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INDIRECT STABILIZATION OF LOCALLY COUPLED WAVE-TYPE SYSTEMS
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Abstract. We study in an abstract setting the indirect stabilization of systems of two wave-like
equations coupled by a localized zero order term. Only one of the two equations is directly damped.
The main novelty in this paper is that the coupling operator is not assumed to be coercive in the
underlying space. We show that the energy of smooth solutions of these systems decays polynomially
at infinity, whereas it is known that exponential stability does not hold (see [F. Alabau, P. Cannarsa
and V. Komornik, J. Evol. Equ. 2 (2002) 127–150]). We give applications of our result to locally
or boundary damped wave or plate systems. In any space dimension, we prove polynomial stability
under geometric conditions on both the coupling and the damping regions. In one space dimension,
the result holds for arbitrary non-empty open damping and coupling regions, and in particular when
these two regions have an empty intersection. Hence, indirect polynomial stability holds even though
the feedback is active in a region in which the coupling vanishes and vice versa.
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1. Introduction

1.1. Motivation and general context

The decay properties for the energy of a solution of the damped wave equation are well known since the
works [20,26] and definitively [11,23]. More precisely, given a bounded open domain Ω ⊂ R

N with boundary
Γ = ∂Ω, we consider either the internally damped wave equation

⎧⎨
⎩

u′′ − Δu+ bu′ = 0 in (0,+∞) × Ω,
u = 0 on (0,+∞) × Γ,
(u, u′)(0, ·) = (u0(·), u1(·)) in Ω,

(1.1)
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or the boundary damped wave equation⎧⎪⎪⎨
⎪⎪⎩

u′′ − Δu = 0 in (0,+∞) × Ω,
∂u
∂ν + lu+ bu′ = 0 on (0,+∞) × Γb,Γb ⊂ Γ,
u = 0 on (0,+∞) × (Γ \ Γb),
(u, u′)(0, ·) = (u0(·), u1(·)) in Ω.

(1.2)

Here, u = u(t, x), u′ denotes the time derivative of u and ν stands for the outward unit normal to Γ. In these
two cases, the dissipation is due to the damping term bu′, where b = b(x) is a non-negative function on Ω
in (1.1), on Γ in (1.2). The dissipation of the energy

E(u(t)) =
1
2

∫
Ω

(|u′|2 + |∇u|2) dx or E(u(t)) =
1
2

∫
Ω

(|u′|2 + |∇u|2) dx+
1
2

∫
Γb

l(x)u2dγ

is given by

E′(u(t)) = −
∫

Ω

b(x)|u′|2dx or E′(u(t)) = −
∫

Γb

b(x)|u′|2dγ

respectively in the internal and the boundary damping case. In both cases, the localization of the damping,
supp(b) must satisfy some geometric conditions (see [11,20,26]) in order for the energy of the solutions to decay
exponentially, i.e., so that there exist two constants M,κ > 0 satisfying

E(u(t)) ≤Me−κtE(u(0)), t > 0,

for all initial data (u0, u1) of finite energy. In the case of internal damping (1.1), the explicit value of the best
decay rate κ is moreover given in [23].

Besides, when no feedback is applied to the wave equation, i.e., b = 0 in Ω in (1.1) or on Γ in (1.2), then the
energy is conserved, E(u(t)) = E(u(0)) for every t > 0.

The question we are interested in is what are the stability properties of the following systems, obtained by
coupling an exponentially stable wave equation with a conservative one, that is⎧⎪⎪⎨

⎪⎪⎩
u′′1 − Δu1 + δpu2 + bu′1 = 0 in (0,+∞) × Ω,
u′′2 − Δu2 + pu1 = 0 in (0,+∞) × Ω,
u1 = u2 = 0 on (0,+∞) × Γ,
uj(0, ·) = u0

j(·), u′j(0, ·) = u1
j(·), j = 1, 2 in Ω,

(1.3)

in the case of internal damping, and
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′1 − Δu1 + δpu2 = 0 in (0,+∞) × Ω,
u′′2 − Δu2 + pu1 = 0 in (0,+∞) × Ω,
∂u1
∂ν + lu1 + bu′1 = 0 on (0,+∞) × Γb, Γb ⊂ Γ,
u1 = 0 on (0,+∞) × (Γ \ Γb),
u2 = 0 on (0,+∞) × Γ,
uj(0, ·) = u0

j(·), u′j(0, ·) = u1
j(·), j = 1, 2 in Ω,

(1.4)

in the case of boundary damping. Here, δ > 0 is a constant and p ≥ 0 denotes the coupling coefficient.
The case of a constant coupling p has already been treated in [1] for (1.3) (internal damping) and in [2,3]
for (1.4) (boundary damping). One key assumption in these three works is that the coupling coefficient satisfies
p(x) ≥ C > 0 for all x ∈ Ω. The main goal of this paper is to generalize these results to cases for which the
coupling p = p(x) can vanish in some part of Ω. It seems natural that we shall have to suppose some geometric
conditions on the localization of the coupling, that is, on the support of the function p(x).
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The study of systems like (1.3)–(1.4) (and more generally (1.5) below) is motivated by several physical
considerations. Indirect damping of reversible systems occurs in many applications in engineering and mechanics.
Indeed, it arises whenever it is impossible or too expensive to damp all the components of the state, and it is
hence important to study stabilization properties of coupled systems with a reduced number of feedbacks. For
finite dimensional systems, this problem is fully understood thanks to the Kalman rank condition. In the case
of coupled PDE’s, the situation is much more involved. Effectiveness of indirect damping mechanisms depends
in a complex way on the assumptions on all the operators involved (i.e. on the operators A1, A2, P and B in
system (1.5) below). In [26], Lions considers the case of several different coupled wave-wave or wave-Petrowsky
systems and studies partial observability or controllability properties. In [1], the authors give the following
example of two elastic membranes subjected to an elastic force that attracts one membrane to the other with
coefficient κ > 0, ⎧⎪⎪⎨

⎪⎪⎩
u′′1 − Δu1 + κu1 − κu2 + βu′1 = 0 in (0,+∞) × Ω,
u′′2 − Δu2 + κu2 − κu1 = 0 in (0,+∞) × Ω,
u1 = u2 = 0 on (0,+∞) × Γ,
uj(0, ·) = u0

j(·), u′j(0, ·) = u1
j(·), j = 1, 2 in Ω.

Another example raised by mechanical applications is the so-called Timoshenko beams. This system consists
in two one-dimensional wave equations coupled by first order terms. One can show that polynomial stability
holds through indirect mechanisms (see [8,9] and the references therein) such as the ones considered in the
present paper. Similar questions arise in the analysis of indirect control of locally coupled parabolic PDE’s
(see system (1.8) below). We here also point out the works [25] and [14], Section 6, where the exponential and
the polynomial stabilization of a coupled hyperbolic-parabolic system of thermoelasticity are addressed with
microlocal techniques.

In a more general setting, we are interested in the stability properties of systems of second order evolution
equations coupling a conservative equation and an exponentially stable one. The abstract model that we shall
refer to is the following ⎧⎨

⎩
u′′1 +A1u1 + δPu2 +Bu′1 = 0,
u′′2 +A2u2 + P ∗u1 = 0,
(uj , u

′
j)(0) = (u0

j , u
1
j), j = 1, 2,

(1.5)

where A1 and A2 are positive selfadjoint operators with compact resolvent on an infinite dimensional Hilbert
space H . The coupling operator P is assumed to be bounded on H and P ∗ is its adjoint. The stabilization
operatorB will be supposed to be either bounded onH (which corresponds to the case of internal stabilization) or
unbounded (which corresponds to the case of boundary stabilization). The total energy of a solution U = (u1, u2)
of (1.5) is defined by

E(U(t)) =
1
2

(
‖u′1‖2

H + ‖A1/2
1 u1‖2

H + δ‖u′2‖2
H + δ‖A1/2

2 u2‖2
H

)
+ δ(u1, Pu2)H , (1.6)

where (·, ·)H denotes the inner product on H and ‖ · ‖H the associated norm. Note that we have to consider
different operators Aj , j = 1, 2, in order to treat the boundary damping case. In the applications to coupled
wave equations, A1 and A2 will be the same Laplace operator, i.e., with the same speed of propagation,
but with different boundary conditions. We have moreover to suppose the natural assumption that δ and
p+ = ‖P‖L(H) = sup{‖Pv‖H, ‖v‖H = 1} are sufficiently small so that the energy is positive.

The question is now: Is the full system (1.5) stable, and if so, at which rate ?
A first answer to this question is that system (1.5) cannot be exponentially stable (see [1]). Indeed, this system

is a compact perturbation of the decoupled system (obtained by taking P = 0 in (1.5)), which is unstable.
Despite this negative result, one can prove polynomial stability properties for certain classes of operators

A1, A2, P,B. More precisely, under the assumption that the operator P is coercive on H , the authors prove
in [1,3,12] that the energy decays at least polynomially at infinity. In these papers, the coercivity assumption
on P is essential. In the applications we want to address (see (1.3), (1.4) with p(x) locally supported), this
assumption clearly fails. For these examples, as well as in the abstract setting (1.5), one has to develop new
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ideas and hypotheses to understand how the damping effect is transmitted from the first equation to the second
one. We shall instead suppose that P is only partially coercive (see assumption (A1) below). For the PDE
systems under view (see Sects. 1.2 and 4), this assumption holds under geometric conditions of multiplier type
on the support of the coupling coefficient p. Similar conditions are required on the support of the damping
coefficient b, so that we prove polynomial stabilization in several situations in which the damping region and the
coupling region have a very small intersection (see Fig. 2 below). In particular in one space dimension, we prove
such a result with an empty intersection. This is an important feature since it shows that the information is
transferred from the damping region to the coupling region in a sufficient way to stabilize indirectly the second
equation, even though these two regions do not meet. In particular, one can notice that in the damping region,
the second equation is decoupled from the first one and is conservative in this area (see also Fig. 2 below).
More generally, such locally coupled systems of PDE’s can be viewed as transmission problems between areas
of active/inactive dampings and couplings to areas with inactive/active dampings and couplings.

In this paper, the main result concerning the abstract system (1.5) is a polynomial stability theorem under
certain assumptions on the operators P and B (see Thm. 2.4 in the case B bounded and Thm. 2.7 in the case
B unbounded). This abstract result can then be applied to a large class of second order evolution equations.
In Section 4, we treat the case of two locally coupled wave or plate equations, with an internal or a boundary
damping. The problem that first motivated this work is the case (1.3) of partially internally damped wave
equations. We now detail the results obtained for this problem, that sum up our study.

1.2. Results for two coupled wave equations

In this section, we consider problem (1.3) in a domain Ω ⊂ R
N with C2 boundary. The damping function b

and the coupling function p are two bounded real valued functions on Ω, satisfying⎧⎨
⎩

0 ≤ b ≤ b+ and 0 ≤ p ≤ p+ on Ω,
b ≥ b− > 0 on ωb,
p ≥ p− > 0 on ωp,

(1.7)

for ωb and ωp two non-empty open subsets of Ω. As usual for damped wave equations, we have to make some
geometric assumptions on the sets ωb and ωp so that the energy of a single wave decays sufficiently rapidly at
infinity. Here, we shall use the piecewise multipliers geometric condition (PMGC).

Definition 1.1 (PMGC). We say that ω ⊂ Ω satisfies the PMGC if there exist Ωj ⊂ Ω having Lipschitz
boundary and xj ∈ R

N , j = 1 . . . J such that Ωj ∩ Ωi = ∅ for j �= i and ω contains a neighborhood in Ω of

the set
⋃J

j=1 γj(xj)∪
(
Ω \⋃J

j=1 Ωj

)
, where γj(xj) = {x ∈ ∂Ωj , (x− xj) · νj(x) > 0} and νj is the outward unit

normal to ∂Ωj .

This geometric assumption was introduced in [27] and further used in [5,6]. It is a generalization of the usual
multiplier geometric condition (or Γ-condition) of [26,31], saying that ω contains a neighborhood in Ω of the set
{x ∈ ∂Ω, (x− x0) · ν(x) > 0}, for some x0 ∈ R

N . However, the PMGC is of course much more restrictive than
the sharp geometric control condition (GCC) introduced in [11], saying that every generalized geodesic (i.e. ray
of geometrical optics) enters the region ω in finite time. Let us briefly compare these three different geometric
conditions on the following simple 2-D example. We consider the case where Ω is a disk and draw in Figure 1
three different subsets of Ω. The Γ-condition is only satisfied by ω0, for some x0 sufficiently far on the left of
the figure. The PMGC is satisfied by ω0, and by ω1 (which contains a neighborhood of a diameter) for some x1

on the left and x2 on the right, sufficiently far. However, ω2, containing only a neighborhood of a radius, does
not satisfy the PMGC, since Ω \ ω2 is connected, so that the PMGC is reduced in this case to the Γ-condition
(which is here not satisfied). Finally, the GCC is satisfied by these three different subsets of Ω.

In other geometric situations, the Γ-condition and the GCC are further compared in [11], pp. 1030–1032. In
particular (in the context of boundary stabilization), the authors provide several 2-D examples in which the
GCC is satisfied but not the Γ-condition. In [29], Remark 6, the author proves directly from a geometrical point
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Figure 1. Comparison between the different geometric conditions in the disk.

of view that the GCC implies the PMGC (and more generally, that the GCC implies any multiplier condition).
Then, in [29], Section 5, he describes in dimension two different situations for which GCC holds but neither
the Γ-condition nor the PMGC do. To conclude this comparison, let us note that in one space dimension, the
PMGC is equivalent to the GCC, and is satisfied by every nonempty subset of the interval Ω.

We denote by λ the smallest eigenvalue of the Laplace operator on Ω, with Dirichlet boundary conditions.
We also have the identity λ = 1/C2

P , where CP is the Poincaré’s constant of Ω. Note that according to (1.6),
the energy of a solution U of (1.3) is defined by

E(U(t)) =
1
2

(
‖u′1‖2

L2(Ω) + ‖∇u1‖2
L2(Ω) + δ‖u′2‖2

L2(Ω) + δ‖∇u2‖2
L2(Ω)

)
+ δ(pu1, u2)L2(Ω),

and is positive as soon as p+ < λ and 0 < δ < λ
p+ . Finally, for n ∈ N, we denote by D((−ΔD)

n
2
)

the domain of
the Laplace operator with Dirichlet boundary conditions to the power n

2 . We recall that we have for instance

D((−ΔD)
n
2
)

= {v ∈ Hn(Ω), v = 0 on ∂Ω} for n = 1, 2,

D((−ΔD)
n
2
)

= {v ∈ Hn(Ω), v = 0 and Δv = 0 on ∂Ω} for n = 3, 4, etc.

With this notation, we can state the stability theorem for system (1.3).

Theorem 1.2.
(i) Suppose that ωb and ωp satisfy the PMGC. Then there exists p∗ ∈ (0, λ] such that for all 0 < p+ < p∗

there exists δ∗ = δ∗(p+, p−) ∈ (0, λ
p+ ], such that for all δ ∈ (0, δ∗) and all b, p ∈ W q,∞(Ω) satisfying (1.7),

the solution U = (u1, u2, u
′
1, u

′
2) of (1.3) satisfies for n ∈ N, n ≤ q, for some Cn > 0,

E(U(t)) ≤ Cn

tn

n∑
i=0

E(U (i)(0)) ∀t > 0, U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D((−ΔD)

n+1
2
)2 ×D((−ΔD)

n
2
)2
.

Besides, if U0 ∈ (H1
0 )2 × (L2)2, then E(U(t)) converges to zero as t goes to infinity.

(ii) If moreover either ωb ⊂ ωp or ωp ⊂ ωb, then the result holds for δ∗ = λ
p+ .

This theorem is a consequence of Theorem 2.4 below. The fact that problem (1.3) satisfies the assumptions
of Theorem 2.4 is postponed in Section 4.1. Note that the constants p∗ and δ∗ are explicit functions of the
parameters of the problem and of the constants coming from the multiplier method. Moreover, the constants Cn

depend on δ, p+, p−, b+ and b−. The smoothness assumption on the coefficients p and b comes from Lemma 2.6.
If these parameters are not smooth, Theorem 1.2 is still valid for initial data in D(An

P,δ) where the operator
AP,δ is defined in (2.4) below. However, in this case, we cannot explicit the space D(An

P,δ) in terms of classical
Sobolev spaces.

Let us draw in Figure 2 some geometric situations covered by Theorem 1.2 (i).
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Ω
Ω \ (supp(b) ∪ supp(p))

supp(p) ∩ supp(b)

supp(p) ⊃ ωp

supp(b) ⊃ ωb

0 L

Figure 2. Some one and two dimensional geometric situations covered by Theorem 1.2 (i).

Locally, the equations satisfied by u1 and u2 are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′1 − Δu1 = 0 and u′′2 − Δu2 = 0 in D′((0,+∞) × Ω \ (supp(b) ∪ supp(p))
)
,

u′′1 − Δu1 + bu′1 = 0 and u′′2 − Δu2 = 0 in D′((0,+∞)×
◦

supp(b) \ supp(p)
)
,

u′′1 − Δu1 + δpu2 = 0 and u′′2 − Δu2 + pu1 = 0 in D′((0,+∞)×
◦

supp(p) \ supp(b)
)
,

u′′1 − Δu1 + δpu2 + bu′1 = 0 and u′′2 − Δu2 + pu1 = 0 in D′((0,+∞)×
◦

supp(p) ∩
◦

supp(b)
)
.

In particular, in Ω \ (supp(b) ∪ supp(p)), the states u1 and u2 are decoupled and both satisfy a conservative
equation. Besides, the subset of Ω where u1 and u2 are coupled and u1 is damped, i.e. supp(p)∩ supp(b), might
be reduced to the empty set, as it is the case in the one dimensional example.

Some comments can be made about Theorem 1.2. One particularly interesting question for this type of
coupled problem is the case ωb ∩ ωp = ∅. This question first arised in the field of control theory for coupled
evolution equations, and, to the authors’ knowledge, is still unsolved. More precisely, consider the parabolic
system ⎧⎪⎪⎨

⎪⎪⎩
u′1 − Δu1 + δpu2 = �ωb

f in (0, T )× Ω,
u′2 − Δu2 + pu1 = 0 in (0, T )× Ω,
u1 = u2 = 0 on (0, T )× ∂Ω,
u1(0, ·) = u0

1, u2(0, ·) = u0
2 in Ω,

(1.8)

or its hyperbolic counterpart ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′1 − Δu1 + δpu2 = �ωb
f in (0, T )× Ω,

u′′2 − Δu2 + pu1 = 0 in (0, T )× Ω,
u1 = u2 = 0 on (0, T )× ∂Ω,
u1(0, ·) = u0

1, u2(0, ·) = u0
2 in Ω,

u′1(0, ·) = u1
1, u

′
2(0, ·) = u1

2 in Ω,

(1.9)

where the function p and the subset ωb are the same as in the stabilization problem. In these two cases, the
null-controllability problem under interest is the following: given a positive time T and initial data, is it possible
to find a control function f so that the state has been driven to zero in time T ? The parabolic null-controllability
problem (1.8) is fully solved in the case ωb ∩ ωp �= ∅ (see [10,16,17,22]). However, this problem is still open
in the case ωb ∩ ωp = ∅. Only the approximate controllability has been proved in [19] in this case for δ = 0.
Concerning the hyperbolic null-controllability problem (1.9), only the case of constant coupling p have been
considered, to our knowledge [30] (and [4] for a boundary control).

The second reason for which the case ωb ∩ ωp = ∅ is of particular interest in the stabilization problem (1.3)
is that, in this case, we don’t even know if the strong stability property holds, i.e., if the energy goes to zero
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as t goes to infinity. To our knowledge, the only strong (and logarithmic) stability result for system (1.3) is the
following one (we suppose here that p and b are smooth).

Proposition 1.3. Suppose that ωb∩ωp �= ∅. Then, the solution U = (u1, u2, u
′
1, u

′
2) of (1.3) satisfies for n ∈ N,

for some Cn > 0,

E(U(t)) ≤ Cn

log(2 + t)n

n∑
i=0

E(U (i)(0)) ∀t > 0,

for all initial data U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D((−ΔD)

n+1
2
)2 ×D((−ΔD)

n
2
)2.

This is a direct consequence of the interpolation inequality for the associated elliptic system, proved in [22],
Proposition 5.1, together with the resolvent estimates of [23,24] (see also [13] to obtain the exact power n).
Note that it is natural that logarithmic stability holds without geometric control conditions on the sets ωb and
ωp. However the interpolation inequality for the associated elliptic problem is not known in the case ωb∩ωp = ∅
and even the strong stability is open.

Now, concerning the stability Theorem 1.2, it first has to be noted that, in dimension N ≥ 2 the assumption
that both ωb and ωp satisfy the PMGC implies that ωb ∩ ωp �= ∅ (whereas this is not the case if ωb and ωp

satisfy the optimal condition of [11]). This theorem is hence of particular interest in dimension N = 1 (see
Fig. 2). In this case, Ω = (0, L) for some L > 0, and any non-empty open subinterval ω satisfies the PMGC. As
a consequence, we obtain the following corollary of Theorem 1.2 point (i).

Corollary 1.4. Suppose that Ω = (0, L). Then, for any non-empty subsets ωb ⊂ Ω and ωp ⊂ Ω (i.e., for any
non-vanishing non-negative functions p and b), there exists p∗ ∈ (0, λ] such that for all 0 < p+ < p∗ there
exists δ∗ = δ∗(p+, p−) ∈ (0, λ

p+ ], such that for all δ ∈ (0, δ∗) and all b, p sufficiently smooth, satisfying (1.7), the
polynomial stability result of Theorem 1.2 holds.

In particular, this yields in this case a strong (and logarithmic) stability result with ωb ∩ ωp = ∅, improving
Proposition 1.3. Moreover, this can be a first step to address first the hyperbolic control problem (1.9) and then
its parabolic counterpart (1.8) in the case ωb ∩ ωp = ∅. Similarly, Theorem 4.4 on boundary stabilization can
be a first step to solve the hyperbolic coupled problem controlled from the boundary (to our knowledge only
adressed in [4] in the case of constant coupling p). Then, it could allow one to solve its parabolic counterpart,
also controlled from the boundary, which seems to be widely open in several space dimensions.

To conclude this section, let us come back to the geometric assumptions we make. The PMGC does not seem
to be necessary or optimal in these problems, but only technical. All the results we state in these paper should
hold true (and would be also very interesting in several space dimensions) under the GCC. Replacing PGMC
by GCC in all our results would be possible provided that we are able to prove assumptions (A2) and (A3)
below with microlocal techniques, what we did not yet manage to do.

Remark 1.5. In the sequel, C will denote a generic constant, whose value may change from line to line. Writing
C = C(p, β, . . .) or C = Cp,β,... means that this constant depends on the parameters p, β, . . .

2. Abstract formulation and main results

2.1. Abstract setting and well-posedness

Let H and Vj , j = 1, 2, be infinite dimensional Hilbert spaces such that the injections Vj ⊂ H are dense
and compact. We identify H with its dual space and denote by V ′

j the dual space of Vj , so that the injections
Vj ⊂ H ⊂ V ′

j are dense and compact. We denote by (·, ·)H (resp. (·, ·)Vj ) the inner product on H (resp. Vj),
‖ · ‖H (resp. ‖ · ‖Vj ) the associated norm and ‖ · ‖V ′

j
the norm on V ′

j . Moreover, we write 〈·, ·〉V ′
j ,Vj

the duality
product and Aj the duality mapping from Vj to V ′

j defined by

〈Ajv, w〉V ′
j ,Vj

= (v, w)Vj ∀v, w ∈ Vj .
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By abuse of notation, we also write Aj the unbounded operator on H with domain

D(Aj) = {v ∈ Vj , Ajv ∈ H} ⊂ Vj ⊂ H,

defined by
Aj : v ∈ D(Aj) ⊂ H −→ Ajv ∈ H.

In this setting, each operator Aj is positive selfadjoint in H and has a compact resolvent.
We shall moreover assume that the subspace V2 is continuously imbedded in V1, so that we have the following

scheme:
V2 ↪→ V1 ↪→ H ↪→ V ′

1 ↪→ V ′
2 , (2.1)

where the first and the last inclusions are continuous and the two central ones are dense and compact. We
denote i : V2 ↪→ V1 the natural injection and ΠV : V1 �→ V2 the natural projection from V1 to V2. We recall that
for u1 ∈ V1, ΠV u1 is characterized by{ 〈A1i(ΠV u1), i(φ)〉V ′

1 ,V1
= 〈A1u1, i(φ)〉V ′

1 ,V1
∀φ ∈ V2, u1 ∈ V1,

and ΠV u1 ∈ V2.

Moreover the operators i, A1 and A2 are linked by

〈A2φ, ψ〉V ′
2 ,V2

= (φ, ψ)V2 = (i(φ), i(ψ))V1 = 〈A1i(φ), i(ψ)〉V ′
1 ,V1

∀φ, ψ ∈ V2,

thanks to the definitions of A1, A2, i and to assumption (2.1). Note also that under these assumptions, the
unbounded operators A1 and A2 coincide on D(A1) ∩ D(A2).

The coupling operator P is a bounded operator on H and P ∗ is its adjoint, ‖P‖L(H) = p+. The damping
operator B will be supposed to be at least bounded from V1 to V ′

1 and symmetric non-negative:

〈Bv,w〉V ′
1 ,V1

= 〈Bw, v〉V ′
1 ,V1

, 〈Bv, v〉V ′
1 ,V1

≥ 0 ∀v, w ∈ V1. (2.2)

We denote by λj , j = 1, 2, the largest constant satisfying

‖v‖2
Vj

≥ λj‖v‖2
H ∀v ∈ Vj ,

that is, the smallest eigenvalue of the selfadjoint positive operator Aj .
Let us study now the abstract system (1.5). This linear evolution equation can be rewritten under the form{

U ′ + AP,δU = 0
U(0) = U0 ∈ H, (2.3)

where H = V1 × V2 ×H2,

U =

⎛
⎜⎜⎝

u1

u2

v1
v2

⎞
⎟⎟⎠ , U0 =

⎛
⎜⎜⎜⎜⎜⎝

u0
1

u0
2

u1
1

u1
2

⎞
⎟⎟⎟⎟⎟⎠, AP,δ =

⎛
⎜⎜⎝

0 0 − Id 0
0 0 0 − Id
A1 δP B 0
P ∗ A2 0 0

⎞
⎟⎟⎠, D(AP,δ) = {U ∈ H, AP,δU ∈ H}. (2.4)

We recall that the energy of this system is given by

E(U(t)) =
1
2
(‖v1‖2

H + ‖u1‖2
V1

+ δ‖v2‖2
H + δ‖u2‖2

V2

)
+ δ(u1, Pu2)H

=
1
2
(‖u′1‖2

H + ‖u1‖2
V1

+ δ‖u′2‖2
H + δ‖u2‖2

V2

)
+ δ(u1, Pu2)H

(2.5)
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and we will require this energy to be positive for any solution U(t). We have the lower bound for the energy

E(U) ≥ 1
2
(‖u′1‖2

H + λ1‖u1‖2
H + δ‖u′2‖2

H + δλ2‖u2‖2
H

)− δp+

2
(‖u1‖2

H + ‖u2‖2
H)

≥ 1
2
(‖u′1‖2

H + δ‖u′2‖2
H) +

1
2
(λ1 − δp+)‖u1‖2

H +
δ

2
(λ2 − p+)‖u2‖2

H .

(2.6)

Therefore, in the sequel, we shall suppose

0 < p+ < λ2, and 0 < δ <
λ1

p+
(2.7)

so that (2.6) holds with positive constants, i.e., E is a positive energy that measures the whole state U .

Remark 2.1. Note that for any δ > 0, the operator
(
A1 δP
P ∗ A2

)
is selfadjoint on the space H ×H endowed

with the weighted inner product (u, v)δ = (u1, v1)H + δ(u2, v2)H (which is the energy space). This operator
is moreover positive under the condition (2.7). In the case B = 0, the operator AP,δ is skewadjoint and thus
generates a group.

Under the assumptions made above, the system (2.3) (and thus, (1.5)) is well-posed in the sense of semigroup
theory.

Proposition 2.2. For all 0 ≤ p+ < λ2 and 0 ≤ δ < λ1
p+ , the operator AP,δ is maximal monotone on H. As

a consequence, for every U0 ∈ H, problem (2.3) has a unique solution U ∈ C0([0,+∞);H). If in addition,
U0 ∈ D(Ak

P,δ), for some k ∈ N, then, the solution U is in
⋂k

j=0 Ck−j([0,+∞);D(Aj
P,δ)). Moreover, the energy

E(U) of the solution defined by (2.5) is locally absolutely continuous, and for strong solutions, i.e., when U0 ∈
D(AP,δ), we have

E′(U(t)) = −〈Bu′1, u′1〉V ′
1 ,V1

. (2.8)

2.2. Main results

In all the following, we have to suppose some additional assumptions on the operators P and B, in order to
prove the stability results. Let us first precise assumptions (A1) and (A2), related with the operator P . We
assume that P is partially coercive, i.e.,

(A1)

{
there exists an operator ΠP ∈ L(H), ‖ΠP ‖L(H) = 1, and a number p− > 0

such that (Pv, v)H ≥ p−‖ΠP v‖2
H ∀v ∈ H.

Note that p− ≤ p+ = ‖P‖L(H) and that (A1) implies that the operators P and P ∗ are non-negative. We shall
moreover make the following assumption (A2) on one decoupled equation, without damping, but with a right
hand-side:

(A2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ α2, β2, γ2 > 0 such that for all f2 ∈ C1([0,+∞);H) and all 0 ≤ S ≤ T,

the solution u2 of

u′′2 +A2u2 = f2 in V ′
2 ,

(u2, u
′
2)(0) = (u0

2, u
1
2) ∈ V2 ×H,

satisfies, with e2(t) = 1/2
(‖u′2‖2

H + ‖u2‖2
V2

)
, the inequality∫ T

S e2(t) dt ≤ α2(e2(S) + e2(T )) + β2

∫ T

S ‖f2(t)‖2
H dt+ γ2

∫ T

S ‖ΠPu
′
2(t)‖2

Hdt.
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This corresponds to the second equation in which the coupling term is viewed as a forcing term. This type of
estimate will be proved in the applications below by means of multiplier estimates (for a single equation with
a right hand-side). Note that the operator ΠP involved in the estimate of assumption (A2) is the operator given
by assumption (A1).

Concerning the operator B, we shall make the following “stability” assumption for a single damped equation:

(A3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ α1, β1, γ1 > 0 such that for all f1 ∈ C1([0,+∞);H) and all 0 ≤ S ≤ T,

the solution u1 of

u′′1 +A1u1 +Bu′1 = f1 in V ′
1 ,

(u1, u
′
1)(0) = (u0

1, u
1
1) ∈ V1 ×H,

satisfies, with e1(t) = 1/2
(‖u′1‖2

H + ‖u1‖2
V1

)
, the inequality∫ T

S
e1(t) dt ≤ α1(e1(S) + e1(T )) + β1

∫ T

S
‖f1(t)‖2

H dt+ γ1

∫ T

S
〈Bu′1, u′1〉V ′,V dt.

Remark 2.3. Assumption (A3) implies in particular that the single damped equation is exponentially stable,
since for f1 = 0, we deduce that e1(t), which is locally absolutely continuous and nonincreasing, satisfies the
classical integral inequality (see [18,20]),

∫ T

S

e1(t) dt ≤ (2α1 + γ1)e1(S) ∀0 ≤ S ≤ T.

The next assumption we make on the damping operator B depends on its boundedness.

2.2.1. The case B bounded

In the bounded case, we shall moreover suppose

(A4b) ‖B‖L(H) = b+ and V2 = V1 = V.

As a consequence, we have

A1 = A2 = A, λ1 = λ2 = λ, and i = ΠV = IdV1 .

The positivity condition (2.7) for the energy becomes

0 < p+ < λ, and 0 < δ <
λ

p+
· (2.9)

The main result here is:

Theorem 2.4.
(i) Suppose (A1), (A2), (A3), (A4b). Then there exists p∗ ∈ (0, λ] such that for all 0 < p+ < p∗ there exists

δ∗ = δ∗(p+, p−) ∈ (0, λ
p+ ], such that for all δ ∈ (0, δ∗), the solution U(t) = exp(−AP,δt)U0 of (1.5)

satisfies for some Cn > 0,

E(U(t)) ≤ Cn

tn

n∑
i=0

E(U (i)(0)) ∀t > 0, U0 ∈ D(An
P,δ).

Besides, if U0 ∈ H, then E(U(t)) converges to zero as t goes to infinity.
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(ii) Suppose moreover either

‖Pv‖2
H ≤ p+(Pv, v)H and (Bv, v)H ≤ b+

p−
(Pv, v)H , ∀v ∈ H, (2.10)

or

there exists b− > 0 such that (Pv, v)H ≤ p+

b−
(Bv, v)H , ∀v ∈ H. (2.11)

Then the result holds for δ∗ = λ
p+ .

Remark 2.5. In case (ii) of Theorem 2.4, the conclusion is much stronger than in case (i). As one sees in the
proof below, δ∗ is very small in case (i), whereas in case (ii), the result holds for a large panel of δ, including
the interval (0, 1]. More precisely, the constants p∗ and δ∗ are explicit, that is,

• p∗ = min
{

1
2γ2

, λ
}

and δ∗ = δ∗(p+, p−) = min
{

λ
2β2(p+)2p− ,

λp−

2β1(p+)2 ,
λ

p+

}
in (i);

• p∗ = min
{

1
2β1

, λ
}

and δ∗ = λ
p+ in the first case of (ii);

• p∗ = min
{

1
2β1

, 1
2β2

, λ
}

and δ∗ = λ
p+ in the second case of (ii).

Note that the question whether our stability result can be extended to δ = 1 (i.e. for the symmetric coupled
system) in case (i) remains open.

In this case, we are moreover able to give a simple characterization of the space D(An
P,δ), in terms of the

spaces D(An), which is useful in the applications. More precisely, setting Hn = (D(A
n+1

2 ))2 × (D(A
n
2 ))2 ⊂ H,

we prove the following lemma, inspired by [1], Lemma 3.1.

Lemma 2.6. Suppose that for every 0 < k ≤ n− 1 (no assumption if n = 1), we have

PD(A
k+1
2 ) ⊂ D(A

k
2 ), P ∗D(A

k+1
2 ) ⊂ D(A

k
2 ) and BD(A

k+1
2 ) ⊂ D(A

k
2 ). (2.12)

Then Hk = D(Ak
P,δ) for every 0 ≤ k ≤ n.

Proof. We proceed by induction on n ∈ N. In the case n = 1, there is no need of an additional assumption since
the operators B and P are bounded on H . Now, we assume that Hn−1 = D(An−1

P,δ ) and prove Hn = D(An
P,δ).

We have

D(An
P,δ) =

{
U ∈ D(An−1

P,δ ), AP,δU ∈ D(An
P,δ)

}
=

{
(u1, u2, v1, v2) ∈ (D(A

n
2 ))2 × (D(A

n−1
2 ))2,

(−v1,−v2, Au1 + δPu2 +Bv1, Au2 + P ∗u1) ∈ (D(A
n
2 ))2 × (D(A

n−1
2 ))2

}
,

when using the induction assumption D(An−1
P,δ ) = Hn−1. Now using assumption (2.12) for k = n − 1, we see

that having ⎧⎨
⎩

v1 ∈ D(A
n
2 ); v2 ∈ D(A

n
2 ),

Au1 + δPu2 +Bv1 ∈ D(A
n−1

2 ),
Au2 + P ∗u1 ∈ D(A

n−1
2 ),

is equivalent to having

v1 ∈ D(A
n
2 ); v2 ∈ D(A

n
2 ); Au1 ∈ D(A

n−1
2 ); Au2 ∈ D(A

n−1
2 ),

that is exactly (u1, u2, v1, v2) ∈ (D(A
n+1

2 ))2 × (D(A
n
2 ))2 = Hn. This gives D(An

P,δ) = Hn and concludes the
proof of the lemma. �
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2.2.2. The case B unbounded

Here, we replace assumption (A4b) by the following

(A4u)

{
〈Bu1, i(φ)〉V ′

1 ,V1
= 0 ∀φ ∈ V2, u1 ∈ V1, and

∃β > 0, ‖u1 − ΠV u1‖2
H ≤ β 〈Bu1, u1〉V ′

1 ,V1
∀u1 ∈ V1.

Assumption (A4u) implies that B satisfies a “weak” coercivity property (since the norm on the left hand side
of the second inequality in (A4u) is the weaker H-norm) in the subspace orthogonal to the closed subspace V2.
As will be seen in Section 4, this property is satisfied for all the systems under view (e.g. wave, plate. . . ). We
have the analogous of Theorem 2.4.

Theorem 2.7. Suppose (A1), (A2), (A3), (A4u). Then there exists p∗ ∈ (0, λ2] such that for all 0 < p+ < p∗
there exists δ∗ = δ∗(p+, p−) ∈ (0, λ1

p+ ], such that for all δ ∈ (0, δ∗), the solution U(t) = exp(−AP,δt)U0 of (1.5)
satisfies for some Cn > 0,

E(U(t)) ≤ Cn

tn

2n∑
i=0

E(U (i)(0)) ∀t > 0, U0 ∈ D(A2n
P,δ).

Besides, if U0 ∈ H, then E(U(t)) converges to zero as t goes to infinity.

Remark 2.8.
• As in Theorem 2.4, the constants p∗ and δ∗ here are explicit, that is p∗ = min

{
1

2γ2
, λ2

}
and δ∗ =

δ∗(p+, p−) = min
{

λ1
2β2(p+)2p− ,

λ2p−

2β1(p+)2 ,
λ1
p+

}
.

• Note the difference between the conclusions of Theorems 2.4 and 2.7. For U0 ∈ D(A2n
P,δ), Theorem 2.4

gives a decay rate of the form C/t2n, whereas Theorem 2.7 only gives a decay rate of the form C/tn.
This comes from the unbounded nature of the operator B (in the applications below, the boundary
stabilization).

• Note also that item (ii) of Theorem 2.4 has no counterpart here since P and B are not of the same
nature.

3. Proof of the main results, Theorems 2.4 and 2.7

3.1. The stability lemma

In the sequel, to prove polynomial stability, we shall use the following lemma, which proof can be found
in [1–3].

Lemma 3.1. Let U(t) = exp(−tA)U(0) a strongly continuous semigroup generated by (A,D(A)). Suppose
that t �→ E(U(t)) is a nonincreasing, locally absolutely continuous function from [0,+∞) to [0,+∞). Assume
moreover that there exists k ∈ N

∗ and ci > 0, i = 0, . . . , k such that

∫ T

S

E(U(t))dt ≤
k∑

i=0

ciE(U (i)(t)) ∀0 ≤ S ≤ T, ∀U(0) ∈ D(Ak). (3.1)

Then, for every n ∈ N, there exists Cn > 0 such that

E(U(t))dt ≤ Cn

tn

kn∑
i=0

E(U (i)(t)) ∀t > 0, ∀U(0) ∈ D(Akn).

Besides, if U(0) ∈ H, then E(U(t)) converges to zero as t goes to infinity.
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To prove the stability results Theorems 2.4 and 2.7, we only have to perform energy estimates of the type (3.1).
For this we shall use the dissipation relation (2.8), that yields, for all 0 ≤ S ≤ T ,

∫ T

S

〈Bu′1, u′1〉V ′,V dt ≤ E(U(S)) − E(U(T )) ≤ E(U(S)). (3.2)

3.2. Proof of Theorem 2.4, the case B bounded

The link between u1 and u2 in the following estimates is given by the following coupling relation.

Lemma 3.2. Assume (A4b) and (2.9). Then, for all U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ H, the solution U(t) = exp(−tAP,δ)

U0 = (u1, u2, v1, v2) of (1.5) satisfies for some C = C(δ, p+) > 0

δ

∫ T

S

(Pu2, u2)Hdt ≤
∫ T

S

(Pu1, u1)Hdt+ ε

∫ T

S

(Bu2, u2)Hdt+ C

(
1 +

1
ε

)
E(U(S)) (3.3)

for all ε > 0 and 0 ≤ S ≤ T .

Proof. Assume first that U0 ∈ D(AP,δ). In this case, the solution U(t) = exp(−tAP,δ)U0 = (u1, u2, v1, v2)
of (1.5) is in C0([0,+∞);D(AP,δ) ∩ C1([0,+∞);H). Hence U = (u1, u2, v1, v2) satisfies⎧⎨

⎩
v1 = u′1, v2 = u′2,
u′′1 +Au1 +Bu′1 + δPu2 = 0 in H,
u′′2 +Au2 + P ∗u1 = 0 in H.

As a consequence, we have ∀0 ≤ S ≤ T ,∫ T

S

(u′′1 +Au1 +Bu′1 + δPu2, u2)H − (u′′2 +Au2 + P ∗u1, u1)Hdt = 0. (3.4)

We first notice that (Au1, u2)H − (Au2, u1)H = 0 since A is selfadjoint, and∣∣∣∣∣
∫ T

S

(u′′1 , u2)H − (u′′2 , u1)Hdt

∣∣∣∣∣ =
∣∣∣[(u′1, u2)H − (u′2, u1)H ]TS

∣∣∣
≤ 1

2

∑
j=1,2

(‖u′j(S)‖2
H + ‖u′j(T )‖2

H + ‖uj(S)‖2
H + ‖uj(T )‖2

H

)
.

From (2.6) and (2.9), each of the terms here is bounded by the energy, i.e., for j = 1, 2,

‖u′j(S)‖2
H + ‖uj(S)‖2

H ≤ CE(U(S)) and ‖u′j(T )‖2
H + ‖uj(T )‖2

H ≤ CE(U(T )),

where C = C(δ, p+). Since the energy is decaying and T ≥ S, we have E(U(T )) ≤ E(U(S)), so that∣∣∣∣∣
∫ T

S

(u′′1 , u2)H − (u′′2 , u1)Hdt

∣∣∣∣∣ ≤ CE(U(S)).

Now, (3.4) becomes

δ

∫ T

S

(Pu2, u2)Hdt ≤
∫ T

S

(Pu1, u1)Hdt+

∣∣∣∣∣
∫ T

S

(Bu′1, u2)Hdt

∣∣∣∣∣+ CE(U(S))

≤
∫ T

S

(Pu1, u1)Hdt+
C

ε

∫ T

S

(Bu′1, u
′
1)Hdt+ ε

∫ T

S

(Bu2, u2)Hdt+ CE(U(S)), (3.5)
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for all ε > 0, since B is selfadjoint on H . From (3.2), we have
∫ T

S

(Bu′1, u
′
1)Hdt ≤ CE(U(S)), and (3.5) yields

δ

∫ T

S

(Pu2, u2)Hdt ≤
∫ T

S

(Pu1, u1)Hdt+ ε

∫ T

S

(Bu2, u2)Hdt+ C

(
1 +

1
ε

)
E(U(S)) (3.6)

for all ε > 0 and 0 ≤ S ≤ T . By a density argument, we deduce that (3.6) holds for every U0 ∈ H. �

We can now prove Theorem 2.4.

Proof of Theorem 2.4. We first prove assertion (i). Assume that U0 ∈ D(AP,δ), then, the solution U of (1.5) is
in C0([0,+∞);D(AP,δ)) ∩ C1([0,+∞);H) (see Prop. 2.2). We denote by ej(t) = 1/2

(‖u′j‖2
H + ‖uj‖2

V

)
, j = 1, 2,

the partial energies. The regularity of U(t) gives in particular Pu2 ∈ C1([0,+∞);H) and P ∗u1 ∈ C1([0,+∞);H),
so that assumptions (A2) and (A3) yield

∫ T

S

e1(t) dt ≤ CE(U(S)) + β1

∫ T

S

‖δPu2(t)‖2
H dt+ γ1

∫ T

S

〈Bu′1, u′1〉V ′,V dt, (3.7)

∫ T

S

e2(t) dt ≤ CE(U(S)) + β2

∫ T

S

‖P ∗u1(t)‖2
H dt+ γ2

∫ T

S

‖ΠPu
′
2(t)‖2

Hdt, (3.8)

since ej(t) ≤ CE(U(t)) ≤ CE(U(S)) for t ≥ S. From (3.2), we have
∫ T

S
〈Bu′1, u′1〉V ′,V dt ≤ E(U(S)), so

that (3.7) yields ∫ T

S

e1(t) dt ≤ CE(U(S)) + β1δ
2(p+)2

∫ T

S

‖u2(t)‖2
H dt. (3.9)

On the other side, assumption (A1) and the coupling relation (3.3) of Lemma 3.2, applied to U ′ ∈ C0([0,+∞);H)
give, for all ε > 0,

δp−
∫ T

S

‖ΠPu
′
2‖2

Hdt ≤ δ

∫ T

S

(Pu′2, u
′
2)Hdt ≤ p+

∫ T

S

‖u′1‖2
Hdt+ εb+

∫ T

S

‖u′2‖2
Hdt+ CεE(U ′(S)). (3.10)

Replacing (3.10) in (3.8), we obtain

δp−
∫ T

S

e2(t) dt ≤ CE(U(S)) + β2δp
−(p+)2

∫ T

S

‖u1‖2
H dt

+ γ2p
+

∫ T

S

‖u′1‖2
Hdt+ εγ2b

+

∫ T

S

‖u′2‖2
Hdt+ CεE(U ′(S)). (3.11)

Then, recalling that for all v ∈ V , ‖v‖2
H ≤ 1/λ‖v‖2

V , and adding (3.9) and (3.11), we obtain, for all ε > 0,

(
1
2
− γ2p

+

)∫ T

S

‖u′1‖2
Hdt+

(
1
2
− β2δ(p+)2p−

λ

)∫ T

S

‖u1‖2
V dt+

(
δp−

2
− εγ2b

+

)∫ T

S

‖u′2‖2
Hdt

+
(
δp−

2
− β1δ

2(p+)2

λ

)∫ T

S

‖u2‖2
V dt ≤ CE(U(S)) + CεE(U ′(S)). (3.12)
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We now set p∗ = min
{

1
2γ2

, λ
}
> 0 and δ∗ = δ∗(p+, p−) = min

{
λ

2β2(p+)2p− ,
λp−

2β1(p+)2 ,
λ

p+

}
> 0. Then for all

p+ ∈ (0, p∗) and δ ∈ (0, δ∗), one can choose 0 < ε < δp−

2b+ , so that the following bound on the energy holds

∫ T

S

E(U(t))dt ≤ C(δ, p+)
∫ T

S

(‖u′1(t)‖2
H + ‖u1(t)‖2

V dt+ ‖u′2(t)‖2
H + ‖u2(t)‖2

V

)
dt

≤ C(δ, p+, p−) (E(U(S)) + E(U ′(S))) , ∀0 ≤ S ≤ T, ∀U0 ∈ D(AP,δ),

from (3.12) and the choice of p∗ and δ∗. Using now Lemma 3.1, we obtain

E(U(t)) ≤ Cn

tn

n∑
i=0

E(U (i)(0)) ∀t > 0, ∀U0 ∈ D(An
P,δ),

and (i) is proved.
We now prove the first case of (ii) and suppose (2.10). Thanks to this assumption, the coupling relation (3.3)

of Lemma 3.2, applied to U ∈ C1([0,+∞);H) gives for all ε > 0

δ

∫ T

S

(Pu2, u2)Hdt ≤
∫ T

S

(Pu1, u1)Hdt+
εb+

p−

∫ T

S

(Pu2, u2)Hdt+ CεE(U(S)).

This and assumption (2.10) yield for all 0 < ε < p−δ
b+∫ T

S

‖Pu2‖2
Hdt ≤ p+

∫ T

S

(Pu2, u2)Hdt ≤ (p+)2

δ − εb+/p−

∫ T

S

‖u1‖2
Hdt+ CεE(U(S)),

so that (3.7) gives, for all 0 < ε < p−δ
b+ ,

∫ T

S

e1(t)dt ≤ β1δ
2(p+)2

δ − εb+/p−

∫ T

S

‖u1‖2
Hdt+ CεE(U(S)).

Now we set ε = (1 − η)p−δ
b+ and we obtain, for all η ∈ (0, 1),

1
2

∫ T

S

‖u′1‖2
Hdt+

(
1
2
− β1δ(p+)2

ηλ

)∫ T

S

‖u1‖2
V dt ≤ CηE(U(S)). (3.13)

Choosing p∗ = min
{

1
2β1

, λ
}
, we have for every p+ < p∗,

(p+)2 <
λ

2β1δ
, (3.14)

since δ is chosen such that 0 < p+ < λ/δ. From (3.14), for all p+ ∈ (0, p∗) and δ ∈ (0, λ/p+), there exists
0 < η < 1, such that 2β1δ(p+)2

λ < η and (3.13) implies the existence of C = C(δ, p+), such that

∫ T

S

e1(t)dt ≤ CE(U(S)). (3.15)

Besides, the coupling relation (3.3) of Lemma 3.2, applied to U ′ ∈ C0([0,+∞);H) implies in this case, for all
ε > 0,

δ

∫ T

S

(Pu′2, u
′
2)Hdt ≤

∫ T

S

(Pu′1, u
′
1)Hdt+

εb+

p−

∫ T

S

(Pu′2, u
′
2)Hdt+ CεE(U ′(S)).
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Proceeding as above, we obtain for all 0 < ε < p−δ/b+,

p−
(
δ − εb+

p−

)∫ T

S

‖ΠPu
′
2‖2

Hdt ≤ p+

∫ T

S

‖u′1‖2
Hdt+ CεE(U ′(S)). (3.16)

Fixing ε ∈ (0, p−δ/b+) and replacing (3.16) in (3.8), we obtain for some C = C(δ, b+, p−, p+),

∫ T

S

e2(t) dt ≤ CE(U(S)) + β2(p+)2
∫ T

S

‖u1‖2
H dt+ C

∫ T

S

‖u′1‖2
Hdt+ CE(U ′(S))

≤ C

∫ T

S

e1(t)dt + CE(U(S)) + CE(U ′(S)).

Estimate (3.15) on e1 gives ∫ T

S

e2(t) ≤ CE(U(S)) + CE(U ′(S)),

so that the following bound on the energy holds

∫ T

S

E(U(t))dt ≤ C(δ, p+)
∫ T

S

(‖u′1(t)‖2
H + ‖u1(t)‖2

V dt+ ‖u′2(t)‖2
H + ‖u2(t)‖2

V

)
dt

≤ C(δ, p+, p−)
(
E(U(S)) +E(U ′(S))

)
, ∀0 ≤ S ≤ T, ∀U0 ∈ D(AP,δ).

We conclude the proof of the first part of (ii) as in case (i) with Lemma 3.1.
To conclude the proof of (ii), suppose now assumption (2.11), i.e., there exists b− > 0 such that (Pv, v)H ≤

p+/b−(Bv, v)H , for all v ∈ H . In this case, the coupling relation (3.3) of Lemma 3.2, applied to U ′ ∈
C0([0,+∞);H) gives

δp−
∫ T

S

‖ΠPu
′
2‖2

Hdt ≤ δ

∫ T

S

(Pu′2, u
′
2)Hdt ≤ p+

b−

∫ T

S

(Bu′1, u
′
1)Hdt+ εb+

∫ T

S

‖u′2‖2
Hdt+ CεE(U ′(S)). (3.17)

We recall that
∫ T

S
(Bu′1, u

′
1)Hdt ≤ E(U(S)). Replacing (3.17) in (3.8), we obtain

δ

∫ T

S

e2(t) dt ≤ CE(U(S)) + β2δ(p+)2
∫ T

S

‖u1‖2
H dt+

εb+γ2

p−

∫ T

S

‖u′2‖2
Hdt+ CεE(U ′(S)), (3.18)

which, summed with (3.9), yields

1
2

∫ T

S

‖u′1‖2
Hdt+

(
1
2
− β2δ(p+)2

λ

)∫ T

S

‖u1‖2
V dt+

(
δ

2
− εb+γ2

p−

)∫ T

S

‖u′2‖2
Hdt

+
(
δ

2
− β1δ

2(p+)2

λ

)∫ T

S

‖u2‖2
V dt ≤ CE(U(S)) + CεE(U ′(S)). (3.19)

Now, setting p∗ = min
{

1
2β1

, 1
2β2

, λ
}

, we have for every p+ < p∗

(p+)2 < min
{

λ

2δβ1
;
λ

2δβ2

}
, (3.20)
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since δ is chosen such that 0 < p+ < λ/δ. From (3.20), for all p+ ∈ (0, p∗) and δ ∈ (0, λ/p+), one can choose
0 < ε < δp−

2b+γ2
, so that the following bound on the energy holds

∫ T

S

E(U(t))dt ≤ C(δ, p+)
∫ T

S

(‖u′1(t)‖2
H + ‖u1(t)‖2

V dt+ ‖u′2(t)‖2
H + ‖u2(t)‖2

V

)
dt

≤ C(δ, p+, p−)
(
E(U(S)) +E(U ′(S))

)
, ∀0 ≤ S ≤ T, ∀U0 ∈ D(AP,δ).

We conclude the proof of the last part of (ii) as before with Lemma 3.1. This ends the proof of Theorem 2.4 �

3.3. Proof of Theorem 2.7, the case B unbounded

We first state the analogous of Lemma 3.2, that provides a coupling relation between u1 and u2.

Lemma 3.3. Assume (A4u) and (2.7). Then, for all U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D(AP,δ), the solution U(t) =

exp(−tAP,δ)U0 = (u1, u2, v1, v2) of (1.5) satisfies for some C = C(δ, p+) > 0

δ

∫ T

S

(Pu2, u2)Hdt ≤
∫ T

S

(P ∗u1,ΠV u1)Hdt+ ε

∫ T

S

‖u2‖2
Hdt+

C

ε
E(U ′(S)) + CE(U(S)) (3.21)

for all ε > 0 and 0 ≤ S ≤ T .

Remark 3.4. The main difference with the bounded case (Lem. 3.2) is that here, the energy of the derivative
of U is needed in the coupling relation.

Proof. Assume first that U0 ∈ D(A2
P,δ). In this case, the solution U(t) = exp(−tAP,δ)U0 = (u1, u2, v1, v2)

of (1.5) is in C0([0,+∞);D(A2
P,δ)) ∩ C1([0,+∞);D(AP,δ)) ∩ C2([0,+∞);H). Hence U = (u1, u2, v1, v2) satisfies

⎧⎨
⎩

v1 = u′1, v2 = u′2,
u′′1 +A1u1 +Bu′1 + δPu2 = 0 in H,
u′′2 +A2u2 + P ∗u1 = 0 in H.

As a consequence, we have ∀0 ≤ S ≤ T ,

∫ T

S

(u′′1 +A1u1 +Bu′1 + δPu2, u2)H − (u′′2 +A2u2 + P ∗u1,ΠV u1)Hdt = 0,

i.e., K1 +K2 +K3 = 0, with

K1 =
∫ T

S

(u′′1 , u2)H − (u′′2 ,ΠV u1)Hdt,

K2 =
∫ T

S

(A1u1 +Bu′1, u2)H − (A2u2,ΠV u1)Hdt,

K3 =
∫ T

S

δ(Pu2, u2)H − (P ∗u1,ΠV u1)Hdt.

We first consider K1. Since U0 is taken in D(A2
P,δ), ui ∈ C2([0,+∞);Vi) for i = 1, 2. Hence, (ΠV u1)′′ =

ΠV (u′′1) and

K1 =
∫ T

S

(u′′1 − ΠV u
′′
1 , u2)Hdt+ [(ΠV u

′
1, u2)H − (ΠV u1, u

′
2)H ]TS .
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As a consequence, for all ε > 0,

|K1| ≤ C

ε

∫ T

S

‖u′′1 −ΠV u
′′
1‖2

H + ε

∫ T

S

‖u2‖2
Hdt+

∑
j=1,2

(‖u′j(S)‖2
H + ‖u′j(T )‖2

H + ‖uj(S)‖2
H + ‖uj(T )‖2

H

)
. (3.22)

From (2.6) and (2.7), each of the terms of the sum is bounded by the energy, i.e., for j = 1, 2,

‖u′j(S)‖2
H + ‖uj(S)‖2

H ≤ CE(U(S)) and ‖u′j(T )‖2
H + ‖uj(T )‖2

H ≤ CE(U(T )) ≤ CE(U(S)),

since the energy is decaying and T ≥ S. Replacing this in (3.22), and using assumption (A4u), we obtain, for
all ε > 0,

|K1| ≤ C

ε

∫ T

S

β 〈Bu′′1 , u′′1〉V ′
1 ,V1

dt+ ε

∫ T

S

‖u2‖2
Hdt+ CE(U(S)).

On the other side, Proposition 2.2 gives E′(U(t)) = −〈Bu′1, u′1〉V ′
1 ,V1

for U0 ∈ D(AP,δ), so that we have
E′(U ′(t)) = −〈Bu′′1 , u′′1〉V ′

1 ,V1
for U0 ∈ D(A2

P,δ). Recalling that E(U(·)) and E(U ′(·)) are nonincreasing, we
obtain, for all ε > 0,

|K1| ≤ ε

∫ T

S

‖u2‖2
Hdt+

C

ε
E(U ′(S)) + CE(U(S)).

We now consider K2. From Assumption (A4u), we have,

(A1u1 +Bu′1, u2)H = 〈A1u1 +Bu′1, i(u2)〉V ′
1 ,V1

= 〈A1u1, i(u2)〉V ′
1 ,V1

,

since U0 ∈ D(A2
P,δ) yields u2 ∈ D(A2) ⊂ V2. The definition of ΠV also gives

〈A1u1, i(u2)〉V ′
1 ,V1

= 〈A1i(ΠV u1), i(u2)〉V ′
1 ,V1

= 〈A2ΠV u1, u2〉V ′
2 ,V2

= 〈A2u2,ΠV u1〉V ′
2 ,V2

.

Moreover, since u2 ∈ D(A2), we have 〈A2u2,ΠV u1〉V ′
2 ,V2

= (A2u2,ΠV u1)H , so that

(A1u1 +Bu′1, u2)H = (A2u2,ΠV u1)H ,

and K2 = 0.
Finally, replacing in ∫ T

S

δ(Pu2, u2)Hdt =
∫ T

S

(P ∗u1,ΠV u1)Hdt−K1 −K2

the estimates on |K1| and K2, we have for all ε > 0,

∫ T

S

δ(Pu2, u2)Hdt ≤
∫ T

S

(P ∗u1,ΠV u1)Hdt+ ε

∫ T

S

‖u2‖2
Hdt+

C

ε
E(U ′(S)) + CE(U(S)). (3.23)

This concludes the proof of the proposition for an initial datum U0 ∈ D(A2
P,δ). By a density argument, we

deduce that (3.23) holds for every U0 ∈ D(AP,δ). �

We can now prove Theorem 2.7. This proof follows the same steps as in the proof of Theorem 2.4 point (i).
We give it for the sake of completeness.

Proof of Theorem 2.7. Assume that U0 ∈ D(A2
P,δ), then, the solution U of (1.5) is in

C0([0,+∞);D(A2
P,δ)) ∩ C1([0,+∞);D(AP,δ)) ∩ C2([0,+∞);H)
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(see Prop. 2.2). We recall the notation ej(t) = 1/2
(
‖u′j‖2

H + ‖uj‖2
Vj

)
, j = 1, 2. The regularity of U(t) gives in

particular Pu2 ∈ C1([0,+∞);H) and P ∗u1 ∈ C1([0,+∞);H), so that Assumptions (A2) and (A3) yield

∫ T

S

e1(t) dt ≤ CE(U(S)) + β1

∫ T

S

‖δPu2(t)‖2
H dt+ γ1

∫ T

S

〈Bu′1, u′1〉V ′
1 ,V1

dt, (3.24)

∫ T

S

e2(t) dt ≤ CE(U(S)) + β2

∫ T

S

‖P ∗u1(t)‖2
H dt+ γ2

∫ T

S

‖ΠPu
′
2(t)‖2

Hdt. (3.25)

From (3.2), we have
∫ T

S
〈Bu′1, u′1〉V ′

1 ,V1
dt ≤ E(U(S)), so that (3.24) yields

∫ T

S

e1(t) dt ≤ CE(U(S)) + β1δ
2(p+)2

∫ T

S

‖u2(t)‖2
H dt. (3.26)

On the other side, Assumption (A1) and the coupling relation (3.21) of Lemma 3.3, applied to U ′ ∈ C0([0,+∞);
D(AP,δ)) give, for all ε > 0,

δp−
∫ T

S

‖ΠPu
′
2‖2

Hdt ≤ δ

∫ T

S

(Pu′2, u
′
2)Hdt

≤ p+

∫ T

S

‖u′1‖2
Hdt+ ε

∫ T

S

‖u′2‖2
Hdt+ CεE(U ′′(S)) + CE(U ′(S)).

(3.27)

Replacing (3.27) in (3.25), we obtain

δp−
∫ T

S

e2(t) dt ≤ CE(U(S)) + CE(U ′(S)) + β2δp
−(p+)2

∫ T

S

‖u1(t)‖2
H dt

+ γ2p
+

∫ T

S

‖u′1‖2
Hdt+ εγ2

∫ T

S

‖u′2‖Hdt+ CεE(U ′′(S)). (3.28)

Then, recalling that for all v ∈ Vj , ‖v‖2
H ≤ 1/λj‖v‖2

Vj
, j = 1, 2, and adding (3.26) and (3.28), we obtain, for all

ε > 0,

(
1
2
− γ2p

+

)∫ T

S

‖u′1‖2
Hdt+

(
1
2
− β2δ(p+)2p−

λ1

)∫ T

S

‖u1‖2
V1

dt+
(
δp−

2
− εγ2

)∫ T

S

‖u′2‖2
Hdt

+
(
δp−

2
− β1δ

2(p+)2

λ2

)∫ T

S

‖u2‖2
V2

dt ≤ CE(U(S)) + CE(U ′(S)) + CεE(U ′′(S)). (3.29)

We now set p∗ = min
{

1
2γ2

, λ2

}
> 0 and δ∗ = δ∗(p+, p−) = min

{
λ1

2β2(p+)2p− ,
λ2p−

2β1(p+)2 ,
λ1
p+

}
> 0. Then for all

p+ ∈ (0, p∗) and δ ∈ (0, δ∗), one can choose 0 < ε < δp−

2γ2
, so that the following bound on the energy holds for

all 0 ≤ S ≤ T and U0 ∈ D(A2
P,δ),

∫ T

S

E(U(t))dt ≤ C(δ, p+)
∫ T

S

(‖u′1(t)‖2
H + ‖u1(t)‖2

V dt+ ‖u′2(t)‖2
H + ‖u2(t)‖2

V

)
dt

≤ C(δ, p+, p−)
(
E(U(S)) +E(U ′(S)) + E(U ′′(S))

)
,
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from (3.29) and the choice of p∗ and δ∗. Using now Lemma 3.1, we obtain

E(U(t)) ≤ Cn

tn

2n∑
i=0

E(U (i)(0)) ∀t > 0, ∀U0 ∈ D(A2n
P,δ),

and Theorem 2.7 is proved. �

4. Applications

We now apply the results of Theorems 2.4 and 2.7 to different second order coupled systems. In each of the
following sections, we first explain how the problem can be formulated in the abstract setting of Section 2.1.
All these systems are well-posed in the spaces we choose, according to Proposition 2.2. Hence, we only have to
check that assumptions (A1)–(A4) hold in order to apply Theorem 2.4 or Theorem 2.7 and obtain the expected
stability results. This strategy shall be followed in Section 4.1 to address internal stabilization of coupled wave
equations, in Section 4.2 to address boundary stabilization of coupled wave equations, and in Section 4.3 to
address internal stabilization of coupled plate equations. For the sake of brevity, we do not treat the case of
boundary stabilization of coupled plate equations. However, one can prove as well that Theorem 2.7 can be
applied in this case.

4.1. Internal stabilization of locally coupled wave equations

Here, we prove Theorem 1.2 in the context presented in the introduction. We recall that Ω ⊂ R
N , Γ = ∂Ω

is of class C2, and consider the evolution problem (1.3). We take H = L2(Ω), V = H1
0 (Ω) with the usual inner

products and norms. We moreover take for B and P respectively the multiplication in L2 by the functions
b, p ∈ L∞(Ω), satisfying ⎧⎨

⎩
0 ≤ b ≤ b+ and 0 ≤ p ≤ p+ on Ω,
b ≥ b− > 0 on ωb,
p ≥ p− > 0 on ωp,

for ωb and ωp two open subsets of Ω, satisfying the PMGC. As a consequence, assumption (A4b) is satisfied and
assumption (A1) is fulfilled taking for ΠP the multiplication by �ωp . It only remains to check assumptions (A2)
and (A3), that are consequences of the following lemma.

Lemma 4.1. Let ω be a subset of Ω satisfying the PMGC. Then, there exist α, β, γ > 0 such that for all
f ∈ C1(R+;L2(Ω)) and all 0 ≤ S ≤ T , the solution u of

⎧⎨
⎩

u′′ − Δu = f in (0,+∞) × Ω,
u = 0 on (0,+∞) × Γ,
(u, u′)(0, ·) = (u0(·), u1(·)) ∈ H1

0 (Ω) × L2(Ω),
(4.1)

satisfies, with e(t) = 1/2
(
‖u′‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
, the inequality

∫ T

S

e(t) dt ≤ α(e(S) + e(T )) + β

∫ T

S

‖f(t)‖2
L2(Ω) dt+ γ

∫ T

S

‖�ωu
′(t)‖2

L2(Ω)dt. (4.2)

This lemma direcly yields (A2), since ωp is supposed to satisfy the PMGC. To prove (A3), we note that the
solution u of (4.1) is C1(R+;L2(Ω)) and apply the lemma to u = u1, ω = ωb and f = f1 − bu′1 ∈ C1(R+;L2(Ω)).
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This yields

∫ T

S

e1(t) dt ≤ α(e1(S) + e1(T )) + β

∫ T

S

‖f1(t) − bu′1(t)‖2
L2(Ω) dt+ γ

∫ T

S

‖�ωb
u′1(t)‖2

L2(Ω)dt

≤ α(e1(S) + e1(T )) + 2β
∫ T

S

‖f1(t)‖2
L2(Ω) +

(
2β +

γ

(b−)2

)∫ T

S

‖bu′1(t)‖2
L2(Ω)dt,

which is (A3) with β1 = 2β and γ1 =
(
2β + γ

(b−)2

)
.

Now applying Theorem 2.4, we have proved the following theorem.

Theorem 4.2.
(i) Suppose that ωb and ωp satisfy the PMGC. Then there exists p∗ ∈ (0, λ] such that for all 0 < p+ < p∗

there exists δ∗ = δ∗(p+, p−) ∈ (0, λ
p+ ], such that for all δ ∈ (0, δ∗), the solution U = (u1, u2, u

′
1, u

′
2)

of (1.3) satisfies for n ∈ N, for some Cn > 0,

E(U(t)) ≤ Cn

tn

n∑
i=0

E(U (i)(0)) ∀t > 0, U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D(An

P,δ),

where D(An
P,δ) is defined in (2.4). Besides, if U0 ∈ H = (H1

0 )2 × (L2)2, then E(U(t)) converges to zero
as t goes to infinity.

(ii) If moreover either ωb ⊂ ωp or ωp ⊂ ωb, then the result holds for δ∗ = λ
p+ .

Theorem 1.2 is now a corollary of Theorem 4.2 in the case of smooth coefficients since Lemma 2.6 allows us
to explicit the spaces D(An

P,δ).

Proof of Lemma 4.1. We here prove the energy estimate (4.2) for the solutions of (4.1), using the piecewise
multiplier method. We proceed as in [6,28]. The subset ω satisfies the PMGC. Hence, denoting by Ωj and

xj , j = 1 . . . J the sets and the points given by the PMGC, we have ω ⊃ Nε

(⋃
j γj(xj) ∪ (Ω \⋃j Ωj)

)
∩ Ω.

In this expression, Nε(O) =
{
x ∈ R

N , d(x,O) ≤ ε
}

with d(·,O) the usual euclidian distance to the subset O
of R

N , and γj(xj) = {x ∈ Γj , (x− xj) · νj(x) > 0}, where νj denotes the outward unit normal to Γj = ∂Ωj . Let
ε0 < ε1 < ε2 < ε and define

Qi = Nεi

⎛
⎝⋃

j

γj(xj) ∪
(

Ω \
⋃
j

Ωj

)⎞
⎠, i = 0, 1, 2.

Since (Ωj \Q1) ∩Q0 = ∅, we can construct a function ψj ∈ C∞
0 (RN ) which satisfies

0 ≤ ψj ≤ 1, ψj = 1 on Ωj \Q1, ψj = 0 on Q0.

For mj(x) = x− xj , we define the C1 vector field on Ω:

h(x) =
{
ψj(x)mj(x) if x ∈ Ωj ,
0 if x ∈ Ω \ ∪jΩj .

Multiplying (4.1) by the multiplier h · ∇u and integrating on (S, T ) × Ωj , we obtain

∫ T

S

∫
Ωj

h(x) · ∇u(u′′ − Δu − f) dxdt = 0.
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For the sake of concision, we will omit the dxdt in the following integrals. This gives, after integration by parts

∫ T

S

∫
Γj

(
∂νjuh · ∇u+

1
2
(h · ν)(u′2 − |∇u|2)

)
=

[∫
Ωj

u′h · ∇u
]T

S

+
∫ T

S

∫
Ωj

⎛
⎝1

2
div h (u′2 − |∇u|2) +

∑
i,k

∂hk

∂xi

∂u

∂xi

∂u

∂xk
− fh · ∇u

⎞
⎠. (4.3)

Thanks to the choice of ψj , only the boundary term on (Γj \ γj(xj)) ∩ Γ is nonvanishing in the left hand side
of (4.3). But on this part of the boundary u = 0, so that u′ = 0 and ∇u = ∂νu ν = ∂νju νj. Hence, the left
hand side of (4.3) reduces to

1
2

∫ T

S

∫
(Γj\γj(xj))∩Γ

(∂νju)2ψj(mj · νj) ≤ 0.

Therefore, since ψj = 0 on Q0 and thanks to the above inequality used in (4.3), we deduce that

[∫
Ωj

u′h · ∇u
]T

S

+
∫ T

S

∫
Ωj\Q0

(1
2

div h (u′2 − |∇u|2) +
∑
i,k

∂hk

∂xi

∂u

∂xi

∂u

∂xk
− fh · ∇u

)
≤ 0.

Using ψj = 1 on Ωj −Q1 and summing the resulting inequalities on j, we obtain

[∫
Ω

u′h · ∇u
]T

S

+
∫ T

S

∫
Ω\Q1

1
2

(Nu′2 + (2 −N)|∇u|2) −
∫ T

S

∫
Ω

fh · ∇u

≤ −
∑

j

∫ T

S

⎡
⎣∫

Ωj∩Q1

1
2

div(ψjmj) (u′2 − |∇u|2) +
∑
i,k

∂hk

∂xi

∂u

∂xi

∂u

∂xk

⎤
⎦

≤ C

∫ T

S

∫
Ω∩Q1

(u′2 + |∇u|2), (4.4)

where C is a positive constant which depends only on ψj and mj . We now use the second multiplier u(N −1)/2
and therefore evaluate the term

N − 1
2

∫ T

S

∫
Ω

u(u′′ − Δu − f) = 0.

Hence, one has
N − 1

2

[∫
Ω

uu′
]T

S

+
N − 1

2

∫ T

S

∫
Ω

|∇u|2 − u′2 − uf) = 0. (4.5)

We set M(u) = h · ∇u+ N−1
2 u. Adding (4.5) to (4.4), we obtain

∫ T

S

e(t) dt ≤ C

∫ T

S

∫
Ω∩Q1

|∇u|2 + C

∫ T

S

∫
Ω∩Q1

u′2 −
[∫

Ω

M(u)u′
]T

S

+
∫ T

S

∫
Ω

M(u)f. (4.6)

We now estimate the terms on the right hand side of (4.6) as follows. First, we have
∣∣∣∣∣
[∫

Ω

M(u)u′
]T

S

∣∣∣∣∣ ≤ C(e(S) + e(T )). (4.7)
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Second, we estimate the last term of (4.6) as follows∣∣∣∣∣
∫ T

S

∫
Ω

M(u)f

∣∣∣∣∣ ≤ C

μ

∫ T

S

∫
Ω

|f |2 + μ

∫ T

S

e(t) dt ∀μ > 0. (4.8)

The difficulty is now to estimate the first term on the right hand side of (4.6). We just follow techniques
developed in [28]. We give the steps for the sake of completeness. First, we dominate the integral of |∇u|2
in (4.6) by the integral of u2 and u′2, localized inside the region of observation. Second, in (4.10) below, we
bound the integral of u2 in terms of the integral of u′2 in the same region. Since RN \Q2 ∩Q1 = ∅, there exists
a function ξ ∈ C∞

0 (RN ) such that

0 ≤ ξ ≤ 1, ξ = 1 on Q1, ξ = 0 on R
N \Q2.

Multiplying (4.1) by ξu and integrating on [S, T ] × Ω, we obtain after integrations by parts

∫ T

S

∫
Ω

ξ|∇u|2 =
∫ T

S

∫
Ω

(
ξ|u′|2 +

1
2
Δξu2

)
−
[∫

Ω

ξuu′
]T

S

+
∫ T

S

∫
Ω

ξuf.

We thus have ∫ T

S

∫
Ω∩Q1

|∇u|2 ≤ C

∫ T

S

∫
Ω∩Q2

(|u′|2 + u2 + |f |2)+ C(e(S) + e(T )).

Since RN \ ω ∩Q2 = ∅, there exists a function β ∈ C∞
0 (RN ) such that

0 ≤ β ≤ 1, β = 1 on Q2, β = 0 on R
N \ ω.

Proceeding as in [15], we fix t and consider the solution z of the following elliptic problem

{
Δz = β(x)u in Ω,
z = 0 on Γ.

Hence, z and z′ satisfy the following estimates

‖z‖L2(Ω) ≤ C‖u‖L2(Ω), and ‖z′‖2
L2(Ω) ≤ C

∫
Ω

β|u′|2. (4.9)

Multiplying (4.1) by z and integrating on [S, T ]× Ω, we obtain after integrations by parts

∫ T

S

∫
Ω

βu2 =
[∫

Ω

zu′
]T

S

+
∫ T

S

∫
Ω

−z′u′ − zf.

Hence, using the estimates (4.9) in the above relation, we obtain for all η > 0

∫ T

S

∫
Ω∩Q2

|u|2 ≤ C

η

∫ T

S

∫
ω

|u′|2 +
C

η

∫ T

S

∫
Ω

|f |2 + η

∫ T

S

e+ C(e(S) + e(T )). (4.10)

Combined with the estimates (4.7), (4.8) and (4.10) in (4.6), this gives for all μ > 0

∫ T

S

e ≤ C(e(S) + e(T )) + Cμ

∫ T

S

e+
C

μ

∫ T

S

[∫
ω

|u′|2 +
∫

Ω

|f |2
]
.
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Choosing μ sufficiently small, we finally have

∫ T

S

e ≤ C(e(S) + e(T )) + C

∫ T

S

[∫
ω

|u′|2 +
∫

Ω

|f |2
]
,

and the lemma is proved. �

4.2. Boundary stabilization of locally coupled wave equations

Here, we are interested in boundary stabilization. The results given generalize the ones of [2,3] where the
case of constant coupling has been considered. Given Ω ⊂ R

N and Γ = ∂Ω of class C2 we shall use the following
boundary multiplier geometric condition (BMGC).

Definition 4.3 (BMGC). Let {Σ1,Σ0} be a partition of Γ such that Σ1 ∩ Σ0 = ∅. We say that {Σ1,Σ0}
satisfies the BMGC if there exists x0 ∈ R

N such that m · ν ≤ 0 on Σ0 and m · ν ≥ m− > 0 on Σ1, where
m(x) = x− x0.

The most simple situation covered by this condition is the case where Ω is star-shaped with respect to x0.
In this case Σ0 = ∅ and Σ1 = Γ. Another interesting and somehow more general situation is the case where
Ω = Ω1 \ Ω2, with Ω2 and Ω1 two open subset of R

N , both star-shaped with respect to x0, and such that
Ω2 ⊂ Ω1. In this case, ∂Ω = ∂Ω1 ∪ ∂Ω2 with a disjoint union, Σ0 = ∂Ω2 and Σ1 = ∂Ω1 satisfy the BMGC.

For Γb ⊂ Γ, and Γ0 = Γ \ Γb, we consider the following coupled stabilization problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′1 − Δu1 + δpu2 = 0 in (0,+∞) × Ω,
u′′2 − Δu2 + pu1 = 0 in (0,+∞) × Ω,
∂u1
∂ν +m · ν(lu1 + bu′1) = 0 on (0,+∞) × Γb,
u1 = 0 on (0,+∞) × Γ0,
u2 = 0 on (0,+∞) × Γ,
uj(0, ·) = u0

j(·), u′j(0, ·) = u1
j(·), j = 1, 2 in Ω,

(4.11)

where l is a non-negative function on Γb. Note that we added m · ν, where m(x) = x − x0 in the stabilization
term to avoid some technical estimates. This term can be removed, provided that we do some more assumptions
on the functions b and l. Here we make the following assumptions on the coefficients b and p

{
0 ≤ b ≤ b+ on Γ, and b ≥ b− > 0 on Γb

0 ≤ p ≤ p+ on Ω, and p ≥ p− > 0 on ωp.

Moreover we set H1
Γ0

(Ω) = {u ∈ H1(Ω), u = 0 on Γ0}, and we shall assume for the sake of clarity that l �= 0
or meas(Γ0) �= 0. We take H = L2(Ω) and V1 = H1

Γ0
(Ω) equipped respectively with the L2 inner product

and the inner product (u, z)V1 =
∫
Ω ∇u · ∇z +

∫
Γb

(m · νluz) and the corresponding norms. Moreover we take
V2 = H1

0 (Ω) equipped with the inner product (u, z)V2 =
∫
Ω ∇u · ∇z and the associated norm. We define the

duality mappings A1 and A2 as in Section 2.1. We also define the continuous linear operator B from V1 to
V ′

1 by

〈Bu, z〉V ′
1 ,V1

=
∫

Γb

m · ν b u z dγ,

that satisfies (2.2). As in Section 4.2, we take for P the multiplication in L2 by the function p ∈ L∞. With
these notations, system (4.11) can be rewritten under the form (1.5).

Theorem 4.4. Suppose that ωp satisfies the PMGC and {Γb,Γ0} satisfies the BMGC. Then there exists p∗ ∈
(0, λ] such that for all 0 < p+ < p∗ there exists δ∗ = δ∗(p+, p−) ∈ (0, λ

p+ ], such that for all δ ∈ (0, δ∗), the
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solution U = (u1, u2, u
′
1, u

′
2) of (4.11) satisfies, for n ≥ 1, for some Cn > 0,

E(U(t)) ≤ Cn

tn

2n∑
i=0

E(U (i)(0)) ∀t > 0, ∀U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D(A2n

P,δ).

Besides, if U0 ∈ H = H1
Γ0

×H1
0 × (L2)2, then E(U(t)) converges to zero as t goes to infinity.

We recall that the operator AP,δ is defined in (2.4). As opposed to the results for internal damping, we do
not have here a simple expression of D(A2n

P,δ) in terms of Sobolev spaces.
To prove this theorem, we just need to check that the assumptions (A1)− (A4u) are satisfied and then apply

Theorem 2.7 in a convenient setting. First, assumption (A1) is satisfied with ΠP the multiplication by �ωp , and
assumption (A2) is a consequence of Lemma 4.5 as in Section 4.1, since the internal coupling is here the same.

We now check assumption (A4u) and follow the lines of [3]. For the sake of clarity, we identify i(φ) with
φ for φ ∈ V2 (where i is the canonical injection from V2 in V1). We first remark that the first equality in
assumption (A4u) is satisfied thanks to the definition of B and V2. We define ΠV and A2 as in Section 2.1.
Then, ΠV u1 is the weak solution of { −ΔΠV u1 = −Δu1 in Ω,

ΠV u1 ∈ V2,

and A2 is defined by

〈A2φ, ψ〉V ′
2 ,V2

=
∫

Ω

∇φ · ∇ψ dx, ∀ψ, φ ∈ V2.

We now check the second relation in (A4u). For this, we set z = u1 − ΠV u1, so that z is the weak solution of

{ −Δz = 0 in Ω,
z = u1, on Γ.

By elliptic regularity, we deduce that there exists a constant c > 0 such that ‖z‖H ≤ c‖u1|Γb
‖L2(Γb). Since we

assume the BMGC, m · ν b ≥ m−b− > 0 on Γb, there exists then β > 0 such that

‖z‖2
H ≤ β 〈Bu1, u1〉V ′

1 ,V1
∀u1 ∈ V1,

and (A4u) is satisfied.
The last assumption (A3) is a direct consequence of the following lemma. Theorem 4.4 follows then from

Theorem 2.7.

Lemma 4.5. Suppose that {Γb,Γ0} satisfies the BMGC. Then, there exist α, β, γ > 0 such that for all f ∈
C1(R+;L2(Ω)) and all 0 ≤ S ≤ T , the solution u of

⎧⎪⎪⎨
⎪⎪⎩

u′′ − Δu = f in (0,+∞) × Ω,
∂u
∂ν +m · ν(lu+ bu′) = 0 on (0,+∞) × Γb,
u = 0 on (0,+∞) × Γ0,
(u, u′)(0, ·) = (u0(·), u1(·)) ∈ H1

0 (Ω) × L2(Ω),

(4.12)

satisfies, with e(t) = 1/2
(
‖u′‖2

L2(Ω) + ‖∇u‖2
L2(Ω) +

∫
Γb
m · νlu2dγ

)
, the inequality

∫ T

S

e(t) dt ≤ α(e(S) + e(T )) + β

∫ T

S

‖f(t)‖2
L2(Ω) dt+ γ

∫ T

S

∫
Γb

m · νbu′2dxdt. (4.13)
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Proof. Proceeding as in [20], Theorem 8.6, we first use the multiplier Mu = m(x) · ∇u + (N−1)
2 u and set

R = sup{|m(x)|, x ∈ Ω}. Multiplying (4.12) by Mu, we obtain after integrations by parts

∫ T

S

e(t)dt =
∫ T

S

∫
Ω

f Mu−
[∫

Ω

u′Mu

]T

S

+
1
2

∫ T

S

∫
Γ0

m · ν
∣∣∣∣∂u∂ν

∣∣∣∣
2

dγdt

+
∫ T

S

∫
Γb

m · ν
(

1
2
u′2 − 1

2
|∇u|2 − (lu+ bu′)

(
m · ∇u+

N − 1
2

u

)
+ l

u2

2

)
·

Setting h =
u′2 − |∇u|2

2
+R|lu+ bu′||∇u| + |2 −N |l u

2

2
− buu′

(N − 1)
2

, this yields, for all η > 0,

∫ T

S

e(t)dt ≤ C(e(S) + e(T )) +
C

η

∫ T

S

∫
Ω

f2 + η

∫ T

S

e(t)dt+
∫ T

S

∫
Γb

m · νh. (4.14)

We now estimate the term h. Since b ≥ b− > 0 on Γb, we have for all ε > 0,

h ≤ C

(
1 +

1
ε

)
bu′2 + Clu2 + εu2. (4.15)

Concerning the last term, in this equation, we have the trace inequality

ε

∫ T

S

∫
Γb

m · νu2 ≤ Cε

∫ T

S

(∫
Ω

|∇u|2
2

+
∫

Γb

m · νlu2

)
. (4.16)

Hence, for ε and η sufficiently small, using (4.16) and (4.15) in (4.14), we obtain

∫ T

S

e(t)dt ≤ C(e(T ) + e(S)) + C

∫ T

S

∫
Ω

f2 + C

∫ T

S

∫
Γb

m · νbu′2 + C

∫ T

S

∫
Γb

m · νlu2. (4.17)

It only remains to treat the last term in this inequality. For this, we use the method introduced in [15]. Let z
be the solution of the following elliptic problem:⎧⎨

⎩
Δz = 0 in Ω,
z = u on Γb,
z = 0 on Γ0.

Note that this definition yields∫
Ω

|∇z|2 + z2 ≤ C

∫
Γb

u2 and
∫

Ω

∇z · ∇u =
∫

Ω

|∇z|2. (4.18)

We multiply (4.12) by z and integrate on (S, T ) × Ω. Integrating by parts and using (4.18) and the boundary
conditions for u, we obtain

∫ T

S

∫
Γb

m · νlu2 =
∫ T

S

∫
Ω

(u′z′ − |∇z|2 + fz)−
[∫

Ω

u′z
]T

S

−
∫ T

S

m · bu′u

≤ ε

∫ T

S

∫
Ω

u′2 +
C

ε

∫ T

S

∫
Ω

z′2 +
C

ε

∫ T

S

∫
Ω

f2 + Cε

∫ T

S

∫
Ω

z2

+ C(e(T ) + e(S)) +
C

ε

∫ T

S

∫
Γb

m · νbu′2 + ε

∫ T

S

∫
Γb

u2, (4.19)
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for all ε > 0. Now noting that

∫ T

S

∫
Ω

z′2 ≤
∫ T

S

∫
Γb

m−b−z′2 ≤
∫ T

S

∫
Γb

m · νbz′2,

and ∫ T

S

∫
Ω

u′2 +
∫ T

S

∫
Ω

z2 +
∫ T

S

∫
Γb

u2 ≤ C

∫ T

S

e(t)dt,

the estimate (4.19) yields, for all ε > 0,

∫ T

S

∫
Γb

m · νlu2 ≤ Cε

∫ T

S

e(t)dt+
C

ε

∫ T

S

∫
Ω

f2 + C(e(T ) + e(S)) +
C

ε

∫ T

S

∫
Γb

m · νbu′2.

Finally, replacing this in (4.17) and taking ε sufficiently small, we obtain

∫ T

S

e(t)dt ≤ C(e(T ) + e(S)) + C

∫ T

S

∫
Ω

f2 + C

∫ T

S

∫
Γb

m · νbu′2,

and the lemma is proved. �

4.3. Internal stabilization of locally coupled plate equations

In this last application, we are concerned with a system of two weakly coupled plate equations. This gener-
alizes the case of constant coupling investigated in [1]. Here, we assume that the boundary Γ = ∂Ω is at least
of class C4 and we consider the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′1 + Δ2u1 + δpu2 + bu′1 = 0 in (0,+∞) × Ω,
u′′2 + Δ2u2 + pu1 = 0 in (0,+∞) × Ω,
u1 = 0 and u2 = 0 on (0,+∞) × Γ,
∂u1

∂ν
= 0 and

∂u2

∂ν
= 0 on (0,+∞) × Γ,

uj(0, ·) = u0
j(·), u′j(0, ·) = u1

j(·), j = 1, 2 in Ω.

(4.20)

We take H = L2(Ω), and V1 = V2 = H2
0 (Ω) endowed with the inner product (y, z)H2

0 (Ω) =
∫

Ω

ΔyΔzdx. Hence,

A = Δ2 with Neumann and Dirichlet boundary conditions, D(A
n
2 ) ⊂ H2n(Ω) is the domain of A

n
2 and λ denotes

its lowest eigenvalue. We moreover take for B and P respectively the multiplication in L2 by the functions
b, p ∈ L∞(Ω) satisfying, as in Section 4.1,⎧⎨

⎩
0 ≤ b ≤ b+ and 0 ≤ p ≤ p+ on Ω,
b ≥ b− > 0 on ωb,
p ≥ p− > 0 on ωp,

(4.21)

for ωb and ωp two open subsets of Ω. As for coupled waves, we have the following stability result.

Theorem 4.6.
(i) Suppose that ωb and ωp satisfy the PMGC. Then there exists p∗ ∈ (0, λ] such that for all 0 < p+ < p∗

there exists δ∗ = δ∗(p+, p−) ∈ (0, λ
p+ ], such that for all δ ∈ (0, δ∗), the solution U = (u1, u2, u

′
1, u

′
2)
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of (4.20) satisfies for n ∈ N, for some Cn > 0,

E(U(t)) ≤ Cn

tn

n∑
i=0

E(U (i)(0)) ∀t > 0, U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D(An

P,δ).

Besides, if U0 ∈ (H2
0 )2 × (L2)2, then E(U(t)) converges to zero as t goes to infinity.

(ii) If moreover either ωb ⊂ ωp or ωp ⊂ ωb, then the result holds for δ∗ = λ
p+ .

We recall that the operator AP,δ is defined in (2.4). Under some smoothness assumptions on the coefficients
p and b, we can explicit the space D(An

P,δ) in terms of iterated domains of the bilaplacian with Dirichlet and
Neumann boundary conditions, thanks to Lemma 2.6. This gives the following corollary.

Corollary 4.7.
(i) Suppose that ωb and ωp satisfy the PMGC. Then there exists p∗ ∈ (0, λ] such that for all 0 < p+ < p∗

there exists δ∗ = δ∗(p+, p−) ∈ (0, λ
p+ ], such that for all δ ∈ (0, δ∗), for all b, p ∈ W 2q,∞(Ω) satisfy-

ing (4.21), the solution U = (u1, u2, u
′
1, u

′
2) of (4.20) satisfies, for n ∈ N, n ≤ q, for some Cn > 0,

E(U(t)) ≤ Cn

tn

n∑
i=0

E(U (i)(0)) ∀t > 0, U0 = (u0
1, u

0
2, u

1
1, u

1
2) ∈ D(A

n+1
2 )2 ×D(A

n
2 )2.

Besides, if U0 ∈ (H2
0 )2 × (L2)2, then E(U(t)) converges to zero as t goes to infinity.

(ii) If moreover either ωb ⊂ ωp or ωp ⊂ ωb, then the result holds for δ∗ = λ
p+ .

To prove Theorem 4.6, we only have to check that assumptions (A1)–(A4b) hold and use Theorem 2.4.
From (4.21), assumption (A4b) is satisfied and assumption (A1) is fulfilled, taking for ΠP the multiplication
in L2 by �ωp . It only remains to check assumptions (A2) and (A3), that are consequences of the following
lemma.

Lemma 4.8. Let ω be a subset of Ω satisfying the PMGC. Then, there exist α, β, γ > 0 such that for all
f ∈ C1(R+;L2(Ω)) and all 0 ≤ S ≤ T , the solution u of

⎧⎪⎨
⎪⎩

u′′ + Δ2u = f in (0,+∞) × Ω,

u = 0 and
∂u

∂ν
= 0 on (0,+∞) × Γ,

(u, u′)(0, ·) = (u0(·), u1(·)) ∈ H2
0 (Ω) × L2(Ω),

(4.22)

satisfies, with e(t) = 1/2
(
‖u′‖2

L2(Ω) + ‖Δu‖2
L2(Ω)

)
, the inequality

∫ T

S

e(t) dt ≤ α(e(S) + e(T )) + β

∫ T

S

‖f(t)‖2
L2(Ω)dt+ γ

∫ T

S

‖�ωu
′(t)‖2

L2(Ω)dt. (4.23)

This lemma direcly yields (A2), since ωp is supposed to satisfy the PMGC. Proving (A3) is done exactly as
in Section 4.1, taking u = u1, ω = ωb and f = f1 − bu′1 in Lemma 4.8. Theorem 4.6 is then a consequence of
Theorem 2.4.

Proof. We give here the details of the piecewise multiplier method for a plate equation, following [7], so that
the proof is selfcontained. We denote by Nε (∪jγj(xj) ∪ (Ω \ ∪jΩj)) the neighborhood given by the PMGC (see
Def. 1.1 in the Introduction). Let 0 < ε0 < ε1 < ε2 < ε and define for i = 0, 1, 2

Qi = Nεi (∪jγj(xj) ∪ (Ω \ ∪jΩj)) ,
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where Ωj , xj and γj(xj) are given by the PMGC. Recall that Γj = ∂Ωj andmj(x) = x−xj . Since (Ωj\Q1)∩Q0 =
∅, we can construct a function ψj ∈ C∞

0 (RN ) which satisfies

0 ≤ ψj ≤ 1, ψj = 1 on Ωj \Q1, ψj = 0 on Q0.

We define the C1 vector field on Ω:

h(x) =
{
ψj(x)mj(x) if x ∈ Ωj ,
0 if x ∈ Ω \ ∪jΩj .

Proceeding as in [7], we multiply (4.22) by h · ∇u and integrate on each (S, T ) × Ωj

∫ T

S

∫
Ωj

h(x) · ∇u(u′′ + Δ2u− f) dxdt = 0.

For the sake of concision, we will omit the dxdt in the following integrals. This gives, after integrations by parts

∫ T

S

∫
Γj

[
1
2
h · νj(|u′|2 − |Δu|2) + Δu

∂(h · ∇u)
∂ν

− h · ∇u∂Δu
∂ν

]

=

[∫
Ωj

u′h · ∇u
]T

S

+
∫ T

S

∫
Ωj

(
1
2

div h (u′2 − |Δu|2) + Δhk
∂u

∂xk
Δu+ 2∇hk · ∇

(
∂u

∂xk

)
Δu − fh · ∇u

)
.

(4.24)

Thanks to the choice of ψj , only the boundary term on (Γj \ γj(xj)) ∩ Γ is nonvanishing in the left hand side
of (4.24). But on this part of the boundary, we claim that ∂ν(h · ∇u) = h · νΔu (see also [20,21]). For this, we
first remark that u = 0 = ∂νu there. Hence, ∂iu = 0 for 1 ≤ i ≤ N on (Γj \ γj(xj)) ∩ Γ, and we have

∂ν(h · ∇u) =
N∑

j=1

∂j

(
N∑
i

hi∂iu

)
νj =

∑
i,j

∂j(hi∂iu)νj =
∑
i,j

hi∂ijuνj . (4.25)

Setting v = ∂ju, and recalling that ∇u = 0 on (Γj \γj(xj))∩Γ, we have ∇v = ∂νvν. Hence, ∂iv =
∑N

k=1 ∂kvνkνi

for all 1 ≤ i ≤ N . Coming back to ∂ju, we obtain

∂iju =
∑

k

∂kjuνkνi, (4.26)

and in particular
∂jju =

∑
k

∂kjuνkνj . (4.27)

Using (4.26) in (4.25), we deduce that

∂ν(h · ∇u) =
∑
i,j,k

hi∂kjuνkνiνj =
∑

i

hiνi

∑
j

[∑
k

(∂kjuνk)νj

]
.

Using (4.27) in this last identity, we obtain

∂ν(h · ∇u) =
∑

i

hiνi

∑
j

∂jju = h · νΔu,
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which proves our claim. Since in addition, u′ = 0 on (Γj \γj(xj))∩Γ, we deduce that the left hand side of (4.24)
reduces to

1
2

∫ T

S

∫
(Γj\γj(xj))∩Γ

h · ν|Δu|2 ≤ 0. (4.28)

Therefore, since ψj = 0 on Q0 and thanks to the above inequality used in (4.24), we deduce that

[∫
Ωj

u′h · ∇u
]T

S

+
∫ T

S

∫
Ωj\Q0

(
1
2

div h (u′2 − |Δu|2) + Δhk
∂u

∂xk
Δu+ 2∇hk · ∇

(
∂u

∂xk

)
Δu− fh · ∇u

)
≤ 0.

(4.29)
Using ψj = 1 on Ωj −Q1 and summing the resulting inequalities on j, we obtain

[∫
Ω

u′h · ∇u
]T

S

+
∫ T

S

∫
Ω\Q1

1
2

(Nu′2 + (2 −N)|∇u|2) −
∫ T

S

∫
Ω

fh · ∇u

≤ −
∑

j

∫ T

S

[∫
Ωj∩Q1

1
2

div h (u′2 − |Δu|2) + Δhk
∂u

∂xk
Δu + 2∇hk · ∇

(
∂u

∂xk

)
Δu

]

≤ C

∫ T

S

∫
Ω∩Q1

(
u′2 + |Δu|2 + |∇u|2 +

∂2u

∂xi∂xk

∂2u

∂xi∂xk

)
, (4.30)

where C is a positive constant which depends only on ψj and mj . We now use the second multiplier u(N −2)/2
and evaluate the term

N − 2
2

∫ T

S

∫
Ω

u(u′′ + Δu2 − f) = 0.

Hence, one has
N − 2

2

[∫
Ω

uu′
]T

S

+
N − 2

2

∫ T

S

∫
Ω

|Δu|2 − u′2 − uf = 0. (4.31)

We set M(u) = h · ∇u+ N−2
2 u. Adding (4.31) to (4.30), we obtain

2
∫ T

S

e dt ≤ C

∫ T

S

∫
Ω∩Q1

[
u′2 + |Δu|2 + |∇u|2 +

∂2u

∂xi∂xk

∂2u

∂xi∂xk

]
−
[∫

Ω

M(u)u′
]T

S

+
∫ T

S

∫
Ω

M(u)f. (4.32)

We estimate the terms on the right hand side of (4.32) as follows. First, we have∣∣∣∣∣
[∫

Ω

M(u)u′
]T

S

∣∣∣∣∣ ≤ C(e(S) + e(T )). (4.33)

Second, we estimate the last term of (4.32) as follows∣∣∣∣∣
∫ T

S

∫
Ω

M(u)f

∣∣∣∣∣ ≤ C

μ

∫ T

S

∫
Ω

|f |2 + μ

∫ T

S

e dt ∀μ > 0. (4.34)

Using (4.33) and (4.34) in (4.32), we obtain for all μ > 0:

(2 − μ)
∫ T

S

e dt ≤ C

∫ T

S

∫
Ω∩Q1

[
u′2 + |∇u|2 + |Δu|2 +

∂2u

∂xi∂xk

∂2u

∂xi∂xk

]

+ C(e(S) + e(T )) +
C

μ

∫ T

S

∫
Ω

|f |2. (4.35)
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We now have to estimate the first term on the right hand side of (4.35), that we will denote by X :

X =
∫ T

S

∫
Ω∩Q1

[
u′2 + |∇u|2 + |Δu|2 +

∂2u

∂xi∂xk

∂2u

∂xi∂xk

]
·

This is where the piecewise multiplier method takes its place.
Step 1. Estimate of the terms corresponding to second derivatives in space in X.

Since RN \Q2 ∩Q1 = ∅, there exists a function ξ ∈ C∞
0 (RN ) such that

0 ≤ ξ ≤ 1, ξ = 1 on Q1, ξ = 0 on R
N \Q2.

We need the following result, that is proved in [7], Proposition 4.1.

Lemma 4.9. Let ξ be defined as above. Then for all v ∈ H2
0 (Ω), we have∫

Ω

∇ξ · ∇vΔv = −
∫

Ω

∂2ξ

∂xi∂xk

∂v

∂xi

∂v

∂xk
+

1
2

∫
Ω

Δξ|∇v|2 (4.36)

and ∫
Ω

ξ
∂2v

∂xi∂xk

∂2v

∂xi∂xk
=
∫

Ω

[
− ∂2ξ

∂xi∂xk

∂v

∂xi

∂v

∂xk
+ Δξ|∇v|2 + ξ|Δv|2

]
. (4.37)

From (4.37), we deduce that∫
Ω∩Q1

∂2u

∂xi∂xk

∂2u

∂xi∂xk
≤
∫

Ω

ξ|Δu|2 + C

∫
Ω∩Q2

|∇u|2. (4.38)

We use now the multiplier ξu in the first equation of (4.22), and consider the expression:

∫ T

S

∫
Ω

(u′′ + Δ2u− f)ξ u dxdt = 0.

After integrations by parts, this gives

∫ T

S

∫
Ω

ξ|Δu|2 =
∫ T

S

∫
Ω

ξ|u′|2 − 2∇ξ · ∇uΔu− uΔuΔξ −
[∫

Ω

ξuu′
]T

S

+
∫ T

S

∫
Ω

ξuf.

Using (4.36) in this last identity, we obtain

∫ T

S

∫
Ω

ξ|Δu|2 =
∫ T

S

∫
Ω

[
ξ|u′|2 + 2

∂2ξ

∂xi∂xk

∂u

∂xi

∂u

∂xk
+ Δξ|∇u|2 + uΔuΔξ

]− [∫
Ω

ξuu′
]T

S

+
∫ T

S

∫
Ω

ξuf. (4.39)

On the other hand, one has
∫

Ω

uΔuΔξ =
∫

Ω

(u2

2
Δ2ξ − |∇u|2Δξ

)
. Using this identity in (4.39), we obtain

∫ T

S

∫
Ω

ξ|Δu|2 =
∫ T

S

∫
Ω

[
ξ|u′|2 + 2

∂2ξ

∂xi∂xk

∂u

∂xi

∂u

∂xk
− u2

2
Δ2ξ

]
−
[∫

Ω

ξuu′
]T

S

+
∫ T

S

∫
Ω

ξuf.

We estimate the second term on the right hand side of the above inequality as previously (see (4.33)). Moreover,
since ξ = 1 on Q1, whereas ξ = 0 on R

N \Q2, we deduce that

∫ T

S

∫
Ω

ξ|Δu|2 ≤ C(e(S) + e(T )) + C

∫ T

S

∫
Ω∩Q2

|u′|2 + |∇u|2 + u2 + |f |2. (4.40)
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Using (4.40) in (4.38), we obtain that

∫
Ω∩Q1

∂2u

∂xi∂xk

∂2u

∂xi∂xk
≤ C(e(S) + e(T )) + C

∫ T

S

∫
Ω∩Q2

|u′|2 + |∇u|2 + u2 + |f |2, (4.41)

and ∫ T

S

∫
Ω∩Q1

|Δu|2 ≤ C(e(S) + e(T )) + C

∫ T

S

∫
Ω∩Q2

|u′|2 + |∇u|2 + u2 + |f |2. (4.42)

Using both (4.41) and (4.42) in (4.35), we obtain for all μ > 0

(2 − μ)
∫ T

S

e dt ≤ C

∫ T

S

∫
Ω∩Q2

[
u′2 + |∇u|2 + |u|2]+ C(e(S) + e(T )) + C

(
1 +

1
μ

)∫ T

S

∫
Ω

|f |2.

Step 2. Estimate of the terms corresponding to first derivatives in space in X.

Since RN \Q3 ∩Q2 = ∅, there exists a function β ∈ C∞
0 (RN ) such that

0 ≤ β ≤ 1, β = 1 on Q2, β = 0 on R
N \Q3.

We fix t and consider the solution θ of the following elliptic problem:{
Δ2θ = βΔu in Ω,

θ = 0 =
∂θ

∂ν
on Γ.

Then, we have∫
Ω

|Δθ|2 =
∫

Ω

θΔ2θ =
∫

Ω

uΔ(βθ) =
∫

Ω∩Q3

u
(
βΔθ + 2∇β · ∇θ + θΔβ

)
≤ C

∫
Ω∩Q3

|u|2, (4.43)

and similarly, ∫
Ω

|Δθ′|2 ≤ C

∫
Ω∩Q3

|u′|2. (4.44)

We now consider the multiplier θ for (4.22) and evaluate the expression

∫ T

S

∫
Ω

θ
(
u′′ + Δu2 − f

)
= 0.

This yields, after integrations by parts,

∫ T

S

∫
Ω

βuΔu−
∫ T

S

∫
Ω

θ′ u′ +
[∫

Ω

θ u′
]T

S

−
∫ T

S

∫
Ω

θ f = 0.

Integrating by parts the first term of this expression, we obtain

∫ T

S

∫
Ω

β|∇u|2 = −
∫ T

S

∫
Ω

θ′ u′ +
∫ T

S

∫
Ω

Δβ
2

|u|2 +
[∫

Ω

θ u′
]T

S

+
∫ T

S

∫
Ω

θ f.

Since β = 1 on Ω ∩Q2, whereas β = 0 on Ω \Q3, and thanks to (4.43), we obtain for all μ > 0:

∫ T

S

∫
Ω∩Q2

β|∇u|2 ≤ μ

2

∫ T

S

∫
Ω

|u′|2 +
1
2μ

∫ T

S

∫
Ω

|θ′|2 + C

∫ T

S

∫
Ω∩Q3

|u|2 + C

∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )).
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Using, (4.44) in this last inequality, we deduce that, for all μ > 0

∫ T

S

∫
Ω∩Q2

|∇u|2 ≤ μ

∫ T

S

e+
C

μ

∫ T

S

∫
Ω∩Q3

|u′|2 + C

∫ T

S

∫
Ω∩Q3

|u|2 + C

∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )).

Finally, putting this into (4.43), we obtain for all μ > 0

(2 − Cμ)
∫ T

S

e dt ≤ C

∫ T

S

∫
Ω∩Q3

|u|2 + C

(
1 +

1
μ

)∫ T

S

∫
Ω∩Q3

u′2

+ C

(
1 +

1
μ

)∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )). (4.45)

Step 3. Estimate of the zero order terms in X.

Since RN \ ω ∩Q3 = ∅, there exists a function ψ ∈ C∞
0 (RN ) such that

0 ≤ ψ ≤ 1, ψ = 1 on Q3, ψ = 0 on R
N \ ω.

We fix t and consider the solution z of the following elliptic problem

{
Δ2z = ψu in Ω,

z = 0 =
∂z

∂ν
on Γ.

Then, we have ∫
Ω

|Δz|2 ≤ C

∫
ω

ψ|u|2, and
∫

Ω

|Δz′|2 ≤ C

∫
ω

|u′|2. (4.46)

We now consider the multiplier z for (4.22) and evaluate the expression

∫ T

S

∫
Ω

z
(
u′′ + Δu2 − f

)
= 0.

This yields ∫ T

S

∫
Ω

ψ|u|2 −
∫ T

S

∫
Ω

z′ u′ +
[∫

Ω

z u′
]T

S

−
∫ T

S

∫
Ω

z f = 0.

Integrating by parts the first term of this expression, we obtain

∫ T

S

∫
Ω

ψ|u|2 =
∫ T

S

∫
Ω

z′ u′ −
[∫

Ω

z u′
]T

S

+
∫ T

S

∫
Ω

z f.

Hence, using (4.46) to estimate the third and fourth terms on the right hand side of the above equality, we
obtain for all η > 0, μ > 0:

∫ T

S

∫
Ω

ψ|u|2 ≤ μ

2

∫ T

S

∫
Ω

|u′|2 + η

∫ T

S

∫
Ω

|z|2 +
c

μ

∫ T

S

∫
Ω

|z′|2 +
c

η

∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )).

Using now the definition of the energy, together with (4.46), we deduce that

(1 − cη)
∫ T

S

∫
Ω

ψ|u|2 ≤ μ

∫ T

S

e+
c

μ

∫ T

S

∫
ω

|u′|2 +
c

η

∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )).
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As a consequence, since ψ = 1 on Q3 and choosing η sufficiently small, we have for all μ > 0:

∫ T

S

∫
Ω∩Q3

|u|2 ≤ cμ

∫ T

S

e+
c

μ

∫ T

S

∫
ω

|u′|2 + c

∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )).

Using this last estimate in (4.45), we obtain for all μ > 0

(2 − cμ)
∫ T

S

e dt ≤ C

(
1 +

1
μ

)∫ T

S

∫
ω

|u′|2 + C

(
1 +

1
μ

)∫ T

S

∫
Ω

|f |2 + C(e(S) + e(T )).

Finally, choosing now μ sufficiently small, we have

∫ T

S

e dt ≤ C(e(S) + e(T )) + C

∫ T

S

∫
Ω

|f |2 + C

∫ T

S

∫
ω

|u′|2,

and the lemma is proved. �
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pliquées, Tome 1, 8. Masson, Paris (1988).
[27] K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997) 1574–1590.
[28] P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Math. Comput.

12 (1999) 251–283.
[29] L. Miller, Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J. Control

Optim. 41 (2002) 1554–1566.
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