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FULL CONVERGENCE OF THE PROXIMAL POINT METHOD
FOR QUASICONVEX FUNCTIONS ON HADAMARD MANIFOLDS

Erik A. Papa Quiroz1 and P. Roberto Oliveira2

Abstract. In this paper we propose an extension of the proximal point method to solve minimization
problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we ini-
tially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard
manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the
minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower
semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore,
under the assumptions that the sequence of proximal parameters is bounded and the function is con-
tinuous, we obtain the convergence to a generalized critical point. In particular, our work extends the
applications of the proximal point methods for solving constrained minimization problems with non-
convex objective functions in Euclidean spaces when the objective function is convex or quasiconvex
on the manifold.
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1. Introduction

In this paper we introduce an extension of the proximal point method for solving minimization problems
with quasiconvex objective functions on Hadamard manifolds, that is,

min
x∈M

f(x), (1.1)

where f : M → R ∪ {+∞} is a proper quasiconvex function and M is a Hadamard manifold (recalling that
a Hadamard manifold is a simply connected finite dimensional Riemannian manifold with nonpositive sectional
curvature).

The proximal point method in Riemannian manifolds generates a sequence {xk} given by x0 ∈ M, and

xk ∈ argmin
{
f(x) + (λk/2)d2(x, xk−1) : x ∈ M

}
, (1.2)
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where λk is a certain positive parameter and d is the Riemannian distance in M . Observe that especially
when M = R

n we obtain the classical proximal method introduced by Martinet [21], and further developed by
Rockafellar [29] (in a general framework):

xk ∈ argmin
{
f(x) + (λk/2) ||x − xk−1||2 : x ∈ R

n
}

,

where ||.|| is the Euclidian norm, i.e., ||x|| =
√〈x, x〉.

It is well known, see Ferreira and Oliveira [16], that if M is a Hadamard manifold, f is convex in (1.2) and
{λk} satisfies

+∞∑
k=1

(1/λk) = +∞, (1.3)

then limk→∞ f(xk) = inf{f(x) : x ∈ M}. Furthermore, if the optimal set is nonempty, we obtain that {xk}
converges to an optimal solution of the problem.

On the other hand, several applications in diverse Science and Engineering areas are sufficient motivation to
work with nonconvex objective functions and proximal point methods, see for example [3,4,32]. In particular,
the class of quasiconvex minimization problems has been receiving special attention from many researchers
due to the broad range of applications, for example, in location theory [17], control theory [7] and specially
in economic theory [33]. For the interested reader in the literature on convex optimization problems, we refer
to [8,9]. Furthermore, we point out that an important class of nonconvex problems is given by nonconvex
quadratic problems (with SDP relaxations as a possible issue), as can be seen in [36], Chapter 13.

Proximal point methods to solve the problem (1.1) for nonconvex objective functions in Euclidean spaces,
i.e. M = R

n, was studied by some researchers. Tseng [34] proved a weak convergence result that is, assuming
that f is a lower semicontinous and bounded from below function and λk = λ > 0 then every cluster point z is
a stationary point of f , i.e.

f ′(z, d) := lim inf
λ↓0

(
f(z + λd) − f(z)

λ

)
≥ 0.

Kaplan and Tichatschke [19] studied the method for a class of nonconvex functions when the auxiliary function
f(.)+(λk/2)||.−xk−1||2 becomes strongly convex on certain convex set under a suitable choice of λk. The authors
proved that the sequence stops in a finite number of iterations at a stationary point or any accumulation point
of {xk} is a stationary point of f. This does not mean that the whole sequences converge, a property known
as full convergence or single limit-point in the literature. Indeed, it is known, see [1], that the sequences of
iterates of basic descent methods may fail to converge even when the trajectory is bounded and f is smooth.
So a natural question arose: under what minimal condition may the full convergence (convergence of all the
sequence) of the proximal point method be proved?

An advance in this direction was given by Attouch and Bolte [3], where, under the assumptions that f satisfies
a Lojasiewicz property and {xk} is bounded, they have proved the convergence of the method to some generalized
critical point of the problem. For smooth quasiconvex minimization on the nonnegative orthant, there are some
recent works in the literature. Attouch and Teboulle [5], with a regularized Lotka-Volterra dynamical system,
have proved the convergence of the continuous method to a point which belongs to a certain set which contains
the set of optimal points; see also Alvarez et al. [2], that treats a general class of dynamical systems that includes
the one of Attouch and Teboulle [5], and includes also the case of quasiconvex objective functions in connection
with continuous in time models of generalized proximal point algorithms. Cunha et al. [12] and Chen and
Pan [11], with a particular φ-divergence distance, have proved the full convergence of the proximal method to
the KKT-point of the problem when parameter λk is bounded and convergence to an optimal solution when
λk → 0. Pan and Chen [23], with the second-order homogeneous distance, and Souza et al. [32] with a class of
separated Bregman distances, have proved the same convergence result of [11,12].

The iteration (1.2) has been previously considered by Ferreira and Oliveira in [16] and Papa Quiroz and
Oliveira in [26] for convex and quasiconvex functions, respectively. Ferreira and Oliveira have proved that if f
is convex in (1.2) and {λk} satisfies (1.3), then limk→∞ f(xk) = inf{f(x) : x ∈ M}. Furthermore, if the optimal
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set is nonempty, {xk} converges to an optimal solution of the problem. On the other hand, Papa Quiroz and
Oliveira in [26] have proved that if f is continuous and quasiconvex in (1.2), {λk} satisfies λk → 0 and the
optimal solution is nonempty then, {xk} converges to an optimal solution of the problem. Observe that in [26]
we assume that (1.2) is solved exactly, which is a strong assumption that will be relaxed in the current paper.

In this paper we are interested in extending the global convergence of the proximal point method to minimize
quasiconvex functions on Hadamard manifolds. The motivation to study this subject comes from two fields.
One of them is that the relative interior of some important constraints in optimization can be seen as Hadamard
manifolds, for example:

(i) the hypercube (0, 1)n with the metric X−2(I − X)−2 = diag (x−2
1 (1 − x1)−2, ..., x−2

n (1 − xn)−2), see
Theorems 3.1 and 3.2 of [25];

(ii) the positive orthant R
n
++ with the Dikin metric X−2 = diag (1/x2

1, ..., 1/x2
n), see Section 4.1, Example 1,

of [24];
(iii) the set of symmetric positive definite matrices Sn

++ with the metric given by the Hessian of the barrier
− log detX ; see Corollary 3.1 of [22] and Corollary 5.10 of [28];

(iv) the cone K := {z = (τ, x) ∈ R
1+n : τ > ||x||} endowed with the Hessian of the barrier − ln(τ2 − ||x||2),

see Corollary 3.1 of [22] and Corollary 5.10 of [28].

Thus, we can solve more general optimization problems with nonconvex objective functions, that is, if we can
transform those problems into convex or quasiconvex ones on the manifold, we can then use the proposed
algorithm. Another one is that the class of Hadamard manifolds is the natural motivation to study more
general spaces of nonpositive curvature such as, for example, Hadamard (also called CAT(0)) and Alexandrov
spaces. Observe that spaces of nonpositive curvature play a significant role in many areas: Lie group theory,
combinatorial and geometric group theory, dynamical system, harmonic maps and vanishing theorems, geometric
topology, Kleinian group theory and Theichmüller theory, see the books [6,10,15,18] for details.

The main difficulty we observed in extending the proximal method for nonconvex function is that due to the
nonconvexity of f the subproblems of (1.2) may not be convex and thus, from a practical point of view, we may
obtain that minimization subproblems may be as hard to solve globally as the original one due to the existence
of multiple isolated local minimizers. To solve this disadvantage we propose the following iteration:

0 ∈ ∂̂
(
f(.) + (λk/2)d2(., xk−1)

)
(xk) (1.4)

where ∂̂ is the regular subdifferential on Hadamard manifolds (see Sect. 3). Of course both (1.2) and (1.4)
are equivalent when f is convex in M, but in the quasiconvex case these iterative schemes are quite different
in nature. Convex problems can be addressed by conventional local algorithms since all critical points are
global minimizers. The regularized subproblem being strongly convex when the objective function is convex,
we expect the local algorithms to perform efficient enough to find a good approximate solution at reasonable
execution time. Suppose now that f is quasiconvex, if the regularized subproblem turned to be quasiconvex,
similar considerations as in the convex case would hold true: the only practical difficulty for global minimization
occurring in the uncommon event that we must go throughout nonzero measure “plateaux” of critical points.
But the class of quasiconvex functions is not closed by addition. Thus the augmented auxiliary function to be
minimized in (1.2) may be nonquasiconvex and indeed multiple isolated local minimizers may occur. Therefore
in our opinion the local stationary iteration (1.4) makes much more sense that the previously considered (1.2)
for dealing with nonconvex problems. In this sense the paper improves, for nonconvex objective functions, the
work of Ferreira and Oliveira [16].

Under some natural assumption on the function f we prove that the sequence {xk} given by (1.4) there exists
and converges to a generalized critical point of the problem. Of course, in the actual quasiconvex case the best
that one can expect from (1.4) is convergence towards a critical point (not necessary a global minimum), this
is so because the local nature of (1.4). But when there is no critical point of f in M, the paper ensures the
convergence of {f(xk)} to be (possibly not realized) infimum value of f on M (see Rem. 4.4). This is interesting
in view of the applications, where M is identified with the relative interior of the feasible set. Indeed, take for
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instance the minimization of a nonconvex function f on the non negative orthant R
n
+. The approach consists in

taking the interior of the positive orthant as the manifold, namely M = R
n
++ and endow it with a nonpositive

sectional curvature metric such that f becomes quasiconvex in M . But the most interesting case is when the
minimum is realized at the boundary ∂M of M in R

n, while the constraint x ≥ 0 is irrelevant for those critical
points in R

n
++. Moreover, in many interesting situations it is not possible to extend the metric to the boundary

of M due to some singularities (as the metric induced by the Hessian of the log barrier), thus it is not clear how
to prove actual convergence of {xk} in that case. In this context, the convergence in value result is interesting.

The paper is divided as follows: Section 2 gives some results on metric spaces and Riemannian manifolds. In
Section 3, some results of regular and generalized subdiferential on Hadamard manifolds are presented, providing
some characterization and calculus rules. This section is not particularly difficult but should be interesting on
its own for readers specialized on nonsnooth analysis. In Section 4, we extend and analyze the proximal point
method with Riemannian distances to solve minimization problems on Hadamard manifolds for quasiconvex
functions. Then, assuming that the objective function is bounded from below and continuous, we prove the full
convergence of this method for a certain generalized critical point of the problem. Finally, in Section 5 some
conclusions are provided.

2. Some basic facts on metric spaces and Riemannian manifolds

In this section we recall some fundamental properties and notation on Fejér convergence in metric spaces
and convex analysis on Riemannian manifolds. Those basic facts can be seen, for example, in do Carmo [14],
Sakai [31], Udriste [35] and Rapcsák [27].

Definition 2.1. Let (X, ρ) be a complete metric space with metric ρ. A sequence {zk} of X is Fejér convergent
to a set U ⊂ X, if for every u ∈ U we have

ρ(zk+1, u) ≤ ρ(zk, u).

Theorem 2.1. In a complete metric space (X, ρ), if {zk} is Fejér convergent to a nonempty set U ⊆ X,
then {zk} is bounded. If, furthermore, a cluster point z̄ of {zk} belongs to U, then {zk} converges and
limk→+∞ zk = z̄.

Proof. See, for example, Lemma 6.1 by Ferreira and Oliveira [16]. �
Let M be a differential manifold with finite dimension n. We denote by TxM the tangent space of M at x and

TM =
⋃

x∈M
TxM . TxM is a linear space and has the same dimension of M . Because we restrict ourselves to real

manifolds, TxM is isomorphic to R
n. If M is endowed with a Riemannian metric g, then M is a Riemannian

manifold and we denote it by (M, G) or only by M when no confusion can arise, where G denotes the matrix
representation of the metric g. The inner product of two vectors u, v ∈ TxM is written as 〈u, v〉x := gx(u, v),
where gx is the metrics at point x. The norm of a vector v ∈ TxM is set by ||v||x := 〈v, v〉1/2

x . If there is no
confusion we denote 〈, 〉 = 〈, 〉x and ||.|| = ||.||x. The metrics can be used to define the length of a piecewise
smooth curve α : [t0, t1] → M joining α(t0) = p′ to α(t1) = p through L(α) =

∫ t1
t0

‖α′(t)‖α(t)dt. Minimizing this
length functional over the set of all curves we obtain a Riemannian distance d(p′, p) which induces the original
topology on M .

Given two vector fields V and W in M , the covariant derivative of W in the direction V is denoted by
∇V W . In this paper ∇ is the Levi-Civita connection associated to (M, G). This connection defines an unique
covariant derivative D/dt, where, for each vector field V , along a smooth curve α : [t0, t1] → M , another vector
field is obtained, denoted by DV/dt. The parallel transport along α from α(t0) to α(t1), denoted by Pα,t0,t1 , is
an application Pα,t0,t1 : Tα(t0)M → Tα(t1)M defined by Pα,t0,t1(v) = V (t1) where V is the unique vector field
along α so that DV/dt = 0 and V (t0) = v. Since ∇ is a Riemannian connection, Pα,t0,t1 is a linear isometry,
furthermore P−1

α,t0,t1 = Pα,t1,t0 and Pα,t0,t1 = Pα,t,t1Pα,t0,t, for all t ∈ [t0, t1]. A curve γ : I → M is called
a geodesic if Dγ′/dt = 0.
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A Riemannian manifold is complete if its geodesics are defined for any value of t ∈ R. Let x ∈ M , the
exponential map expx : TxM → M is defined as expx(v) = γ(1), where γ is the geodesic such that γ(0) = x
and γ′(0) = v. If M is complete, then expx is defined for all v ∈ TxM. Besides, there is a minimal geodesic (its
length is equal to the distance between the extremes).

Given the vector fields X, Y, Z on M, we denote by R the curvature tensor defined by R(X, Y )Z = ∇Y ∇XZ−
∇X∇Y Z + ∇[X,Y ]Z, where [X, Y ] := XY − Y X is the Lie bracket. Now, the sectional curvature as regards X
and Y is defined by

K(X, Y ) =
〈R(X, Y )Y, X〉

‖X‖2‖Y ‖2 − 〈X, Y 〉2 ·
Given an extended real valued function f : M → R ∪ {+∞} we denote its domain by domf := {x ∈ M : f(x) <
+∞} and its epigraph by epif := {(x, β) ∈ M×R : f(x) ≤ β}. f is said to be proper if domf �= φ and ∀x ∈ domf
we have f(x) > −∞. f is a lower semicontinuous function if epif is a closed subset of M × R.

The gradient of a differentiable function f : M → R, gradf , is a vector field on M defined through df(X) =
〈gradf, X〉 = X(f), where X is also a vector field on M .

The complete simply-connected Riemannian manifolds with nonpositive curvature are called Hadamard
manifolds.

Theorem 2.2. Let M be a Hadamard manifold. Then M is diffeomorphic to the Euclidian space R
n, n = dimM.

More precisely, at any point x ∈ M, the exponential mapping expx : TxM → M is a global diffeomorphism.

Proof. See Sakai [31], Theorem 4.1, p. 221. �

A consequence of the preceding theorem is that Hadamard manifolds have the property of uniqueness of
geodesic between any two points. Another useful property is the following: let [x, y, z] be a geodesic triangle,
which consists of vertices and the geodesics joining them. We have:

Theorem 2.3. Given a geodesic triangle [x, y, z] in a Hadamard manifold, it holds that:

d2(x, z) + d2(z, y) − 2〈exp−1
z x, exp−1

z y〉 ≤ d2(x, y),

where exp−1
z denotes the inverse of expz .

Proof. See Sakai [31], Proposition 4.5, p. 223. �

Definition 2.2. Let M be a Hadamard manifold. A subset A is said to be convex in M if given x, y ∈ A, the
geodesic curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y verifies γ(t) ∈ A, for all t ∈ [0, 1].

Definition 2.3. Let M be a Hadamard manifold and f : M → R ∪ {+∞} be a proper function. f is called
convex if for all x, y ∈ M and t ∈ [0, 1], it holds that

f(γ(t)) ≤ tf(y) + (1 − t)f(x),

for the geodesic curve γ : [0, 1] → M so that γ(0) = x and γ(1) = y. When the preceding inequality is strict,
for x �= y and t ∈ (0, 1), the function f is called strictly convex.

Definition 2.4. Let M be a Hadamard manifold and f : M → R ∪ {+∞} be a proper function. f is called
quasiconvex if for all x, y ∈ M , t ∈ [0, 1], it holds that

f(γ(t)) ≤ max{f(x), f(y)},

for the geodesic γ : [0, 1] → R, so that γ(0) = x and γ(1) = y.

Theorem 2.4. Let M be a Hadamard manifold and f : M → R∪{+∞} be a proper function. f is quasiconvex
if and only if the set {x ∈ M : f(x) ≤ c} is convex for each c ∈ R.
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Proof. See Udriste [35], p. 98, Theorem 10.2. �
Definition 2.5. Let M be a Hadamard manifold and f : M → R∪{+∞} be a proper and differentiable function
on the open convex set domf of M . f is called pseudoconvex if, for every pair of distinct points x, y ∈ domf we
have

〈gradf(x), γ′(0)〉 ≥ 0, then f(y) ≥ f(x),
for the geodesic γ joining x to y.

Theorem 2.5. Let M be a Hadamard manifold and f : M → R ∪ {+∞} be a proper and differentiable
pseudoconvex function on the open convex set domf of M . If gradf(x∗) = 0, then x∗ is a global minimum of f.

Proof. Immediate. �
Theorem 2.6. Let M be a Hadamard manifold and let y be a fixed point. Then, the function g(x) = d2(x, y)
is strictly convex and gradg(x) = −2 exp−1

x y.

Proof. See Ferreira and Oliveira [16], Proposition II.8.3. �

3. Regular and general subgradients on Hadamard manifolds

In this section, we extend some definitions and results of regular and general subgradient from Euclidean
spaces to Hadamard manifolds. The developed theory will be useful to define the proximal algorithm as well as
in the convergence proofs. Our results are motivated from Rockafellar and Wets [30].

Along this section M will be a Hadamard manifold.

Definition 3.1. Let f : M → R ∪ {+∞} be a proper function. Given x ∈ domf, we say that s ∈ TxM is
a regular subgradient of f at x if the following is satisfied

lim inf
y �=x,y→x

1
d(x, y)

[f(y) − f(x) − 〈s, γ′(0)〉] ≥ 0,

for the geodesic curve joining x to y (γ(0) = x and γ(1) = y).

Observe that the above inequality is equivalent to

f(y) ≥ f(x) + 〈s, γ′(0)〉 + o(d(x, y)),

for the geodesic γ joining x to y, where limx �=y,d(x,y)→0
o(d(x,y))

d(x,y) = 0.

The set of regular subgradient of f at x ∈ domf , denoted by ∂̂f(x), is called Fréchet subdifferential. If
x /∈ domf then we define ∂̂f(x) = ∅.

The concept of Fréchet subdifferential is inadequate for the calculus covering some of the properties we need,
so we introduce the following:

Definition 3.2. Let f : M → R∪{+∞} be a proper function. Given a point x ∈ domf, we say that s ∈ TxM is
a generalized subgradient of f at x if there exist {xl}, {sl}, with sl ∈ ∂̂f(xl), satisfying xl → x, f(xl) → f(x),
and Pγl,0,1s

l → s, for the geodesic γl joining xl to x, where Pγl,0,1 is the parallel transport along γl.

The limiting subdifferential of f at x ∈ M, denoted by ∂f(x), is defined as the set of all the generalized
subgradient of f at x, that is,

∂f(x) :=
{

s ∈ TxM : ∃xl → x, f(xl) → f(x), ∃sl ∈ ∂̂f
(
xl
)

: Pγl,0,1s
l → s

}
.

Proposition 3.1. The following properties are true:
a. ∂̂f(x) ⊂ ∂f(x), for all x ∈ M ;
b. If f is differentiable at x̄ then ∂̂f(x̄) = {gradf(x̄)}, so gradf(x̄) ∈ ∂f(x̄);



FULL CONVERGENCE OF THE PPM FOR QUASICONVEX FUNCTIONS ON HADAMARD MANIFOLDS 489

c. If f is continuously differentiable in a neighborhood of x̄, then ∂̂f(x̄) = ∂f(x̄) = {gradf(x̄)};
d. If g = f + h, with f finite at x̄ and h continuously differentiable on a neighborhood of x̄ then ∂̂g(x̄) =

∂̂f(x̄) + gradh(x̄), and ∂g(x̄) = ∂f(x̄) + gradh(x̄).

Proof.

a. It is immediate from Definitions 3.1 and 3.2.
b. The first part is a consequence of the differentiability of f and Definition 3.1. The second part is a direct

consequence from Definitions 3.1 and 3.2.
c. Let s ∈ ∂f(x̄), then

∃xl → x̄, f
(
xl
) → f(x̄), ∃sl ∈ ∂̂f

(
xl
)

: Pγl,0,1s
l → s,

for the geodesic γl joining xl to x̄, where Pγl,0,1 is the parallel transport along the geodesic γl. From
item b, we have that sl = gradf(xl), for l sufficiently large. From the continuity of gradf and parallel
transport P, and using the uniqueness of the limit point we have that s = gradf(x̄).

d. The inclusion ⊂ is immediate. We get the inclusion ⊃ by applying this rule to the representation
f = g + (−h). �

In order to work with minimization problems we need the following definition.

Definition 3.3. Let f : M → R ∪ {+∞} be a proper function. A point x ∈ domf is said to be a generalized
critical point of f if 0 ∈ ∂f(x).

Theorem 3.1. If a proper function g : M → R∪{+∞} has a local minimum at x̄ then 0 ∈ ∂̂g(x̄) and therefore,
0 ∈ ∂g(x̄).

Proof. Immediate. �

We will prove that in the convex case the concepts of limiting and Fréchet subdifferential coincide with the
classical one. Some definitions and properties are needed to achieve that aim.

Definition 3.4. Let C be a subset of M . Given x̄ ∈ C, a vector v ∈ Tx̄M is called normal to C at x̄, in the
regular sense, denoted by v ∈ N̂C(x̄), if

〈v, γ′(0)〉 ≤ o(d(x̄, x)), (3.5)

∀x ∈ C and for the geodesic γ joining x̄ to x, where o(d(x̄, x)) denotes a term with the property that

lim
x �=x̄,d(x,x̄)→0

o(d(x̄, x))
d(x̄, x)

= 0.

A vector v is normal to C at x̄ in a generalized sense or simply a normal vector, denoted by v ∈ NC(x̄), if there
exist sequences {xl} ⊂ C and {vl} ⊂ N̂C(xl) so that xl → x̄ and for the geodesic γl such that γl(0) = xl and
γl(1) = x̄, Pγl,0,1v

l → v, where Pγl,0,1 is the parallel transport along the geodesic γl.

Observe that inequality (3.5) is equivalent to

lim sup
x∈C,x �=x̄,d(x,x̄)→0

〈v, γ′(0)〉
d(x, x̄)

≤ 0, (3.6)

for the geodesic γ joining x̄ to x.
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Definition 3.5. Let C be a subset of M . Given x̄ ∈ C, a vector w ∈ Tx̄M is tangential to C at x̄, denoted by
w ∈ TC(x̄), if there are sequences {xl} ⊂ C, xl �= x̄, and {τ l} ⊂ R with xl → x̄ and τ l → 0 with τ l > 0 so that
for the geodesic γl joining x̄ to xl we have

lim
l→+∞

γ′
l(0)
τ l

= w.

From now on τ l ↘ 0 will denote that τ l > 0 and τ l → 0, as l → +∞.

Proposition 3.2. Let C ⊂ M . For each x̄, the sets N̂C(x̄) and TC(x̄) are closed cones. Furthermore, N̂C(x̄)
is convex in Tx̄M and characterized by

v ∈ N̂C(x̄) if and only if 〈v, w〉 ≤ 0, ∀w ∈ TC(x̄).

Proof. The properties whereby both sets are closed cones as well as N̂C(x̄) is convex are obtained by using
elementary analysis. We prove the characterization property. Let w ∈ TC(x̄), arbitrary. From Definition 3.5
there are sequences {xl} ⊂ C, xl �= x̄, and {τ l} ⊂ R with xl → x̄ and τ l ↘ 0 such that for the geodesic γl joining
x̄ to xl we have liml→+∞

γ′
l(0)
τ l = w. Defining wl = γ′

l(0)
τ l and using v ∈ N̂C(x̄) we have

〈
v, wl

〉 ≤ o(||τ lwl||)
τ l .

Taking l → +∞ we obtain that 〈v, w〉 ≤ 0.

Reciprocally, suppose that 〈v, w〉 ≤ 0, ∀w ∈ TC(x̄) and v /∈ N̂C(x̄). From (3.6), for any δ > 0

sup
x∈B(x̄,δ),x �=x̄

( 〈v, γ′(0)〉
d(x, x̄)

)
≥ m > m1 > 0,

where γ is the geodesic joining x̄ to x, m := lim supx �=x̄,d(x,x̄)→0
〈v,γ′(0)〉
d(x,x̄) and m1 is some positive number between

0 and m. Take δ = 1/l and using the supreme property, there exists xl ∈ B(x̄, 1/l) with xl �= x̄ so that〈
v,

γ′
l(0)

d(xl, x̄)

〉
≥ m1,

for the geodesic γl joining x̄ to xl. Defining wl := γ′
l(0)

d(xl,x̄) and taking lim inf we obtain

lim inf
l→+∞

〈v, wl〉 ≥ m1.

As {wl} is bounded then there exist subsequences, without loss of generality, also denoted by {xl} and {wl},
so that xl ∈ B(x̄, 1/l) ∩ C and wl → w, for some w. Defining τ l := d(xl, x̄) and from the definition of wl, we
have that w ∈ TC(x̄) and 〈v, w〉 > 0. This is a contradiction with the hypothesis, and therefore the statement
of the proposition is true. �

Theorem 3.2. Let C be a subset of M and x̄ ∈ C. If C is convex then

TC(x̄) = cl{w : there exists λ > 0 with expx̄(λw) ∈ C},

NC(x̄) = N̂C(x̄) = Z,

where
Z = {v : 〈v, γ′(0)〉 ≤ 0, ∀x ∈ C,where γ is the geodesic such that γ(0) = x̄ and γ(1) = x}.

Proof. Define
K(x̄) := {w ∈ Tx̄M : there exists λ > 0 with expx̄(λw) ∈ C}.



FULL CONVERGENCE OF THE PPM FOR QUASICONVEX FUNCTIONS ON HADAMARD MANIFOLDS 491

As C is convex, it includes the geodesics joining the point x̄ and any of their points (see Def. 2.2), so the vectors
of K(x̄) are the multiple by a positive scalar of the vectors γ′(0), where γ is the geodesic curve joining x̄ and
some x ∈ C. We prove that

K(x̄) ⊂ TC(x̄) ⊂ clK(x̄).
The first inclusion is immediate (give w ∈ K(x̄), then there exists λ > 0 such that expx̄(λw) ∈ C, define
xl = expx̄(τ lw) with τ l ∈ (0, λ] and τ l → 0), so we prove the second inclusion. Let w ∈ TC(x̄), then from
Definition 3.5, there exist sequences xl → x̄, xl ∈ C, xl �= x̄ and τ l ↘ 0 such that liml→+∞

γ′
l(0)
τ l = w, where

γl is the geodesic joining xl and x̄. Define wl := γ′
l(0)
τ l , then from the convexity of C, there exists λ > 0 so

that expxl(λwl) ∈ C. Besides, as wl → w, we get w ∈ clK(x̄). Now, as TC(x̄) is closed (see Prop. 3.2) we have
clK(x̄) = TC(x̄), and therefore the first result is satisfied.

Now, we prove the second statement of the theorem. As, by definition,

Z ⊂ N̂C(x̄) ⊂ NC(x̄),

then it is sufficient to prove that
NC(x̄) ⊂ Z.

Let v ∈ NC(x̄) then, there exist xl → x̄ with xl ∈ C and Pγl,0,1v
l → v, with vl ∈ N̂C(xl), where Pγl,0,1 is the

parallel transport along the geodesic γl such that γl(0) = xl and γl(1) = x̄.

As vl ∈ N̂C(xl), then from Proposition 3.2, it holds the characterization property,

〈vl, w〉 ≤ 0, ∀w ∈ TC(xl) = clK(xl) (3.7)

where K(xl) := {w : there exists λ > 0 with expxl(λw) ∈ C}, the above equality being a consequence of
the previous result. Let x ∈ C, arbitrary, and let γ be the geodesic such that γ(0) = x̄ and γ(1) = x. Defining
w = Pγl,1,0(γ′(0)), we have that w ∈ K(xl), so using this fact in (3.7) we obtain that 〈vl, Pγl,1,0(γ′(0))〉 ≤ 0.
Now, taking parallel transport and l → +∞ we obtain that 〈v, γ′(0)〉 ≤ 0. Thus, the result is obtained. �

We define the difference quotient function as a function Δτf(x) : TxM → R ∪ {+∞} where

Δτf(x)(w) =
f(expx(τw)) − f(x)

τ
, for τ > 0.

Definition 3.6. For a function f : M → R ∪ {+∞} and a point x̄ ∈ M with f(x̄) finite, the subderivative
function df(x̄) : Tx̄M → R ∪ {+∞} is defined as

df(x̄)(w) := lim inf
τ↘0,w′→w

Δτf(x)(w′).

Lemma 3.1.
∂̂f(x̄) = {v ∈ Tx̄M : 〈v, w〉 ≤ df(x̄)(w), ∀w ∈ Tx̄M}.

Proof. We prove the inclusion ⊂. Let v ∈ ∂̂f(x̄) and w ∈ Tx̄M . Define y = expx̄(τw′) with w′ �= 0 and τ > 0.
From Definition 3.1 and observing that d(x̄, y) = ||τw′|| gives

Δτf(x̄)(w′) − o(||τw′||)
τ

≥ 〈v, w′〉.

Taking lim inf when τ ↘ 0 and w′ → w we obtain df(x̄)(w) ≥ 〈v, w〉.
Now, we get the inclusion ⊃ . Let v ∈ Tx̄M so that 〈v, w〉 ≤ df(x̄)(w), ∀w ∈ Tx̄M and suppose that

v �∈ ∂̂f(x̄), then from definition

S := lim inf
y �=x̄,y→x̄

1
d(x̄, y)

[f(y) − f(x̄) − 〈v, γ′(0)〉] < 0
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where γ is the geodesic joining x̄ to y. From supreme and infimum properties, given δ = 1/l there exists
yl ∈ B(x̄, 1/l) so that

1
d(x̄, yl)

[f(yl) − f(x̄) − 〈v, γ′
l(0)〉] ≤ S,

where γl is a geodesic joining x̄ and yl. Define wl := γ′
l(0)/τ l where τ l := d(x̄, yl), then gives

f(expx̄(τ lwl)) − f(x̄)
τ l

− 〈v, wl〉 ≤ S.

As {wl} is a bounded sequence then there is a point w̄ ∈ Tx̄M and a subsequence, also denoted by {wl}, so
that wl → w̄ and as τ l ↘ 0 we have

df(x̄)(w̄) ≤ S + 〈v, w̄〉 < 〈v, w̄〉,

which is a contradiction. Therefore the proof is concluded. �

Proposition 3.3. v ∈ ∂̂f(x̄) if, and only if, 〈(v,−1), (w, β)〉 ≤ 0, ∀(w, β) ∈ epidf(x̄).

Proof. Let (w, β) ∈ epi df(x̄), then df(x̄)(w) ≤ β. Using the previous lemma we obtain 〈v, w〉 − β ≤ 0. This
implies that 〈(v,−1), (w, β)〉 ≤ 0, ∀(w, β) ∈ epidf(x̄).

Reciprocally, suppose that 〈(v,−1), (w, β)〉 ≤ 0, ∀(w, β) ∈ epidf(x̄). Let w ∈ Tx̄M arbitrary, then
(w, df(x̄)(w)) ∈ epidf(x̄). Using the above inequality we have 〈v, w〉 ≤ df(x̄)(w). Finally from the previous
lemma, we obtain that v ∈ ∂̂f(x̄). �
Remark 3.1. Observe that

(w, λ) ∈ epiΔτf(x̄) if and only if (expx̄(τw), λτ + f(x̄)) ∈ epif.

Proposition 3.4.
epidf(x̄) = Tepif (x̄, f(x̄)).

Proof. We first prove the inclusion ⊂. Let (w, β) ∈ epidf(x̄), then ∀δ > 0 and γ > 0

inf
τ<γ,w′∈B(w,δ)

Δτf(x̄)(w′) ≤ β.

Taking δ = γ = 1/l, from the infimum property, there exists τ l < 1/l and wl ∈ B(w, 1/l) so that

Δτ lf(x̄)(wl) < β +
1
l
·

From Remark 3.1 this implies that (expx̄(τ lwl), (β + 1/l)τ l + f(x̄)) ∈ epif. Defining zl = expx̄(τ lwl) and
αl = (β + 1/l)τ l + f(x̄) we obtain that (zl, αl) ∈ epif with (zl, αl) → (x̄, f(x̄)), τ l ↘ 0. Let Ψl be the geodesic
joining (x̄, f(x̄)) to (zl, αl), then

lim
l→+∞

Ψl(0)
τ l

= lim
l→+∞

(
γ′

l(0)
τ l

,
αl − f(x̄)

τ l

)
= lim

l→+∞
(wl, β + 1/l) = (w, β),

where γl is the geodesic joining x̄ and zl. From Definition 3.5 the result is obtained.
Now, we prove the inclusion ⊃. Let (w, β) ∈ Tepif (x̄, f(x̄)) then there exist (zl, αl) ∈ epif such that

(zl, αl) → (x̄, f(x̄)), τ l ↘ 0 and for the geodesic Ψ joining (x̄, f(x̄)) and (zl, αl) we have

lim
l→+∞

Ψ′
l(0)
τ l

= lim
l→+∞

(
γ′

l(0)
τ l

,
αl − f(x̄)

τ l

)
= (w, β),
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where γl is a geodesic joining x̄ and zl. From the above equality we obtain that wl := γ′
l(0)
τ l → w and

βl := αl−f(x̄)
τ l → β. Now, as (zl, αl) ∈ epif then

Δτ lf(x̄)(wl) ≤ αl − f(x̄)
τ l

·

Taking lim inf when l → +∞ we obtain lim inf l→+∞ Δτ lf(x̄)(wl) ≤ β. So, df(x̄)(w) ≤ β, and therefore
(w, β) ∈ epidf(x̄). �

Theorem 3.3.

∂̂f(x̄) =
{
v ∈ Tx̄M : (v,−1) ∈ N̂epif (x̄, f(x̄))

}
.

Proof. It is immediate from Propositions 3.3 and 3.4 and using C = epif in Proposition 3.2. �

Theorem 3.4.
∂f(x̄) ⊂ {v ∈ Tx̄M : (v,−1) ∈ Nepif (x̄, f(x̄))} .

Proof. Let v ∈ ∂f(x̄), then there exists {xl} such that xl → x̄, f(xl) → f(x̄), vl ∈ ∂̂f(xl) : Pγl,0,1v
l → v where

Pγl,0,1 is the parallel transport along the geodesic γl such that γl(0) = xl and γl(1) = x̄. As vl ∈ ∂̂f(xl) then,
from the previous theorem, (vl,−1) ∈ N̂epif (xl, f(xl)). Now, define the following sequences: zl = (xl, f(xl))
and pl = (vl,−1). Applying this definition, we obtain that there exists {zl} such that zl ∈ epif and pl ∈
N̂epif (xl, f(xl)) so that zl → (x̄, f(x̄)) and (Pγl,0,1v

l,−1) → (v,−1). Thus, from Definition 3.4 we conclude that
(v,−1) ∈ Nepif (x̄, f(x̄)). �

Finally, we show that if f is convex then Fréchet and limiting subdifferential are the same set; besides, they
coincide with the classical subdifferential in convex analysis. Let

∂F f(x̄) := {v ∈ Tx̄M : f(x) ≥ f(x̄) + 〈v, γ′(0)〉, for the geodesic γ joining x̄ to x}.

Theorem 3.5. If f : M → R ∪ {+∞} is a convex function, then for each x̄ ∈ M we have

∂f(x̄) = ∂̂f(x̄) = ∂F f(x̄).

Proof. The implication ∂F f(x̄) ⊂ ∂̂f(x̄) ⊂ ∂f(x̄) is trivial from their definitions. Then, it is sufficient to prove
that ∂f(x̄) ⊂ ∂F f(x̄). Let v ∈ ∂f(x̄), then from Theorem 3.4, (v,−1) ∈ Nepif (x̄, f(x̄)). As epif is convex,
because f is convex, we have from Theorem 3.2 that

〈v, γ′(0)〉 − (f(x) − f(x̄)) ≤ 0,

for the geodesic γ joining x̄ to x. Taking r = f(x) we obtain that f(x) ≥ f(x̄) + 〈v, γ′(0)〉, and therefore,
v ∈ ∂fF (x̄). �

4. Proximal point method on Hadamard manifolds

Along this section we are interested in solving the problem:

(p) min{f(x) : x ∈ M}

where f : M → R ∪ {+∞} is a proper function on a Hadamard manifold M .
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The proposed algorithm is as follows:

PPM Algorithm

Initialization:
Let {λk} be a sequence of positive parameters and an initial point

x0 ∈ M. (4.8)

Main steps:
For k = 1, 2, 3, ...

If 0 ∈ ∂̂f(xk−1) stop.
Otherwise, find xk ∈ M such that

0 ∈ ∂̂
(
f(.) + (λk/2)d2

(
., xk−1

)) (
xk

)
. (4.9)

Take k = k + 1.

Remark 4.1. Observe that the proposed method is a natural extension (for nonconvex functions) of the
proximal point method in Hadamard manifolds studied by Ferreira and Oliveira [16]. In fact, as M is a Hadamard
manifold, then d2(., xk−1) is strictly convex and by the convexity of f and Theorem 3.5 then (4.9) becomes

0 ∈ ∂F

(
f(.) + (λk/2)d2(., xk−1)

)
(xk),

which, from the convexity of f, is equivalent to

xk = arg min
{
f(x) + (λk/2)d2(x, xk−1) : x ∈ M

}
.

Remark 4.2. As we are interested in solving the problem (p) when f is nonconvex, it is important to observe
that the method (4.8)–(4.9) only needs, in each iteration, to find an stationary point of the regularized function
f(.) + (λk/2)d2(., xk−1). So we believe that our algorithm is more practical than previous works in proximal
methods with quasiconvex functions, see Cunha et al. [12], Chen and Pan [11], Souza et al. [32] and Papa Quiroz
and Oliveira [26].

Theorem 4.1. Let M be a Hadamard manifold. If f : M → R ∪ {+∞} is a proper lower bounded and lower
semicontinuous function on domf , then the sequence {xk}, given by (4.8)–(4.9) exists.

Proof. We proceed by induction. It holds for k = 0, due to (4.8). Assume xk exists. As f is lower semicontinuous
and bounded below on domf then, the function f(.) + (λk+1/2)d2(., xk) has compact level sets, and thus this
function has a global minimum xk+1 and from Theorem 3.1 we have 0 ∈ ∂̂

(
f(.) + (λk+1/2)d2(., xk)

)
(xk+1). �

Remark 4.3. Under the assumptions of the preceding theorem and from (4.9), the smoothness of (λk/2)
d2(., xk−1), Proposition 3.1, d, and Theorem 2.6, we have that there exists gk ∈ ∂̂f(xk) such that

gk = λk exp−1
xk xk−1.

We impose the following assumptions:

Assumption A. M is a Hadamard manifold and f : M → R∪{+∞} is a proper function bounded from below
on domf .

Assumption B. f is lower semicontinuous and quasiconvex.

As we are interested in the asymptotic convergence of the method we also assume that in each iteration
0 /∈ ∂̂f(xk) which implies that xk �= xk−1, for all k.
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Lemma 4.1. Let M be a Hadamard manifold and f : M → R ∪ {+∞} be a proper lower semicontinuous and
quasiconvex function. If g ∈ ∂̂f(x) and f(y) ≤ f(x) then 〈g, exp−1

x y〉 ≤ 0.

Proof. Let t ∈ (0, 1), then from the quasiconvexity of f and the assumption that f(y) ≤ f(x) we have f(γ(t)) ≤
max{f(x), f(y)} = f(x), where γ is the geodesic joining x to y. As g ∈ ∂̂f(x) we obtain

f(γ(t)) ≥ f(x) + t
〈
g, exp−1

x γ(t)
〉

+ o(t),

where limt→0
o(t)

t = 0. From both inequalities we conclude that t〈g, exp−1
x y〉 + o(t) ≤ 0. Dividing by t and

taking t → 0 we obtain the desired result. �

Proposition 4.1. Under assumptions A and B we have that {f(xk)} is decreasing and converges.

Proof. As xk �= xk−1, and from Remark 4.3 we have 〈gk, exp−1
xk xk−1〉 > 0. Using the quasiconvexity of f

and Lemma 4.1, this implies that f(xk) < f(xk−1). The convergence of {f(xk)} is immediate from the lower
boundedness of f . �

Now, we define the following set

U :=
{

x ∈ M : f(x) ≤ inf
j≥0

f
(
xj

)}
.

Observe that this set depends on the choice of the initial iterates x0 and sequence {λk}. Furthermore, if U = ∅
then it can be easily proven that limk→+∞ f(xk) = infx∈M f(x), and {xk} is unbounded.

From now on we assume that U �= ∅, so from Assumptions A and B, it is a nonempty closed and convex set
(see Thm. 2.4 for the convexity property).

Theorem 4.2. Under Assumptions A and B and U �= ∅, the sequence {xk}, generated by the proximal algorithm,
is Fejér convergent to U .

Proof. Let x ∈ U, then f(x) ≤ f(xk). As gk = λk(exp−1
xk xk−1) ∈ ∂̂f(xk) (see Rem. 4.3) and f is quasiconvex,

using Lemma 4.1 we have 〈
exp−1

xk x, exp−1
xk xk−1

〉 ≤ 0. (4.10)

On the other hand, for all x ∈ U from Theorem 2.3, taking y = xk−1 and z = xk, we have

d2
(
x, xk

)
+ d2

(
xk, xk−1

)− 2〈exp−1
xk xk−1, exp−1

xk x〉 ≤ d2
(
x, xk−1

)
.

Now, the last inequality and (4.10) imply, in particular,

0 ≤ d2(xk, xk−1) ≤ d2(x, xk−1) − d2(x, xk) (4.11)

for every x ∈ U . Thus

d(x, xk) ≤ d(x, xk−1). (4.12)

This means that {xk} is Fejér convergent to U . �
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Proposition 4.2. Under the assumptions of the preceding theorem, the following facts are true.
a. For all x ∈ U the sequence {d(x, xk)} is convergent.
b. limk→+∞ d(xk, xk−1) = 0.

Proof.
a. From (4.12), {d(x, xk)} is a bounded below nonincreasing sequence and hence convergent.
b. Taking k → +∞ in (4.11) and using a, we obtain the result. �

Theorem 4.3. Suppose that Assumptions A and B and U �= ∅ are satisfied, then the sequence {xk} converges
to a point of U.

Proof. From the previous theorem, {xk} is Fejér convergent to U, and therefore {xk} is bounded (see Thm. 2.1).
Then, there exist x̄ and a subsequence {xkj} of {xk} converging to x̄. From the lower semicontinuity
of f we obtain lim infj→+∞ f(xkj ) ≥ f(x̄). As {f(xk)} is a decreasing sequence and converges then f(x̄) ≤
limk→+∞ f(xk) ≤ f(xk), ∀k ∈ N. This implies that x̄ ∈ U. Now, from Theorem 2.1 we conclude that {xk}
converges to x̄. �

To obtain strong results for the proximal method we impose some conditions to {λk}.
Theorem 4.4. Suppose that assumptions A and B and U �= ∅ are satisfied. If 0 < λk < λ̄, where λ̄ is a positive
real number, then sequence {xk} converges to a point of U and limk→∞ gk = limk→∞ λk exp−1

xk xk−1 = 0.
Furthermore, if f is continuous on domf, then it converges to a generalized critical point of f .

Proof. The convergence was proved in Theorem 4.3. From Remark 4.3, using the fact that the parallel transport
is an isometry and the boundedness of λk we have that∣∣∣∣Pγk,0,1g

k
∣∣∣∣ =

∣∣∣∣gk
∣∣∣∣ ≤ λ̄

∣∣∣∣exp−1
xk xk−1

∣∣∣∣ = λ̄d(xk, xk−1),

where γk is the geodesic curve such that γk(0) = xk and γk(1) = x̄. Using Proposition 4.2, b, we get
limk→∞ gk = 0. Now, let f continuous, then there are sequences {xk}, {f(xk)} and {gk} with gk ∈ ∂̂f(xk)
such that limk→+∞ xk = x̄, limk→∞ f(xk) = f(x̄) (from the continuity of f) and limk→∞ Pγkj

,0,1g
kj = 0. From

Definition 3.2 it follows that 0 ∈ ∂f(x̄). �

As immediate particular cases of the above theorem we obtain the following results:

Corollary 4.1. If the optimal set of the problem (p) is nonempty and f convex on M, then {xk} converges to
an optimal solution.

Corollary 4.2. If the optimal set of the problem (p) is nonempty, f differentiable and pseudoconvex on M,
then {xk} converges to an optimal solution of the problem (p).

Remark 4.4. Observe that along this section we did not assume in M the existence of the optimal solution or
generalized critical points of the problem (p). This fact, in particular, is important in the applications of the
Riemannian geometry to solve constrained optimization problems. For example, consider the following problem

min{f(x) : x ∈ X},

where X ⊂ R
n (probably implicit constraints), f : X → R is a nonconvex function. Assuming that the

Hadamard manifold M is modelling the interior of X, i.e M = int(X), f is continuous quasiconvex on the
manifold and there are no generalized critical points in M, then we have that U = ∅ and so

lim
k→+∞

f(xk) = inf
x∈M

f(x) = inf
x∈int(X)

f(x).
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Furthermore, if X is closed and convex in R
n, we obtain that infx∈int(X) f(x) = infx∈X f(x) (see Kiwiel [20],

Lem. 1), and thus
lim

k→+∞
f(xk) = inf

x∈X
f(x).

That is, if there are no generalized critical points in M, the algorithm gives us enough information to obtain
an approach of the infimum value of the constrained problem. In particular, if the problem only has optimal
solutions in the boundary ∂X and f is convex as regards the manifold M, then using Theorem 3.5 we conclude
that {f(xk)} converges to the minimum of the original problem.

To finish this section we give some examples of proximal point methods on Hadamard manifolds. Example 4.1
shows proximal point methods for unconstrained minimization problems and Examples 4.2 to 4.5 show proximal
point methods for constrained ones. Those algorithms are particularly useful when the objective function is not
convex in the usual sense but becomes convex or quasiconvex on the manifold. The metric of Example 4.1 is
motivated of a particular investigation of convexification of nonconvex functions and the metrics of Examples 4.2
to 4.5 are motivated from Hessian of self-concordant barriers in interior point methods, see Nesterov and
Todd [22], Section 6.4, and Papa Quiroz and Oliveira [25], Section 3, for details. It should also be observed that
Examples 4.2, 4.4 and 4.5 were already considered in Papa Quiroz and Oliveira [26].

Example 4.1. Consider the unconstrained minimization problem in R
n

min{f(x) : x ∈ R
n}.

R
n with the metric

G(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .
0 . . . 0 0 0 1 + e2xn−1 −exn−1

0 . . . 0 0 0 −exn−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is isometric to the Euclidean space R

n through the application Φ : (Rn, I) → (Rn, G(x)), defined by

Φ(x1, x2, ..., xn) = (x1, x2, ..., xn−1, exn−1 − xn).

(Rn, G(x)) is a Hadamard manifold with null sectional curvature and the Riemannian distance between x =
(x1, ..., xn) and y = (y1, y2, ..., yn) is given by

d(x, y) =

[
n−1∑
i=1

(xi − yi)2 + [(yn − xn) − (eyn−1 − exn−1)]2
]1/2

.

In fact, as Φ is an isometry, then

d(x, y)2 =
∣∣∣∣Φ−1(x) − Φ−1(y)

∣∣∣∣2 ,

and therefore,

d(x, y)2 = ||(x1 − y1, x2 − y2, ..., xn−1 − yn−1, (yn − xn) − (eyn−1 − exn−1))||2

=
n−1∑
i=1

(xi − yi)2 + [(yn − xn) − (eyn−1 − exn−1)]2 .
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So, the proximal point method is given by x0 ∈ R
n and

0 ∈ ∂̂

(
f(x) + (λk/2)

{
n−1∑
i=1

(xi − xk−1
i )2 +

[
(xn − xk−1

n ) −
(
exn−1 − exk−1

n−1

)]2
})

(xk).

The metric G(x) was motivated by the function g(x1, x2) = x2
1 + (ex1 − x2)2, which is not convex in (R2, I) but

it becomes convex on the manifold (R2, G2(x)), where

G2(x) =
(

1 + e2x1 −ex1

−ex1 1

)
.

Indeed, F (x1, x2) = (x1, ex1 − x2) is a diffeomorphism between (R2, I) and (R2, G(x)) and it is well known that
the function f(x1, x2) = x2

1 + x2
2 is convex in (R2, I). Now, as g = f ◦ F−1, and using Theorem 4.5 we obtain

that g is convex in (R2, G(x)).

Example 4.2. Consider the semidefinite optimization problem

min{f(X) : X � 0},

where the notation X � 0 means that X is a n × n symmetric positive semidefinite matrix. Take Sn
++, the

set of n × n symmetric positive definite matrices, as a smooth manifold and define the metric given by the
Hessian of the barrier b(X) = − log detX. (Sn

++, b′′(X)). It is a Hadamard manifold with nonpositive sectional
curvature, see Corollary 3.1 of Nesterov and Todd [22] and Corollary 5.10 of Rothaus [28], and the proximal
method generates a sequence {Xk} given by X0 ∈ Sn

++ and

0 ∈ ∂̂

(
f(X) + (λk/2)

n∑
i=1

ln2 λi

(
X− 1

2 Xk−1X− 1
2

))(
Xk

)
,

where λ(Z) denotes the eigenvalue of the symmetric matrix Z.

Example 4.3. Consider the second order cone programming

min{f(x) : x �K 0},

where x �K 0 means that x ∈ K := {(τ, z) ∈ R
1+n : τ ≥ ||z||2}. If we endow K0, the interior of K, with the

Hessian of the barrier − ln(τ2 −||z||22), we obtain a Hadamard manifold with a non-positive sectional curvature,
see Corollary 3.1 of Nesterov and Todd [22] and Corollary 5.10 of Rothaus [28]. The proximal method generates
a sequence {xk} given by x0 ∈ K0 and

0 ∈ ∂̂
(
f(x) + (λk/2)[ln2 σ(x, xk−1) + ln2 σ(xk−1, x)]

) (
xk

)
,

where σ(z0, z1) := max{λ : z0 − λz1 ∈ K}.
Example 4.4. Consider the problem on the nonnegative orthant

min{f(x) : x ≥ 0},

where x ≥ 0 means that xi ≥ 0, ∀i = 1, ..., n. Take R
n
++, the positive orthant, as a smooth manifold. (Rn

++, X−2),
where X−2 = diag(1/x2

1, 1/x2
2, ..., 1/x2

n) is the Hessian of the − log barrier, is a Hadamard manifold with null
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sectional curvature, see Section 4.1, Example 1, of [24], and the proximal point method generates the sequence
{xk} given by x0 ∈ R

n
++ and

0 ∈ ∂̂

⎛⎝f(x) + (λk/2)
n∑

i=1

(
ln

xk−1
i

xi

)2
⎞⎠(

xk
)
.

Example 4.5. Consider the problem on the hypercube

min{f(x) : 0 ≤ x ≤ ē},

where x ∈ R
n and ē = (1, 1, ..., 1) ∈ R

n. ((0, 1)n, X−2(I − X)−2), where X−2(I − X)−2 is the Hessian of the

barrier
n∑

i=1

(2xi − 1)[lnxi − ln(1 − xi)], is a Hadamard manifold with null sectional curvature, see Papa Quiroz

and Oliveira [25], Section 3. The proximal point method generates a sequence {xk} given by x0 ∈ (0, 1)n and

0 ∈ ∂̂

⎛⎝f(x) + (λk/2)
n∑

i=1

(
ln

(
xk−1

i

1 − xk−1
i

)
− ln

(
xi

1 − xi

))2
⎞⎠(

xk
)
.

Remark 4.5 (quasiconvexification of nonconvex functions). Convexification of nonconvex functions using some
convenient metric was studied by some researchers, among whom Udriste [35], Rapcsák [27] and da Cruz Neto
et al. [13]. A natural and evident question that arises in this paper is the following: is there a practical way
to transform a general nonconvex problem into a quasiconvex one? This question is an open problem, but
a contribution in this direction is given by the following result:

Theorem 4.5. Let f : N1 → R be a convex (quasiconvex) function in a complete Riemannian manifold (N1, G1)
and F an isometry between (N1, G1) and (N2, G2), then g = f ◦ F−1 is convex (quasiconvex) in F (N1).

Proof. See [35], Theorems 3.1 and 10.9. �
Based on the above result we obtain a technique to convexification or quasiconvexification of nonconvex

function: Let (M1, G1) and (M2, G2) be two Riemannian manifolds such that M2 ⊂ M1 and suppose that
a function g is not quasiconvex in the totally convex set M2 (recalling that M2 is totally convex if given
x, y ∈ M2, every geodesic curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y, verifies γ(t) ∈ A, for all
t ∈ [0, 1]) with respect to the metric G1. If there exists an isometry F : (M1, G1) → (M2, G2) and a convex
(quasiconvex) function f in (M1, G1) such that

g = f ◦ F−1,

then g is convex (quasiconvex) in (M2, G2).

5. Conclusion

We have obtained new results on the proximal point method for solving minimization problems with quasi-
convex objective functions. Observe that for the proximal method the nonpositive sectional curvature is used to
assure the smoothness of d2(., y), to obtain an explicit expression of gradd2 and also to prove the boundedness
of the proximal iterations. For that reason, an extension of the method for arbitrary Riemannian manifolds is
still an open question.

Acknowledgements. We are grateful to the anonymous referees that suggested several important inclusions and changing
on the paper.
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