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SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS
FOR CONTROL PROBLEMS WITH LINEARLY INDEPENDENT GRADIENTS

OF CONTROL CONSTRAINTS

Nikolai P. Osmolovskii
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Abstract. Second-order sufficient conditions of a bounded strong minimum are derived for optimal
control problems of ordinary differential equations with initial-final state constraints of equality and
inequality type and control constraints of inequality type. The conditions are stated in terms of
quadratic forms associated with certain tuples of Lagrange multipliers. Under the assumption of linear
independence of gradients of active control constraints they guarantee the bounded strong quadratic
growth of the so-called “violation function”. Together with corresponding necessary conditions they
constitute a no-gap pair of conditions.
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1. Introduction

In this paper we discuss sufficient second order conditions for bounded strong minimum in optimal control
problems of ordinary differential equations with control constraints and constraints on the initial-final state.
There exists an extensive literature on this subject, cf. Bonnans and Hermant [1], Bonnans and Shapiro [3],
Bonnans and Osmolovskii [2], Levitin et al. [8], Malanowski [9,10], Maurer [11], Maurer and Pickenhain [12],
Milyutin and Osmolovskii [17], Osmolovskii [19–22], Zeidan [23,24] and further literature cited in these papers.
The no-gap second order conditions of Pontryagin and bounded strong minima in optimal control problems with
initial-final state constraints and mixed state-control constraints, satisfying the hypothesis of linear independence
of gradients (LIG) w.r.t. control of active mixed constraints, were formulated by the author in [8], pp. 155–156,
but the proofs (written later in [19,20]) were not published. The aim of this paper is to publish the proofs of
sufficient conditions [8] (partially modified in 2007–2008). For simplicity, we consider a less general problem
than in [8], replacing mixed constraints by control constraints.

Recently, the same problem, as in the present paper, was analyzed by Bonnans and Osmolovskii in [2]
under the hypothesis of positive linear independence (i.e., linear independence with nonnegative coefficients) of
gradients (PLIG) of active control constraints. The no-gap second order conditions of Pontryagin and bounded
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strong minima, similar to conditions [8], were obtained for this problem. Although the assumption of PLIG
is weaker than the assumption of LIG, the results, obtained in [2], cannot be considered as a generalization
of results [8], since in [2] we additionally assumed the Mangasarian-Fromovitz type condition for endpoint
constraints and the so-called “restoration property” for these constraints. Hopefully, it would be possible to
prove the same results, as in [2], under the PLIG hypothesis, but without two mentioned additional assumptions.
The present publication could be an important step in this direction.

The paper is organized as follows. Section 2 sets the problem, recalls the concepts of bounded strong,
Pontryagin and weak minima and gives the formulations of the first order necessary conditions of Pontryagin
and weak minima, namely Pontryagin’s principle and local Pontryagin’s principle. In Section 3, for the cost
functional, we define the “bounded strong growth condition of the order γ”, where γ is a continuous functional
(in the space of variations δw = (δu, δy)) equal to ‖δy‖2∞+

∫ T

0 |δu|2 dt in some neighborhood of zero and positive
outside of this neighborhood. This condition implies a bounded strong minimum. We also define the violation
function of the optimal control problem and the notion of the bounded strong γ-sufficiency (as the bounded
strong growth condition of the order γ for the violation function). The latter implies the bounded strong growth
of the order γ for the cost functional (and hence a bounded strong minimum). In Section 4, for the reference
point w = (x, u), we introduce the quadratic form Ω (the second variation of the Lagrange function) and the
critical cone K. We formulate a sufficient condition for a bounded strong γ-sufficiency in terms of Ω and K. It
should be noted that this condition implies the quadratic growth of the Hamiltonian, from which the continuity
of the optimal control follows [2]. Sections 5–11 are devoted to the proofs. In Section 5 we define the set of
Pontryagin’s sequences Π related to the notion of Pontryagin minimum and the so-called basic constant Cγ

for Π. We prove that the inequality Cγ > 0 implies the bounded strong γ-sufficiency. Hence the positivity of
any lower bound for Cγ also implies the bounded strong γ-sufficiency. In the next sections, we obtain several
successive lower bounds for Cγ , pursuing the goal to find the lower bound defined in the most simple way. In
Section 7 we introduce a concept of support of the critical cone and show that the first order approximations of
the endpoint constraints possesses Hoffman’s error bound on the support. This fact plays a crucial role in the
proof of sufficient optimality conditions and allows us to obtain in Section 9 (which completes the proof) a lower
bound for Cγ formulated in terms of the quadratic form Ω and the critical cone K. The proofs of several basic
lemmas are gathered in Section 10. In Section 11 we prove abstract lemmas (used earlier in Sect. 10) concerning
compatibility of a system of linear inequalities on a convex cone and Hoffman’s type [7] upper bounds for the
distance from the origin to the set of solutions of such system on the cone. We also discuss an abstract notion
of support of critical cone.

The paper is self-contained and formally does not use results of other papers. But it should be noted that
the main idea of the proof (of sufficient optimality conditions), related to the role of the basic constant Cγ , first
appeared in the abstract theory of higher order conditions published in [8,14–16]. We use notation introduced
in these papers.

2. Pontryagin and bounded strong minima. First order necessary conditions

Consider the following optimal control problem on a fixed interval [0, T ]:

ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ], (2.1)
u(t) ∈ U, for a.a. t ∈ [0, T ], (2.2)
φi(y(0), y(T )) ≤ 0, i = 1, . . . , r1, (2.3)
φi(y(0), y(T )) = 0, i = r1 + 1, . . . , r, (2.4)
J(u, y) := φ0(y(0), y(T )) → min, (2.5)

where f : R
m × R

n → R
n and φi : R

n × R
n → R, i = 0, . . . , r are twice continuously differentiable (C2)

mappings, U is a closed subset of R
m. Denote by U := L∞(0, T ; Rm) and Y := W 1,1(0, T ; Rn) the control

and state space (where W 1,1(0, T ; Rn) is the space of absolutely continuous functions from [0, T ] to R
n). We
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consider problem (2.1)–(2.5) in the space W := U ×Y, and we refer to this problem as problem (P ). Define the
norm of element w = (u, y) ∈ W by ‖w‖W := ‖u‖∞ +‖y‖1,1 = ess sup [0,T ]|u(t)|+ |y(0)|+ ∫ T

0 |ẏ(t)| dt. Elements
of W satisfying (2.1)–(2.4) are said to be feasible. The set of feasible points is denoted by F (P ). We shall use
abbreviations y0 := y(0), yT := y(T ), η := (y0, yT ).

It is well known that any control problem with a cost functional in the integral form J =
∫ T

0 F(u, y) dt can be
represented in the endpoint form by introducing a new state variable z defined by the state equation ż = F(u, y),
z(0) = 0. This yields the cost functional J = z(T ). The new variable z is called unessential component in the
augmented problem. The general definition of an unessential component [17], p. 290, is as follows. The state
variable yi, i.e., the ith component of the state vector y is called unessential if the function f does not depend
on yi and the functions φj , j = 0, 1, . . . , r are affine in yi0 := yi(0) and yiT := yi(T ). Let y denote the vector of
all essential components of the state vector y. We introduce two concepts of minimum.

Definition 2.1. Following [8], p. 156, and [17], p. 291, we say that w0 = (u0, y0) ∈ F (P ) is a bounded strong
minimum if J(w0) ≤ J(wk) for large enough k for any sequence wk ∈ F (P ), bounded in W , such that y

k
→ y0

uniformly and yk(0) → y0(0).

Definition 2.2. We say that w0 ∈ F (P ) is a Pontryagin minimum (see [8], p. 156, and [17], pp. 2–3) if
J(w0) ≤ J(wk) for large enough k for any sequence wk ∈ F (P ), bounded in W , such that yk → y0 uniformly
and ‖uk − u0‖1 → 0, where ‖u‖1 =

∫ T

0
|u(t)| dt.

Equivalently, w0 is a bounded strong minimum iff for any M > 0, there exists ε > 0 such that if w ∈ F (P )
is such that ‖u‖∞ ≤ M , ‖y − y0‖∞ ≤ ε, and |y(0) − y0(0)| < ε, we have J(w0) ≤ J(w). A point w0 is
a Pontryagin minimum iff for any M > 0, there exists ε > 0 such that if w ∈ F (P ) is such that ‖u‖∞ ≤ M ,
‖y − y0‖∞ ≤ ε, and ‖u − u0‖1 < ε, we have J(w0) ≤ J(w). Obviously, a bounded strong minimum implies
a Pontryagin minimum.

The strict bounded strong (Pontryagin) minimum is defined in a similar way. The only two distinctions
are that the nonstrict inequality J(w0) ≤ J(wk) (in Defs. 2.1 and 2.2) is replaced by the corresponding strict
inequality and the sequence wk ∈ F (P ) is assumed to contain no terms equal to w0.

Let us recall the formulation of Pontryagin’s principle at a point w ∈ F (P ). Denote by R
n∗ the dual to R

n

identified with the set of n-dimensional row vectors. Set

ϕμ(y0, yT ) = ϕ(y0, yT , μ) :=
r∑

i=0

μiφi(y0, yT ), (2.6)

where y0 = y(0), yT = y(T ), μ = (μ0, . . . , μr) ∈ R
(r+1)∗. Consider the Hamiltonian function H : R

m × R
n ×

R
n∗ → R defined by

H(u, y, p) = pf(u, y). (2.7)
Let W 1,∞(0, T,Rn∗) denote the space of Lipschitz continuous functions from [0, T ] to R

n∗. By the costate
associated with μ ∈ R

(r+1)∗ we understand the solution p = pμ ∈W 1,∞(0, T,Rn∗) (whenever it exists) of

−ṗ(t) = Hy(u(t), y(t), p(t)), a.a. t ∈ [0, T ];

p(0) = −ϕμ
y0

(y(0), y(T )); p(T ) = ϕμ
yT

(y(0), y(T )).
(2.8)

Definition 2.3. We say that w = (u, y) ∈ F (P ) satisfies Pontryagin’s principle if there exist a nonzero
μ ∈ R

(r+1)∗ and p ∈W 1,∞(0, T,Rn∗) such that (2.8) holds and

μi ≥ 0, i = 0, . . . , r1, μiφi(y(0), y(T )) = 0, i = 1, . . . , r1, (2.9)

H(u(t), y(t), p(t)) ≤ H(v, y(t), p(t)), for all v ∈ U, a.a. t ∈ (0, T ). (2.10)
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The following theorem holds (see, e.g., [13], pp. 17–19, and [17], pp. 24–25, 150).

Theorem 2.4. A Pontryagin minimum satisfies Pontryagin’s principle.

In the sequel, we assume that the set U is given in the form

U = {u ∈ R
m | g(u) ≤ 0}, (2.11)

where g : R
m → R

q is a C2 mapping. In other words, the control constraints are defined by

gj(u(t)) ≤ 0, for a.a. t ∈ [0, T ], j = 1, . . . , q. (2.12)

We assume that the following qualification hypothesis of linear independence holds: the gradients g′i(u), i ∈ Ig(u)
are linearly independent at each point u ∈ R

m such that g(u) ≤ 0, where Ig(u) =
{
i ∈ {1, . . . , q} | gi(u) = 0

}
is the set of active indices.

Let us recall the first order necessary condition of a weak minimum, which is a local minimum in W . To this
end, define the augmented Pontryagin function H : R

m × R
n × R

n∗ × R
q∗ → R by

H(u, y, p, a) = H(u, y, p) + ag(u). (2.13)

For w = (u, y) ∈ F (P ), denote by Λ0 the set of all tuples λ = (μ, p, a) ∈ R
(r+1)∗ × W 1,∞(0, T ; Rn∗) ×

L∞(0, T ; Rq∗) of Lagrange multipliers such that the following relations hold

μi ≥ 0, i = 0, . . . , r1, μiφi(η) = 0, i = 1, . . . , r1, |μ| = 1,
a(t) ≥ 0, a(t)g(u(t)) = 0, a.a. t ∈ (0, T ),
−ṗ(t) = Hy(w(t), p(t)), a.a. t ∈ (0, T ),
p(0) = −ϕμ

y0
(η), p(T ) = ϕμ

yT
(η),

Hu(w(t), p(t), a(t)) = 0, a.a. t ∈ (0, T ), (2.14)

where η = (y(0), y(T )). The following result is well-known (see, e.g., [6], pp. 422–429, [13], pp. 148–149,
and [17], p. 13).

Theorem 2.5. Let w be a weak minimum. Then the set Λ0 is nonempty and bounded. Moreover, the projector
(μ, p, a) → μ is injective on Λ0, and hence Λ0 is a finite dimensional compact set.

Denote by M0 the set of all λ = (μ, p, a) ∈ Λ0 such that inequality (2.10) of Pontryagin’s principle is satisfied.
Obviously, M0 ⊂ Λ0, and the condition M0 �= ∅ is equivalent to Pontryagin’s principle.

3. Growth condition of order γ

Let us fix a pair w = (u, y) ∈ F (P ). By δw = (δu, δy) we denote a variation, i.e., an arbitrary element of the
space W , and the notation {δwk} stands for an arbitrary sequence of variations in W . For any δw ∈ W we set

δf = f(u(t) + δu(t), y(t) + δy(t)) − f(u(t), y(t)) = f(w(t) + δw(t)) − f(w(t)),

i.e., δf is the increment of the function f (at the point w) which corresponds to the variation δw. Similarly, we
set

δφ0 = φ0(y(0) + δy(0), y(T ) + δy(T )) − φ0(y(0), y(T )) = φ0(η + δη) − φ0(η),

etc.
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Definition 3.1. A function Γ : R
m → R is said to be an order function if there exists a number εΓ > 0 such

that:
(a) Γ(u) = |u|2 if |u| < εΓ;
(b) Γ(u) > 0 if |u| ≥ εΓ;
(c) Γ(u) is Lipschitz continuous on each compact set C ⊂ R

m.

Obviously, the function Γ(u) = |u|2 is an order function. For an arbitrary order function Γ(u), we set

γ(δw) = ‖δy‖2
∞ +

∫ T

0

Γ(δu(t)) dt. (3.1)

Following [8], p. 123, we call the functional γ : W → R the order (of minimum).
Further, following [8], p. 112, we define the violation function

σ(δw) = (δφ0)+ +
r1∑

i=1

φi(η + δη)+ +
r∑

i=r1+1

|φi(η + δη)| + ‖δẏ − δf‖1, (3.2)

where η = (y0, yT ) = (y(0), y(T )), δη = (δy0, δyT ) = (δy(0), δy(T )), (δφ0)+ = (φ0(η + δη) − φ0(η))+, α+ =
max{α, 0}.
Definition 3.2. We say that {δwk} is a bounded strong sequence if

sup
k

‖δuk‖∞ <∞, |δyk(0)| + ‖δy
k
‖∞ → 0 (k → ∞). (3.3)

Denote by S the set of all bounded strong sequences satisfying:

(a) u(t) + δuk(t) ∈ U for a.a. t ∈ [0, T ] for all k;
(b) σ(δwk) → 0 (k → ∞). (3.4)

Definition 3.3. We say that a bounded strong γ-sufficiency holds (at a point w ∈ F (P )) (cf. [8], p. 126) if there
exists a constant C > 0 such that for any sequence {δwk} ∈ S we have σ(δwk) ≥ Cγ(δwk) for all sufficiently
large k.

Equivalently, a bounded strong γ-sufficiency holds iff there exists C > 0 such that for any M > 0 there exists
ε > 0 such that the conditions

u(t) + δu(t) ∈ U for a.a. t ∈ [0, T ], ‖δu‖∞ < M,
σ(δw) < ε, |δy(0)| < ε, ‖δy‖∞ < ε

imply the inequality σ(δw) ≥ Cγ(δw).

Definition 3.4. We say that a bounded strong γ-growth condition holds for the cost function J (at a point
w ∈ F (P )) if there exists C > 0 such that, for any sequence {δwk} ∈ S satisfying the condition w+ δwk ∈ F (P )
for all k, we have δkJ ≥ Cγ(δwk) for all sufficiently large k, where δkJ = J(η + δηk) − J(η).

Equivalently, a bounded strong γ-growth condition holds for the cost function J iff there exists C > 0 such
that for any M > 0 there exists ε > 0 such that the conditions w + δw ∈ F (P ), ‖δu‖∞ < M , ‖δy‖∞ < ε,
|δy(0)| < ε, and δJ < ε imply the inequality δJ ≥ Cγ(δw).

Theorem 3.5. For any order function Γ(u):
(a) a bounded strong γ-sufficiency implies a bounded strong γ-growth condition for the cost function; and
(b) a bounded strong γ-growth condition for the cost function implies a strict bounded strong minimum.
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Proof. (a) Assume that a bounded strong γ-sufficiency holds, i.e., there exists a constant C > 0 such that
for any sequence {δwk} ∈ S we have σ(δwk) ≥ Cγ(δwk) for all sufficiently large k. Then for any sequence
{δwk} ∈ S satisfying the condition w + δwk ∈ F (P ) for all k, we have σ(δwk) = (δkJ)+ ≥ Cγ(δwk) for all
sufficiently large k. The latter means that the γ-growth condition for the cost function holds at w.

(b) Now assume that w is not a point of a strict bounded strong minimum, i.e., there exists a sequence
wk ∈ F (P ), bounded in W , such that y

k
→ y uniformly, yk(0) → y(0), J(wk) ≤ J(w) and wk �= w for all k.

Set δwk = wk − w for all k. Then, δwk �= 0, σ(δwk) = 0, u(t) + δuk(t) ∈ U for a.a. t ∈ [0, T ], for all k, and
conditions (3.3) hold. Consequently, {δwk} ∈ S, γ(δwk) > 0 and δkJ ≤ 0 for all k. This implies that a bounded
strong γ-growth condition for the cost function does not hold at w. �
Corollary 3.6. For any order function Γ(u), a bounded strong γ-sufficiency implies a strict bounded strong
minimum.

Set (cf. [8], p. 126)

Cγ(σ, S) := inf
{δwk}∈S

(
lim inf

k

σ(δwk)
γ(δwk)

)
, (3.5)

where the lower bound is taken over the set of all sequences from S that do not vanish. The following proposition
easily follows from the definitions.

Proposition 3.7. The inequality Cγ(σ, S) > 0 is equivalent to the bounded strong γ-sufficiency.

Our goal is to obtain conditions which guarantee the inequality Cγ(σ, S) > 0. To this end, we will estimate
Cγ(σ, S) from below.

In order to formulate second order sufficient conditions for a bounded strong γ-sufficiency we shall need the
following strengthening of condition (2.10) of the maximum principle.

Definition 3.8. Let λ = (μ, p, a) ∈M0. We say that the function H(v, y(t), p(t)) satisfies the growth condition
of the order Γ if there exists C > 0 such that

H(v, y(t), p(t)) −H(u(t), y(t), p(t)) ≥ CΓ(v − u(t))

for all v ∈ U and for a.a. t ∈ [0, T ].
(3.6)

For a given C > 0, denote by M(CΓ) the set of all λ ∈M0 such that condition (3.6) holds.

Remark 3.9. It was shown in [19], pp. 372–374, and [20], pp. 275–276, that a bounded strong γ-sufficiency
implies the existence of C > 0 such that M(CΓ) �= ∅. The latter implies the continuity of the control u(t) [2],
Lemma 2.7. The case of discontinuous (piecewise continuous) control u(t) corresponds to a certain finer order
than (3.1). The no-gap conditions of this order were obtained in [19,20], and their proofs will be published
elsewhere. The proofs of sufficient optimality conditions for a piecewise continuous control appeared in [22].
Also note that condition (3.6) is never fulfilled in the cases of singular or bang-bang controls, in problems
linear in control. These cases were studied, for example, in [4,5,17]. Finally, note that in this paper we do not
discuss an important question of a characterization of condition (3.6) in terms of (strengthened) Legendre-type
conditions. This will be the subject of another paper.

Remark 3.10. From Theorem 2.5 it follows that M(CΓ) is a finite dimensional compact set.

4. Second order sufficient conditions

A direction (variation) δw = (δu, δy) ∈ W is said to be critical (cf. [6], Sect. 2) at a point w ∈ F (P ) if the
following relations hold

φ′i(η)δη ≤ 0, i ∈ Iφ(η) ∪ {0}; φ′j(η)δη = 0, j = r1 + 1, . . . , r, (4.1)

δẏ = f ′(w)δw, (4.2)
(g′j(u)δu)χ{gj(u)=0} ≤ 0, a.a. t ∈ [0, T ], j = 1, . . . , q, (4.3)
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where Iφ(η) = {i ∈ {1, . . . , r1} | φi(η) = 0} is the set of active indices, χ{gj(u)=0} is the characteristic function
of the set {t ∈ [0, T ] | gj(u(t)) = 0}, j = 1, . . . , q, η = (y(0), y(T )), and δη = (δy(0), δy(T )). Denote by K the
set of all critical directions δw ∈ W at w. Obviously, K is a convex cone in W . We call it the critical cone.

For any λ = (μ, p, a) ∈ Λ0, let us define a quadratic form (at w) by the relation

Ω(δw, λ) :=
1
2
〈ϕηη(η, μ)δη, δη〉 +

1
2

∫ T

0

〈Hww(w, p, a)δw, δw〉dt, (4.4)

where ϕηη(η, μ) is the second partial derivative (w.r.t. η) of the function ϕ(η, μ) defined by (2.6) andHww(w, p, a)
is the second partial derivative (w.r.t. w) of the function H(w, p, a) defined by (2.13). Obviously, Ω(δw, λ) is
quadratic in δw and linear in λ. For any C ≥ 0 such that M(CΓ) �= ∅, set

ΩM(CΓ)(δw) := max
λ∈M(CΓ)

Ω(δw, λ). (4.5)

In (4.5), the maximum exists, since M(CΓ) is a finite dimensional compact set. Our main result is the following.

Theorem 4.1. Let w = (u, y) be a feasible point of problem (2.1)–(2.5) (with the set U defined by (2.11)),
where f : R

m × R
n → R

n, φi : R
n × R

n → R (i = 0, . . . , r), and g : R
m → R

q are C2 mappings. Assume that
the mapping g satisfies the qualification hypothesis of linear independence (see Sect. 2). Let there exist an order
function Γ and a number C > 0 such that the set M(CΓ) is nonempty and let there exist a number CK > 0
such that

ΩM(CΓ) (δw) ≥ CK

(
|δy(0)|2 +

∫ T

0

|δu|2 dt

)
for all δw ∈ K. (4.6)

Then, for the higher order γ defined by (3.1), a bounded strong γ-sufficiency holds at w.

Remark 4.2. It was proved in [19], Chapter 5, and [20], Chapter 4, that if w is a Pontryagin minimum, then
the set M0 is nonempty and maxλ∈M0 Ω(δw, λ) ≥ 0 for all δw ∈ K. Thus, the sufficient condition given by
Theorem 4.1 is a natural strengthening of the necessary condition. Also, it was proved in [19], pp. 323–325,
and [20], Supplement, pp. 154–156, that if, in the definition of critical cone K, the condition δw = (δu, δy) ∈ U×Y
is replaced by δw = (δu, δy) ∈ U2 ×Y2, where U2 = L2(0, T,Rm) and Y2 = W 1,2(0, T,Rn), the new condition of
the form (4.6) is equivalent to the original one (this equivalence is not obvious).

Remark 4.3. In the literature, there are sufficient conditions for strong local optimality that require (i) one
tuple of Lagrange multipliers at which the corresponding quadratic form is positive definite on a larger critical
cone; (ii) the strengthened Legendre-Clebsch condition; (iii) the existence of a “unique” control maximizing the
Hamiltonian (the strengthened condition of Pontryagin’s principle) which means that argminuH(x(t), u, ψ(t))
is a singleton equal to {u(t)} a.a., and (iv) a certain growth condition (w.r.t. u) of the Hamiltonian at the
infinity (cf., e.g., [21], Sect. 10.4, Thm. 10.5). Since (i) and (ii) form a pair of sufficient conditions for weak
local optimality, (iii) and (iv) complement them to a set of conditions being sufficient for strong local optimal-
ity. Moreover, (i) can be equivalently represented in the form of the strengthened Jacobi-type condition (cf.,
e.g., [23]) or in the form of the existence of a solution to the corresponding Riccati equation (cf., e.g., [24]).
Let us briefly compare Theorem 4.1 of the present paper with a known result by Vera Zeidan for strong local
minimum given in [24], p. 1308, Theorem 6.1. In [24], the optimal control problem, referred as problem (C),
has the form: minimize J(x, u) := l(x(b)) +

∫ b

a
g(t, x(t)u(t)) dt subject to ẋ(t) = f(t, x(t), u(t)), x(a) = A,

ψ(x(b)) = 0, and Gi(t, x(t), u(t)) ≤ 0, i = 1, . . . , k. So, in comparison with (P ), problem (C) has mixed state-
control inequality constraints (instead of pure control inequality constraints), but has no endpoint inequality
constraints. Let (x̂, û) be an extremal such that û ∈ L∞. It is assumed that the gradients Giu(t, x, u) of active
constraints are uniformly linearly independent along the trajectory (t, x̂(t), û(t)) and moreover, there exists
a tuple of Lagrange multipliers with λ0 �= 0, where λ0 is the Lagrange multiplier of J . Let qi(t) be the Lagrange
multiplier of the constraint Gi(t, x, u) ≤ 0. For any γ ≥ 0, set Jγ(t) = {i ∈ {1, . . . , k} : qi(t) > γ}. In [24],
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it is assumed that there exists γ > 0 such that Jγ(t) = J0(t) a.e. This is a very strong assumption removing
certain difficulties in the proofs. Consider the case, where the control û(t) is continuous and f , g, and G are
independent of t. In this case, all qi(t) are continuous and the assumption Jγ(t) ≡ J0(t) (γ > 0) means that
for any i = 1, . . . , k we have: (a) qi(t) > 0 for all t ∈ [a, b] or (b) qi(t) ≡ 0 on [a, b]. In [24], the critical cone
(corresponding to the Riccati equation) is enlarged up to a subspace in such a way that among all Gi ≤ 0
only the constraints of type (a) are taken into account in the sufficient conditions, while the constraints of type
(b) are simply ignored. Therefore, in the case of continuous control, sufficient conditions of weak minimum
in [24] turned out to be much stronger than those in the present paper. Now let us turn to sufficient conditions
for strong minimum. We can prove that the strengthened Legendre-Clebsch condition (ii) together with the
strengthened condition of Pontryagin’s principle (iii) guarantee the existence of order function Γ (Def. 3.1) such
that the growth condition of order Γ holds for the Hamiltonian (Def. 3.8). Hence (according to Thm. 4.1),
(iii) complements (i) and (ii) to the set of sufficient conditions for bounded strong minimum. To guarantee
a strong minimum, one may add some kind of growth condition (iv) for the Hamiltonian at the infinity (or
assume that the inequality g(u) ≤ 0 define a compact set in R

m). In [24], the following condition complements
(i) and (ii) to the set of sufficient conditions for strong minimum (and hence play the same role as pair (iii) and
(iv)): there exists a mapping ũ(t, x, p) (defined in some neighborhood of the trajectory (x̂(t), p̂(t)), where p̂(t)
is the adjoint variable) such that (a) ũ(t, ·, ·, ·) is continuous uniformly in t, (b) ũ(t, x̂(t), p̂(t)) = û(t) a.e., and
(c) ũ(t, x, p) ∈ argminu{pf(t, x, u)+ g(t, x, u) : G(t, x, u) ≤ 0} (where p corresponds to the minimum principle).
Obviously, the latter condition strengthens the Pontryagin principle, but a detailed comparison of this condition
with (iii) and (iv) is not so simple and could be done elsewhere.

The proof of Theorem 4.1 will require preparatory sections, namely, Sections 5–8. This proof will be completed
in Section 9. The proofs of several important lemmas will be gathered in Section 10; one of these lemmas (namely,
Lem. 7.2) will be based on the results of Section 11 concerning Hoffman’s error bounds.

5. Bounded strong and Pontryagin’s sequences

Let us introduce a set of Pontryagin’s sequences Π related to the notion of Pontryagin minimum. In what
follows, we omit the subscript k in the notation of sequences.

Definition 5.1. We say that {δw} is a Pontryagin’s sequence if the following conditions are satisfied:
lim sup ‖δu‖∞ <∞, ‖δu‖1 → 0, and ‖δy‖1,1 → 0. Denote by Π the set of all Pontryagin’s sequences.

5.1. Passage to Pontryagin’s sequences, the basic constant

Given any λ = (μ, p, a) ∈ Λ0 and δw ∈ W , we define the following Lagrange function for the cost function (2.5)
and constraints (2.1), (2.3) and (2.4):

Ψ(δw, λ) := δϕμ −
∫ T

0

p(δẏ − δf) dt = δϕμ −
∫ T

0

(pδẏ − δH) dt, (5.1)

where δϕμ = ϕμ(η + δη) − ϕμ(η) (recall that ϕμ was defined in (2.6)) and δH = pδf. Below we shall need
another representation of Ψ. Using (2.8), we get

∫ T

0

pδẏ dt = pδy |T0 −
∫ T

0

ṗδy dt

= ϕμ
y0

(η)δy(0) + ϕμ
yT

(η)δy(T ) +
∫ T

0

Hy(w, p)δy dt
(5.2)

for any λ ∈ Λ0. Consequently,

Ψ(δw, λ) = δϕμ − ϕμ
η (η)δη +

∫ T

0

(δH −Hy(w, p)δy) dt, ∀λ ∈ Λ0. (5.3)
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Set
ΨΛ0(δw) = max

λ∈Λ0
Ψ(δw, λ). (5.4)

Since Λ0 is a bounded set, using (3.2) and (5.1) it is easy to show that there exists k0 > 0 such that

ΨΛ0(δw) ≤ k0σ(δw). (5.5)

In what follows we assume that, for a given order function Γ and a number C > 0, the set M(CΓ) is nonempty.
Using estimate (5.5), let us show that any sequence from S is a Pontryagin’s sequence.

Proposition 5.2. If {δw} ∈ S, then ‖δu‖1 → 0, ‖δy‖1,1 → 0, and γ(δw) → 0.

The proof of this proposition will be based on two lemmas.

Lemma 5.3. If {δw} ∈ S and (μ, p, a) ∈ Λ0, then
(∫ T

0
δH dt

)
+
→ 0.

Proof. According to (5.3)–(5.5), δϕμ − ϕμ
η (η)δη +

∫ T

0
(δH − Hy(w, p)δy) dt ≤ k0σ(δw). Since ‖δy‖∞ → 0, the

condition σ(δw) → 0 implies
(∫ T

0 δH dt
)

+
→ 0. �

Lemma 5.4. If {δw} ∈ S, then
∫ T

0 Γ(δu) dt→ 0 and
∫ T

0 |δu|2 dt→ 0.

Proof. Let {δw} ∈ S and (μ, p, a) ∈ M(CΓ) (C > 0). We have δH := H(w + δw, p) −H(w, p) = δ̄yH + δuH,
where δ̄yH = H(u+ δu, y+ δy, p)−H(u+ δu, y, p), δuH = H(u+ δu, y, p)−H(w, p). The conditions ‖δy‖∞ → 0

and lim sup ‖δu‖∞ <∞ imply that ‖δ̄yH‖∞ → 0. Therefore, the condition
( ∫ T

0 δH dt
)

+
→ 0 (which holds by

Lem. 5.3) implies
( ∫ T

0 δuH dt
)

+
→ 0. But δuH ≥ CΓ(δu), since (μ, p, a) ∈ M(CΓ) and u(t) + δu(t) ∈ U a.e.

Consequently,
∫ T

0 Γ(δu) dt→ 0. This implies that
∫ T

0 |δu|2 dt → 0. �
Proof of Proposition 5.2. Let {δw} ∈ S. Then by Cauchy-Schwartz inequality and by Lemma 5.4 we have
‖δu‖1 ≤ √

T ‖δu‖2 → 0. Moreover, from conditions ‖δu‖1 → 0, |δy(0)| + ‖δy‖∞ → 0, and ‖δẏ − δf‖1 → 0 we

easily deduce that ‖δy‖1,1 → 0 and hence ‖δy‖∞ → 0. Also, by Lemma 5.4,
∫ T

0 Γ(δu) dt → 0. Consequently,
γ(δw) → 0. �
Corollary 5.5. We have: S ⊂ Π and moreover,

S = {{δw} ∈ Π | g(u(t) + δu(t)) ≤ 0}, (5.6)

where the condition g(u(t) + δu(t)) ≤ 0 is assumed to be satisfied for a.a. t ∈ [0, T ] and for all members of the
sequence {δw}.
Proof. The inclusion S ⊂ Π follows from Proposition 5.2. Further, for any {δw} ∈ Π, we obviously have
σ(δw) → 0. Therefore, {{δw} ∈ Π | g(u(t) + δu(t)) ≤ 0} ⊂ S. This and the inclusion S ⊂ Π implies
equality (5.6), since any sequence from S satisfies g(u(t) + δu(t)) ≤ 0. �

Set
Πσγ = {{δw} ∈ Π | g(u(t) + δu(t)) ≤ 0, σ(δw) ≤ O(γ(δw))}. (5.7)

From equality (5.6) and definition (5.7) we easily deduce that

Cγ(σ, S) = Cγ(σ,Πσγ), (5.8)

where the definition of Cγ(σ,Πσγ ) is similar to the definition (3.5) of Cγ(σ, S). Using (5.5), we get

Cγ(σ,Πσγ ) ≥ k−1
0 Cγ(ΨΛ0 ,Πσγ), (5.9)
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where, by definition

Cγ(ΨΛ0 ,Πσγ) := inf
{δw}∈Πσγ

(
lim inf

ΨΛ0(δw)
γ(δw)

)
(5.10)

(the lower bound in this formula is taken over the set of sequences from Πσγ that do not vanish). We call
Cγ := Cγ(ΨΛ0 ,Πσγ) the basic constant (on the set of Pontryagin’s sequences). From (5.8) and (5.9) we obtain
the following inequality

Cγ(σ, S) ≥ k−1
0 Cγ(ΨΛ0 ,Πσγ). (5.11)

In the sequel, we shall estimate the basic constant from below. Under conditions of Theorem 4.1, we shall show
that this constant is positive. Then in view of (5.11), Theorem 4.1 will follow from Proposition 3.7.

5.2. Extension of the set Πσγ

In the sequel, we shall use one more representation for Ψ. Let λ = (μ, p, a) ∈ Λ0 and {δw} ∈ Π satisfies the
condition u(t)+ δu(t) ∈ U a.e. on [0, T ] for all members of the sequence. Then relation (5.3) combined with the
equalities aδg + aδg− = 0 (where α− = max{−α, 0} ≥ 0 and g− = (g1−, . . . , gq−)) and δH = δH + aδg implies

Ψ(δw, λ) = δϕμ − ϕμ
η (η)δη +

∫ T

0

(
δH −Hy(w, p)δy

)
dt+

∫ T

0

aδg− dt. (5.12)

Assume in addition that {δw} ∈ Πσγ and hence σ(δw) ≤ O(γ(δw)). For given sequence, we deduce from (5.5)
and (5.12) that

max
λ∈Λ0

{
δϕμ − ϕμ

η (η)δη +
∫ T

0

(
δH −Hy(w, p)δy

)
dt+

∫ T

0

aδg− dt

}
≤ O(γ), (5.13)

where γ := γ(δw). Since Hu(w, p, a) = 0, Hy = Hy and lim sup ‖δw‖∞ <∞, the following estimate holds uni-
formly on Λ0:

∫ T

0 |δH −Hy(w, p)δy| dt ≤ O(γ). Moreover, |δϕμ −ϕμ
η (η)δη| ≤ O(γ) uniformly on Λ0. Therefore,

condition (5.13) implies

max
λ∈Λ0

∫ T

0

aδg− dt ≤ O(γ). (5.14)

This estimate is satisfied for any {δw} ∈ Πσγ . Hence we can rewrite (5.7) as

Πσγ =

{
{δw} ∈ Π | g(u+ δu) ≤ 0, σ ≤ O(γ), max

λ∈Λ0

∫ T

0

aδg− dt ≤ O(γ)

}
. (5.15)

Since the set Λ0 is finite dimensional, so is its convex hull coΛ0. Hence the relative interior ri coΛ0 is
nonempty. The following proposition will allow us to simplify the last relation in (5.15).

Proposition 5.6. Let λ̂ = (μ̂, p̂, â) ∈ ri coΛ0. Then there exists Ĉ > 0 such that, for any λ = (μ, p, a) ∈ coΛ0,
the following inequalities hold

μi ≤ Ĉμ̂i, i = 0, . . . , r1; aj(t) ≤ Ĉâj(t) a.e. on [0, T ], j = 1, . . . , q. (5.16)

Proof. Since λ̂ = (μ̂, p̂, â) is an interior point of the bounded set co Λ0, there exists ρ > 0 such that for any
λ = (μ, p, a) ∈ coΛ0 we have λ̂± ρ(λ− λ̂) ∈ co Λ0. Condition λ̂− ρ(λ− λ̂) ∈ coΛ0 implies μ̂i − ρ(μi − μ̂i) ≥ 0,
i = 0, . . . , r1, and âj(t) − ρ(aj(t) − âj(t)) ≥ 0, j = 1, . . . , q. Consequently,

1 + ρ

ρ
μ̂i ≥ μi, i = 0, . . . , r1;

1 + ρ

ρ
âj(t) ≥ aj(t), j = 1, . . . , q.

Thus, it suffices to set Ĉ = (1 + ρ)/ρ. �
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Let us fix an element λ̂ = (μ̂, p̂, â) ∈ ri coΛ0. It follows from Proposition 5.6, that condition (5.14) is
equivalent to the condition

∫ T

0 â(δg)− dt ≤ O(γ). Then, from (5.15) it follows that

Πσγ =

{
{δw} ∈ Π | g(u+ δu) ≤ 0, σ ≤ O(γ),

∫ T

0

âδg− dt ≤ O(γ)

}
. (5.17)

Since we estimate the basic constant from bellow, we can extend the set of sequences Πσγ . Namely, let us
define a set of sequences

Πo(
√

γ) =

{
{δw} ∈ Π | g(u+ δu) ≤ 0, σ ≤ o(

√
γ),

∫ T

0

âδg− dt ≤ O(γ)

}
. (5.18)

Obviously, Πσγ ⊂ Πo(
√

γ), and hence

Cγ(ΨΛ0 ,Πσγ) ≥ Cγ(ΨΛ0 ,Πo(
√

γ)), (5.19)

where the r.h.s. of inequality (5.19) is defined similarly to the l.h.s. of this inequality. In what follows, we will
estimate Cγ(ΨΛ0 ,Πo(

√
γ)) from below.

6. Local sequences

Our final goal is to obtain a lower bound of Cγ defined by the set of sequences of critical variations (satisfy-
ing (4.1)–(4.3)) and by the quadratic form Ω (defined in (4.4)). It will be done in several steps. In each step
lower bound of Cγ is defined on a different set of sequences and a modification of the function Ψ is used. In
this section, we shall make one more step in this direction, namely, in the definition of Cγ(ΨΛ0 ,Πo(

√
γ)) we shall

replace Pontryagin’s sequences by the sequences satisfying the condition ‖δw‖W → 0. After that the obtained
lower bound of Cγ will be simplified.

6.1. Passage to the sequences of local variations

Set
Sloc = {{δw} | ‖δw‖W := ‖δu‖∞ + ‖δy‖1,1 → 0} . (6.1)

Sequences from Sloc will be called local. Note that Sloc ⊂ Π. Bellow, we shall pass to the set of sequences

Sloc
o(

√
γ) := Πo(

√
γ) ∩ Sloc. (6.2)

In other words, Sloc
o(

√
γ) is the set of the sequences {δw} satisfying the relations

‖δw‖W → 0, g(u+ δu) ≤ 0, (6.3)

σ = o(
√
γ),

∫ T

0

â(δg)− dt ≤ O(γ). (6.4)

By (3.2), the relation σ = o(
√
γ) is equivalent to the set of relations

‖δẏ − f ′(w)δw‖1 = o(
√
γ), (6.5)

φ′i(η)δη ≤ o(
√
γ), i ∈ Iφ(η) ∪ {0}, (6.6)

|φ′i(η)δη| = o(
√
γ), i = r1 + 1, . . . , r. (6.7)
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The second relation in (6.4) is equivalent to

∫ T

0

âj(g′j(u)δu)− dt ≤ O(γ), j = 1, . . . , q. (6.8)

Thus, the set Sloc
o(

√
γ) can be characterizes by (6.3) and (6.5)–(6.8).

Lemma 6.1. For any λ = (μ, p, a) ∈ Λ0 and for any sequence {δw} ∈ Sloc satisfying the relation g(u+ δu) ≤ 0
(for all members of the sequence) the following formula holds:

Ψ(δw, λ) = Ω(δw, λ) +
∫ T

0

aδg− dt+ o(γ(δw)) (6.9)

uniformly on Λ0, where Ω is defined by (4.4).

Proof. Formula (6.9) follows from (5.12) and the relations: Hy = Hy and Hu(w, p, a) = 0 for all λ ∈ Λ0. �

For any C > 0 such that the set M(CΓ) is nonempty, we set

ΨM(CΓ)(δw) := max
λ∈M(CΓ)

Ψ(δw, λ). (6.10)

Lemma 6.2. For any C > 0 such that the set M(CΓ) is nonempty, the following inequality holds

Cγ(ΨΛ0 ,Πo(
√

γ)) ≥ min
{
Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
, C
}
, (6.11)

where the constant Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
is defined as in (5.10).

The proof is given in Section 10.1.
Recall that we have fixed C > 0 such that the setM(CΓ) is nonempty. Lemma 6.2 along with inequality (5.19)

implies
Cγ(ΨΛ0 ,Πσγ) ≥ min

{
Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
, C
}
. (6.12)

In what follows, we shall estimate Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
from below.

6.2. Passage to the set of sequences S1

Proposition 6.3. Let λ = (μ, p, a) ∈ Λ0. Then the critical cone K, defined by (4.1)–(4.3), has the following
equivalent representation:

φ′i(η)δη ≤ 0, μiφ
′
i(η)δη = 0, i ∈ Iφ(η) ∪ {0},

φ′j(η)δη = 0, j = r1 + 1, . . . , r, δẏ = f ′(w)δw,

(g′j(u)δu)χ{gj(u)=0} ≤ 0, ajgju(u)δu = 0, j = 1, . . . , q.

(6.13)

Proof. Indeed, from definition (2.14) of the set Λ0 it easily follows that, for any λ = (μ, p, a) ∈ Λ0 and any
δw ∈ W , we have

r∑
i=0

μiφ
′
i(η)δη −

∫ T

0

p(δẏ − f ′(w)δw) dt +
∫ T

0

ag′(u)δu dt = 0.

Therefore, relations (4.1)–(4.3) imply that μiφ
′
i(η)δη = 0, i ∈ Iφ(η) ∪ {0}, ag′(u)δu = 0. Thus, relations (6.13)

follows from (4.1)–(4.3). Vice versa, relations (4.1)–(4.3) obviously follows from (6.13). �
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Define a new set S1 of sequences {δw} ⊂ W by the relations

‖δu‖∞ + ‖δy‖1,1 → 0, σ(δw) = o
(√

γ(δw)
)
, (6.14)

g(u) + g′(u)δu ≤ 0, g′j(u)δuχ{âj≥ε} = 0, j = 1, . . . , q, ε→ +0, (6.15)

where χ{âi≥ε}(t) is the characteristic function of the set {t | âi(t) ≥ ε}. The equalities in (6.15) mean that for
a given sequence {δwk} there exists a sequence {εk} such that εk > 0, εk → 0, and g′j(u(t))δuk(t) = 0 a.e. on
the set {t | âj(t) ≥ εk} for all j = 1, . . . , q and for all k = 1, 2, . . . Set

Φ1
C(δw) := max

λ∈M(CΓ)

{
Ω(δw, λ) +

∫ T

0

a(g′(u)δu)− dt

}
. (6.16)

Lemma 6.4. The following inequality holds

Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
≥ Cγ

(
Φ1

C , S1

)
, (6.17)

where

Cγ

(
Φ1

C , S1

)
:= inf

{δw}∈S1

(
lim inf

Φ1
C(δw)
γ(δw)

)
· (6.18)

The proof is given in Section 10.2.

7. Support of the critical cone

Here we define a notion of support of the critical cone and formulate an important property of the support
(Lem. 7.2) which will play a crucial role at the end of the proof of Theorem 4.1 in Section 9. This property
will mean that the first order approximations of the endpoint functionals possess the so-called “Hoffman’s error
bound” [7] on the support.

Set
W0 = {δw = (δu, δy) ∈ W | δẏ = fw(w)δw}. (7.1)

Consider two sets of linear functionals

li : δw ∈ W0 → φ′i(η)δη, i ∈ Iφ(η) ∪ {0}, (7.2)

li : δw ∈ W0 → φ′i(η)δη, i = r1 + 1, . . . , r, (7.3)

where δw = (δu, δy), δη = (δy(0), δy(T )). Let Q0 be the cone generated by functionals (7.2), and let Q1 be the
subspace generated by functionals (7.3). Set

Q := Q0 +Q1. (7.4)

Then Q is a convex and finitely generated cone. Note that w∗ ∈ Q iff there is a vector μ = (μ0, . . . , μr) ∈ R
(r+1)∗

such that μi ≥ 0, i = 0, . . . , r1, μiφi(η) = 0, i = 1, . . . , r1 and 〈w∗, δw〉 = ϕμ
η (η)δη for all δw ∈ W0, where

ϕμ =
∑r

i=0 μiφi, as in (2.6). Obviously, 〈w∗, δw〉 ≤ 0 for any w∗ ∈ Q and any δw ∈ K. Moreover, let p = pμ be
the solution to the adjoint equation −ṗ = pfy(w), p(T ) = ϕμ

yT
(η). As it is well-known, the functional ϕμ

η (η)δη

has the following representation on the subspace W0:
(
ϕμ

y0
(η)+p(0)

)
δy0 +

∫ T

0 pfu(w)δu dt. This representation
is “pure integral” iff ϕμ

y0
(η) + p(0) = 0.
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Let us define the set

R0 = {δw = (δu, δy) ∈ W0 | g′j(u)δuχ{gj(u)=0} ≤ 0,

âjg
′
j(u)δu = 0, j = 1, . . . , q},

(7.5)

where â is given in Proposition 5.6. Obviously, R0 is a closed convex cone, and by Proposition 6.3, K ⊂ R0.
Let w∗

1 ∈ Q be a linear functional which has the following integral representation on the cone R0: 〈w∗
1 , δw〉 =

− ∫ T

0
a1g′(u)δu dt ∀δw ∈ R0, where a1 ∈ L1(0, T ; Rq∗), a1 ≥ 0, and a1g(u) = 0. Clearly, 〈w∗

1 , δw〉 ≥ 0 for all
δw ∈ R0, i.e. w∗

1 ∈ R∗
0. Assume that there exists δw1 ∈ R0 such that 〈w∗

1 , δw1〉 > 0. Set R1 = {δw ∈ R0 |
〈w∗

1 , δw〉 = 0}. Conditions (7.5) along with a1 ≥ 0 and a1g(u) = 0 imply R1 = {δw ∈ R0 | a1g′(u)δu = 0}.
Moreover, since w∗

1 ∈ Q, we have 〈w∗
1 , δw〉 ≤ 0 for all δw ∈ K. But K ⊂ R0 and w∗

1 ∈ R∗
0, consequently

〈w∗
1 , δw〉 = 0 for all δw ∈ K. This implies that K ⊂ R1.
Similarly, let w∗

2 ∈ Q be a linear functional which has an integral representation on the cone R1: 〈w∗
2 , δw〉 =

− ∫ T

0
a2g′(u)δu dt ∀δw ∈ R1, where a2 ∈ L1(0, T,Rq∗), a2 ≥ 0, a2g(u) = 0. Obviously, 〈w∗

2 , δw〉 ≥ 0 ∀δw ∈ R1,
i.e. w∗

2 ∈ R∗
1. Assume that there exists δw2 ∈ R1 such that 〈w∗

2 , δw2〉 > 0. Set R2 = {δw ∈ R1 | 〈w∗
2 , δw〉 = 0}.

Then R2 = {δw ∈ R1 | a2g′(u)δu = 0}. From conditions w∗
2 ∈ Q, w∗

2 ∈ R∗
1, and K ⊂ R1 we deduce that

〈w∗
2 , δw〉 = 0 ∀δw ∈ K. Hence K ⊂ R2.
Continuing this process, we obtain a set of functionals w∗

1 , w
∗
2 , . . . , w

∗
s and a set of cones R0,R1,R2, . . . ,Rs

such that K ⊂ Rs ⊂ . . . ⊂ R1 ⊂ R0 and w∗
k(Rk) = {0}, w∗

k(Rk−1) �= {0}, k = 1, . . . , s. Due to these properties,
the functionals w∗

1 , w
∗
2 , . . . , w

∗
s are linearly independent. Since the cone Q (containing these functionals) is finite

generated, this process will be finished on some finite step s. Set S = Rs, a0 = â. Thus

S = {δw ∈ W0 | δu ∈ Su}, (7.6)

where
Su := {δu ∈ U | (g′j(u)δu)χ{gj(u)=0} ≤ 0, j = 1, . . . , q,

aig′(u)δu = 0, i = 0, 1, . . . , s}. (7.7)

We call S the support of the critical cone K.

Remark 7.1. Without loss of generality we can assume that ai ∈ L∞(0, T ; Rm), i = 0, 1, . . . , s. Indeed, for
a0 = â this condition holds. Further, we can choose a1 so that a1 ≥ 0, a1g(u) = 0, and a1

j(t) = 0 a.e. on the

set {t | a0
j(t) > 0}, j = 1, . . . , q. Also we have 〈w∗

1 , δw〉 := ϕμ1

η (η)δη =
∫ T

0 p1fu(w)δu dt = − ∫ T

0 a1g′(u)δu dt
for all δw ∈ R0, where p1 is the solution to the adjoint equation −ṗ1 = p1fy(w), p1(T ) = ϕμ1

yT
(η). Using

these conditions and the linear independence hypothesis for the gradients gju, we easily deduce that a1 ∈
L∞(0, T ; Rm). Similarly, we can choose ai ∈ L∞(0, T ; Rm) for i > 1.

The following important lemma will be used in Section 9.

Lemma 7.2. There exists N > 0 such that for any δw = (δu, δy) ∈ S there exists w̄ = (ū, ȳ) ∈ S such that the
following relations hold

φ′i(η)(δη + η̄) ≤ 0, i ∈ Iφ ∪ {0}, φ′j(η)(δη + η̄) = 0, j = r1 + 1, . . . , r, (7.8)

‖w̄‖W ≤ N

⎛
⎝ ∑

i∈Iφ∪{0}
(φ′i(η)δη)+ +

r∑
j=r1+1

|φ′j(η)δη|
⎞
⎠ , (7.9)

where δη = (δy(0), δy(T )), η̄ = (ȳ(0), ȳ(T )).

The proof is given in Section 10.3.
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8. Auxiliary assertions

Along with Lemma 7.2, the following three lemmas will be used in Section 9. Let Lp
+(0, T ; R) denote the

cone of nonnegative functions from Lp(0, T ; R) (1 ≤ p ≤ ∞), and let R+ be the set of nonnegative numbers.

Lemma 8.1. Let r ∈ L∞
+ (0, T,R), set M = {t | r(t) > 0}. Let {(v, α)} be a sequence in L2

+(0, T ; R) × R+

such that α → 0, ‖v‖2 ≤ α, and
∫ T

0
rv dt = o(α). Then there exists a sequence {B} of subsets B ⊂ M such

that measB → 0 and for the sequence of sets {A} := {M \ B} we have ‖vχA‖∞ = o(α), where χA is the
characteristic function of the set A.

The proof is given in Section 10.4.
Denote by S′ the set of sequences {u′} in U satisfying the relations

‖u′‖∞ → 0, meas{t | u′(t) �= 0} → 0, g(u) + g′(u)u′ ≤ 0,
g′j(u)u′χ{âj≥ε} = 0, j = 1, . . . , q, ε→ +0. (8.1)

The equalities in (8.1) mean that for the sequence {u′k} there exists a sequence εk → +0 such that
g′j(u(t))u′k(t) = 0 a.e. on the set {t | âj(t) ≥ εk}, j = 1, . . . , q, k = 1, 2, . . .

Recall that by the assumption M(CΓ) �= ∅, where C > 0. The following assertion holds.

Lemma 8.2. For any {u′} ∈ S′, C′ < C, and λ ∈M(CΓ) we have

∫ T

0

(〈Huu(w, p, a)u′, u′〉 + a(g′(u)u′)−
)

dt ≥ C′
∫ T

0

|u′|2 dt, (8.2)

starting from a certain member of the sequence {u′}.
The proof is given in Section 10.5.
Recall that S1 was defined in Section 6.2 as the set of sequences {δw} in W satisfying relations (6.14)

and (6.15). Equivalently, S1 is the set of sequences such that ‖δw‖W → 0 and relations (6.15) and (6.5)–(6.7)
hold. For the set of functionals w∗

1 , . . . , w
∗
s , introduced in Section 7, and for any {δw} ∈ S1 relations (6.6)

and (6.7) imply the upper bounds 〈w∗
i , δw〉 ≤ o(

√
γ), i = 1, . . . , s. This easily follows from the fact that each

functional 〈w∗
i , δw〉 belongs to the set Q (defined by (7.4)) and therefore has the form

∑
i∈Iφ∪{0} μiφ

′
i(η)δη +∑r

i=r1+1 μiφ
′
i(η)δη, where μi ≥ 0 for all i ∈ Iφ ∪ {0}. Further, recall that each functional w∗

i has an integral

representation 〈w∗
i , δw〉 = − ∫ T

0 aig′(u)δu dt on the cone Ri−1, i = 1, . . . , s, where ai ∈ L∞(0, T ; Rm), ai ≥ 0,
aig(u) = 0, i = 1, . . . , s (see Rem. 7.1).

Lemma 8.3. For any sequence {δw} ∈ S1 we have

−
∫ T

0

aig′(u)δu dt ≤ o
(√

γ(δw)
)
, i = 1, . . . , s. (8.3)

The proof is given in Section 10.6.

Remark 8.4. Although the upper bound 〈w∗
i , δw〉 ≤ o(

√
γ) holds for any {δw} ∈ S1 and any i = 1, . . . , s, it

does not automatically imply upper bound (8.3), since generally speaking elements of {δw} ∈ S1 do not belong
to the cone Ri−1 on which w∗

i has the representation 〈w∗
i , δw〉 = − ∫ T

0
aig′(u)δu dt.

9. Proof of Theorem 4.1

We are going to estimate Cγ(Φ1
C , S1) (given in (6.18)) from below. To this end, choose any sequence {δw} ∈ S1

that does not vanish. Using Lemmas 8.1 and 8.3 let us construct sequences {u′} ∈ S′ (where S′ is given in (8.1))
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and {δu1} ⊂ Su (where Su is given in (7.7)) as follows. Set vj := −g′j(u)δuχ{gj(u)=0}, j = 1, . . . , q. Then vj ≥ 0

and ‖vj‖2 ≤ O(
√
γ), j = 1, . . . , q. By Lemma 8.3

∫ T

0 ai
jvj dt ≤ o(

√
γ), i = 1, . . . , s, j = 1, . . . , q, where γ = γ(δw).

Set
Mi

j = {t | ai
j(t) > 0}, i = 0, . . . , s, j = 1, . . . , q, (9.1)

where a0 = â (recall that â is given in Prop. 5.6), and

Mj =
s⋃

i=0

Mi
j, j = 1, . . . , q. (9.2)

Let i ∈ {1, . . . , s}, j ∈ {1, . . . , q}. By Lemma 8.1, for the sequence {vj} and the set Mi
j , there exist two sequences

of sets {Ai
j} and {Bi

j} such that

Ai
j ∪Bi

j = Mi
j , Ai

j ∩Bi
j = ∅, measBi

j → 0, ‖vjχAi
j
‖∞ = o(

√
γ) (9.3)

(so, in Lem. 8.1, we can set α := O(
√
γ)). Let {ε} be the sequence corresponding to {δw} such that (6.15)

holds. Set

B =

⎛
⎝ s⋃

i=1

q⋃
j=1

Bi
j

⎞
⎠⋃

⎛
⎝ q⋃

j=1

{t | 0 < âj(t) < ε}
⎞
⎠ . (9.4)

Then in view of (9.3) and (9.4) we have: measB → 0, ‖vjχMj\B‖∞ = o(
√
γ). Due to the hypothesis of linear

independence of gradients g′j(u), there exists a sequence of functions {ũ} in U such that

‖ũ‖∞ = o(
√
γ), ũχB = 0,

g′j(u)ũχMj\B = −vjχMj\B,

g′j(u)ũχ{gj(u)=0}\Mj
= 0, j = 1, . . . , q.

(9.5)

Define a sequence {u′} by the relation u′ = δuχB. Obviously, {u′} ∈ S′. Set δu1 = δu− ũ−u′, δw1 = (δu1, δy).
Then δu1 ∈ Su. Moreover, using (9.5), we deduce that, for the sequences {δw}, {δw1}, and {u′}, the following
relations hold

γ(δw) = γ(δw1) +
∫ T

0

|u′|2 dt+ o(γ(δw)), (9.6)

Ω(δw, λ) = Ω(δw1, λ) +
∫ T

0

〈Huu(w, p, a)u′, u′〉dt+ o(γ(δw)), (9.7)

∫ T

0

a(g′(u)δu)− dt ≥
∫

B

a(g′(u)δu)− dt =
∫ T

0

a(g′(u)u′)− dt (9.8)

uniformly on Λ0. Consequently,

Φ1
C(δw) := max

λ∈M(CΓ)

{
Ω(δw, λ) +

∫ T

0

a(g′(u)δu)− dt

}

≥ max
λ∈M(CΓ)

{
Ω(δw1, λ) (9.9)

+
∫ T

0

(
〈Huu(w, p, a)u′, u′〉 + a(g′(u)u′)−

)
dt

}
+ o(γ(δw)).
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Moreover, ‖δw1‖W → 0, ‖δẏ− fu(w)δu1 − fy(w)δy‖1 = o(
√
γ(δw)), and relations (6.6)–(6.7) hold. Choose any

C′ < C. Set w′ = (0, u′), γ(w′) =
∫ T

0
|u′|2 dt. Then in view of Lemma 8.2 and definition (4.5) (of the functional

ΩM(CΓ)) we get

max
λ∈M(CΓ)

{
Ω(δw1, λ) +

∫ T

0

〈Huu(w, p, a)u′, u′〉 +
∫ T

0

a(g′(u)δu′)− dt

}

≥ max
λ∈M(CΓ)

Ω(δw1, λ) + C′γ(w′) = ΩM(CΓ)(δw1) + C′γ(w′)

starting from a certain number of the sequences. Combining this inequality with (9.9) we obtain

Φ1
C(δw) ≥ ΩM(CΓ)(δw1) + C′γ(w′) + o(γ(δw)). (9.10)

Furthermore, the relation ‖δẏ − f ′(w)δw1‖1 = o(
√
γ(δw)) can be written as δẏ − fy(w)δy − fu(w)δu1 = ζ,

‖ζ‖1 = o(
√
γ(δw)). Let us define a sequence {yζ} by the equation ẏζ = fy(w)yζ + ζ, yζ(0) = 0. Then ‖yζ‖1,1 =

o(
√
γ(δw)). Set δyS = δy− yζ , δwS = (δu1, δyS). Then δẏS − f ′(w)δwS = 0, and hence δwS ∈ S (see Def. (7.6)

of the set S). Since {δw1} satisfies relations (6.6)–(6.7), the same is true for {δwS}. Thus, we get

φ′i(η)δηS ≤ o(
√
γ(δw)), i ∈ Iφ(η) ∪ {0},

|φ′i(η)δηS | = o(
√
γ(δw)), i = r1 + 1, . . . , r,

δwS ∈ S, ‖δwS‖W → 0,

where δηS = (δyS(0), δyS(T )). By Lemma 7.2, for each member δwS of the sequence {δwS} there exists
a solution w̄ = (ū, ȳ) to the system

φ′i(η)(δηS + η̄) ≤ 0, i ∈ Iφ(η) ∪ {0},
φ′j(η)(δηS + η̄) = 0, j = r1 + 1, . . . , r, w̄ ∈ S

such that ‖w̄‖W = o(
√
γ(δw)), where η̄ = (ȳ(0), ȳ(T )). Set δwK = δwS + w̄. Then for the sequence {δwK} we

obviously have

δwK ∈ K, ‖δwK‖W → 0, (9.11)
γ(δw1) = γ(δwK) + o(γ(δw)), (9.12)
ΩM(CΓ)(δw1) = ΩM(CΓ)(δwK) + o(γ(δw)). (9.13)

Now note that on the subspace W0 (specified by (7.1)) the functional |δy(0)|2 +
∫ T

0 |δu(t)|2 dt is equivalent to
the functional ‖δy‖2

∞ +
∫ T

0 |δu(t)|2 dt (in the sense that the first functional estimates the second one on W0

from below and from above with certain positive multipliers) and by (3.1) the latter is equal to γ(δw) in a small
neighborhood of zero in W . Since δwK ∈ K, condition (4.6) of Theorem 4.1 implies that there exists C′

K > 0
such that

ΩM(CΓ)(δwK) ≥ C′
Kγ(δwK) (9.14)

starting from a certain member of the sequence {δwK}. Relations (9.10), (9.13), and (9.14) imply

Φ1
C(δw) ≥ C′

Kγ(δwK) + C′γ(w′) + o(γ(δw)). (9.15)

Recall that γ(w′) =
∫ T

0 |u′|2 dt, hence combining (9.6) with (9.12) we get

γ(δw) = γ(δwK) + γ(w′) + o(γ(δw)). (9.16)
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Consequently, the following relations hold

lim inf
Φ1

C(δw)
γ(δw)

≥ lim inf
C′

Kγ(δwK) + C′γ(w′)
γ(δwK) + γ(w′)

≥ min{C′
K, C

′}.

Since {δw} is an arbitrary sequence of S1, the above inequalities together with (6.18) implies Cγ

(
Φ1

C , S1

) ≥
min{C′

K, C
′}. The latter holds for any C′ < C. Hence Cγ

(
Φ1

C , S1

) ≥ min{C′
K, C}. Combining this inequality

with (6.12) and (6.17) we get Cγ(ΨΛ0 ,Πσγ) ≥ min{C′
K, C} > 0. In view of (5.11) and Proposition 3.7 this

completes the proof of Theorem 4.1.

10. Proofs of basic lemmas

Here we give the proofs of Lemmas 6.2, 6.4, 7.2, 8.1, 8.2, and 8.3 used in the proof of Theorem 4.1.

10.1. Proof of Lemma 6.2

Consider the sequence {(δw, ε)}, where {δw} ∈ Πo(
√

γ) (see (5.18)) and ε → +0. For any member (δw, ε) =
((δu, δy), ε) of the sequence {(δw, ε)}, we set

δuε(t) =

{
δu(t) if |δu(t)| < ε,

0 otherwise,

δuε = δu− δuε, δwε = (δuε, δy), δwε = (δuε, 0).

Then ‖δuε‖∞ → 0 and hence {δwε} ∈ Sloc. Moreover, {δw} = {δwε} + {δwε}. To continue the proof of the
lemma, we need the following proposition.

Proposition 10.1. For the sequences {(δw, ε)}, {δwε}, and {δwε}, the following formula holds

δf = δεf + δεf + rf , (10.1)

where
δf = f(w + δw) − f(w), δεf = f(w + δwε) − f(w),
δεf = f(w + δwε) − f(w), rf = (δ̄yf − δyf)χε,
δyf = f(u, y + δy) − f(u, y),
δ̄yf = f(u+ δu, y + δy) − f(u+ δu, y),

(10.2)

and χε is a characteristic function of the set Mε = {t | δuε(t) �= 0}.
Proof. We have

δf = δfχε + δf(1 − χε)

=
(
f(u+ δuε, y + δy) − f(u+ δuε, y) + δεf

)
χε + δεf(1 − χε)

= δ̄yfχ
ε + δεf + δεf − δεfχ

ε = δεf + δεf + (δ̄yf − δyf)χε

= δεf + δεf + rf . �

Let us continue the proof of the lemma. Note that from the definition of rf in (10.2) it follows that

‖rf‖∞ ≤ ‖δyf‖∞ + ‖δ̄yf‖∞ ≤ const. ‖δy‖∞ → 0,
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where const. > 0 does not depend on the member of the sequence {(δw, ε)}. Obviously, for a given sequence
{δw} ∈ Πo(

√
γ), one can choose a sequence ε→ +0 such that

(a)
‖rf‖∞
ε2

→ 0, (b)

√
γ(δw)
ε2

→ 0.

(Note that (b) ⇒ (a), since ‖δy‖∞ ≤√γ(δw).) Then we have

‖rf‖1 ≤ ‖rf‖∞
ε2

∫
Mε

ε2 dt ≤ ‖rf‖∞
ε2

∫
Mε

|δu|2 dt = o(γε), (10.3)

where γε := γ(δwε). Let λ = (μ, p, a) ∈ Λ0. Since δH = pδf , it follows from Proposition 10.1 and estimate (10.3)
that

∫ T

0 δH dt =
∫ T

0 δεH dt+
∫ T

0 δεH dt+o(γε) uniformly on Λ0, where δεH = H(u+δuε, y+δy, p)−H(u, y, p),
δεH = H(u + δuε, y, p) − H(u, y, p). Hence, from definition (5.1) of the function Ψ, we obtain: Ψ(δw, λ) =
Ψ(δwε, λ) +

∫ T

0 δεH dt+ o(γε) uniformly on Λ0, and then

ΨΛ0(δw) = max
λ∈Λ0

{
Ψ(δwε, λ) +

∫ T

0

δεH dt

}
+ o(γε). (10.4)

Furthermore, the condition g(u+ δu) ≤ 0 implies

g(u+ δuε) ≤ 0, g(u+ δuε) ≤ 0. (10.5)

Consequently, by (3.6), δεH ≥ CΓ(δuε) for any λ ∈ M(CΓ), and then
∫ T

0
δεH dt ≥ Cγε for any λ ∈ M(CΓ).

Since M(CΓ) ⊂ Λ0, we have

max
λ∈Λ0

{
Ψ(δwε, λ) +

∫ T

0

δεH dt

}
≥ max

λ∈M(CΓ)

{
Ψ(δwε, λ) +

∫ T

0

δεH dt

}

≥ max
λ∈M(CΓ)

{
Ψ(δwε, λ) + Cγε

}
= ΨM(CΓ)(δwε) + Cγε

(see Def. (6.10) of ΨM(CΓ)). This along with (10.4) implies

ΨΛ0(δw) ≥ ΨM(CΓ)(δwε) + Cγε + o(γε). (10.6)

Moreover, we obviously have γ = γε + γε, where γ := γ(δw), γε := γ(δwε), γε := γ(δwε). For the sequence of
pairs {(δw, ε)}, let us consider two cases.

Case 1. lim inf γε/γ = 0. In this case, we choose a subsequence such that γε = o(γ), and hence γε/γ → 1
for this subsequence. Without loss of generality assume that this condition is satisfied for the whole sequence
{δw}. Then using Lemma 6.1 and the inequality aδεg− ≥ 0 we get

ΨM(CΓ)(δwε) = max
λ∈M(C)

{
Ω(δwε, λ) +

∫ T

0

aδεg− dt

}
+ o(γε)

≥ ΩM(CΓ)(δwε) + o(γε)

(see Def. (4.5) of ΩM(CΓ)). Combining (10.6) and (10.7) we obtain

ΨΛ0(δw) ≥ ΩM(CΓ)(δwε) + Cγε + o(γ). (10.7)
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Since |ΩM(CΓ)(δwε)| ≤ O(γε) = o(γ) and γε/γ → 1, we get

lim inf
ΨΛ0(δw)
γ(δw)

≥ C. (10.8)

Case 2. lim inf γε/γ > 0, and hence γ ≤ O(γε) and γε ≤ O(γε). Let us show, in this case, that

{δwε} ∈ Sloc
o(

√
γ). (10.9)

Indeed, the sequence {δwε} = {(δuε, δy)} satisfies the conditions ‖δuε‖∞ + ‖δy‖1,1 → 0, i.e., {δwε} ∈ Sloc, and
moreover, ϕ(u+ δuε) ≤ 0. Furthermore, since

√
γ/ε2 → 0, the following estimate holds

measMε =
1
ε2

∫
Mε

ε2 dt ≤ 1
ε2
γε ·O(1) ≤

√
γ

ε2
√
γε ·O(1) = o(

√
γε). (10.10)

In virtue of Proposition 10.1 δf = δεf+δεf+rf , where ‖rf‖1 = o(γε) (see (10.3)) and ‖δεf‖1 = O(measMε) =
o(
√
γε) (see (10.10)). This and the relations ‖δẏ − δf‖1 = o(

√
γ), γ = O(γε) imply ‖δẏ − δεf‖1 = o(

√
γε).

Note that in the definition of δwε = (δuε, δy) the component δy is the same as in δw. Therefore, conditions
σ(δw) = o(

√
γ) and γ ≤ O(γε) imply σ(δwε) = o(

√
γε). Finally,

∫ T

0
âδεg− dt ≤ ∫ T

0
âδg− dt ≤ O(γ) = O(γε).

Thus, (10.9) is proved.
It follows from (10.9) and inequality (10.6) that

lim inf
ΨΛ0(δw)
γ(δw)

≥ lim inf
ΨM(CΓ)(δwε) + Cγε

γ

= lim inf
(
γε

γ
· ΨM(CΓ)(δwε)

γε
+ C · γ

ε

γ

)
≥ lim inf

(
min

{
ΨM(CΓ)(δwε)

γε
, C

})

= min
{

lim inf
ΨM(CΓ)(δwε)

γε
, C

}
≥ min

{
inf

Sloc
o(

√
γ)

(
lim inf

ΨM(CΓ)

γ

)
, C

}

= min
{
Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
, C
}
,

where γ = γ(δw).
Thus, we have proved that for any sequence {δw} ∈ Πo(

√
γ) there exists a subsequence such that for the

subsequence we have:

lim inf ΨΛ0/γ ≥ min
{
Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
, C
}
. (10.11)

This implies inequality (6.11). Indeed, in the opposite case there exists a sequence {δw} ∈ Πo(
√

γ) such that

lim inf ΨΛ0/γ < min
{
Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
, C
}
.

Consequently, there exists a subsequence such that

lim ΨΛ0/γ < min
{
Cγ

(
ΨM(CΓ), S

loc
o(

√
γ)

)
, C
}
.

But then the choice of a subsequence satisfying (10.11) is impossible. The lemma is proved.
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10.2. Proof of Lemma 6.4

Take any sequence {δw} ∈ Sloc
o(

√
γ). As it was noted in Section 6.1, this sequence satisfies relations (6.3)

and (6.5)–(6.8). From the relation g(u+ δu) ≤ 0 (see (6.3)) it follows that

gj(u(t)) + g′j(u(t))δu(t) ≤ k1|δu(t)|2, j = 1, . . . , q, (10.12)

where k1 > 0 does not depend on the member of the sequence. Due to the hypothesis of linear independence
of the gradients g′j(u), for any sequence ε = ε(δu) → +0, there exist k2 > 0 and a sequence of corrections {ū}
such that

|ū(t)| ≤ k2

⎛
⎝|δu(t)|2 +

q∑
j=1

χ{âj≥ε}(t)(g′j(u(t))δu(t))−

⎞
⎠ , (10.13)

gj(u(t)) + g′j(u(t))(δu(t) + ū(t)) ≤ 0 a.e., j = 1, . . . , q, (10.14)

g′j(u(t))(δu(t) + ū(t)) = 0 if âj(t) ≥ ε, j = 1, . . . , q, (10.15)

g′j(u(t))ū(t) = 0 if 0 < âj(t) < ε, j = 1, . . . , q. (10.16)

Relations (10.13) imply ‖ū‖∞ ≤ O(‖δu‖∞) = o(1). Since

∫
{âj≥ε}

(g′j(u)δu)− dt ≤ 1
ε

∫ T

0

âj(g′j(u)δu)− dt ≤ 1
ε
O(γ(δw))

(see (6.8)), relation (10.13) implies that ‖ū‖1 ≤ O(γ(δw))/ε. Choose ε = ε(δw) → +0 such that ‖δw‖∞/ε→ 0.
Then

√
γ(δw)/ε→ 0, and hence ‖ū‖1 = o(

√
γ(δw)). Moreover, since ‖δu‖∞/ε→ 0, we have

∫ T

0

|ū|2 dt ≤ ‖ū‖∞‖ū‖1 ≤ O(‖δu‖∞) ·O(γ(δw))/ε = o(γ(δw)), (10.17)

∫ T

0

|δu| · |ū| dt ≤ ‖δu‖∞‖ū‖1 ≤ ‖δu‖∞O(γ(δw))/ε = o(γ(δw)), (10.18)

∫ T

0

|δy| · |ū| dt ≤ ‖δy‖∞‖ū‖1 ≤ ‖δy‖∞O(γ(δw))/ε = o(γ(δw)). (10.19)

Set {δw1} = {(δu+ ū, δy)}. Relations (10.17)–(10.19) imply that, for the sequences {δw1} and {δw}, we have

Ω(δw1, λ) = Ω(δw, λ) + o(γ(δw)), γ(δw1) = γ(δw) + o(γ(δw)) (10.20)

uniformly on Λ0. Since ‖ū‖∞ → 0, we have ‖δw1‖W → 0, and using (6.5) and the estimate ‖ū‖1 = o(
√
γ(δw))

we get
‖δẏ − f ′(w)δw1‖1 = o(

√
γ). (10.21)

Moreover, the sequence {δw1} satisfies relations (6.6)–(6.7) (with δη = δη1 since δy = δy1) and the relations

gj(u(t)) + g′j(u(t))δu1(t) ≤ 0 a.e., j = 1, . . . , q, (10.22)

g′j(u(t))δu1(t) = 0 if âj(t) ≥ ε, j = 1, . . . , q, (10.23)

g′j(u(t))δu(t) = g′j(u(t))δu1(t) if 0 < âj(t) < ε, j = 1, . . . , q. (10.24)
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Consequently {δw1} ∈ S1. Let us show that, for any j = 1, . . . , q, we have

∫ T

0

aj(g′j(u)δu1)− dt ≤
∫ T

0

aj(gj(u+ δu))− dt+ o(γ) (10.25)

uniformly on Λ0. Indeed, since ε→ 0 and in view of (5.16) {t | âj(t) ≤ ε} ⊂ {t | aj(t) ≤ Ĉε}, relations (10.23)
and (10.24) imply

T∫
0

aj(g′j(u)δu1)− dt =
∫

âj≤ε

aj(g′j(u)δu1)− dt

=
∫

âj≤ε

aj(g′j(u)δu)− dt ≤
∫

aj≤Ĉε

aj(g′j(u)δu)− dt

≤
∫

aj≤Ĉε

aj(gj(u+ δu))− dt+ εO(γ(δw))

≤
∫ T

0

aj(gj(u+ δu))− dt+ o(γ(δw)).

From relations (6.9), (6.10), (6.16), (10.20), and (10.25) it follows that Φ1
C(δw1) ≤ ΨM(CΓ)(δw) + o(γ(δw)),

where {δw1} ∈ S1. Along with the second relation in (10.20) this implies that

lim inf
ΨM(CΓ)(δw)

γ(δw)
≥ lim inf

Φ1
C(δw1)
γ(δw1)

≥ Cγ(Φ1
C , S1).

Since {δw} is an arbitrary sequence in Sloc
o(

√
γ), inequality (6.17) follows. The lemma is proved.

10.3. Proof of Lemma 7.2

In order to prove Lemma 7.2 we need five auxiliary propositions, which will be proved bellow. Recall that
the critical cone K was defined by relations (4.1)–(4.3) and the support S was defined by (7.6).

Proposition 10.2. The following equality holds

K = {δw ∈ S | conditions (4.1) hold}. (10.26)

Proof. Let KS denote the r.h.s. of equality (10.26). Since K ⊂ Rs = S and each element of K satisfies
conditions (4.1), we have K ⊂ KS . Vice versa, each element of KS satisfies all equalities and inequalities
in (7.7), (4.1), and (4.2), and hence belongs to K. It means that KS ⊂ K. Consequently, K = KS . �

Recall that the coneQ (defined in (7.4)) and the system of functionals w∗
1 , . . . , w

∗
s were introduced in Section 7.

Let us note that from the maximality of this system we get the following important property of the cone S.

Proposition 10.3. If a linear functional w∗ ∈ Q has an integral representation 〈w∗, δw〉 = − ∫ T

0
ag′(u)δu dt

on the cone S such that a ∈ L1(0, T ; Rq∗), a ≥ 0, and ag(u) = 0, then 〈w∗, δw〉 = 0 for all δw ∈ S.

Recall that Su was defined by (7.7), and the sets Mj were defined by (9.2). Obviously, Mj = {t |∑s
i=0 a

i
j(t) > 0}, j = 1, . . . , q. Set

Nj = {t | gj(u(t)) = 0} \Mj , j = 1, . . . , q. (10.27)
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Proposition 10.4. The following equality holds

Su =
{
δu ∈ U | g′j(u)δuχNj ≤ 0, g′j(u)δuχMj = 0, j = 1, . . . , q

}
, (10.28)

where χNj and χMj are the characteristic functions of the sets Nj and Mj, respectively, j = 1, . . . , q.

Proof. Let S̃u denote the r.h.s. of equality (10.28). If δu ∈ S̃u, then we have g′j(u)δuχ{gj(u)=0} ≤ 0, since
Mj ∪ Nj = {t | gj(u(t)) = 0} ∀j. Moreover, for any j, the condition g′j(u)δuχMj = 0 implies ai

jg
′
j(u)δu = 0

∀i and hence aig′(u)δu = 0 ∀i. Consequently, δu ∈ Su. Vice versa, let δu ∈ Su. For any i, the condition
aig′(u)δu = 0 means that

∑
j a

i
jg

′
j(u)δu = 0. Along with the conditions g′j(u)δuχ{gj(u)=0} ≤ 0, ai

j ≥ 0, and
ai

jgj(u) = 0 ∀j this implies that ai
jg

′
j(u)δu = 0 and hence

∑
i a

i
jg

′
j(u)δu = 0 ∀j. Consequently, g′j(u)δuχMj = 0

∀j. Then from the conditions g′j(u)δuχ{gj(u)=0} ≤ 0 ∀j it follows that g′j(u)δuχNj ≤ 0 ∀j. Consequently,
δu ∈ S̃u. Thus, Su = S̃u. �

In the space L1(0, T ; Rm∗), consider the cone C of functions h of the form h = −ag′(u), where a ∈ L1(0, T ; Rq∗)
is such that

aj(t) = 0 if t /∈ Mj ∪ Nj ; aj(t) ≥ 0 if t ∈ Nj , j = 1, . . . , q. (10.29)

Proposition 10.5. C∗ = Su, where C∗ is the cone polar to C.

Proof. (a) Let us show that Su ⊂ C∗. Indeed, if δu ∈ Su and h ∈ C, then from (10.28) and (10.29) we
get 〈δu, h〉 =

∫ T

0
hδu dt = − ∫ T

0

∑q
j=1 ajg

′
j(u)δu dt ≥ 0. (b) Let us show that C∗ ⊂ Su. Let δu ∈ C∗, i.e.,

δu ∈ L∞(0, T ; Rm) and for any h ∈ C we have
∫ T

0 hδu dt = −∑q
j=1

∫ T

0 ajg
′
j(u)δu dt ≥ 0, where a ∈ L1(0, T ; Rq∗)

satisfies (10.29). This implies that g′j(u)δuχNj ≤ 0 and g′j(u)δuχMj = 0, j = 1, . . . , q, i.e., δu ∈ Su. �
Now set

Σ = {(δu, δy0) ∈ U × R
n | δu ∈ Su}. (10.30)

Obviously, there is a one-to-one correspondence between the sets S (defined in (7.6)) and Σ given by the mapping
(δu, δy) ∈ S → (δu, δy(0)) ∈ Σ.

Let μ = (μ0, . . . , μr) ∈ R
(r+1)∗, ϕμ =

∑r
i=0 μiφi, and let ϕμ

η (η)δη be the functional (defined on the sub-
space W0) introduced in Section 7. In what follows, it will be convenient to treat ϕμ

η (η)δη as a functional
defined on Σ. Namely, define a linear functional

(δu, δy0) ∈ U × R
n → ϕμ

y0
(η)δy0 + ϕμ

yT
(η)δy(T ), (10.31)

where δy is the solution to the equation δẏ = fu(w)δu+ fy(w)δy with the initial condition δy(0) = δy0. For this
functional, we shall use the same notation ϕμ

η (η)δη. This will also concern elements of Q. Set

P = {(h, ξ) ∈ L1(0, T ; Rm∗) × R
n∗ | h ∈ C, ξ = 0}. (10.32)

Since by Proposition 10.5, C∗ = Su, we obviously have

P ∗ = Σ. (10.33)

Moreover, each element of P can be treated as a functional on U ×R
n with a pure integral representation. The

following property will play a crucial role for the existence of corresponding Hoffman’s error bounds.

Proposition 10.6. There exists a subspace L in P such that P ∩Q ⊂ L ⊂ P .

Proof. Let l ∈ P ∩ Q. Then l has an integral representation: l(δu, δy0) = − ∫ T

0 ag′(u)δu dt, where a ∈
L1(0, T ; Rq∗) satisfies (10.29). Set ãj = ajχNj ∀j, ã = (ã1, . . . , ãq). Then, obviously, we have l(δw) =
− ∫ T

0
ãg′(u)δu dt on S. Moreover, ã ≥ 0, ãg(u) = 0, and ãjχNj = ãj ∀j. Since l ∈ Q, by Proposition 10.3, l is
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equal to zero on S and hence
∫ T

0 ãg′(u)δu dt = 0 on Su. This implies that ã = 0. Consequently, ajχNj = 0 ∀j.
The latter conditions define a subspace L in P (see (10.29) and (10.32)). �

Now we can prove Lemma 7.2. The proof will be based on abstract Lemma 11.9 proved in Section 11.

Proof of Lemma 7.2. For any δw ∈ S consider system (7.8) of linear inequalities and equalities on the cone Σ
(i.e., with (ū, ȳ0) ∈ Σ). According to Proposition 10.6 and since P ∗ = Σ, this system on Σ satisfies all conditions
of Lemma 11.9 (with X = U × R

n, Y = L1(0, T ; Rm∗) × R
n∗, K = Σ, KY = P , Klm = Q). By this lemma,

for any δw ∈ S, system (7.8) is compatible and has Hoffman’s error bound. Consequently, the same system
considered on the cone S (i.e., with w̄ = (ū, ȳ) ∈ S) is always compatible and has Hoffman’s error bound too
(note that a finite dimensional subspace in Def. 11.8 can be equipped with the norm of the space W). The
lemma is proved.

10.4. Proof of Lemma 8.1

Recall that at the beginning of Section 8, Lp
+(0, T ; R) was defined as the cone of nonnegative functions in

Lp(0, T ; R). The following proposition will be used in the proof of Lemma 8.1.

Proposition 10.7. Let r ∈ L∞
+ (0, T ; R), M = {t | r(t) > 0}, v ∈ L1

+(0, T ; R), and N = {t | v(t) > 0}. Assume
that N ⊂ M. For δ > 0, set

rδ(t) =
{
r(t) if r(t) < δ
0 otherwise, rδ(t) = r(t) − rδ(t),

and similarly, for ε > 0, define vε(t) and vε(t). Set Mδ = {t | rδ(t) > 0}, Mδ = {t | rδ(t) > 0}, Nε = {t |
vε(t) > 0}, and N ε = {t | vε(t) > 0}. Then the following estimate holds

measN ε ≤ 1
δε

(∫ T

0

rv dt+ δ

∫
Mδ

v dt

)
.

Proof. Since N ε ⊂ N ⊂ M = Mδ ∪Mδ, we have N ε = (N ε ∩Mδ) ∪ (N ε ∩Mδ). Consequently,

δεmeasN ε =
∫
N ε∩Mδ

δε dt+
∫
N ε∩Mδ

δε dt ≤
∫ T

0

rv dt+ δ

∫
Mδ

v dt.

The required estimate follows. �

Proof of Lemma 8.1. Without loss of generality, assume that {t | v(t) > 0} ⊂ M for all members of the
sequence {v}. According to the conditions of the lemma, we have ‖v‖2 ≤ α and

∫ T

0 rv dt ≤ ρα, where ρ→ +0.
Set δ =

√
ρ and ε = α(

√
ρ+

√
measMδ)

1
2 , where Mδ was defined in Proposition 10.7. Obviously, measMδ → 0

and hence ‖vε‖∞ ≤ ε = o(α). Since ‖v‖2 ≤ α, according to Proposition 10.7 we have

meas{t | vε(t) > 0} ≤ 1
δε

(∫ T

0

rv dt+ δ

∫
Mδ

v dt

)

≤ 1
δε

(
ρα+ δ

√
measMδ‖v‖2

)
≤ α

δε

(
ρ+ δ

√
measMδ

)
≤ (

√
ρ+

√
measMδ)

1
2 → 0.

Thus, it suffices to set B = {t | vε(t) > 0}. The lemma is proved.
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10.5. Proof of Lemma 8.2

Assume that the assertion of the lemma is not true, i.e., there exist a sequence {u′} ∈ S′, a number C′ < C,
and an element λ ∈M(CΓ) such that

∫ T

0

(〈Huu(w, p, a)u′, u′〉 + a(g′(u)u′)−
)

dt ≤ C′
∫ T

0

|u′|2 dt (10.34)

for all members of the sequence. Since {u′} satisfies (8.1), the following estimates hold

g(u+ u′) ≤ k1|u′|2, |gj(u+ u′)|χ{âj≥ε} ≤ k1|u′|2, j = 1, . . . , q,

where ε → +0 and k1 > 0 does not depend on the member of the sequence. Due to the hypothesis of linear
independence of gradients g′j(u), there exists a sequence of corrections {v} such that

g(u+ u′ + v) ≤ 0, gj(u + u′ + v)χ{âj≥ε} = 0, |v| ≤ k2|u′|2, (10.35)

where k2 > 0 does not depend on the member of the sequence. Set {δu} = {u′ + v}. Then we obviously have

|δu|2 = |u′|2 + r1, 〈Huu(w, p, a)δu, δu〉 = 〈Huu(w, p, a)u′, u′〉 + r2, (10.36)

where |ri| ≤ k3|u′|3, i = 1, 2, and k3 > 0 does not depend on the member of the sequence. Moreover, using the
second and the third relations in (10.35), as well as inequalities (5.16), we get for any j = 1, . . . , q

ajgj(u + δu)− = ajgj(u+ δu)−χ{âj<ε} ≤ aj

(
g′j(u)u′

)
− + r4j ,

where |r4j | ≤ εk4j(|δu|2 + |v|) ≤ εk5j |u′|2, and k4j > 0 and k5j > 0 does not depend on the member of the
sequence. Consequently,

∫ T

0

|δu|2 dt =
∫ T

0

|u′|2 dt+ o(γ′), (10.37)

∫ T

0

〈Huu(w, p, a)δu, δu〉dt =
∫ T

0

〈Huu(w, p, a)u′, u′〉dt+ o(γ′), (10.38)

∫ T

0

ajgj(u+ δu)− dt ≤
∫ T

0

aj

(
g′j(u)u′

)
− dt+ o(γ′), (10.39)

where γ′ =
T∫
0

|u′|2 dt. These relations imply the inequality

∫ T

0

(〈Huu(w, p, a)δu, δu〉 + aδg−) dt ≤
∫ T

0

(
〈Huu(w, p, a)u′, u′〉 + a

(
g′(u)u′

)
−
)

dt+ o(γ′), (10.40)

where δg− = g−(u + δu) − g−(u). Since Hu(w, p, a) = 0, δuH = δuH + aδg, and δg + δg− = 0, where
δuH = H(u + δu, y, p, a)−H(u, y, p, a), etc., we obtain

∫ T

0

(〈Huu(w, p, a)δu, δu〉 + aδg−) dt =
∫ T

0

(
δuH + aδg−

)
dt+ o

(∫ T

0

|δu|2 dt

)

=
∫ T

0

δuH dt+ o

(∫ T

0

|δu|2 dt

)
. (10.41)
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Combining relations (10.34), (10.37), (10.40), and (10.41), we get

∫ T

0

δuH dt+ o

(∫ T

0

|δu|2 dt

)
≤ C′

∫ T

0

|δu|2 dt. (10.42)

But since the sequence {δu} satisfies the condition g(u+ δu) ≤ 0 and λ ∈M(CΓ), we have δuH ≥ C|δu|2, and
hence

∫ T

0
δuH dt ≥ C

∫ T

0
|δu|2 dt. This together with estimate (10.42) contradicts the inequality C > C′. The

lemma is proved.

10.6. Proof of Lemma 8.3

Let {δw} ∈ S1 and let {ε} be the corresponding sequence of positive numbers converging to zero (see (6.15)).
For any j = 1, . . . , q, define a sequence of sets B0

j = {t | 0 < âj(t) < ε}. Let B0 =
⋃q

j=1 B
0
j , δuB0 = δuχB0 and

δu0 = δu − δuB0 = δu(1 − χB0), where χB0 is the characteristic function of the set B0. Note that ‖δu0‖2 ≤
‖δu‖2 ≤ √γ(δw). Since measB0 → 0, we have ‖δuB0‖1 ≤

√
measB0‖δu‖2 = o(

√
γ(δw)). Moreover, we have

g′j(u)δu0χ{gj(u)=0} ≤ 0, âjg
′
j(u)δu0 = 0, j = 1, . . . , q. Let us define a sequence {δy0} such that all members of the

sequence {δw0} = {(δu0, δy0)} belong to the cone R0 (see (7.5)). From (6.5) we get δẏ = fy(w)δy+fu(w)δu+ζ,
where ‖ζ‖1 = o(

√
γ(δw)). Define δy0 as the solution to the equation δẏ0 = fy(w)δy0+fu(w)δu0, δy0(0) = δy(0).

Set ȳ = δy − δy0. Then ȳ satisfies the equation ˙̄y = fy(w)ȳ + fu(w)δuB0 + ζ, ȳ(0) = 0, from which, in view
of estimates ‖δuB0‖1 = o(

√
γ(δw)) and ‖ζ‖1 = o(

√
γ(δw)), it follows that ‖ȳ‖1,1 = o(

√
γ(δw)). This and the

estimate 〈w∗
1 , δw〉 := ϕμ1

η (η)δη ≤ o(
√
γ(δw)) imply 〈w∗

1 , δw
0〉 ≤ o(

√
γ(δw)). But now δw0 ∈ R0, therefore we

get − ∫ T

0
a1g′(u)δu0 dt ≤ o(

√
γ(δw)). Since ‖δuB0‖1 = o(

√
γ(δw)), we also get − ∫ T

0
a1g′(u)δu dt ≤ o(

√
γ(δw)).

Now, using Lemma 8.1, let us change the members of the sequence {δu0} on the sets M1
j := {t | a1

j(t) >
0}, j = 1, . . . , q, and define a new sequence {δw1} whose members belong to the cone R1. Set v0

j =

−g′j(u)δu0χ{gj(u)=0}, j = 1, . . . , q. Then we have v0
j ≥ 0, ‖v0

j ‖2 ≤ O(
√
γ(δw)) and

∫ T

0 a1v0
j dt = o(

√
γ(δw)),

j = 1, . . . , q. According to Lemma 8.1, for any j there exist two sequences of sets {A1
j} and {B1

j } such
that A1

j ∪ B1
j = M1

j , A
1
j ∩ B1

j = ∅, measB1
j → 0, and ‖v0

jχA1
j
‖∞ = o(

√
γ(δw)). Let B1 =

⋃q
j=1B

1
j and

δu0
B1 = δu0χB1 . Since measB1 → 0 and ‖δu0‖2 ≤ √

γ(δw) we have ‖δu0
B1‖1 = o(

√
γ(δw)). In view of the

hypothesis of linear independence of the gradients g′j(u), from the estimate ‖v0
jχA1

j
‖∞ = o(

√
γ(δw)) it follows

that there exists a sequence {ū0} such that ‖ū0‖∞ = o(
√
γ(δw)), ū0χB1 = 0, g′j(u)ū0 = v0

j a.e. on the set
A1

j \B1, and g′j(u)ū0 = 0 a.e. on the set {t | gj(u(t)) = 0} \ M1
j , j = 1, . . . , q. Set δu1 = δu0 − δu0

B1 − ū0

and define δy1 as the solution to the equation δẏ1 = fy(w)δy1 + fu(w)δu1, δy1(0) = δy(0). Then, as it
is easily seen, all members of the sequence {δw1} = {(δu1, δy1)} belong to the cone R1, and, for this se-
quence, we have 〈w∗

2 , δw
1〉 ≤ o(

√
γ(δw)). This implies that − ∫ T

0
a2g′(u)δu1 dt ≤ o(

√
γ(δw)), and then

− ∫ T

0
a2g′(u)δu dt ≤ o(

√
γ(δw)). Similarly, we change the sequence {δu1} on the sets M2

j = {t | a2
j (t) > 0},

j = 1, . . . , q, and deduce that − ∫ T

0
a2g′(u)δu dt ≤ o(

√
γ(δw)), etc. The lemma is proved.

11. Hoffman’s error bounds for a system of linear inequalities

on a convex cone

Formally this section is independent from the others. Following [18,20], pp. 229–243, in Sections 11.1–11.3 we
study two questions concerning a system of linear inequalities on a convex cone: (a) the existence of a solution
to the system; (b) the existence of Hoffman’s type [7] upper bounds for the distance from the origin to the set
of solutions to the system. In Section 11.4 we consider the same questions for a system of linear inequalities and
equalities on a cone. In Section 11.5, we formulate an abstract notion of support of the critical cone and prove
that the system of inequalities defining this cone possesses a Hoffman’s error bound on the support. The main
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result of Sections 11.1–11.3 (Lem. 11.6) was published in [18] with a short sketch of the proof. Section 11.5 was
written in 2007.

11.1. On the compatibility of a linear system on a cone

Let X be a linear space, li : X → R, i = 1, . . . , k a set of linear functionals, K a convex cone in X . Consider
the following system:

〈li, x〉 + ξi ≤ 0, i = 1, . . . , k, x ∈ K. (11.1)
We will write it briefly as

l(x) + ξ ≤ 0, x ∈ K, (11.2)
where l : X → R

k is a linear operator which corresponds to the set of linear functionals li : X → R, i = 1, . . . , k,
and ξ = (ξ1, . . . , ξk)∗ ∈ R

k.
Set Ω = l(K) + R

k
+, where l(K) is the image of the cone K under the mapping l : K → R

k. It is clear that
Ω is a convex cone in R

k, and system (11.2) is compatible (i.e., has a solution) iff (−ξ) ∈ Ω. In what follows,
for any A ⊂ R the inequality A ≥ 0 means that inf A ≥ 0.

Lemma 11.1. Assume that the cone Ω is closed. Then system (11.2) is compatible iff the relations α ∈ R
k∗
+ ,

αl(K) ≥ 0 imply αξ ≤ 0.

Proof. Let system (11.2) be incompatible, i.e., −ξ /∈ Ω. Since Ω is a convex and closed cone, there exits a vector
α ∈ R

k∗ such that α(−ξ) < 0 ≤ αΩ, where αΩ = {αω | ω ∈ Ω}. The inequality αΩ ≥ 0 implies that αl(K) ≥ 0
and αR

k
+ ≥ 0. Consequently, α ≥ 0. Moreover, αξ > 0. Thus, we obtain: if the relations α ∈ R

k∗
+ , αl(K) ≥ 0

imply that αξ ≤ 0, then system (11.2) is compatible.
Vice versa, let system (11.2) be compatible, and let x0 be a solution to this system. Let α ∈ R

k∗ and
αl(K) ≥ 0. Since x0 ∈ K, we have αl(x0) ≥ 0. Consequently, αξ ≤ αl(x0) +αξ = α(l(x0) + ξ) ≤ 0. The lemma
is proved. �

If K = L, where L is a subspace in X , then the cone Ω = l(L) + R
k
+ is closed. It follows from the fact

that, in this case, Ω is a finite faced cone, since Ω is the sum of the subspace l(L) and the finite faced cone R
k
+.

Moreover, the inequality αl(L) ≥ 0 is equivalent to the equality αl(L) = 0. Thus we obtain the following
corollary of Lemma 11.1.

Corollary 11.2. Let K = L, where L is a subspace in X. Then system (11.2) is compatible iff the relations
α ∈ R

k∗
+ , αl(L) = 0 imply αξ ≤ 0.

11.2. On the existence of Hoffman’s error bound on a cone

Now let us study the second question: how one can estimate (from above) the distance from the origin to the
set of solutions to system (11.1)? Although X is assumed to be a linear space, any finite dimensional subspace
H ⊂ X can be endowed with a norm ‖ · ‖ and any two norms on H are equivalent. The following definition
pertains to this possibility.

Definition 11.3. We say that system (11.2) has Hoffman’s error bound if there exists a finite dimensional
subspace H ⊂ X such that for any norm ‖ · ‖ in H there exists a constant N = N(l,K,H, ‖ · ‖) > 0 such that
the following condition holds: if system (11.2) is compatible, then the system

l(x) + ξ ≤ 0, x ∈ K ∩H (11.3)

is also compatible, and there exists a solution x0 to system (11.3) such that

‖x0‖ ≤ N |ξ+|, (11.4)

where |ξ+| = max
1≤i≤k

ξi+, and ξi+ = max{ξi, 0}.
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The well-known Hoffman’s lemma states that if K = X and the space X is finite dimensional, then sys-
tem (11.2) has Hoffman’s error bound.

So, we shall study the question: under what conditions system (11.2) has Hoffman’s error bound? In the
sequel, we do not assume that the space X is finite dimensional.

Recall that a cone C is called finite generated if there exists a finite set of its elements a1, . . . , as (generators
of the cone) such that each element x ∈ C can be represented as x = λ1a1 + . . .+ λsas with λ1 ≥ 0, . . . , λs ≥ 0.
In a finite dimensional space, a cone is finite faced iff it is finite generated.

Hoffman’s lemma has the following simple generalization.

Lemma 11.4. Assume that Ω = l(K) + R
k
+ is a finite faced cone. Then system (11.2) has Hoffman’s error

bound.

Proof. Since Ω is a finite faced cone in R
k, then Ω is finite generated. Let ξi = l(xi) + ηi, i = 1, . . . , r be the

generators of the cone Ω, where xi ∈ K, ηi ∈ R
k
+, i = 1, . . . , r. Let H be the linear span of the set {x1, . . . , xr},

and let K0 be the cone generated by x1, . . . , xr. Then it is easy to see that Ω = l(K0)+R
k
+. The cone K0 is finite

generated and hence finite faced in H . Consequently, there exist linear functionals mj : H → R, j = 1, . . . , s
such that K0 = {x ∈ H | 〈mj , x〉 ≤ 0, j = 1, . . . , s}. In the finite dimensional subspace H , let us consider the
system

〈li, x〉 + ξi ≤ 0, i = 1, . . . , k, 〈mj , x〉 ≤ 0, j = 1, . . . , s, x ∈ H. (11.5)

The set of solutions to system (11.5) contains in the set of solutions to system (11.1); moreover, both sets are
empty or nonempty simultaneously. Now, using Hoffman’s lemma for system (11.5), we obtain the required
error bound. The lemma is proved. �

Corollary 11.5. If K = L is a subspace in X, then Ω = l(K)+R
k
+ is a finite faced cone, and hence system (11.2)

has Hoffman’s error bound.

11.3. Special case, where Hoffman’s error bound holds

Lemma 11.6. Let Y be a locally convex topological space, X = Y ∗ the dual space, KY a closed convex cone in Y ,
K = K∗

Y the dual cone in X, li, i = 1, . . . , k a set of elements of the space Y considered as the linear functionals
on X. Denote by Kl the cone in Y generated by the elements li, i = 1, . . . , k, i.e., Kl = {y = αl | α ∈ R

k∗
+ }.

Assume that there exists a subspace S ⊂ Y such that Kl ∩KY ⊂ S ⊂ KY . Then system (11.2) has Hoffman’s
error bound. Moreover, system (11.2) is compatible iff the conditions α ∈ R

k∗
+ , αl ∈ KY imply that αξ ≤ 0. In

particular, for any x0 ∈ K the system l(x+ x0) ≤ 0, x ∈ K is always compatible.

The proof of this lemma will be based on the following theorem.

Theorem 11.7. Let Y be a locally convex topological space, K1 ⊂ Y a finite generated cone, K2 ⊂ Y a convex
closed cone. Assume that there exists a subspace S ⊂ Y such that K1 ∩ K2 ⊂ S ⊂ K2. Then (K1 ∩ K2)∗ =
K∗

1 +K∗
2 .

Proof. (a) First, consider the case K1 ∩K2 = S, where S is a subspace in Y . Set Q = K∗
1 +K∗

2 . We must show
that Q = S∗.

It is obvious, that S∗ = (K1 ∩K2)∗ ⊃ K∗
1 + K∗

2 = Q. Next, it is easy to see that, for two nonempty cones,
the dual cone to their sum is equal to the intersection of their dual cones. Therefore, Q∗ = (K∗

1 + K∗
2 )∗ =

K∗∗
1 ∩ K∗∗

2 . Since K1 is a finite generated cone, we have K∗∗
1 = K1. Moreover, K1 ⊂ Y . Consequently,

Q∗ = K1 ∩K∗∗
2 = K1∩ (K∗∗

2 ∩Y ). Since K2 is a convex closed cone and Y is a locally convex topological space,
we have K∗∗

2 ∩ Y = K2 (here, local convexity of Y was used). Thus we obtain Q∗ = K1 ∩K2 = S. Moreover,
Q ⊂ S∗. Let us show that this implies the equality Q = S∗.

Assume that Q ⊂ S∗ and Q �= S∗. Then there exists x ∈ S∗ such that x /∈ Q. Consequently, there exists
x∗ ∈ Q∗ such that 〈x∗, x〉 < 0. But since x∗ ∈ Q∗, Q∗ = S, and x ∈ S∗, we have 〈x∗, x〉 ≥ 0. This contradiction
proves that the condition Q �= S∗ does not hold, i.e., Q = S∗.
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(b) Now, consider the general case: K1 ∩K2 ⊂ S ⊂ K2, where S is a subspace in Y . Since the cone K1 is
finite dimensional, without loss of generality, we can assume that the subspace S is finite dimensional.

Set K̂1 = K1 + S. Let us show that K̂1 ∩ K2 = S. Since 0 ∈ K1, we have S ⊂ K̂1. Moreover, S ⊂ K2.
Therefore, S ⊂ K̂1 ∩ K2. Vice versa, let y2 ∈ K2 and y2 ∈ K̂1 = K1 + S, i.e. y2 = y1 + s, where y1 ∈ K1

and s ∈ S. Since S is a subspace, we have −s ∈ S. Therefore, −s ∈ K2. Since K2 is a convex cone, we have
y1 = y2−s ∈ K2. Consequently, y1 ∈ K1∩K2 ⊂ S. Therefore, y2 = y1 +s ∈ S. This implies that K̂1∩K2 ⊂ S.
Consequently, K̂1 ∩K2 = S.

Since K1 ∩ K2 ⊂ S ⊂ K2, we have K1 ∩ K2 = K1 ∩ S. The cone K1 is finite generated, and S is a finite
dimensional subspace, hence S can be also considered as a finite generated cone. As it is well-known for
finite generated cones, the dual cone to their intersection is equal to the sum of their dual cones. Therefore,
(K1 ∩ K2)∗ = (K1 ∩ S)∗ = K∗

1 + S∗. Further, since K̂1 ∩ K2 = S ⊂ K2 and the cone K̂1 = K1 + S is finite
generated, in virtue of (a) we have S∗ = (K̂1∩K2)∗ = K̂∗

1 +K∗
2 . But K̂∗

1 = (K1 +S)∗ = K∗
1 ∩S∗. Consequently,

S∗ = K∗
1 ∩ S∗ +K∗

2 . Thus, we get (K1 ∩K2)∗ = K∗
1 + S∗ = K∗

1 + (K∗
1 ∩ S∗) +K∗

2 = K∗
1 +K∗

2 . The theorem is
proved. �

This theorem was discussed and proved in the seminar of Milyutin.

Proof of Lemma 11.6.. Set C = (Kl∩KY )∗, Ω = l(K)+R
k
+. Let us show that Ω = l(C)+R

k
+. Indeed, in virtue

of Theorem 11.7, C = K∗
l +K∗

Y . Consequently, l(C) = l(K∗
l ) + l(K∗

Y ). But, obviously, l(K∗
l ) ⊂ R

k
+, and hence

l(K∗
l ) + R

k
+ = R

k
+. Consequently, l(C) + R

k
+ = l(K∗

Y ) + R
k
+ = l(K) + R

k
+ = Ω. Further, as it was mentioned

in the proof of Theorem 11.7, Kl ∩KY = Kl ∩ S. Since Kl is a finite generated cone and S is a subspace, the
cone Kl ∩ S is finite generated too. Consequently, C = (Kl ∩KY )∗ is a finite faced cone in X . This implies
that Ω = l(C) + R

k
+ is a finite faced cone too.

Since each finite faced cone is closed, by Lemma 11.1 the compatibility of the system l(x) + ξ ≤ 0, x ∈ K
is equivalent to the condition: if α ∈ R

k
+, αl(K) ≥ 0, then αξ ≤ 0. But since li ∈ Y for all i, the condition

αl(K) ≥ 0 is equivalent to the condition αl ∈ K∗∩Y = KY . This implies the assertion of the lemma concerning
the compatibility of the system. In particular, if x0 ∈ K and ξ0 = l(x0), then the conditions αl ∈ KY , α ∈ R

k
+

imply αl ∈ S ⊂ KY . Since S is a subspace, K = K∗
Y , and x0 ∈ K, we have αl(x0) = 0, i.e., αξ0 = 0. Thus, in

this case the system is compatible. The lemma is proved. �

11.4. System of linear inequalities and equalities on a cone

Let Y be a locally convex topological space, X = Y ∗ the dual space, KY a closed convex cone in Y , K = K∗
Y

the dual cone in X , li, i = 1, . . . , k and mj , j = 1, . . . , s two sets of elements of the space Y considered as the
linear functionals on X . Let l : X → R

k and m : X → R
s be the linear operators corresponding to the sets

of functionals li, i = 1, . . . , k and mj , j = 1, . . . , s, respectively. Consider the system of linear inequalities and
equalities on the cone K:

l(x) + ξ ≤ 0, m(x) + η = 0, x ∈ K, (11.6)
where ξ ∈ R

k and η ∈ R
s.

Definition 11.8. We say that system (11.6) has Hoffman’s error bound if there exists a finite dimensional
subspace H ⊂ X such that for any norm ‖ · ‖ in H there exists a constant N > 0 such that the following
condition holds: if system (11.6) is compatible, then the system

l(x) + ξ ≤ 0, m(x) + η = 0, x ∈ K ∩H (11.7)

is compatible too, and there exists a solution x to system (11.7) such that

‖x‖ ≤ N(|ξ+| + |η|). (11.8)

Denote by Kl the cone in Y generated by the elements li, i = 1, . . . , k, and denote by Lm the subspace
generated by the elements mj , j = 1, . . . , k. Set Klm = Kl +Lm, i.e., Klm = {y = αl+βm | α ∈ R

k∗
+ , β ∈ R

s∗}.
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Lemma 11.9. Assume that there exists a subspace S ⊂ Y such that Klm ∩KY ⊂ S ⊂ KY . Then system (11.6)
has Hoffman’s error bound. Moreover, system (11.6) is compatible iff the conditions α ∈ R

k∗
+ , β ∈ R

s∗, αl +
βm ∈ KY imply αξ + βη ≤ 0. In particular, for any x0 ∈ K, the system l(x+ x0) ≤ 0, m(x + x0) = 0, x ∈ K
is always compatible.

Proof. System (11.6) can be represented as a system of inequalities

l(x) + ξ ≤ 0, m(x) + η ≤ 0, −m(x) − η ≤ 0, x ∈ K, (11.9)

and hence one can apply Lemma 11.6 to the latter system. Obviously, system (11.6) is compatible iff sys-
tem (11.9) is compatible; moreover system (11.6) has Hoffman’s error bound iff system (11.9) has Hoffman’s
error bound. Thus we get an analog of Lemma 11.6 for system (11.6). �

11.5. Abstract notion of support of critical cone

Let Y be a Banach space, X = Y ∗ a dual space, li, i = 1, . . . , k a set of elements in the space Y considered
as linear functionals on X , C a closed convex cone in Y , Ω = C∗ a dual cone in X . Set K = {x ∈ Ω |
li(x) ≤ 0, i = 1, . . . , k}. The cone K will serve us as an abstract model of the critical cone (see, e.g., [6]). We
shall define the notion of the support of the cone K. Set Q = {l =

∑k
i=1 αili | αi ≥ 0, i = 1, . . . , k}. For any

y ∈ Q and for any x ∈ K we obviously have: 〈y, x〉 ≤ 0.
Let y1 ∈ Q be such that y1(Ω) ≥ 0 (i.e. y1 ∈ C) and let x1 ∈ Ω be such that 〈y1, x1〉 > 0. Set Ω1 = {x ∈ Ω |

〈y1, x〉 = 0}. Then K ⊂ Ω1. Moreover, the cone Ω1 is dual to the cone C1 := C + Span{y1}, where Span{y1}
is a one dimensional subspace generated by vector y1. Indeed, (C + Span{y1})∗ = C∗ ∩ Span{y1}∗ = Ω ∩ {x ∈
X | 〈y1, x〉 = 0} = Ω1.

Let y2 ∈ Q be such that y2(Ω1) ≥ 0 (i.e. y2 ∈ C1) and let x2 ∈ Ω1 be such that 〈y2, x2〉 > 0. Set
Ω2 = {x ∈ Ω1 | 〈y2, x〉 = 0}. Then the cone Ω2 is dual to the cone C2 := C1 + Span{y2}.

Assume that we have already cones Ω1, Ω2, . . . ,Ωs−1, dual to the cones C1, C2, . . . , Cs−1, respectively, and
functionals y1 ∈ Q ∩ C, y2 ∈ Q ∩ C1, . . . , ys−1 ∈ Q ∩ Cs−2. Let ys ∈ Q be such that ys(Ωs−1) ≥ 0 (i.e.
ys ∈ Cs−1) and let xs ∈ Ωs−1 be such that 〈ys, xs〉 > 0. Set Ωs = {x ∈ Ωs−1 | 〈ys, x〉 = 0}. Then the cone Ωs

is dual to the cone Cs := Cs−1 + Span{ys}. Let us show that the vectors y1, . . . , ys are linearly independent.
Let the numbers λ1, . . . , λs−1 be such that ys = λ1y1 + . . . + λs−1ys−1. Since yk(Ωk) ≡ 0, k = 1, . . . , s − 1
and Ωs ⊂ Ωs−1 ⊂ . . . ⊂ Ω1 ⊂ Ω, we have yk(Ωs−1) ≡ 0, k = 1, . . . , s − 1, and hence ys(Ωs−1) ≡ 0. This
is a contradiction with condition 〈ys, xs〉 > 0. Consequently, ys /∈ Span{y1, . . . , ys−1}. Since the vectors
y1, . . . , ys ∈ Q are linearly independent and the set Q is finite dimensional, this process will be finished on
a certain step s.

Let the system y1, . . . , ys be maximal. Then for the cone Ωs we have: if y ∈ Q is such that y(Ωs) ≥ 0 (i.e.
y ∈ Cs), then y(Ωs) ≡ 0. In this case we have (−y) ∈ Cs. It means that the linear span of the intersection
Q∩Cs is a subspace in Cs. Denote this subspace by H . Set S = Ωs, SY = Cs. Then S∗

Y = S, SY ∩Q ⊂ H ⊂ SY ,
where H is a subspace in the cone SY . Thus, for the system of functionals l1, . . . , lk considered on the cone S,
the conditions of Lemma 11.6 are satisfied. By this lemma, for any x0 ∈ S, the system l(x+ x0) ≤ 0, x ∈ S is
compatible and has Hoffman’s error bound. We call S the support of the cone K.

Remark 11.10. As before, let K = {x ∈ Ω | li(x) ≤ 0, i = 1, . . . , k}. Denote by l̂i, i = 1, . . . , k̂ all functionals
of the set l1, . . . , lk such that l̂i(K) ≡ 0. All functionals li which do not posses this property we denote by l̃i,
i = 1, . . . , k̃, where k̃ := k− k̂. By definition, for each l̃i there exits an element x̃i ∈ K such that l̃i(x̃i) < 0. Set
x̃ =

∑
x̃i. Then x̃ ∈ K, and l̃i(x̃) < 0 for all i = 1, . . . , k̃. Set Ω̂ =

{
x ∈ Ω | l̂i(x) = 0 ∀i}. One can show that

K ⊂ Ω̂ ⊂ S, and, for any x0 ∈ Ω̂, the system li(x0 +x) ≤ 0, i = 1, . . . , k, x ∈ Ω̂ is compatible and has Hoffman’s
error bound. Question: is it true that Ω̂ = S? A simple example shows that this is not true. Let k = 2, l1 be
such that l1(Ω) = R, and l2 = −l1. Then l̂1 = l1, l̂2 = l2 and K = Ω̂ = {x ∈ Ω | l1(x) = 0} �= Ω = S.
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