε has a solution (θ∗ε , ϑ
∗
ε) ∈ K(1)

ε ×K(2)
ε . Let

{
(θ∗εn

, ϑ∗εn
)
}

εn>0

be any convergent subsequence of the sequence of minimizers
{
(θ∗ε , ϑ∗ε)

}
ε>0

such that

(θ∗εn
, ϑ∗εn

) w� (θ0, ϑ0) as n→ ∞.

In view of Proposition 3.2 a such choice is always possible and (θ0, ϑ0) ∈ K(1)
0 ×K(2)

0 .
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For any εn let us take zero controls θ0 = 0 and ϑ0 = 0. Then the corresponding state u0
εn

satisfies the
following equality

∫
Ωε

|∇xu
0
εn
|2 dx + εα

∫
S

(1)
ε

(
�1

(
u0

εn

)− �1(0)
)
u0

εn
dσx + εβ

∫
S

(2)
ε

�2

(
u0

εn

)
u0

εn
dσx

= εα

∫
S

(1)
ε

�1

(
0
)
u0

εn
dσx +
∫

Ω0

f0 u
0
εn

dx,

from where with the help of (1.3) and (1.5) we deduce at first that

‖∇xu
0
εn
‖L2(Ωεn ) ≤ C1, (4.1)

and then the following estimates

εα

∫
S

(1)
ε

(
�1

(
u0

εn

)− �1(0)
)
u0

εn
dσx ≤ C2, εβ

∫
S

(2)
ε

�2

(
u0

εn

)
u0

εn
dσx ≤ C2. (4.2)

From these estimates it follows that Eε(u0
εn
, α, β) ≤ C3 and consequently

Jεn

(
θ∗εn

, ϑ∗εn

) ≤ Jεn(0, 0) ≤ C4,

from where we get

‖u∗εn
‖H1(Ωεn ) ≤ C5, εβ

n

∫
S

(2)
εn

∣∣u∗εn

∣∣2 dσx ≤ C5, (4.3)

where u∗εn
:= uεn(x, θ∗εn

, ϑ∗εn
), x ∈ Ωεn .

The first estimate in (4.3) means that there is a subsequence {ε′n} ⊂ {εn}, again denoted by {εn}, such that

u∗εn
|Ω0

w−→ v∗0 weakly in H1(Ω0; Υ1),

ũ∗εn

(m,k) w−→ |B(m)
k | v(m,k)

∗ weakly in L2(Dm),

⎫⎬⎭ as εn → 0, (4.4)

for k = 1, . . . ,Km, m = 1, 2, i = 1, 2, 3.
With the help of (4.3) we deduce from (1.4) that

∫
G

(2)
εn

∣∣u∗εn

∣∣2 dx ≤ C5 ε
1−β
n . (4.5)

This means the strong convergence of
{
ũ∗εn

(2,k)}
n∈N

to 0 in L2(D2). Then, from (3.10) it follows the weak

convergence of
{
∂̃x3u

∗
εn

(2,k)}
n∈N

to 0 in L2(D2), k = 1, . . . ,K2. Hence,

v
(2,k)
∗ = 0 a.e. in D2, k = 1, . . . ,K2. (4.6)
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Now from (3.16) we get∫
Γ

(2)
εn

(
ϑ∗εn

)2 dx′ = − 1
d2

∫
G

(2)
εn

u∗εn
(x)ϑ∗εn

(x′) dx− 1
d2

∫
G

(2)
εn

x3 ∂x3uεn(x)ϑ∗εn
(x′) dx. (4.7)

Since ϑ∗εn

w� ϑ0 as n→ ∞ and ũ∗εn

(2,k) w−→ 0 weakly in W 0,0,1(D2) (k = 1, . . . ,K2), we have that

lim
n→∞

∫
Γ

(2)
εn

(
ϑ∗εn

)2
dx′ = 0.

This means that ϑ0 = 0.
From the first limit in (4.4) it follows that the sequence of the traces {u∗εn

(x′, 0+0)} strongly in L2(Q) converge
to v∗(x′, 0). Taking (4.6) into account, we deduce similarly as in the third item of the proof of Theorem 3.3 that

v∗0(x′, 0) = v
(1,k)
∗ (x′, 0) = 0 for a.e. x′ ∈ Q, k = 1, . . . ,K1. (4.8)

If we take a test-function ψ such that ψ = 0 on the thin cylinders Gεn in the integral identity (0.5) and
then pass to the limit with regard to (4.4) and (4.8), we get that v∗0 is the unique solution to the following
boundary-value problem {

−Δx v
∗
0 = f0 in Ω0,

v∗0 = 0 onΓ1 ∪Q, ∂νv
∗
0 = 0 on ∂Ω0 \

(
Γ1 ∪Q

)
.

(4.9)

Due to the uniqueness of the solution to problem (4.9), the above argumentations hold for any subsequence
of {ε} chosen at the beginning of this section. Hence

u∗ε|Ω0

w−→ v∗0 weakly in H1(Ω0,Γ1), ũ∗ε
(2,k) s−→ 0 strongly in L2(D2) (k = 1, . . . ,K2), ϑ∗ε

w� 0

as ε→ 0. These limits mean that we cannot control the state of the system in Ω0 through the thin cylinders G(2)
ε

if β < 1 and ε is small enough. Therefore, we should reformulate problem CPε in the following way:

• Find an optimal control θ∗ε ∈ K(1)
ε , which with the corresponding state u∗ε, minimize the following cost

functional

J (1)
ε (θε) =

1
2

∫
Ω0

(uε − q0)2dx +
N1

2

∫
Γ

(1)
ε

(θε − η1)2 dx′ + Eε(uε;α, β), (4.10)

where uε is the unique weak solution to problem (0.4) with the following boundary conditions on the
bases of the thin cylinders:

uε(x′,−d1) = θε, (x′,−d1) ∈ Γ(1)
ε ; uε(x′,−d2) = 0, (x′,−d2) ∈ Γ(2)

ε . (4.11)

This new problem we denote by CP(1)
ε .

Obviously, we can repeat word-for-word the proofs of results from Section 2 and Section 3.1 for problem
CP(1)

ε . In this case we should neglect all things connected to K(2)
ε . Next, due to the uniform Dirichlet conditions

on Γ(2)
ε we obtain the following a priori estimate:

‖uε‖H1(Ωε) ≤ C1

{
‖f0‖L2(Ω0) + εα−1|�1(0)| + ‖θε‖H1(Γ

(1)
ε )

+ εα−1
(
1 + |�1(0)|) (ε‖∇x′θε‖L2(Γ

(1)
ε )

+ ‖θε‖L2(Γ
(1)
ε )

)}
≤ C2 (4.12)

(see for comparison (1.6)).



HOMOGENIZATION OF QUASILINEAR OPTIMAL CONTROL PROBLEMS 603

4.2. Convergence theorem

Theorem 4.1 (the case α ≥ 1 and β < 1). Let
{
θε

}
ε>0

be a sequence of admissible controls such that θε
w� θ0

as ε → 0 (obviously θ0 ∈ K(1)
0 ). Then the corresponding sequence of the states {uε} ε>0 satisfies the following

relations

uε|Ω0

w−→ v+
0 weakly inH1(Ω0,Γ1),

ũε
(1,k) w−→ |B(1)

k | v(1,k)
0 weakly in W 0,0,1(D1), k = 1, . . . ,K1,

∂̃xiuε

(1,k) w−→ 0 weakly in L2(D2), i = 1, 2,

ũε
(2,k) s−→ 0 strongly in L2(D2), k = 1, . . . ,K2,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
as ε→ 0. (4.13)

Here the function v+
0 is the unique weak solution to problem (4.9) and v(1,k)

0 is the unique weak solution to the
following problem ⎧⎨⎩ −|B(1)

k | ∂2
x3
v
(1,k)
0 (x) + δα1l

(1)
k �1

(
v
(1,k)
0 (x)

)
= 0, x ∈ D1,

v
(1,k)
0 (x′, 0) = 0, v

(1,k)
0 (x′,−d1) = θ0, x′ ∈ Q,

(4.14)

k = 1, . . . ,K1, which together with (4.9) are called the homogenized problem for problem (0.4).
Furthermore,

lim
ε→0

J (1)
ε (θε) =

1
2

∫
Ω0

(v+
0 − q0)2dx +

N3

2

∫
Ω0

|∇v+
0 |2dx + J

(1)
0 (θ0) , (4.15)

where

J
(1)
0 (θ0) =

N1

2
|B(1)|
∫

Γd1

(θ0 − η1)2 dx′ +
N3

2

K1∑
k=1

(
|B(1)

k |
∫

D1

∣∣∂x3v
(1,k)
0

∣∣2dx
+ δα,1 l

(1)
k

∫
D1

(
�1

(
v
(1,k)
0 (x)

)− �1

(
0
))
v
(1,k)
0 (x) dx

)
. (4.16)

Proof. Since the proof follows closely that of Theorem 3.3, we indicate only principal differences.
The state uε ∈ H1

(
Ωε; Υ1 ∪ Γ(2)

ε

)
= {u ∈ H1(Ωε) : u|

Υ1∪Γ
(2)
ε

= 0} satisfies the following integral identity∫
Ωε

∇xuε · ∇xψ dx + εα

∫
S

(1)
ε

�1

(
uε

)
ψ dσx + εβ

∫
S

(2)
ε

�2

(
uε

)
ψ dσx =

∫
Ω0

f0 ψ dx (4.17)

for any function ψ ∈ H1
(
Ωε; Υ1 ∪ Γ(1)

ε ∪ Γ(2)
ε

)
. If we take in (4.17)

ψ(x) =

{
uε(x), x ∈ Ωε ∪G(2)

ε ,
1
d1

(x3 + d1)uε(x′, 0), x ∈ G
(1)
ε ,

and take (4.12) into account, we get similarly as before (see (4.5)) the following estimate∫
G

(2)
ε

∣∣uε

∣∣2 dx ≤ C1ε
1−β. (4.18)

From this it follows the last limit in (4.13).
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Then, by the same way as in Section 4.1 we prove the first limit in (4.13), where the function v+
0 is the

unique weak solution to problem (4.9), and equalities (4.8) for functions v+
0 and v

(1,k)
0 , k1 = 1, . . . ,K1, where

the function v(1,k)
0 is the limit of

{
ũε

(1,k)}
ε>0

under some subsequence of {ε}.
Now it remains to find the other relations which determine functions v(1,k)

0 , k = 1, . . . ,K1. Similarly as in the
second item of the proof of Theorem 3.3, we prove that v(1,k)

0 (x′,−d1) = θ0(x′) for a.e. x′ ∈ Q, k = 1, . . . ,K1.
In the fourth item of the proof of Theorem 3.3 we should take the subspace of C∞(Ω0, D1, D2), which consists

of such multi-valued functions Φ =
(
0, ϕ(1)

1 , . . . , ϕ
(1)
K1
, 0, . . . , 0,

)
. Then repeating the arguments from this item,

we obtain
K1∑
k=1

|B(1)
k |
∫

D1

∂x3v
(1,k)
0 ∂x3ϕ

(1)
k dx+ δα,1

K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

ζ(1,k) ϕ
(1)
k dx = 0. (4.19)

In the fifth item of the proof of Theorem 3.3 we have to take q(2)ε ≡ 0. Then we get

lim
ε→0

( ∫
Ωε

|∇uε|2 dx+
2∑

m=1

εαδ1m+βδ2m

∫
S

(m)
ε

�m(uε)uεdσx

)

=
∫
Ω0

|∇v+
0 |2 dx+

K1∑
k=1

|B(1)
k |
∫

D1

|∂x3v
(1,k)
0 |2dx+ δα,1

K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

ζ(1,k) v
(1,k)
0 dx. (4.20)

To determine functions {ζ(1,k), k = 1, . . . ,K1} in the case α = 1, we consider the following inequality of
monotonicity

∫
Ω0

|∇uε −∇ϕ0|2 dx+
∫

G
(1)
ε

|∇x′uε|2 dx+
∫

G
(2)
ε

|∇uε|2 dx+
K1∑
k=1

∫
G

(1)
ε (k)

|∂x3uε − ∂x3ϕ
(1)
k |2 dx

+ ε

K1∑
k=1

∫
S

(1)
ε (k)

(
�1(uε) − �1(ϕ

(1)
k )
) (
uε − ϕ

(1)
k

)
dσx + εβ

∫
S

(2)
ε

�2(uε)uε dσx ≥ 0 (4.21)

for any multi-valued function Φ =
(
ϕ0, ϕ

(1)
1 , . . . , ϕ

(1)
K1
, 0, . . . , 0

)
such that ϕ0 ∈ H1(Ω0,Υ1), ϕ

(1)
k ∈ W 0,0,1(D1),

ϕ0(x′, 0) = ϕ
(1)
k (x′, 0) = 0 for a.e. x′ ∈ Q and k = 1, . . . ,K1. Using (4.20), we pass to the limit in (4.21)

similarly as the sixth item of the proof of Theorem 3.3. As a result we obtain

∫
Ω0

|∇v+
0 −∇ϕ0|2 dx+

K1∑
k=1

|B(1)
k |
∫

D1

(
∂x3v

(1,k)
0 − ∂x3ϕ

(1)
k

)2 dx

+
K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

(
ζ(1,k)(x) − |B(1)

k | �1(ϕ
(1)
k )
)
(v(1,k)

0 − ϕ
(1)
k ) dx ≥ 0. (4.22)

Now we take arbitrary multi-valued function Ψ =
(
ψ0, ψ

(1)
1 , . . . , ψ

(1)
K1
, 0, . . . , 0

)
such that ψ0 ∈ C∞(Ω0),

ψ0|Υ1 = 0, ψ(1)
k ∈ C∞(D1), ψ0(x′, 0) = ψ

(1)
k (x′, 0) = 0 for x′ ∈ Q and k = 1, . . . ,K1. Then substituting the

following multi-valued function Φ0 := v0−λΨ instead of Φ in (4.22), where v0 =
(
v+
0 , v

(1,1)
0 , . . . , v

(1,K1)
0 , 0, . . . , 0

)
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and passing to the limit as λ→ +0, we get

K1∑
k=1

l
(1)
k

|B(1)
k |

∫
D1

(
ζ(1,k)(x) − |B(1)

k | �1

(
v
(1,k)
0

))
ψ

(1)
k dx ≥ 0.

From this inequality it follows that

ζ(1,k)(x) = |B(1)
k | �1

(
v
(1,k)
0 (x)

)
for a.e. x ∈ D1, k = 1, . . . ,K1. (4.23)

The identity (4.19) and (4.23) mean that v(1,k)
0 is the unique weak solution to problem (4.14), k = 1, . . . ,K1.

Thus the limit in the second line of (4.13) also holds for the whole sequence {ε}.
By analogy to the proof of the limit (3.8), we deduce (4.15) with regard to the results obtained above. �

As before (see Prop. 3.4) the following statement ensues.

Proposition 4.2. For any control θ0 ∈ K(1)
0 there exists a sequence of admissible controls

{
θε ∈ K(1)

ε

}
ε>0

, such

that θε
w� θ0 as ε → 0; the sequence of the corresponding solutions {uε(x, θε), x ∈ Ωε} ε>0 to problem (0.4)

satisfies relations (4.13), where the functions v+
0 and v

(1,k)
0 , k = 1, . . . ,K1, are, respectively, the solutions to

problems (4.9) and (4.14);

lim
ε→0

J (1)
ε (θε) =

1
2

∫
Ω0

|v+
0 − q0|2dx+

N3

2

∫
Ω0

|∇v+
0 |2dx+ J

(1)
0 (θ0) ,

where J (1)
0 (θ0) is defined in (4.16).

4.3. Homogenized optimal control problem CP
(1)
0

Since we cannot control the state in the junction body Ω0, we define the following homogenized optimal
control problem CP

(1)
0 :

• Find an optimal control θ∗ ∈ K(1)
0 and the corresponding solutions v

(1,k)
∗ , k = 1, . . . ,K1, of prob-

lems (4.14) to minimize the cost functional J (1)
0 , i.e.,

J
(1)
0 (θ∗) = inf

θ∈K(1)
0

J
(1)
0 (θ) . (4.24)

Here the control set K(1)
0 is defined in (2.1) and the cost functional J (1)

0 is defined in (4.16).
Since K(1)

0 is closed with respect to the weak topology in H1(Γd1) and the cost functional J (1)
0 is weakly

lower-semicontinuous, we can prove by standard way (see for instance [15]) the existence of minimizer for
problem CP

(1)
0 . In the case if α > 1 the cost functional J0 is strictly convex and therefore the problem CP

(1)
0

has the unique solution.
Next reasoning as in the proof of Theorem 3.5, we can prove the following statement.

Theorem 4.3. (1) If α > 1, then for each sequence of the optimal controls
{
θ∗ε ∈ K(1)

ε

}
ε>0

of problem CP(1)
ε

and for the sequence of the corresponding solutions {u∗ε := uε(θ∗ε)} ε>0 to problem (0.4) with the boundary
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conditions (4.11) the following limits hold (as ε→ 0)

θ∗ε
w� θ∗, (4.25)

u∗ε|Ω0

w−→ v+
0 weakly in H1(Ω0,Υ1),

ũ∗ε
(1,k) w−→ |B(1)

k | v(1,k)
∗ weakly in W 0,0,1(D1), k = 1, . . . ,K1,

∂̃xiu
∗
ε

(1,k) w−→ 0 weakly in L2(D1), i = 1, 2, k = 1, . . . ,K1,

ũ∗ε
(2,k) s−→ 0 strongly in L2(D2), k = 1, . . . ,K2,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.26)

J (1)
ε (θ∗ε) → 1

2

∫
Ω0

(v+
0 − q0)2dx+

N3

2

∫
Ω0

|∇v+
0 |2dx+ J

(1)
0 (θ∗) , (4.27)

where θ∗ is the unique solution to problem CP
(1)
0 , v+

0 is the solution to problem (4.9), and v(1,k)
∗ is the solution

to problem (4.14) such that v(1,k)
∗ |Γd1

= θ∗, k = 1, . . . ,K1.

(2) If α = 1, then for any sequence of the minimizers
{
θ∗ε ∈ K(1)

ε

}
ε>0

of problem CP(1)
ε there exists a subse-

quence
{
θ∗εn

∈ K(1)
εn

}
such that the limits (4.1) and (4.27) hold as εn → 0 (n → +∞) and θ∗ is a minimizer of

problem CP
(1)
0 ; for the sequence of the corresponding states {u∗ε := uεn(θ∗ε)} we have

u∗ε|Ω0

w−→ v+
0 weakly in H1(Ω0; Υ1),

ũ∗ε
(2,k) s−→ 0 strongly in L2(D2), k = 1, . . . ,K2,

⎫⎬⎭ as ε→ 0,

where v+
0 is the solution to problem (4.9), and

ũ∗εn

(1,k) w−→ |B(1)
k | v(1,k)

∗ weakly in W 0,0,1(D1), k = 1, . . . ,K1,

∂̃xiu
∗
εn

(1,k) w−→ 0 weakly in L2(D1), i = 1, 2, k = 1, . . . ,K1,

⎫⎬⎭ as εn → 0,

where v(1,k)
∗ is the solution to problem (4.14) such that v(1,k)

∗ |Γd1
= θ∗, k = 1, . . . ,K1.

5. The case α < 1 and β < 1

In this section we additionally assume that �1(0) = �2(0) = 0. In a way analogous to that made in Section 4.1
we can prove the following statement.

Theorem 5.1. For the sequence of the optimal control pairs{
(θ∗ε , ϑ

∗
ε) ∈ K(1)

ε ×K(2)
ε

}
ε>0

of problem CPε and for the sequence of the corresponding solutions {u∗ε := uε(θ∗ε , ϑ
∗
ε)} ε>0 to problem (0.4) the

following limits hold (as ε→ 0)

(θ∗ε , ϑ
∗
ε)

w� (0, 0),

u∗ε|Ω0

w−→ v+
0 weakly in H1(Ω0; Υ1),

ũ∗ε
(m,k) s−→ 0 strongly inL2(Dm),

⎫⎬⎭ (5.1)
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for k = 1, . . . ,Km, m = 1, 2, where v+
0 is the unique solution to problem{

−Δx v
+
0 = f0 in Ω0,

v+
0 = 0 on Υ1 ∪Q, ∂νv

+
0 = 0 on ∂Ω0 \

(
Υ1 ∪Q

)
.

(5.2)

The statement of this theorem means that we cannot control the state of all system Ωε if α < 1 and β < 1.
In fact, even setting the optimal control problem makes no sense in this case for ε small enough. Nevertheless,
similarly as was done in the proof of Theorems 3.3 and 4.1, we can prove the following theorem.

Theorem 5.2. If uε is the weak solution to problem (0.4) with the uniform boundary conditions on the bases of
the thin cylinders: uε(x′,−d1) = 0, (x′,−d1) ∈ Γ(1)

ε , and uε(x′,−d2) = 0, (x′,−d2) ∈ Γ(2)
ε , then the limits (5.1)

hold and in addition
Eε(uε;α, β) −→ N3

2

∫
Ω0

|∇v+
0 |2 dx as ε→ 0,

where v+
0 is the unique solution to problem (5.2).

6. Conclusions

1. In fact, the statements of Theorem 3.3 and Proposition 3.4 are sufficiently to apply the Buttazzo–Dal Maso
abstract scheme based on the Γ-sequential convergence of functionals (see [5]) in the case α ≥ 1 and β ≥ 1. The
first statement of Theorem 3.3 and the first two statements of Proposition 3.4 mean the Kuratowski convergence
of the solution sets (see Prop. 4.4 in [9]). This is the first condition in this scheme, which is equivalent to the
Γ-convergence of the corresponding indicator functions.

The second statement of Theorem 3.3 and the first and third statements of Proposition 3.4 are equivalent to
the Γ-convergence of the cost functionals (the second condition in the Buttazzo–Dal Maso scheme, see Prop. 4.2
and Rem. 4.2 in [9]). Applying this scheme to problems CPε and CP0, we can directly obtain Theorem 3.5.
Nevertheless, in the paper we proved this theorem independently.
2. It is evident from the results we have presented that the boundary conditions have a substantial influence
on the asymptotic behavior of problem CPε (there are three qualitatively different cases).

At first glance it may seem that there is no difference between the boundary conditions

−∂νuε = εα�1

(
uε

)
onS(1)

ε , −∂νuε = εβ�2

(
uε

)
onS(2)

ε

and the homogeneous Neumann condition if α ≥ 1 and β ≥ 1, since the terms �m(uε), m = 1, 2, are multiplied
by εα and εβ respectively. It appears that this is true only for α > 1 and β > 1. But if α = 1 (or β = 1), then
the term ε�m(uε) from the boundary conditions transforms into the new blow-up terms l(m)

k �m

(
v
(m,k)
0

)
, k =

1, . . . ,Km, in the homogenized equations in Dm, m = 1, 2. A similar phenomenon is observed in [19] for
a boundary-value problem in a thick one-level junction.

Thus in this case (α ≥ 1 and β ≥ 1) we have deduced the well-posed homogenized optimal control problem
CP0 for problem CPε. On the other hand, problem CP0 is untypical since the corresponding state is the multi-
valued solution to the nonstandard quasilinear boundary-value problem (3.7). It should be noted that problem
CP0 becomes linear if α > 1 and β > 1.

Here we try to give some physical justification of a new qualitative property of problem (3.7). As a con-
sequence of the difference of the local properties of conductivity on the lateral surfaces S(m)

ε (k) of the thin
cylinders G(m)

ε (k), the flows of quantity (heat conductivity or any other physical entity) are different in both of
the cylinder set G(m)

ε (k) (k = 1, . . . ,Km,m = 1, 2). But these set are connected through the junction’s body Ω0

and alternated along the joint zone Q. As a result, the global flow described by the multi-valued function V0

(see (3.6)) behaves as a many-phase system in the region which is filled up by the thin cylinder from each level
in the limit passage as the parameter ε→ 0.
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3. In the second case (α ≥ 1 and β < 1), interactions between the lateral surfaces S(2)
ε (k) of the thin cylinders

G
(2)
ε (k) and the medium plays a dominant role in the asymptotic behavior of all problem CPε. Note that this

interaction is not necessarily too large locally for β ∈ (0, 1). However, such an effect takes place because of the
total surface area of S(2)

ε (k), k = 1, . . . ,K2. As a result, we cannot control the state in the junction’s body
through the cylinder set G(2)

ε =
⋃K2

k=1G
(2)
ε (k). Since the cylinders G(1)

ε and G(2)
ε are ε-periodically alternated, we

cannot even control the state in the junction’s body and the energy of whole system through the cylinders G(1)
ε .

Thus the optimal control problem CPε is degenerated as ε→ 0 into the homogenized optimal problem CP
(1)
0 .

4. In the third case (α < 1 and β < 1) because of the reasons mentioned above, even the formulation of the
optimal control problem becomes meaningless for ε small enough. Therefore we proved only the convergence
results both for the solutions of the corresponding boundary-value problem and for the energy integrals.

6.1. Application

Here we present the application of our results for an optimal control problem involving a thick one-level
junction with cascade controls.

Let d1 = d2, �1 ≡ �2, α = β ≥ 1 and K1 = K2 = 1. In addition, we assume that B(1) is congruent to
B(2); this means that |B(1)| = |B(2)| and l(1) := l

(1)
1 = l

(2)
1 . Then the corresponding optimal control problem

CPε involving the thick one-level junction Ωε in which Γ(1)
ε ∪ Γ(2)

ε ⊂ Γd1 = Γd2 = {x : x′ ∈ Q, x3 = −d1}
and admissible controls are taken from the different classes K(1)

ε and K(2)
ε that are ε-periodically alternated

(so-called cascade controls).
Nevertheless, the homogenized optimal control problem for problem CPε is the corresponding problem CP0

involving the multi-valued state

V0(x) =

{
v+
0 (x), x ∈ Ω0,

v
(m)
0 (x), x ∈ D1 = D2, m = 1, 2,

(6.1)

that is the weak solution to the following problem

−Δv+
0 (x) = f0(x), x ∈ Ω0,

v+
0 (x) = 0, x ∈ Υ1,

∂νv
+
0 (x) = 0, x ∈ ∂Ω0 \ (Q ∪ Υ1);

−|B(1)| ∂2
x3
v
(m)
0 (x) + δα,1 l

(1)�1

(
v
(m)
0 (x)
)

= 0, x ∈ D1, m = 1, 2,

v
(1)
0 (x′,−d1) = θ0, x′ ∈ Q,

v
(2)
0 (x′,−d1) = ϑ0, x′ ∈ Q,

v
(m)
0 (x′, 0) = v+

0 (x′, 0), x′ ∈ Q, m = 1, 2,

|B(1)|∑2
m=1 ∂x3v

(m)
0 (x′, 0) = ∂x3v

+
0 (x′, 0), x′ ∈ Q.

(6.2)

5 From this result it follows that we cannot take in problem CPε the Dirichlet controls bounded in L2. To
argue this statement we assume that α > 1 and η1 ≡ η2 ≡ 0 for simplicity and consider problem CPε in the
thick one-level junction with the Dirichlet controls from a set

Lε := {θ ∈ Hδ0(Γ(1)
ε ∪ Γ(2)

ε ) : ‖θ‖
L2(Γ

(1)
ε ∪Γ

(2)
ε )

≤ C0} (δ0 = δ1 = δ2 > 1).

Let us show that this optimal control problem cannot have any reasonable limit as ε→ 0.
Indeed, the homogenized optimal control problem for problem CPε with the Dirichlet controls from the set

A(0)
ε := {θ|

Γ
(1)
ε ∪Γ

(2)
ε

: θ ∈ Hδ0(Γd1), ‖θ‖Hδ0 (Γd1) ≤ C0}
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(in this case A(0)
ε ⊂ Lε) is as follows:

• Find an optimal control θ ∈ A(0)
0 = {θ ∈ Hδ0(Γd1) : ‖θ‖Hδ0 (Γd1) ≤ C0} and the corresponding solution

to the problem

−Δv+
0 (x) = f0(x), x ∈ Ω0,

v+
0 (x) = 0, x ∈ Υ1,

∂νv
+
0 (x) = 0, x ∈ ∂Ω0 \ (Q ∪ Υ1);

−|B(1)| ∂2
x3
v−0 (x) = 0, x ∈ D1,

v−0 (x′,−d1) = θ0, x′ ∈ Q,

v−0 (x′, 0) = v+
0 (x′, 0), x′ ∈ Q,

2|B(1)|∂x3v
−
0 (x′, 0) = ∂x3v

+
0 (x′, 0), x′ ∈ Q,

to minimize the cost functional

J0(θ0) =
1
2

∫
Ω0

(v+
0 − q0)2dx+

N1 +N2

2
|B(1)|
∫

Γd1

θ20 dx′ +
N3

2

( ∫
Ω0

|∇v+
0 |2dx+ 2|B(1)|

∫
D1

∣∣∂x3v
−
0

∣∣2dx).
On the other hand, the homogenized optimal control problem for problem CPε but with the following Dirichlet

controls on Γ(1)
ε and Γ(2)

ε :

A(1)
ε :=
{
θ|

Γ
(1)
ε

: θ ∈ Hδ0(Γd1), ‖θ‖Hδ0 (Γd1 ) ≤ C1, ‖θ‖L2(Γd1) ≤ C0/
√

2
}

A(2)
ε :=
{
ϑ|

Γ
(2)
ε

: ϑ ∈ Hδ0(Γd1), C1 < C2 ≤ ‖ϑ‖Hδ0 (Γd1) ≤ C3, ‖ϑ‖L2(Γd1) ≤ C0/
√

2
}
,

where C1, C2, C3 are some fixed constants (in this case also A(1)
ε ∪ A(2)

ε ⊂ Lε) is as follows:
• Find

inf
(θ,ϑ)∈A(1)

0 ×A(2)
0

J0 (θ, ϑ) ,

where

A(1)
0 =
{
θ ∈ Hδ0(Γd1) : ‖θ‖Hδ0(Γd1 ) ≤ C1, ‖θ‖L2(Γd1) ≤ C0/

√
2
}

A(2)
0 =
{
ϑ ∈ Hδ0(Γd1) : C1 < C2 ≤ ‖ϑ‖Hδ0 (Γd1) ≤ C3, ‖ϑ‖L2(Γd1) ≤ C0/

√
2
}
,

the corresponding cost functional J0 (θ, ϑ) is defined in (3.8) and the multi-valued function V0 defined
in (6.1) is the solution to problem (6.2).

Thus, for the different admissible control sets, which are subset of Lε, we have obtained two different homog-
enized optimal control problems.

Acknowledgements. The authors are very grateful to the referee for his fruitful remarks that helped us to improve the
paper.
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