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RAYLEIGH PRINCIPLE FOR LINEAR HAMILTONIAN SYSTEMS
WITHOUT CONTROLLABILITY ∗

Werner Kratz1 and Roman Šimon Hilscher2

Abstract. In this paper we consider linear Hamiltonian differential systems without the controlla-
bility (or normality) assumption. We prove the Rayleigh principle for these systems with Dirichlet
boundary conditions, which provides a variational characterization of the finite eigenvalues of the as-
sociated self-adjoint eigenvalue problem. This result generalizes the traditional Rayleigh principle to
possibly abnormal linear Hamiltonian systems. The main tools are the extended Picone formula, which
is proven here for this general setting, results on piecewise constant kernels for conjoined bases of the
Hamiltonian system, and the oscillation theorem relating the number of proper focal points of conjoined
bases with the number of finite eigenvalues. As applications we obtain the expansion theorem in the
space of admissible functions without controllability and a result on coercivity of the corresponding
quadratic functional.
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1. Introduction and main result

This paper deals with continuous time linear Hamiltonian systems and related quadratic functionals and
eigenvalue problems with Dirichlet boundary conditions. The main result is the Rayleigh principle describing
a variational method for finding the eigenvalues. A key feature of this paper resides in the fact that we do
not assume controllability (or equivalently normality) of the Hamiltonian system, as opposed to the existing
literature on this subject such as in [8], Theorem 1, or [7], Theorem 7.7.1. Our main result (Thm. 1.1) is based
on several recent topics from the theory of linear Hamiltonian systems without normality. In particular, these
topics are:

(i) a new extended global Picone formula involving the finite eigenfunctions of the associated eigenvalue
problem (Thm. 3.1),
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(ii) the oscillation theorem relating the number of proper focal points of conjoined bases of the Hamiltonian
system with the number of finite eigenvalues of the eigenvalue problem (Thm. 2.9),

(iii) the geometric characterization of finite eigenvalues in terms of finite eigenfunctions (Thm. A.2 in the
Appendix),

(iv) the positivity of quadratic functionals (Prop. 2.2).

As applications of our main result we derive the expansion theorem in the space of admissible functions
(Thm. 4.3) and the equivalence between the positivity and coercivity of a quadratic functional (Thm. 4.5).

Let us introduce the subject of this paper in more detail. Let be given a dimension n ∈ N, a fixed interval
[a, b] with a < b, and

real n × n matrices A, B, C ∈ Cp on [a, b] such that B(t) and C(t) are symmetric, (1.1)

where Cp is the set of piecewise continuous functions. Given (1.1), we consider the linear Hamiltonian system

x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u, t ∈ [a, b], (H)

for real n-vector-valued functions x, u ∈ C1
p (piecewise continuously differentiable functions), and the quadratic

functional

F0(z) :=
∫ b

a

{xT Cx + uT Bu} (t) dt

for admissible pairs z = (x, u), i.e., the functions x ∈ C1
p, u ∈ Cp satisfy the equation of motion x′(t) =

A(t)x(t) +B(t)u(t) on [a, b]. Using the concept of piecewise continuous functions implies that we adopt in this
paper the following common agreement concerning the points of discontinuity. A function f ∈ Cp is evaluated
at a point t at which it is not continuous by the one sided limits f(t+) and f(t−).

The oscillation theory of system (H) is very well understood, see e.g. [2,7,8,11,12], when the system (H) sat-
isfies the (complete) controllability condition: If (x(·) ≡ 0, u) is a solution of the system (H) on a nondegenerate
subinterval of [a, b], then also u(·) ≡ 0. This is also called the (identical) normality of the system (H). We stress
that by an “abnormal” system we mean a system which is not normal. As it is shown in [7], Theorem 4.1.3, if
the Legendre condition

B(t) ≥ 0, i.e., B(t) is symmetric and nonnegative definite, for all t ∈ [a, b] (1.2)

holds, then the above normality condition is equivalent to the fact that conjoined bases of the system (H), i.e.,
the matrix solutions (X, U) which have XT U symmetric and rank(XT UT ) = n, have X(t) invertible everywhere
in [a, b] except possibly at isolated points t0 ∈ [a, b]. Such an isolated point t0 where X(t0) is singular is then
called a focal point of (X, U) and the defect of X(t0), defX(t0) := dim KerX(t0), is its multiplicity. When
the normality condition is removed, then X(·) may be singular on an interval or even throughout [a, b], which
invalidates the oscillation theory based on the above focal point notion.

In [9], Theorem 3 (see Thm. 2.1), it is shown that under the Legendre condition (1.2) the kernel of X(·)
is piecewise constant on [a, b] and that the Moore–Penrose generalized inverse X†(·) of X(·) can be used to
develop the theory. In particular, the matrix function X†(·) is differentiable on intervals where the kernel of
X(·) is constant (see [9], Lem. 6). This leads to the notion of no (generalized or proper) focal points in (a, b]
introduced in [9] as

KerX(t) ⊆ KerX(τ) for all t, τ ∈ [a, b], τ ≤ t, (1.3)

to which we refer to as the “kernel condition” and which characterizes the positivity of F0 (see Prop. 2.2).
Moreover, the nonnegativity of F0 was characterized in [9] in terms of

x(t) ∈ Im X(t) for all t ∈ [a, b] (1.4)
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for every admissible z = (x, u) with x(a) = 0 = x(b). We refer to (1.4) as the “image condition” (see Prop. 2.3).
Other recent results related to the theory of linear Hamiltonian systems without controllability, such as the
Riccati matrix differential equations, can be found in [5], Section 6.

The notion of multiplicities of proper focal points for the abnormal case was introduced in [14,15]. The
associated self-adjoint eigenvalue problem

(Hλ), x(a) = 0 = x(b), (E)

where (Hλ) is the linear Hamiltonian system

x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u − λW (t)x, t ∈ [a, b], (Hλ)

was first studied in [14,15] and later in [10] in a more general setting on time scales. In these references, the
main result is the so-called oscillation theorem, which says that the number of proper focal points in (a, b] of
a special conjoined basis of the system (Hλ) is the same as the number of finite eigenvalues of (E) which are
less or equal to λ (see Thm. 2.9). These results require that W (·) is a real and symmetric n×n matrix-function
on [a, b] such that W ∈ Cp and

W (t) ≥ 0 for all t ∈ [a, b]. (1.5)
For the precise definition of finite eigenvalues and finite eigenfunctions of (E) we refer to Section 2.2. We always
count the finite eigenvalues as well as the proper focal points including their multiplicities.

The Rayleigh principle presented in this paper is a natural continuation of the above project for possibly
abnormal linear Hamiltonian systems. We consider the quadratic functional

Fλ(z) := F0(z) − λ 〈z, z〉W , 〈z, z̃〉W :=
∫ b

a

{xT Wx̃} (t) dt, (1.6)

where z = (x, u) and z̃ = (x̃, ũ) are admissible and λ ∈ R. We say that two functions z and z̃ are orthogonal
(with respect to the bilinear form 〈·, ·〉W ) and write z ⊥ z̃, provided 〈z, z̃〉W = 0. If we denote by

A :=
{
z, such that z = (x, u) is admissible and x(a) = 0 = x(b)

}
(1.7)

the space of admissible functions for the functional Fλ (i.e., admissible with Dirichlet boundary conditions),
then the main result of this paper reads as follows.

Theorem 1.1 (Rayleigh principle). Assume (1.5) and suppose that the functional Fλ is positive definite for
some λ < 0, i.e., Fλ(z) > 0 for all z ∈ A with x(·) 
≡ 0. Let λ1 ≤ . . . ≤ λm ≤ . . . be the finite eigenvalues of the
eigenvalue problem (E) with the corresponding orthonormal finite eigenfunctions z1, . . . , zm, . . . Then for each
m ∈ N ∪ {0}

λm+1 = min
{ F0(z)
〈z, z〉W , z ∈ A, (Wx)(·) 
≡ 0, and z ⊥ z1, . . . , zm

}
. (1.8)

When m = 0, the orthogonality condition in (1.8) becomes empty. The number of finite eigenvalues may
be finite (or even equal to zero) by our general assumptions, see Corollary 4.1 below. The assumption on the
positivity of Fλ allows one to apply the oscillation theorem and ensures that the finite eigenvalues of (E) are
isolated and bounded from below (see Thm. 2.9), so that the list λ1 ≤ . . . ≤ λm ≤ . . . makes sense.

The above theorem is a direct generalization of [8], Theorem 1, or [7], Theorem 7.7.1 (reduced to the Dirichlet
boundary conditions), to linear Hamiltonian systems without the normality assumption. Our Theorem 1.1 can
also be viewed as the continuous time counterpart of the Rayleigh principle for discrete symplectic systems
in [1], Theorem 4.6. And as in the latter reference, the Rayleigh principle is a promising tool for a general
Sturmian theory for possibly abnormal linear Hamiltonian systems.

The set up of the paper is the following. In the next section we recall the central notions of proper focal points
for conjoined bases of (H) and finite eigenvalues of (E) from [15], and we present several other needed auxiliary
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results from this reference and from [9]. In Section 3 we establish an extended Picone formula, which involves
the finite eigenfunctions of (E) and which is the key tool for the proof of the Rayleigh principle. This proof
is then presented in Section 4, where we also provide applications of the Rayleigh principle in the form of the
expansion theorem and a result on the coercivity of F0. In order to keep this paper complete and self-contained,
we include in Appendix A the proof of the geometric characterization of finite eigenvalues used in the results of
this paper, and in Appendix B the proof of the oscillation theorem (Thm. 2.9). These proofs are simpler and
shorter than those in [15] and they are essentially extracted from more general oscillation results on time scales
in [10], which we specialize to the continuous time setting.

2. Basic notions and auxiliary tools

In this section we present the basic terminology and other auxiliary topics needed in this paper.

2.1. Proper focal points

The following is a fundamental result behind the general proper focal point definition.

Theorem 2.1 (piecewise constant kernel). Assume (1.2). Then every conjoined basis (X, U) of (H) has
KerX(·) piecewise constant on [a, b]. More precisely, there are points a = t0 < t1 < · · · < tk = b such that

KerX(t) ≡ KerX(t−i ) ⊆ KerX(ti) for all t ∈ (ti−1, ti), i = 1, . . . , k, (2.1)

KerX(t) ≡ KerX(t+i ) ⊆ KerX(ti) for all t ∈ (ti, ti+1), i = 0, . . . , k − 1. (2.2)

Proof. See [9], Theorem 3. �

From the above result it is clear that the Legendre condition (1.2) is essential for this theory and it will
be assumed further on. According to [15], Definition 1.1, a point t0 ∈ (a, b] is called a proper focal point of
a conjoined basis (X, U) of (H), if KerX(t−0 ) � KerX(t0), and then m := def X(t0)−def X(t−0 ) is its multiplicity.
This definition means that the multiplicity of t0 ∈ (a, b] as a proper focal point of (X, U) is “somehow” the
dimension of vectors which are in the kernel of X(t0) but which are not in the kernel of X(t−0 ). More precisely,

m = dim
(
[KerX(t−0 )]⊥ ∩ KerX(t0)

)
. (2.3)

When a conjoined basis does not have proper focal points in (a, b], then by (2.1), KerX(t−) = KerX(t) for all
t ∈ (a, b], which together with the inclusion in (2.2) yields the kernel condition (1.3). And this kernel condition
characterizes the positivity of F0.

We say that the functional F0 is positive definite (and write F0 > 0) if F0(z) > 0 for every z ∈ A with
x(·) 
≡ 0. We say that F0 is nonnegative (and write F0 ≥ 0) if F0(z) ≥ 0 for all z ∈ A.

Proposition 2.2 (positivity). We have F0 > 0 if and only if condition (1.2) holds and there exists a conjoined
basis of (H) which has no proper focal points in (a, b].

Proof. See [9], Theorem 1 and Remark 3 (i). �

A similar result to Proposition 2.2 holds for the nonnegativity of F0, but with the image condition (1.4)
instead of the kernel condition (1.4).

Proposition 2.3 (nonegativity). We have F0 ≥ 0 if and only if condition (1.2) holds and there exists a con-
joined basis of (H) satisfying the image condition (1.4) for every admissible z = (x, u) with x(a) = 0 = x(b).

Proof. See [9], Theorem 2, and the continuous time version of [13], Corollary 4.3. �
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In fact, the conjoined basis in Propositions 2.2 and 2.3 can be always chosen to be the principal solution
(X̂, Û) of the system (H), which is the solution of (H) given by the initial conditions X̂(a) = 0 and Û(a) = I.
To the contrary with the traditional theory (see e.g. [7], Thm. 8.2.6), in the general abnormal setting the
nonnegativity of F0 is not equivalent to the nonexistence of proper focal points in the open interval (a, b), see
for example [9], Remark 12, where [a, b] = [0, 2π], F0 ≥ 0, but t0 = π ∈ (0, 2π) is a proper focal point of (X̂, Û).
However, the sufficiency of those conditions is clear from the global Picone formula (Thm. 2.11) below and from
the relation between the kernel condition and the image condition (Lem. 2.5).

Corollary 2.4. Assume that (1.2) holds and there exists a conjoined basis of (H) which has no proper focal
points in (a, b). Then F0 ≥ 0.

Next we establish the relation between the kernel condition (1.3) and the image condition (1.4).

Lemma 2.5. Let (X, U) be a conjoined basis of (H) satisfying the kernel condition (1.3). Then for any
admissible z = (x, u) with x(a) ∈ Im X(a) we have x(t) ∈ Im X(t) for all t ∈ [a, b].

Proof. This follows from [9], Corollary 4. From this reference we have that for every t0 ∈ [a, b] the reachable
set Ea(t0) at the point t0 is equal to Im X(t0), where Ea(t0) is by definition the set of vectors d ∈ Rn for which
there exists an admissible z = (x, u) with x(a) ∈ Im X(a) and x(t0) = d. �

2.2. Finite eigenvalues

Next we proceed with the properties of the eigenvalue problem (E) introduced in Section 1. Here we use the
algebraic definition of finite eigenvalues from [10], Definition 2.4, as opposed to the geometric definition in [15],
Definition 1.2. However, both definitions are equivalent under condition (1.5), as it is shown in Theorem A.2 in
the appendix or in [10], Theorem 5.2. Let

(
X̂(·, λ), Û(·, λ)

)
be the principal solution of (Hλ), i.e., X̂(a, λ) = 0

and Û(a, λ) = I for all λ ∈ R.

Definition 2.6. A number λ0 ∈ R is called a finite eigenvalue of the eigenvalue problem (E) provided

θ(λ0) := r(b) − rank X̂(b, λ0) > 0, where r(b) := max
λ∈R

rank X̂(b, λ). (2.4)

In this case we call θ(λ0) the algebraic multiplicity of the finite eigenvalue λ0.

The above definition is motivated by the discrete time theory in [3], Definition 2. A solution z(·, λ0) =
(x(·, λ0), u(·, λ0)) of (E) with λ = λ0 is called a finite eigenfunction corresponding to the finite eigenvalue λ0

provided W (·)x(·, λ0) 
≡ 0, and then the dimension of{
W (·)x(·, λ0), z = (x, u) solves (E) with λ = λ0

}
(2.5)

is called the geometric multiplicity of λ0.

Remark 2.7. (i) Under condition (1.5), the eigenvalue problem (E) enjoys traditional properties of self-adjoint
differential eigenvalue problems, such as that all finite eigenvalues are real, the algebraic and geometric mul-
tiplicities of a finite eigenvalue λ0 are equal, and the finite eigenfunctions corresponding to different finite
eigenvalues are orthogonal with respect to the bilinear form 〈·, ·〉W defined in (1.6), see [15], Remark 1.3, and
Appendix A. In particular, for every finite eigenvalue λ0 with multiplicity θ(λ0) ≥ 1 there are exactly θ(λ0)
linearly independent finite eigenfunctions, which can be orthonormalized by the standard procedure.

(ii) As it is proven in [10], Corollary 5.5, under the normality assumption our Definition 2.6 reduces to the
classical definition of eigenvalues of (E) e.g. in [7], pp. 42–43, where r(b) = n and λ0 is an eigenvalue of (E) if
and only if the matrix X̂(b, λ0) is singular.

Remark 2.8. The number of finite eigenvalues of (E) depends in general on W (·) but also on B(·). For
example, if B(·) ≡ 0, then every admissible z = (x, u) with x(a) = 0 has x(·) ≡ 0, so that there are no finite
eigenvalues at all in this case.
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2.3. Oscillation theorem

The following oscillation theorem is an important tool for our theory. Let
(
X̂(·, λ), Û(·, λ)

)
be the principal

solution of (Hλ). We will always count the proper focal points of conjoined bases of (Hλ) as well as the finite
eigenvalues of (E) including their multiplicities. Denote by

n1(λ) := the number of proper focal points of
(
X̂(·, λ), Û (·, λ)

)
in (a, b], (2.6)

n2(λ) := the number of finite eigenvalues of (E) which are less or equal to λ. (2.7)

Theorem 2.9 (oscillation theorem). Assume (1.2) and (1.5). Then

n1(λ) = n2(λ) for all λ ∈ R (2.8)

if and only if there exists λ < 0 such that the functional Fλ is positive definite. In this case the finite eigenvalues
of (E) are bounded from below.

Proof. See Appendix B, where we provide the proof of this oscillation theorem (or [15], Cor. 1.7, or [10],
Cor. 6.4). �

The crucial assumption Fλ > 0 for some λ < 0 in Theorem 1.1 (and in Thm. 2.9) is satisfied if W (t) > 0 on
[a, b]. More precisely, we have the following lemma (compare with [10], Thm. 9.5).

Lemma 2.10 (positivity). Assume (1.2) and W (t) > 0 on [a, b]. Then there exists ω > 0 and λ < 0 such that
for all λ ≤ λ

Fλ(z) ≥ ω (−λ)
∫ b

a

|x(t)|2 dt

for all z = (x, u) ∈ Cp. In particular, Fλ(z) > 0 if x(·) 
≡ 0.

Proof. By continuity, there exists ω > 0 such that W (t) ≥ 2ωI on [a, b]. Hence, by (1.2), for a piecewise
continuous z = (x, u) we have that

Fλ(z) ≥
∫ b

a

{xT Cx} (t) dt − λ

∫ b

a

2ω |x(t)|2 dt ≥ ω (−λ)
∫ b

a

|x(t)|2 dt,

provided λ ≤ λ for a sufficiently small λ < 0. �

2.4. Other auxiliary tools

Next we present other important tools which we need in the proof of the Rayleigh principle. The first result
of this kind is a global Picone formula providing a lower bound (the nonnegativity) for the functional F0. For
a function f on [a, b] we use the notation f(t) |ba = f(b) − f(a).

Theorem 2.11 (global Picone formula). Assume (1.2). Let (X, U) be a conjoined basis of (H) and let z = (x, u)
be admissible satisfying the image condition (1.4). Then

F0(z) ≥
∫ b

a

{wT Bw} (t) dt + (xT UX†x) (t)
∣∣b
a
,

where w := u−UX†x on [a, b]. If, in addition, (X, U) satisfies the kernel condition (1.3),
∫ b

a {wT Bw} (t) dt = 0,
and x(b) = 0, then x(t) ≡ 0 on [a, b].

Proof. This global Picone formula is a special case of the corresponding time scale result in [13], Theorem 3.19,
which is here reduced to the continuous time setting. The idea of the proof can also be followed in [9],
Proposition 6, where the special choice of the conjoined basis (X, U) = (X̂, Û) is considered. �
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For z = (x, u) and ẑ = (x̂, û) we define the function

Λ(z, ẑ)(t) := {xT Cx̂ + uT Bû} (t), t ∈ [a, b]. (2.9)

Lemma 2.12. Let z = (x, u) be admissible and suppose that ẑ = (x̂, û) ∈ C1
p. Then

∫ b

a

Λ(z, ẑ)(t) dt = (xT û) (t)
∣∣b
a
−

∫ b

a

{xT (û′ − Cx̂ + AT û)} (t) dt. (2.10)

Proof. Identity (2.10) follows by the integration by parts formula. �

Next we derive formulas for the values of F0(z) and 〈z, z〉W when z is a linear combination of finite eigen-
functions of (E).

Lemma 2.13. Let z1, . . . , zm be orthonormal finite eigenfunctions of (E) corresponding to the (not necessarily
distinct and not necessarily consecutive) finite eigenvalues λ1, . . . , λm. For any β1, . . . , βm ∈ R we set ẑ :=∑m

i=1 βi zi. Then ẑ = (x̂, û) is admissible, x̂(a) = 0 = x̂(b), and

F0(ẑ) =
m∑

i=1

λi β2
i and 〈ẑ, ẑ〉W =

m∑
i=1

β2
i . (2.11)

Proof. Both formulas follow from the orthonormality relation between the finite eigenfunctions, i.e., 〈zi, zj〉W =
δij . More precisely, the first formula in (2.11) is a consequence of Lemma 2.12, because

F0(ẑ) = (x̂T û) (t)
∣∣b
a
−

∫ b

a

{x̂T (û′ − Cx̂ + AT û)} (t) dt

= −
∫ b

a

m∑
i=1

βi {x̂T (u′
i − Cxi + AT ui)} (t) dt

(Hλi
)

=
m∑

i=1

βi λi 〈ẑ, zi〉W =
m∑

i=1

λi β2
i .

The second formula in (2.11) is straightforward. �

3. Extended global Picone formula

In this section we establish an extended global Picone formula, which involves the finite eigenfunctions of
(E), comparing to the global Picone formula in Theorem 2.11. For the Dirichlet boundary conditions it is
a generalization of [7], Theorem 2.2.3, to the case of possibly noninvertible X(·) on [a, b].

Theorem 3.1 (extended global Picone formula). Assume (1.2) and (1.5). Let (X, U) be a conjoined basis of
(Hλ) for some fixed λ ∈ R. Let λ1 ≤ · · · ≤ λm be finite eigenvalues of (E) with the corresponding orthonormal
finite eigenfunctions z1, . . . , zm, that is, for every i ∈ {1, . . . , m}

x′
i = Axi + Bui, u′

i = Cxi − AT ui − λiWxi on [a, b], (3.1)

xi(a) = 0 = xi(b), (Wxi)(·) 
≡ 0. (3.2)

For any β1, . . . , βm ∈ R we set ẑ :=
∑m

i=1 βi zi. Finally, let z = (x, u) be admissible with x(a) = 0 = x(b) and
z ⊥ z1, . . . , zm and such that z̃ = (x̃, ũ) := z + ẑ satisfies the image condition

x̃(t) ∈ Im X(t) for all t ∈ [a, b]. (3.3)
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Then we have the inequality

Fλ(z) ≥
∫ b

a

{w̃T Bw̃} (t) dt +
m∑

i=1

(λ − λi)β2
i , (3.4)

where w̃ := ũ − UX†x̃ on [a, b].

Proof. Let z = (x, u) be admissible with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm. First note that z̃ = z + ẑ is
admissible and, by (3.2), x̃(a) = x(a) + x̂(a) = 0 and x̃(b) = x(b) + x̂(b) = 0. By the global Picone formula
(Thm. 2.11) applied to (X, U), system (Hλ), and the admissible z̃ (using (3.3)), we have

Fλ(z̃) ≥
∫ b

a

{w̃T Bw̃} (t) dt + (x̃T UX†x̃) (t)
∣∣b
a

=
∫ b

a

{w̃T Bw̃} (t) dt, (3.5)

where w̃ := ũ − UX†x̃ on [a, b] as in this theorem and in Theorem 2.11. Since z̃ = z + ẑ, it follows that

Fλ(z̃) = Fλ(z) + Fλ(ẑ) + 2
∫ b

a

Λ(z, ẑ)(t) dt, (3.6)

where Λ(z, ẑ)(t) is defined in (2.9). Formula (2.11) of Lemma 2.13 yields

Fλ(ẑ) = F0(ẑ) − λ 〈ẑ, ẑ〉W =
m∑

i=1

(λi − λ)β2
i , (3.7)

while from Lemma 2.12 (with zi instead of ẑ) and using x(a) = 0 = x(b) we get

∫ b

a

Λ(z, ẑ)(t) dt =
m∑

i=1

βi

∫ b

a

Λ(z, zi)(t) dt =
m∑

i=1

βi

(
{xT ui}(t)

∣∣b
a
−

∫ b

a

{xT (u′
i − Cxi + AT ui)} (t) dt

)

(3.1)
=

m∑
i=1

βi λi 〈z, zi〉W = 0, (3.8)

where the last equality follows from the orthogonality of z and z1, . . . , zm. Hence, by inserting formulas (3.5), (3.7),
and (3.8) into equation (3.6), we obtain

Fλ(z) = Fλ(z̃) −Fλ(ẑ) − 2
∫ b

a

Λ(z, ẑ)(t) dt ≥
∫ b

a

{w̃T Bw̃} (t) dt −
m∑

i=1

(λi − λ)β2
i ,

which is what we needed to prove inequality (3.4). �

4. Proof of the Rayleigh principle and applications

Let
(
X̂(·, λ), Û (·, λ)

)
be the principal solution of (Hλ), i.e., X̂(a, λ) ≡ 0 and Û(a, λ) ≡ I for λ ∈ R. Let

n1(λ) and n2(λ) denote the number of proper focal points of
(
X̂(·, λ), Û(·, λ)

)
in (a, b] and the number of finite

eigenvalues of (E) in (−∞, λ], respectively, as in (2.6) and (2.7).

Proof of Theorem 1.1. By Proposition 2.2, condition (1.2) holds, because the functional Fλ is positive definite
for some λ. We start by applying Theorem 2.1, which yields that the matrix X̂(·, λ) from the principal solution(
X̂(·, λ), Û (·, λ)

)
of (Hλ) has piecewise constant kernel on [a, b] for every λ ∈ R. Next, since we assume that Fλ

is positive definite for λ sufficiently negative, then by the oscillation theorem (Thm. 2.9) equality (2.8) holds,
and by Proposition 2.2 the principal solution

(
X̂(·, λ), Û(·, λ)

)
of (Hλ) has no proper focal points in (a, b].
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Let m ∈ N ∪ {0}. Consider the first m + 1 finite eigenvalues λ1 ≤ · · · ≤ λm+1 of (E) with the corresponding
orthonormal finite eigenfunctions z1, . . . , zm+1. For convenience we put λ0 := −∞. Suppose first that λ ∈
(λm, λm+1), i.e., n2(λ) = m and λ is not a finite eigenvalue of (E). Then, by (2.4),

rank X̂(b, λ) = r(b) = max
μ∈R

rank X̂(b, μ),

which in turn implies that

n − def X̂(b, λ) = rank X̂(b, λ) = r(b) = rank X̂(b, λ) = n − def X̂(b, λ).

Hence, def X̂(b, λ) = def X̂(b, λ). This yields that b is not a proper focal point of the principal solution(
X̂(·, λ), Û (·, λ)

)
. Consequently, there are exactly n1(λ) proper focal points (including multiplicities) in the open

interval (a, b), and n1(λ) = n2(λ) = m, by (2.8). Let us denote these proper focal points by a < τ1 < · · · < τl < b

with the corresponding multiplicities m1, . . . , ml, where
∑l

j=1 mj = m. By the definition of a proper focal point,
in particular by (2.3), we have

mj = dim
(
[Ker X̂(τ−

j , λ)]⊥ ∩ Ker X̂(τj , λ)
)

= def X̂(τj , λ) − def X̂(τ−
j , λ), j = 1, . . . , l. (4.1)

Consider now a linear combination ẑ = (x̂, û) of the finite eigenfunctions z1, . . . , zm, that is, ẑ =
∑m

i=1 βi zi for at
this moment unspecified coefficients β1, . . . , βm ∈ R. Then, by (3.1)–(3.2), ẑ is admissible and x̂(a) = 0 = x̂(b).

For the function z̃ = (x̃, ũ) := ẑ we consider the homogeneous system of linear equations determined by the
conditions

x̃(τj) ∈
(
[Ker X̂T (τ−

j , λ)]⊥ ∩ Ker X̂T (τj , λ)
)⊥

, j = 1, . . . , l. (4.2)
Here β1, . . . , βm are the unknown variables. Since for every j ∈ {1, . . . , l}

def X̂T (τj , λ) − def X̂T (τ−
j , λ) = rank X̂T (τ−

j , λ) − rank X̂T (τj , λ)

= rank X̂(τ−
j , λ) − rank X̂(τj , λ) = def X̂(τj , λ) − def X̂(τ−

j , λ) = mj ,

and since the points τ1, . . . , τl ∈ (a, b), it follows from (4.1) that there are exactly
∑l

j=1 mj = m linear and
homogeneous equations in system (4.2) for the m variables β1, . . . , βm.

We proceed by showing by induction with respect to j ∈ {0, 1, . . . , l + 1} that

x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, b], (4.3)

where we set τ0 := a and τl+1 := b. To start the induction, we have x̃(τ0) = 0 ∈ Im X̂(τ0, λ). Suppose now that
for some index j ∈ {0, . . . , l} we have x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, τj ]. Then, by (2.2), the kernel condition

Ker X̂(t, λ) ⊆ Ker X̂(τ, λ) for all t, τ ∈ [τj , τj+1), τ ≤ t,

is satisfied, so that Lemma 2.5 on [τj , τj+1) (more precisely, on [τj , s] for every s ∈ (τj , τj+1)) and the induction
hypothesis yield the image condition

x(t) ∈ Im X̂(t, λ) for all t ∈ [a, τj+1). (4.4)

If we prove that also x̃(τj+1) ∈ X̂(τj+1, λ), then the image condition (4.3) will be established. To this end,
we first suppose that j < l. Then, by (4.2) and the De Morgan law for the orthogonal complement of the
intersection of two subspaces, we have

x̃(τj+1) ∈ Ker X̂T (τ−
j+1, λ) + [Ker X̂T (τj+1, λ)]⊥. (4.5)
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Since the continuity of X̂T (·) yields Ker X̂T (τ−
j+1, λ) ⊆ Ker X̂T (τj+1, λ), i.e.,

[Ker X̂T (τj+1, λ)]⊥ ⊆ [Ker X̂T (τ−
j+1, λ)]⊥,

it follows that the sum of the subspaces in (4.5) is a direct sum. Furthermore, by the continuity of x̃(·) and the
already proven image condition (4.4), we also have

x̃(τj+1) = x̃(τ−
j+1) ∈ Im X̂(τ−

j+1, λ) = [Ker X̂T (τ−
j+1, λ)]⊥. (4.6)

Hence, from (4.5) and (4.6) we obtain

x̃(τj+1) ∈ [Ker X̂T (τj+1, λ)]⊥ = Im X̂(τj+1, λ),

which is what we wanted to prove. On the other hand, if j = l holds, then by using τl+1 = b and the definition
of x̃(b) we get x̃(τl+1) = x̃(b) = 0 ∈ Im X̂(τl+1, λ). The image condition (4.3) is therefore established.

We now apply the extended global Picone formula (Thm. 3.1) with z := 0 to get

0 = Fλ(z) ≥
∫ b

a

{w̃T Bw̃} (t) dt +
m∑

i=1

(λ − λi)β2
i ≥ 0,

because (1.2) is assumed and λ > λi for all i = 1, . . . , m. Consequently, β1 = · · · = βm = 0, so that the linear
system representing conditions (4.2) possesses only the trivial solution. In turn, the coefficient matrix of the
system in (4.2) is invertible.

Let now z = (x, u) be admissible with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm. Then for z̃ := z + ẑ the
conditions in (4.2) represent a linear system for β1, . . . , βm (in general this system may be nonhomogeneous)
with invertible coefficient matrix, as we just proved. Therefore, there exist unique β1, . . . , βm ∈ R satisfying the
linear system in (4.2), which implies as in the previous part of the proof that the image condition (4.3) holds
for this z̃ = (x̃, ũ). Hence, by the extended global Picone formula (Thm. 3.1) and assumption (1.2),

Fλ(z) ≥
∫ b

a

{w̃T Bw̃} (t) dt +
m∑

i=1

(λ − λi)β2
i ≥ 0

due to λ > λi for all i = 1, . . . , m. This yields that

F0(z) ≥ λ 〈z, z〉W for every λ ∈ (λm, λm+1). (4.7)

If we now take the limit as λ → λ−
m+1, we obtain from (4.7) that F0(z) ≥ λm+1 〈z, z〉W . Now since zm+1 is

a solution of (Hλm+1), it follows that Fλm+1(zm+1) = 0, that is, F0(zm+1) = λm+1 〈zm+1, zm+1〉W = λm+1.
And since zm+1 = (xm+1, um+1) is admissible, xm+1(a) = 0 = xm+1(b), and zm+1 ⊥ z1, . . . , zm, the minimum
in (1.8) is indeed attained at z = zm+1.

If λm+1 = · · · = λm+p is a multiple finite eigenvalue (with multiplicity p ≥ 2), then any admissible z = (x, u)
with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm+q (for any 1 ≤ q ≤ p) satisfies automatically z ⊥ z1, . . . , zm. Therefore,
by the previous argument we have for such z

F0(z) ≥ λm+1 〈z, z〉W = · · · = λm+q 〈z, z〉W , 1 ≤ q ≤ p.

The proof of the Rayleigh principle in Theorem 1.1 is now complete. �
Next we make a comment about the existence of finitely or infinitely many finite eigenvalues. With the

definition of the set A of admissible functions with Dirichlet boundary conditions in (1.7), we now define the
space

W := { (Wx)(·), z = (x, u) ∈ A}.
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Then all the finite eigenfunctions zi = (xi, ui) belong to W (or more precisely, the functions (Wxi)(·) belong
to W). Therefore, the number of finite eigenvalues cannot be larger than dimW . Consequently, our Rayleigh
principle in Theorem 1.1 yields the following.

Corollary 4.1. Assume (1.5) and Fλ is positive definite for some λ < 0.
(i) The eigenvalue problem (E) has infinitely many finite eigenvalues −∞ < λ1 ≤ λ2 . . . with λm → ∞ as

m → ∞ if and only if dimW = ∞.
(ii) The eigenvalue problem (E) has exactly p ∈ N∪ {0} finite eigenvalues if and only if dimW = p. In this

case for every m ∈ {0, . . . , p} equality (1.8) holds, in which we put λp+1 := ∞ when m = p.

The above corollary is a generalization of [7], Corollary 7.7.5 (for the Dirichlet boundary conditions), to the
case of abnormal linear Hamiltonian systems.

Remark 4.2. If a set {λ1 ≤ λ2 ≤ . . .} with λm → ∞ as m → ∞ of finite eigenvalues of (E) satisfies the
Rayleigh principle in Theorem 1.1, then it is complete, that is, there are no further finite eigenvalues of (E).
This follows from Theorem 1.1 in the same way as in the case of controllable systems in [7], Remark 7.7.2.

The following supplement – the expansion theorem – is a traditional result connected to the Rayleigh principle.
Denote by ‖z‖W :=

√〈z, z〉W the (semi-) norm in the space A of admissible functions with Dirichlet boundary
conditions induced by the inner product 〈·, ·〉W . Note that ‖z‖W depends on the x part of z = (x, u) only. The
following result is a generalization of [7], Theorem 7.7.6, to abnormal linear Hamiltonian systems.

Theorem 4.3 (expansion theorem). Assume (1.5) and Fλ is positive definite for some λ < 0. Denote by I the
index set which is equal to N if dimW = ∞ and which is equal to {1, . . . , p} if dimW = p ≥ 1. Let z = (x, u)
be admissible with x(a) = 0 = x(b). Then

x =
∑
i∈I

ci xi, i.e., lim
m→∞

∥∥∥∥ z −
m∑

i=1

ci zi

∥∥∥∥
W

= 0, where ci := 〈z, zi〉W for every i ∈ I. (4.8)

Proof. Let z = (x, u) be admissible with x(a) = 0 = x(b) and define ci by (4.8) for i ∈ I.
Case 1 (I = N). For every index m ∈ N we define z̃ = (x̃, ũ) by z̃m := z − ẑm, where ẑm = (x̂m, ûm) :=∑m

i=1 ci zi. Then z̃m is admissible, x̃m(a) = 0 = x̃m(b), and z̃m ⊥ z1, . . . , zm, because for each j ∈ {1, . . . , m}

〈z̃m, zj〉W = 〈z, zj〉W −
m∑

i=1

ci 〈zi, zj〉W = cj − cj = 0.

Therefore, the Rayleigh principle (Thm. 1.1) yields

F0(z̃m) ≥ λm+1 〈z̃m, z̃m〉W . (4.9)

On the other hand,

F0(z̃m) = F0(z) − 2
m∑

i=1

ci

∫ b

a

Λ(z, zi)(t) dt + F0(ẑm), (4.10)

where, by Lemmas 2.12 and 2.13,

∫ b

a

Λ(z, zi)(t) dt = λi 〈z, zi〉W = λi ci and F0(ẑm) =
m∑

i=1

λi c2
i .

Hence, from (4.10) we get

F0(z̃m) = F0(z) −
m∑

i=1

λi c2
i ≤ F0(z) − λ1

m∑
i=1

c2
i ,
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which together with inequality (4.9) implies that

λm+1 〈z̃m, z̃m〉W ≤ F0(z̃m) ≤ F0(z) − λ1

m∑
i=1

c2
i . (4.11)

Take now the index m so large that λm+1 > 0, which is possible due to λm → ∞. Then from inequality (4.11)
we obtain

‖z − ẑm‖2
W = 〈z̃m, z̃m〉W ≤ 1

λm+1

(
F0(z) − λ1

m∑
i=1

c2
i

)
→ 0 as m → ∞.

Case 2 (I = {1, . . . , p}). In this situation the proof is similar to the proof of the expansion theorem in the
discrete time case in [1], Theorem 4.7. One first shows by using Corollary 4.1(ii) that any admissible z = (x, u)
with x(a) = 0 = x(b) which is orthogonal to all finite eigenfunctions z1, . . . , zp satisfies F0(z) ≥ λ 〈z, z〉W for all
λ ∈ R. However, this is possible only if 〈z, z〉W = 0, i.e., (Wx)(·) ≡ 0. Take now a new admissible z = (x, u)
with x(a) = 0 = x(b). Then z̃ = (x̃, ũ) := z − ∑p

i=1 ci zi is admissible, x̃(a) = 0 = x̃(b), and z̃ ⊥ z1, . . . , zp.
Then, by the previous step in the proof, (Wx̃)(·) ≡ 0, that is, equation (4.8) holds. The proof of the expansion
theorem is now complete. �

Remark 4.4. Suppose dimW = p < ∞ and m ∈ {0, . . . , p}. If an admissible z minimizes the Rayleigh
quotient in (1.8), that is, if F0(z) = λm+1 〈z, z〉W for such an admissible z = (x, u) with x(a) = 0 = x(b) and
z ⊥ z1, . . . , zm, then for x̃(·) := x(·) and ũ(·) :=

∑m
i=1 ci ui(·) the pair z̃ = (x̃, ũ) satisfies the Euler equation

ũ′(t) = C(t) x̃(t) − AT (t) ũ(t) − λm+1W (t) x̃(t), B(t) ũ(t) = B(t)u(t), t ∈ [a, b].

The proof is the same as in the discrete case in [1], Theorem 4.8, and it is hence omitted.

Our second application of the Rayleigh principle concerns the coercivity of the quadratic functional F0. The
functional F0 is coercive if there exists α > 0 such that

F0(z) ≥ α

∫ b

a

|x(t)|2 dt for every admissible z = (x, u) with x(a) = 0 = x(b).

As we shall see, it follows from Theorem 1.1 that F0 is coercive if and only if the eigenvalue problem

x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u − λx, t ∈ [a, b]
x(a) = 0 = x(b),

}
(E1)

that is, the eigenvalue problem (E) with W (·) ≡ I, has the smallest eigenvalue λ1 > 0 (so that we can take
α := α1 in the definition of the coercivity of F0). Note that since W (·) ≡ I is now positive definite, then the
assumption on Fλ > 0 for some λ < 0 in Theorem 1.1 can be dropped, as the statement of Lemma 2.10 asserts.

Theorem 4.5 (coercivity). The functional F0 is positive definite if and only if it is coercive.

Proof. We only need to show that F0 > 0 implies the coercivity of F0, since the opposite implication holds
trivially. Therefore, assume that F0 is positive definite. Then for any admissible z = (x, u) with x(a) = 0 = x(b)
and x(·) 
≡ 0 we have F0(z)/〈z, z〉 > 0, where 〈z, z〉 := 〈z, z〉W for our matrix W (·) ≡ I in (E1). Therefore,
by the Rayleigh principle (Thm. 1.1) applied to the eigenvalue problem (E1), the smallest finite eigenvalue λ1

of (E1) satisfies λ1 ≥ 0. If λ1 = 0, then there exists a corresponding finite eigenfunction z1 = (x1, u1) with
x1(a) = 0 = x1(b) and x1(·) 
≡ 0, which is admissible and for which F0(z1) = λ1 〈z1, z1〉 = 0. This, however,
contradicts the assumed positivity of F0. Therefore, we must have λ1 > 0. The Rayleigh principle then yields
that F0(z) ≥ λ1 〈z, z〉 for every admissible z = (x, u) with x(a) = 0 = x(b), or in other words, the functional F0

is coercive with α := λ1. �
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In the proof of [15], Lemma 2.4, p. 231, Wahrheit discusses the notion of a right proper focal point for
a conjoined basis (X, U) of (H). Although this notion has not been used anywhere else than in that proof,
it seems to be a natural dual version of the (left) proper focal point notion from Section 2.1. More precisely,
we say that a point t0 ∈ [a, b) is a right proper focal point of the conjoined basis (X, U) of (H), provided
KerX(t+0 ) � KerX(t0), and then the number m := defX(t0)− def X(t+0 ) is its multiplicity. Following (2.3) we
then have

m = dim
(
[KerX(t+0 )]⊥ ∩ KerX(t0)

)
. (4.12)

The nonexistence of these right proper focal points in [a, b) means that the kernel of X(·) is nondecreasing
(measuring in the direction from a to b), i.e.,

KerX(t) ⊆ KerX(τ) for all t, τ ∈ [a, b], t ≤ τ. (4.13)

The kernel condition in (4.13) is shown to be equivalent to the positivity of F0 in [6], Corollary 6.1, which is
a counterpart of Proposition 2.2. If we define the principal solution (X̂a, Ûa) of (H) at a by the initial conditions
X̂a(a) = 0 and Ûa(a) = I, that is, (X̂a, Ûa) ≡ (X̂, Û), and the principal solution (X̂b, Ûb) of (H) at b by the
initial conditions X̂b(b) = 0 and Ûb(b) = −I, then we get the following equivalence.

Corollary 4.6. Assume (1.2). The principal solution of (H) at a has no (left) proper focal points in (a, b] if
and only if the principal solution of (H) at b has no (right) proper focal points in [a, b).

Remark 4.7. From this perspective, all the theory of linear Hamiltonian systems without normality, including
the oscillation theorems in Appendix B and the Rayleigh principle in Theorem 1.1 can be easily formulated and
proven by using this alternative notion of right proper focal points. In addition, the transformation relating the
corresponding results in both theories (of left proper focal points and right proper focal points) is t �→ a + b− t
for t ∈ [a, b]. Note also that the distinction between the left and right proper focal points of (X, U) is possible
only in the abnormal case, because under normality the left and right multiplicities of t0 in (2.3) and (4.12) are
both equal to defX(t0) (see also Sect. 1).

An application of the corresponding oscillation theorem to this setting then leads, for example, to the following
improvement of Corollary 4.6.

Corollary 4.8. Assume (1.2) and let m ∈ N ∪ {0} be fixed. The principal solution of (H) at a has m (left)
proper focal points in (a, b] if and only if the principal solution of (H) at b has m (right) proper focal points in
[a, b).

The statement in Corollary 4.8 is a continuous time version of the discrete result in [4], Theorem 1.1.

Appendix A. Geometric characterization of finite eigenvalues

In this section we shall prove that the algebraic and geometric multiplicities of finite eigenvalues of (E) are
the same, cf. Remark 2.7 (i). First we need an auxiliary lemma.

Lemma A.1. Assume (1.5) and let
(
X(·, λ), U(·, λ)

)
be a conjoined basis of (Hλ) such that the initial conditions

X(a, λ) and U(a, λ) do not depend on λ, i.e., condition (B.1) of Appendix B holds, and fix t ∈ [a, b]. Then the
kernel of X(t, ·) is piecewise constant with respect to λ on R. More precisely, for every λ0 ∈ R there exists δ > 0
such that

KerX(t, λ) = KerX(t, λ+
0 ) = KerX(t, λ−

0 ) for all λ ∈ (λ0 − δ, λ0 + δ) \ {λ0}. (A.1)

Proof. Let λ0 ∈ R and choose a conjoined basis
(
X̃(·, λ), Ũ (·, λ)

)
of (Hλ) according to [7], Proposition 4.1.1 and

Theorem 3.1.2, such that (X̃, Ũ) and (X, U) are normalized conjoined bases, X̃(t, λ0) is invertible, the matrix
(X̃−1X

)
(t, λ0) ≥ 0, and the initial conditions X̃(a, λ) and Ũ(a, λ) do not depend on λ. Put X(λ) := X(t, λ)

and X̃(λ) := X̃(t, λ).
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Then by continuity, assumption (1.5), and [7], Lemma 4.1.4, there exists ε > 0 such that

X̃(λ) is invertible and (X̃−1X
)
(λ) is nondecreasing on (λ0 − ε, λ0 + ε).

Let μ1(λ) ≤ · · · ≤ μn(λ) denote the eigenvalues of the symmetric matrix (X̃−1X
)
(λ), so that

0 ≤ μ1(λ) ≤ · · · ≤ μn(λ) for λ ∈ [λ0, λ0 + ε).

If λ ∈ [λ0, λ0 + ε) and c ∈ KerX(λ), then cT (X̃−1X
)
(λ) c = 0, and by the monotonicity of (X̃−1X

)
(·), we have

0 ≤ cT (X̃−1X
)
(λ0) c ≤ cT (X̃−1X

)
(ν) c ≤ cT (X̃−1X

)
(λ) c = 0, so that c ∈ KerX(ν) for all ν ∈ [λ0, λ]. Hence,

we proved that KerX(λ) ⊆ KerX(ν) for λ0 ≤ ν ≤ λ < λ0 + ε. Therefore, there exists δ ∈ (0, ε) such that

KerX(λ) ≡ KerX(λ0 + δ) = KerX(λ+
0 ) for all λ ∈ (λ0, λ0 + δ),

and similarly
KerX(λ) ≡ KerX(λ0 − δ) = KerX(λ−

0 ) for all λ ∈ (λ0 − δ, λ0).
Since the function (X̃−1X

)
(λ) c is entire in its argument λ for every c ∈ Rn, it follows that either (X̃−1X

)
(λ) c ≡ 0

in (λ0 − δ, λ0 + δ) \ {λ0} or (X̃−1X
)
(λ) c 
= 0 for all λ ∈ (λ0 − δ, λ0 + δ) \ {λ0}. Hence, equality (A.1) holds. �

Now we state and prove the main result of this section. Here
(
X̂(·, λ), Û(·, λ)

)
denotes the principal solution

of (Hλ) at a as in Definition 2.6.

Theorem A.2 (geometric characterization of finite eigenvalues). Assume (1.5). The number λ0 ∈ R is a finite
eigenvalue of the eigenvalue problem (E) with (algebraic) multiplicity θ(λ0) = r(b) − rank X̂(b, λ0) ≥ 1 if and
only if there exists a corresponding finite eigenfunction z(·, λ0) = (x(·, λ0), u(·, λ0)) of (E) with W (·)x(·, λ0) 
≡ 0
on [a, b]. In this case the dimension of the corresponding eigenspace, i.e., the geometric multiplicity of λ0, equals
θ(λ0). That is, the dimension of the space given in (2.5) is θ(λ0).

Proof. By Lemma A.1 with t := b and
(
X(·, λ), U(·, λ)

)
:=

(
X̂(·, λ), Û(·, λ)

)
, the set

V := Ker X̂(b, λ+) = Ker X̂(b, λ−) does not depend on λ ∈ R.

Now z = (x, u) solves (Hλ0 ) with x(a) = 0 if and only if

(
x(t)
u(t)

)
=

(
X̂(t, λ0) c

Û(t, λ0) c

)
for all t ∈ [a, b] for some c ∈ Rn.

Then x(b) = 0 means that X̂(b, λ0) c = 0, i.e., c ∈ Ker X̂(b, λ0).
First suppose that z = (x, u) solves (Hλ0 ) with x(a) = 0 and with

W (t)x(t) = 0 on [a, b].

Then, for some c ∈ Rn and all λ ∈ R we have

(
x(t)
u(t)

)
=

(
X̂(t, λ)
Û(t, λ)

)
c =

(
X̂(t, λ0)
Û(t, λ0)

)
c on [a, b],

because these functions solve the same initial value problem. Hence, c ∈ V .
Next, let c ∈ V be given. Then X̂(b, λ) c = 0 for all λ ∈ R and

x(t) := [X̂(t, λ) − X̃(t, λ) (X̃−1X
)
(b, λ)] c = X̂(t, λ) c on [a, b]
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satisfies x(b) = X̂(b, λ) c = 0 for all λ ∈ R, where
(
X̃(·, λ), Ũ(·, λ)

)
denotes a conjoined basis of (Hλ) such that

X̃(a, λ) and Ũ(a, λ) do not depend on λ, (X̃, Ũ) and (X̂, Û) are normalized conjoined bases, and where X̃(b, λ0)
is invertible (similarly as in the proof of Lem. A.1). Then, by [7], Lemma 4.1.4,

0 =
d
dλ

cT (X̃−1X
)
(b, λ) c =

∫ b

a

xT (t)W (t)x(t) dt,

so that W (t)x(t) = 0 on [a, b] by (1.5).
Thus, we have shown that a nonzero element of the eigenspace (2.5) of the finite eigenvalue λ0 is of the form

W (·) X̂(·, λ0) c for some c ∈ Ker X̂(b, λ0)\V . Then we obtain from Definition 2.6 that the geometric multiplicity
of λ0 is equal to (note that dimV = n − r(b))

dim Ker X̂(b, λ0) − dimV = n − rank X̂(b, λ0) − n + r(b) = r(b) − rank X̂(b, λ0) = θ(λ0),

which proves the theorem. �

Appendix B. Oscillation theorems

In this section we develop the tools which we need in order to prove Theorem 2.9. The proofs in this section
(as well as in the previous section) are extracted from the paper [10] and specified to the continuous time
setting. This yields a considerable simplification of these proofs. In addition, the central assumptions in [10],
equation (3.7), now reduce to the assumption (1.2). Moreover, the proofs presented here turn out to be simpler
and shorter than the proofs of the oscillation theorems in [14,15].

Let be given a conjoined basis
(
X(·, λ), U(·, λ)

)
of (Hλ) such that the initial conditions X(a, λ) and U(a, λ)

do not depend on λ, i.e.,
X(a, λ) ≡ X(a), U(a, λ) ≡ U(a). (B.1)

Under (1.2) and counting the multiplicities, we denote by

n1(λ) := the number of proper focal points of
(
X(·, λ), U(·, λ)

)
in (a, b], (B.2)

and as before we define
r(t) := max

ν∈R

rankX(t, ν).

Then by using that X(t, ·) is an entire function in λ for a fixed t, we have for all λ ∈ R

r(t) = rankX(t, λ+) = rankX(t, λ−), t ∈ (a, b], (B.3)

r(a) ≡ rankX(a, λ), under (B.1). (B.4)

Our first result in this section is the local oscillation theorem.

Theorem B.1 (local oscillation theorem). Assume (1.2) and (1.5) and let
(
X(·, λ), U(·, λ)

)
be a conjoined

basis of (Hλ) satisfying (B.1). Then for all λ ∈ R we have

n1(λ+) = n1(λ) < ∞,

n1(λ+) − n1(λ−) = r(b) − rankX(b, λ) ≥ 0.

Hence, the function n1(·) is nondecreasing on R, the limit

m := lim
λ→−∞

n1(λ)
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exists with m ∈ N ∪ {0}, so that for a suitable λ0 ∈ R, λ0 < 0, we have

n1(λ) ≡ m and r(b) − rankX(b, λ) ≡ 0 for all λ ≤ λ0.

For the proof of this theorem we need some auxiliary lemmas. In the first lemma, let λ ∈ R be fixed, and
therefore can omit the variable λ in the Hamiltonian system and its solutions, because for the given value of λ
the system (Hλ) can be identified with a system of the form (H) for a suitable matrix C(t).

Lemma B.2. Assume (1.2), let a ≤ α < β ≤ b, and suppose that (X̃, Ũ) is a conjoined basis of (H) such that
(X̃, Ũ) and (X, U) are normalized conjoined bases of (H) and such that

X̃(t) is invertible for all t ∈ [α, β].

Let m̃ denote the number of proper focal points of (X, U) in (α, β]. Then 0 ≤ m̃ ≤ n, and

m̃ = ind(X̃−1X
)
(α) − ind(X̃−1X

)
(β). (B.5)

Proof. First we assume that

KerX(t) is constant on the open interval (α, β). (B.6)

Then, by the definition (cf. (2.3)), there is no proper focal point of (X, U) in (α, β), and

m̃ = dim KerX(β) − dim KerX(β−).

Let μ1(t) ≤ · · · ≤ μn(t) denote the eigenvalues of the symmetric matrix (X̃−1X
)
(t). Then the temporary

assumption (B.6) implies

μ1(t) ≤ · · · ≤ μr(t) < 0 = μr+1(t) = · · · = μr+s(t) < μr+s+1(t) ≤ · · · ≤ μn(t)

for all t ∈ (α, β), where

r := ind(X̃−1X
)
(β−) = ind(X̃−1X

)
(α+) and s := defX(β−) = defX(α+),

because no eigenvalue μi(·) can change its sign in (α, β) by the intermediate value theorem, since the eigenvalues
μi(·) are continuous and KerX(·) is constant on (α, β). By continuity (cf. Thm. 2.1) and (B.6), we have that

KerX(α+) = KerX(β−) ⊆ KerX(α) ∩ KerX(β),

so that s ≤ min{defX(α), def X(β)}. Next, we have by an easy calculation (cf. [7], Cor. 1.1.4) that

(X̃−1X
)′(t) =

(
X̃−1B(X̃T )−1

)
(t) ≥ 0 for all t ∈ [α, β],

where we use the crucial assumption (1.2). Hence, the eigenvalues μi(·) are nondecreasing on [α, β], which
implies that

ind(X̃−1X
)
(α) = r and ind(X̃−1X

)
(β) = r − m̃,

and this yields our assertion (B.5) under the temporary assumption (B.6).
Next, by (1.2) and Theorem 2.1, we have that KerX(t) is piecewise constant on [α, β], so that there exists

a partition α = τ0 < τ1 < · · · < τk+1 = β of [α, β] such that

KerX(t) is constant on (τj , τj+1) for every j ∈ {0, . . . , k}.
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If m̃(j) denotes the number of proper focal points of (X, U) in (τj , τj+1], then we obtain from the first part via
telescope summation

0 ≤ m̃ =
k∑

j=0

m̃(j) =
k∑

j=0

{
ind(X̃−1X

)
(τj) − ind(X̃−1X

)
(τj+1)

}
= ind(X̃−1X

)
(α) − ind(X̃−1X

)
(β) ≤ n,

which is the statement of this lemma. �

Remark B.3. Under the assumptions of Lemma B.2, the function ind(X̃−1X
)
(·) is nonincreasing on [α, β].

The above proof shows that t0 ∈ (α, β] is a proper focal point of the conjoined basis (X, U) if and only if
ind(X̃−1X

)
(t−0 ) > ind(X̃−1X

)
(t0), and in this case the difference ind(X̃−1X

)
(t−0 ) − ind(X̃−1X

)
(t0) is its

multiplicity. Note also that in this approach the assertion 0 ≤ m̃ ≤ n is trivial and it corresponds to the
Sturmian separation theorem [11], p. 366.

Now we vary λ using the notation above.

Lemma B.4. Assume (1.2) and (1.5), let
(
X(·, λ), U(·, λ)

)
be a conjoined basis of (Hλ) satisfying (B.1), and

let a ≤ α < β ≤ b. Then for all λ ∈ R we have

m(λ+) = m(λ) < ∞,

m(λ+) − m(λ−) = r(β) − rankX(β, λ) − r(α) + rankX(α, λ),

where m(λ) denotes the number of proper focal points of
(
X(·, λ), U(·, λ)

)
in (α, β].

Proof. First we fix λ0 ∈ R. By continuity and compactness (using also [7], Prop. 4.1.1), there exists ε > 0,
a finite partition α = τ0 < τ1 < · · · < τk+1 = β, and conjoined bases

(
X̃j(·, λ), Ũj(·, λ)

)
of (Hλ) such that for

every j ∈ {0, . . . , k}:
(i) X̃j(a, λ) ≡ X̃j(a, λ0) and Ũj(a, λ) ≡ Ũj(a, λ0) do not depend on λ,
(ii)

(
X̃j(·, λ), Ũj(·, λ)

)
and

(
X(·, λ), U(·, λ)

)
are normalized conjoined bases of (Hλ),

(iii) X̃j(t, λ) is invertible for all (t, λ) ∈ [τj , τj+1] × [λ0 − ε, λ0 + ε].

Let m(j, λ) denote the number of proper focal points of
(
X(·, λ), U(·, λ)

)
in (τj , τj+1], so that

m(λ) =
k∑

j=0

m(j, λ) for λ ∈ R (B.7)

is the number of proper focal points of
(
X(·, λ), U(·, λ)

)
in (α, β]. Then, by the previous Lemma B.2 and

assumption (1.2),

0 ≤ m(j, λ) = ind(X̃−1
j X

)
(τj , λ) − ind(X̃−1

j X
)
(τj+1, λ) ≤ n (B.8)

for every j = 0, . . . , k and λ ∈ [λ0 − ε, λ0 + ε]. Hence, m(λ0) < ∞ is finite. Next, fix any j = 0, . . . , k and
t0 ∈ [τj , τj+1], and put Q(λ) := (X̃−1

j X
)
(t0, λ) for λ ∈ [λ0−ε, λ0+ε]. By [7], Lemma 4.1.4, and assumption (1.5)

(similarly as in the proof of Thm. A.2), the symmetric function Q(·) is nondecreasing and continuous on the
interval [λ0−ε, λ0+ε]. Therefore, the eigenvalues μ1(λ) ≤ · · · ≤ μn(λ) of Q(λ) are nondecreasing and continuous
on [λ0 − ε, λ0 + ε], too. This implies immediately that

indQ(λ0) = ind Q(λ+
0 ) and indQ(λ−

0 ) = indQ(λ0) + r(t0) − rankX(t0, λ0). (B.9)
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Note that the KerQ(·) is piecewise constant on [λ0 − ε, λ0 + ε], by Lemma A.1. We conclude from (B.8) and
(B.9) with t0 := τj and t0 := τj+1 that for every j = 0, . . . , k

m(j, λ+
0 ) = m(j, λ0), (B.10)

m(j, λ+
0 ) − m(j, λ−

0 ) = r(τj+1) − rankX(τj+1, λ0) − r(τj) + rankX(τj , λ0). (B.11)

It follows from equations (B.7) and (B.10) that m(λ+
0 ) = m(λ0), and from equations (B.7) and (B.11) via

telescope summation that

m(λ+
0 ) − m(λ−

0 ) =
k∑

j=0

{
r(τj+1) − rankX(τj+1, λ0) − r(τj) + rankX(τj , λ0)

}
= r(β) − rankX(β, λ0) − r(α) + rankX(α, λ0).

The proof of this lemma is complete. �

Now we are ready to prove the local oscillation theorem.

Proof of Theorem B.1. If α = a, then r(a) = rankX(a, λ) for all λ ∈ R by assumption (B.1) and conclu-
sion (B.4). Hence, Theorem B.1 follows directly from Lemma B.4 with α := a and β := b, because the
additional assertions are clear. �

Let now
(
X̂(·, λ), Û (·, λ)

)
be the principal solution of (Hλ), whose initial conditions do not depend on λ and

therefore it satisfies condition (B.1). Let n1(λ) be defined by (B.2) through
(
X̂(·, λ), Û (·, λ)

)
, or in this case

n1(λ) is defined by (2.6). Furthermore, let n2(λ) be defined by (2.7).

Theorem B.5 (global oscillation theorem). Assume (1.2) and (1.5). Then for all λ ∈ R

n2(λ+) = n2(λ) < ∞,

n2(λ+) − n2(λ−) = n1(λ+) − n1(λ−) ≥ 0,

and there exists m ∈ N ∪ {0} such that

n1(λ) = n2(λ) + m for all λ ∈ R. (B.12)

Moreover, for a suitable λ0 ∈ R, λ0 < 0, we have

n2(λ) ≡ 0 and n1(λ) ≡ m for all λ ≤ λ0. (B.13)

Proof. This global oscillation theorem follows immediately from the local oscillation theorem (Thm. B.1), in
which we take

(
X(·, λ), U(·, λ)

)
:=

(
X̂(·, λ), Û(·, λ)

)
to be the principal solution of system (Hλ). �

Proof of Theorem 2.9. From Proposition 2.2 we have that the functional Fλ > 0 if and only if the principal
solution

(
X̂(·, λ), Û(·, λ)

)
of (Hλ) has no proper focal points in (a, b]. By formula (B.12) of Theorem B.5, this

is equivalent to equality (2.8), because in this case we have m = 0. Equation (B.13) then yields n2(λ) ≡ 0 for
λ ≤ λ0, so that there are no finite eigenvalues less than λ0. Hence, the finite eigenvalues of (E) are bounded
from below. �
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