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ON A BERNOULLI PROBLEM WITH GEOMETRIC CONSTRAINTS

ANTOINE LAURAIN! AND YANNICK PRIVAT?

Abstract. A Bernoulli free boundary problem with geometrical constraints is studied. The domain Q
is constrained to lie in the half space determined by 1 > 0 and its boundary to contain a segment of the
hyperplane {x1 = 0} where non-homogeneous Dirichlet conditions are imposed. We are then looking for
the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition
simultaneously on the free boundary. The existence and uniqueness of a solution have already been
addressed and this paper is devoted first to the study of geometric and asymptotic properties of the
solution and then to the numerical treatment of the problem using a shape optimization formulation.
The major difficulty and originality of this paper lies in the treatment of the geometric constraints.
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1. INTRODUCTION

Let (0,21,...,2n) be a system of Cartesian coordinates in RY with N > 2. We set RY = {R" : 21 > 0}.
Let K be a smooth, bounded and convex set such that K is included in the hyperplane {x; = 0}. We define a
set of admissible shapes O as

O = {Q open and convex, K C 9Q}.

We are looking for a domain 2 € O, and for a function u : £ — R such that the following over-determined
system

—Au=0 1in Q,
u=1 on K,
u=0 ondN\K,

(
(
(
|[Vu| =1 onF::(ﬁﬂ\K)ﬁRf (

— = = e
e N
S— N N

has a solution; see Figure 1 for a sketch of the geometry. Problem (1.1)—(1.4) is a free boundary problem in the
sense that it admits a solution only for particular geometries of the domain 2. The set I' is the so-called free
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FIGURE 1. The domain 2 in dimension two.

boundary we are looking for. Therefore, the problem is formulated as
(F): Find Q € O such that problem (1.1)—(1.4) has a solution. (1.5)

This problem arises from various areas, for instance shape optimization, fluid dynamics, electrochemistry and
electromagnetics, as explained in [1,8,10,11]. For applications in N diffusion, we refer to [26] and for the
deformation plasticity see [2].

For our purposes it is convenient to introduce the set L := (0 \ K) N {z1 = 0}. Problems of the type (F)
may or may not, in general, have solutions, but it was already proved in [24] that there exists a unique solution
to (F) in the class O. Further we will denote ©Q* this solution. In addition, it is shown in [24] that 0Q* is
C?* for any 0 < a < 1, that the free boundary 922* \ K meets the fixed boundary K tangentially and that
L* = (0Q* \ K) N {x1 = 0} is not empty.

In the literature, much attention has been devoted to the Bernoulli problem in the geometric configuration
where the boundary 92 is composed of two connected components and such that € is connected but not simply
connected (for instance for a ring-shaped 1), or for a finite union of such domains; we refer to [3,9] for a review
of theoretical results and to [4,13,14,19,22] for a description of several numerical methods for these problems.
In this configuration, one distinguishes the interior Bernoulli problem where the additional boundary condition
similar to (1.4) is on the inner boundary, from the exterior Bernoulli problem where the additional boundary
condition is on the outer boundary. The problem studied in this paper can be seen as a “limit” problem of the
exterior boundary problem described in [16], since 9€2 has one connected component and {2 is simply connected.

In comparison to the standard Bernoulli problems, (F) presents several additional distinctive features, both
from the theoretical and numerical point of view. The difficulties here stem from the particular geometric
setting. Indeed, the constraint €2 C ]Rf is such that the hyperplane {z; = 0} behaves like an obstacle for the
domain © and the free boundary 9Q \ K. It is clear from the results in [24] that this constraint will be active
as the optimal set L* = (02" \ K) N {z1 = 0} is not empty. This type of constraint is difficult to deal with in
shape optimization and there has been very few attempts, if any, at solving these problems.

From the theoretical point of view, the difficulties are apparent in [24], but a proof technique used for the
standard Bernoulli problem may be adapted to our particular setup. Indeed, a Beurling’s technique and a
Perron argument were used, in the same way as in [16-18].
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Nevertheless, the proof of the existence and uniqueness of the free boundary is mainly theoretical and no
numerical algorithm may be deduced to construct I From the numerical point of view, several problems
arise that will be discussed in the next sections. The main issue is that I' is a free boundary but the set
L= (00\ K)N{z; =0} is a “free” set as well, in the sense that its length is unknown and should be obtained
through the optimization process. In other words, the interface between L and I' has to be determined and this
creates a major difficulty for the numerical resolution.

The aim of this paper is twofold: on one hand we perform a detailed analysis of the geometrical properties
of the free boundary I' and in particular we are interested in the dependence of I" on K. On the other hand, we
introduce an efficient algorithm in order to compute a numerical approximation of 2. In this way we perform
a complete analysis of the problem.

First of all, using standard techniques for free boundary problems, we prove symmetry and monotonicity
properties of the free boundary. These results are used further to prove the main theoretical result of the
section in Section 3.3, where the asymptotic behavior of the free boundary, as the length of the subset K of
the boundary diverges, is exhibited. The proof is based on a judicious cut-out of the optimal domain and on
estimates of the solution of the associated partial differential equation to derive the variational formulation
driving the solution of the “limit problem”.

Secondly, we give a numerical algorithm for a numerical approximation of 2. To determine the free boundary
we use a shape optimization approach as in [13,14,19], where a penalization of one of the boundary condition
in (1.1)—(1.4) using a shape functional is introduced. However, the original contribution of this paper regarding
the numerical algorithm comes from the way how the “free” part L of the boundary is handled. Indeed, it
has been proved in the theoretical study presented in [24] that the set L = (OQ\K) N {z1 = 0} has nonzero
length. The only equation satisfied on L is the Dirichlet condition, and a singularity naturally appears in
the solution at the interface between K and L during the optimization process, due to the jump in boundary
conditions. This singularity is a major issue for numerical algorithms: the usual numerical approaches for
standard Bernoulli free boundary problems [13,14,19,20] cannot be used and a specific methodology has to
be developed. A solution proposed in this paper consists in introducing a partial differential equation with
special Robin boundary conditions depending on an asymptotically small parameter ¢ and approximating the
solution of the free boundary problem. We then prove in Theorem 4.1 the convergence of the approximate
solution to the solution of the free boundary problem, as ¢ goes to zero. In doing so we show the efficiency of a
numerical algorithm that may be easily adapted to solve other problems where the free boundary meets a fixed
boundary as well as free boundary problems with geometrical constraints or jumps in boundary conditions. Our
implementation is based on a standard parameterization of the boundary using splines. Numerical results show
the efficiency of the approach.

The paper is organized as follows. Section 2 is devoted to recalling basic concepts of shape sensitivity analysis.
In Section 3, we provide qualitative properties of the free boundary I', precisely we exhibit symmetry and a
monotonicity property with respect to the length of the set K as well as asymptotic properties of I'. In Section 4,
the shape optimization approach for the resolution of the free boundary problem and a penalization of the p.d.e.
to handle the jump in boundary conditions are introduced. In Section 5, the shape derivative of the functionals
are computed and used in the numerical simulations of (F) in Sections 6 and 7.

2. SHAPE SENSITIVITY ANALYSIS

To solve the free boundary problem (F), we formulate it as a shape optimization problem, i.e. as the
minimization of a functional which depends on the geometry of the domains 2 C O. In this way we may
study the sensitivity with respect to perturbations of the shape and use it in a numerical algorithm. The shape
sensitivity analysis is also useful to study the dependence of 2* on the length of K, and in particular to derive
the monotonicity of the domain Q* with respect to the length of K.

The major difficulty in dealing with sets of shapes is that they do not have a vector space structure. In
order to be able to define shape derivatives and study the sensitivity of shape functionals, we need to construct
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such a structure for the shape spaces. In the literature, this is done by considering perturbations of an initial
domain; see [6,15,27].

Therefore, essentially two types of domain perturbations are considered in general. The first one is a method
of perturbation of the identity operator, the second one, the velocity or speed method is based on the deformation
obtained by the flow of a velocity field. The speed method is more general than the method of perturbation of
the identity operator, and the equivalence between deformations obtained by a family of transformations and
deformations obtained by the flow of velocity field may be shown [6,27]. The method of perturbation of the
identity operator is a particular kind of domain transformation, and in this paper the main results will be given
using a simplified speed method, but we point out that using one or the other is rather a matter of preference
as several classical textbooks and authors rely on the method of perturbation of the identity operator as well.

For the presentation of the speed method, we mainly rely on the presentations in [6,27]. We also restrict
ourselves to shape perturbations by autonomous vector fields, i.e. time-independent vector fields. Let V :
RY — RY be an autonomous vector field. Assume that

V e D*RN,RY) = {V e C*(RY,RY), V has compact support}, (2.1)

with £ > 0.
For 7 > 0, we introduce a family of transformations T;(V)(X) = x(¢,X) as the solution to the ordinary
differential equation

d
{Em(t,X) = V(e X)), 0<t<r, (2:2)

z(0,X) = X eRN.
For 7 sufficiently small, the system (2.2) has a unique solution [27]. The mapping T} allows to define a family

of domains €; = T;(V)(2) which may be used for the differentiation of the shape functional. We refer to [6],
Chapter 7, and [27], Theorem 2.16, for theorems establishing the regularity of transformations T;.

It is assumed that the shape functional J(2) is well-defined for any measurable set @ C RY. We introduce
the following notions of differentiability with respect to the shape:

Definition 2.1 (Eulerian semiderivative). Let V € D¥(RN,RY) with k& > 0, the Eulerian semiderivative of
the shape functional J(€2) at € in the direction V' is defined as the limit

dJ(Q; V) = lim J() = J(S)

lim ; , (2.3)

when the limit exists and is finite.

Definition 2.2 (shape differentiability). The functional J(Q2) is shape differentiable (or differentiable for sim-
plicity) at Q if it has a Eulerian semiderivative at  in all directions V' and the map

Vi dJ(Q,V) (2.4)

is linear and continuous from D¥(RN,RY) into R. The map (2.4) is then sometimes denoted V.J({) and
referred to as the shape gradient of J and we have

dJ(Q,V) = (VJ(Q), V) pok (BN RN DF RN BY)- (2.5)

When the data is smooth enough, i.e. when the boundary of the domain €2 and the velocity field V' are smooth
enough (this will be specified later on), the shape derivative has a particular structure: it is concentrated on
the boundary 92 and depends only on the normal component of the velocity field V' on the boundary 0. This
result, often called structure theorem or Hadamard Formula, is fundamental in shape optimization and will be
observed in Theorem 5.1.
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3. GEOMETRIC PROPERTIES AND ASYMPTOTIC BEHAVIOUR

In shape optimization, once the existence and maybe uniqueness of an optimal domain have been obtained,
an explicit representation of the domain, using a parameterization for instance usually cannot be achieved,
except in some particular cases, for instance if the optimal domain has a simple shape such as a ball, ellipse
or a regular polygon. On the other hand, it is usually possible to determine important geometric properties
of the optimum, such as symmetry, connectivity, convexity for instance. In this section we show first of all
that the optimal domain is symmetric with respect to the perpendicular bisector of the segment K, using a
symmetrization argument. Then, we are interested in the asymptotic behaviour of the solution as the length
of K goes to infinity. We are able to show that the optimal domain Q* is monotonically increasing for the
inclusion when the length of K increases, and that (2* converges, in a sense that will be given in Theorem 3.2,
to the infinite strip (0,1) x R.

The proofs presented in Sections 3.1 and 3.2 are quite standard and similar ideas of proofs may be found e.g.
in [15-18].

3.1. Symmetry

In this subsection, we derive a symmetry property of the free boundary. The interest of such a remark is
intrinsic and appears useful from a numerical point of view too, for instance to test the efficiency of the chosen
algorithm.

In the two-dimensional case, we have the following result of symmetry:

Proposition 3.1. Let Q* be the solution of the free boundary problem (1.1)—(1.4). Assume, without loss of
generality that (Ox1) is the perpendicular bisector of K. Then, Q* is symmetric with respect to (Oxy).

Proof. Like often, this proof is based on a symmetrization argument. It may be noticed that, according to the
result stated in [24], Theorem 1,  is the unique solution of the overdetermined optimization problem

(By) : minimize  J(£2, u)
97" subject to Q€ O, ue H(Q),

where
H(Q)={uec H(Q),u=1o0n K,u=0on IQ\K and |Vu| =1 on T},

and
J(Q,u) = /Q V()| da.

From now on, Q* will denote the unique solution of (By), K being fixed. We denote by Q the Steiner Sym-
metrization of (2 with respect to the hyperplane xo = 0, i.e.

~

1 1
0= {:c = (2, 22) such that — §|Q(:c')| <ao < §|Q(IE1)|, 2 € Q’} ,

where
' = {2’ € R such that there exists x5 with (2/,z5) € Q*}

and
Q(z") = {x2 € R such that (z',22) € Q}, 2’ € .

By construction, Q is symmetric with respect to the (Oz1) axis. Let us also introduce @, defined by

@ : 2 € Qs sup{c such that z € w/*(\c)},
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where w*(¢) = {z € Q* : u(z) > c}. Then, one may verify that 7 € H () and Polyd’s inequality (see [15]) yields
J(Q,7) < J(QF, u?).

Since (Q*,v*) is a minimizer of J and using the uniqueness of the solution of (By), we get Q* = Q. O

Remark 3.1. This proof yields in addition that the direction of the normal vector at the intersection of I' and
(Oxy) is (Oxy).

3.2. Monotonicity

In this subsection, we show that * is monotonically increasing for the inclusion when the length of K
increases. For a given a > 0, define K, = {0} x [—a,a]. Let (F,) denote problem (F) with K, instead of K and
denote €2, and u, the corresponding solutions. We have the following result on the monotonicity of €, with
respect to a.

Theorem 3.1. Let 0 < a < b, then Q, C €.

Proof. According to [24], (F,) has a solution for every a > 0 and 99, is C?>**, 0 < a < 1. We argue by
contradiction, assuming that , ¢ ;. Introduce, for ¢ > 1, the set

Q={x €, :te e Q,}.

We also denote by K; := {0} x [—ta,ta] and T := 9Q:\ (0% N (Ox2)). The domain € is obviously a convex
set included in €, for ¢ > 1. Now denote

tmin 1= inf{t >1, Q C Qb}

On one hand, Q, C €y is equivalent to ¢ty = 1. On the other hand, if Q, ¢ Qp, then ¢, > 1 and for ¢ large
enough, we clearly have €; C €y, therefore ¢,;, is finite. In addition, if Q, ¢ Q, we have T';,_. NT} # 0. Now,
choose y € 'y, NT,. Let us introduce

Uty 2 T € Q= Ug(Emink).

min

Then, u;_.  verifies

min

_Autmin =0 in thin’
=1 on K;
=0 onl}y

tmin min

Ut min min

so that, in view of € . C  and K; , C K}, the maximum principle yields uy > uy,,,, in Consequently,
the function h = up — uy,,,, is harmonic in €, , and since h(y) = 0, h reaches its lower bound at y. Applying
Hopf’s lemma (see [7]) thus yields d,h(y) < 0 so that |Vuy(y)| > [Vue,,, (v)|. Hence,

min *

L= [Vup(y)| > [Vt (W) = tmin > 1,
which is absurd. Therefore we necessarily have ¢, = 1 and Q, C Q. O

3.3. Asymptotic behaviour

We may now use the symmetry property of the free boundary to obtain the asymptotic properties of €,
when the length of K goes to infinity, i.e. we are interested in the behaviour of the free boundary I', as a — oc.
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Let us say one word on our motivations for studying such a problem. First, this problem can be seen as
a limit problem of the “unbounded case” studied in [18], Section 5, relative to the one phase free boundary
problem for the p-Laplacian with non-constant Bernoulli boundary condition. Second, let us notice that the
change of variable 2’ = z/a and ¢y’ = y/a transforms the free boundary (1.1)-(1.4) problem into

—Az = 0 inQQ, (3.1)
z = 1 on K, (3.2)

z = 0 ondQ\ K, (3.3)
Vz| = a onl=(0Q\K;)NRY, (34)

which proves that the solution of (3.1)-(3.4) is hy/4(f2), where h;,, denotes the homothety centered at the
origin, with ratio 1/a. Hence such a study permits also to study the role of the Lagrange multiplier associated
with the volume constraint of the problem

min C(Q) where C(Q) = min {3 [, [Vuq|*>, u=10n K1, u=0 on 9Q\K}
Q quasi-open, || =m,

since, as enlightened in [15], Chapter 6, the optimal domain is the solution of (3.1)—(3.4) for a certain constant
a > 0. The study presented in this section permits to link the Lagrange multiplier to the constant m appearing
in the volume constraint and to get some information on the limit case a — +oc.

We actually show that I', converges, in an appropriate sense, to the line parallel to K, and passing through
the point (1,0). Let us introduce the infinite open strip

S =10,1] xR,

and the open, bounded rectangle
R(b) =10,1[ x | — b,b] C S.
Let
us:xr € Sr—1—x.
Observe that, since €2, is solution of the free boundary problem (1.1)-(1.4), the curve I'y N {—a < 23 < a} is
the graph of a concave C*“ function xy — 1), (22) on [—a,a]. We have the following result:

Theorem 3.2. The domain 2, converges to the strip S in the sense that for all b > 0, we have
Y — 1, uniformly in [—b,b], as a — +o0. (3.5)

We also have the convergence
ug —us in H'(R(b)) asa— oo,
for the solution u, of (1.1)—(1.4).

Proof. Let us introduce the function
va(21) = ug(x1,0).

According to [15], Proposition 5.4.12, we have for a domain Q of class C? and u : @ — R of class C?
Au = Aru + Hopu + 02u, (3.6)
where Apu denotes the Laplace-Beltrami operator. Applying formula (3.6) in the domains

wa(c) :=={x € Qq, uq(x) > c},
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we get Arug =0 on wg(c), Aug, = 0 due to (1.1) and thus
02Uy = —HaOpug  on dwg(c), (3.7)

where n is the outer unit normal vector to we(c) and H,(z) denotes here the curvature of dw,(c) at a point
x € OJwg(c). Thanks to the symmetry of €, with respect to the zi-axis, we have Opuq(z1,0) = v/ (z1) and
02uq(21,0) = v (x1) for 21 > 0. According to [24], the sets wy(c) are convex. Therefore H, is positive on
Owg(c) and v, (1) is non-increasing. Thus

ol (1) = —Ha(21, 000} (1) > 0, (3.8)

which means that v, is convex. Let m, be such that I', N (R x {0}) = (m4,0), i.e. the first coordinate of the
intersection of the x1-axis and the free boundary I',. The function v, satisfies

—vl(z1) <0 for z1 €0, mq|, (3.9)

a(0) = 1, (3.10)
Vg (Mmg) = 0, (3.11)
vl (mg) = —1. (3.12)

In view of (3.9), v, is convex on [0,m,]. Since v,(0) = 1 and v,(m,) = 0, then

x
V() <1 — —-
a( 1) s Ma

Furthermore, m, < 1, otherwise, due to the convexity of v,, the Neumann condition (3.12) would not be
satisfied. Since (), is convex, this proves that 2, C S and that €2, is bounded.
Moreover, from Theorem 3.1, the map a — €2, is nondecreasing with respect to the inclusion. It follows that
the sequence (m,) is nondecreasing and bounded since Q, C S. Hence, (m,) converges to me, < 1.
Let us define
.
Uoo (1) p—
The previous remarks ensure that for every a > 0, vg < Ugso-
Let D(a) be the line containing the points (0, a) and (¢, (b),b) and 7 (a) the line tangent to ', at (14 (b),d).
Let sp(a) and s7(a) denote the slopes of D(a) and 7 (a), respectively. For a fixed b € (0,a), we have

_b—a
 Ya(b)

since 0 < v, < 1. Due to the convexity of Q,, we also have sr(a) < sp(a). Therefore

sp(a) — —00 as a — oo,

st(a) - —o0 as a — oo.

Thus, the slopes of the tangents to I';, go to infinity in Q, N R(b). Furthermore, due to the concavity of the
function v,, we get, by construction of D(a),

(0~ 22) < Pa(@2) < Moo, Va > 0, Vs € [~b,b].

Hence, we obtain the pointwise convergence result:

lim %(932) =Moo, VT2 € [*ba b]v (313)

a— 00

which proves the uniform convergence of ¥, to ms as a — +o0.
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From now on, with a slight misuse of notation, u, will also denote its extension by zero to all of S. Finally,
let us prove the convergence

Uy — Us 0 H'(Ry(b)), as a — oo,
where Roo(b) denotes the rectangle whose edges are: X1 = {0} x [—b, b], Xa = [0, moo] X {b}, X3 = {mooc } X[, b]
and X4 = [0, moo] x {—b}.
According to the zero Dirichlet conditions on Y3 and using Poincaré’s inequality, proving the H!'-convergence
is equivalent to show that

/ V(g — us)|> =0 as a— oc. (3.14)
Roo (b)

For our purposes, we introduce the curve ig (@) described by the points X, ; solutions of the following ordinary
differential equation
dX,
d—z’(t) = Vua(Xap(t), t>0,

Xap(0) =(0,0).

(3.15)

The curve ig(a) is naturally extended along its tangent outside of €2,,. ig(a) can be seen as the curve originating
at the point (0,b) and perpendicular to the level set curves of ,. We also introduce the curve ¥4 (a), symmetric

to 3o (a) with respect to the x;-axis. §~J4(a) is obviously the set of points Y, ; solutions of the following ordinary
differential equation
dY, .,
d—t’(t) = Vu, (Yo (t)), t>0,
Ya5(0) = (0, =b).
Then the set Q,(b) is defined as the region delimited by the xo-axis on the left, the line parallel to the zo-axis
and passing through the point (meso,0) on the right and the curves 3, (a) and 54(11) at the top and bottom.
We also introduce the set 23(a) := Qq(b) N ({moo} X R). See Figure 2 for a description of the sets Roo(b) and
Qa(b).
Since R (b) C Qq(b) (see Fig. 2), we have

/ IV (10 — o) ? < / IV (10 — o)
Roo (D) Qa(b)

Using Green’s formula, we get

/ 1V (10— ) / IV (10 — o) 2 + / 1V (0 — )
Qa(b) Qa(b)NQq Qa(b)\Qa

- _ /Qa(bma (U — Uso) A (g — Uoe) — / (U — Uoo) A(ug — Uso)

(3.16)

+ /QQa(b) (Ua - uoo)au(ua - Uoo) + Z/ (ua - uoo)ani (ua - uoo)a

+ FaﬁQa (b)

where v denotes the outer normal vector to Q,(b) on the boundary dQ,(b), n is the outer normal vector to €,
on the boundary I'; and 9,,+ is the normal derivative on I', in the exterior or interior direction, the positive sign
denoting the exterior direction to €2,. The functions u, and us, are harmonic, and using the various boundary
conditions for u, and u., we get

/ |V (ug — uoo)|2 :ﬁ 0 (Ua = Uso) O (e — Uss) +/ Uso-
Qal(b) 2 (a)USa(a) LaNQa(b)
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T2

21 — ] n\
by

24

S4(a)

FIGURE 2. The sets Roo(b) and Q,(b).

According to (3.13) and using u. = 0 on X3, we get

b
[ = [ unlalen) VI G made 0 asa o,
ToNQa(b) b

where we have also used the fact that ¢/, (z2) — 0 for all 5 € [—b,b]. The limit function u, depends only
on x1, thus we have d,us = 0 on X5 U X4. Denote now 1’/;61 : [0,mo] — R the graph of ig(a) (which implies
that —1;,1 is the graph of 4 (a)). The slope of the tangents to the level sets of u, converge to —oo as a — o0 in
a similar way as for 'y, therefore 0,,u, (1, zza(:cl)) converges uniformly to 0 in [0, ms] as a — oo, and in view
of (3.15) we have that ¢, — b uniformly in [0, 7] and since (i, — too) is uniformly bounded in €, we have

ﬁ (g = Use)Opioe — 0 as a — o0. (3.17)
ZQ(G)UZ4(G)

In view of the definition of Q,(b), the outer normal vector v to Q4 (b) at a given point on 3g(a)US(a) is collinear
with the tangent vector to the level set curve of €2, passing though the same point. Therefore Oyug = 0 on
Yo(a) UXy(a) and we obtain finally

0< / |V (e — uso)|? < / IV (g — Uoo)|? = 0 asa— oo. (3.18)
Roo () Qa(b)
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The end of the proof consists in proving that m., = 1. Let us introduce the test function ¢ as the solution
of the partial differential equation

~Ap =0 in Q)
=0 on Xy U ig(a) U §4(a) (3.19)
p=1 on X5(a).

It can be noticed that ¢ € H'(Ro(b)).
Using Green’s formula and the same notations as previously, we get

/ V(ug — teo) - Vi
Qa(b)

/ V(ua—uoo)~Vga+/ V(tug — uso) - Vo
Qa(b)NQ Qa(b)\Qq

= */ ‘PA(Ua*UOO)*/ OA(Ug — Uso)
Qa(b)NQ0 Qa(b)\Qa

+/ 00y (Ug — Uoo) + Z/ @O+ (Ug — Uoo)
0Qa(b) T JTaNQa(b)

[ _ QOaV(Ua*Uoo)*I‘\[ <pan(uafuoo)7/ ©
3o (a)UXs(a) S5 (a) ['anQa(b)

%
3 (a) Moo TaNQa(b)

According to (3.13), and since we deduce from (3.18) that

/ V(g —Uuso) Vo — 0  as a — oo,
Qa(b)

ﬁ jgf/i o =0,
23 (a) Moo T3 (a)

(m—loo - 1) 15 (a)] = 0.

In other words, ms, = 1, which ends the proof. O

we get

which leads to

4. A PENALIZATION APPROACH

4.1. Shape optimization problems

From now on we will assume that N = 2, i.e. we solve the problem in the plane. The problem for N > 2 may
be treated with the same technique, but the numerical implementation becomes tedious. A classical approach
to solve the free boundary problem is to penalize one of the boundary conditions in the over-determined
system (1.1)—(1.4) within a shape optimization approach to find the free boundary. For instance one may
consider the well-posed problem

—Au; =0 in Q, (4.1)
up =1 on K, .
up =0 on 9N\ K, (4.3)
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and enforce the second boundary condition (1.4) by solving the problem

| minimize J(Q)
(By) : { subject to Q€ O, (4.4)

with the functional J defined by
J(Q) = /(anul +1)2dr. (4.5)
r

Indeed, using the maximum principle, one sees immediately that w; > 0 in Q and since u; = 0 on 90\ K, we
obtain dpu; < 0 on 9N\ K. Thus |Vuy| = —0pu; on 02\ K and the additional boundary condition (1.4) is
equivalent to d,u; = —1 on I'. Hence, (4.5) corresponds to a penalization of condition (1.4). On one hand, if
we denote uy the unique solution of (1.1)—(1.4) associated to the optimal set Q*, we have

J(Q) =0,

so that the minimization problem (4.4) has a solution. On the other hand, if J(2*) =0, then |[Vuj|=1on T
and therefore u7 is solution of (1.1)—(1.4). Thus (F) and (B;) are equivalent.

Another possibility is to penalize boundary condition (1.3) instead of (1.4) as in (Bj), in which case we
consider the problem

—Aus =0 in Q, (4.6)
up =1 on K, (4.7)
up =0 on L, (4.8)
Opuz =—1 onl, (4.9)
and the shape optimization problem is
[ minimize J(Q)
(B) { subject to Q€ O, (4.10)

with the functional J defined by
J(Q) = /(u2)2 dr. (4.11)
r

Although the two approaches (B1) and (Bz) are completely satisfying from a theoretical point of view, it
is numerically easier to minimize a domain integral rather than a boundary integral as in (4.5) and (4.11).
Therefore, a third classical approach is to solve

(4.12)

(By) - minimize  J(2)
3/°) subject to Qe O,

with the functional J defined by

J(Q) = /Q(u1 —ug)?. (4.13)

For the standard Bernoulli problems [3,9], solving (Bs) is an excellent approach as demonstrated in [13,14,19].
However, we are still not quite satisfied with it in our case. Indeed, it is well-known that due to the jump in
boundary conditions at the interface between L and T' in (4.8)—(4.9), the solution ug has a singular behaviour
in the neighbourhood of this interface. To be more precise, let us define the points

{Al,AQ} = fﬁf,
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FIGURE 3. Polar coordinates with origin A;, and such that 6; = 0 corresponds to the semi-axis
tangent to I'.

and the polar coordinates (r;,6;) with origin the points A;, i = 1,2, and such that 6; = 0 corresponds to the
semi-axis tangent to I'; see Figure 3 for an illustration. Then, in the neighbourhood of A;, us has a singularity
of the type

Si(ri, 0;) = c(A;)\/ri cos(0;/2),
where ¢(A;) is the so-called stress intensity factor (see e.g. [12,21]).

These singularities are problematic for two reasons. The first difficulty is numerical: these singularities may
produce inaccuracies when computing the solution near the points { A1, A2}, unless the proper numerical setting
is used. It also possibly produces non-smooth deformations of the shape, which might create in turn undesired
angles in the shape during the optimization procedure. The second difficulty is theoretical: since I' is a free
boundary with the constraint Q C ]Rf , the points {A;, A>} are also “free points”, i.e. their optimal position is
unknown in the same way as I' is unknown. This means that the sensitivity with respect to those points has to
be studied, which is doable but tedious, although interesting. The main ingredient in the computation of the
shape sensitivity with respect to these points is the evaluation of the stress intensity factors c¢(A4;).

4.2. Penalization of the partial differential equation

In order to deal with the aforementioned issue, we introduce a fourth approach, based on the penalization
of the jump in the boundary conditions (4.8)—(4.9) for us. Let € > 0 be a small real parameter, and let
. € C(RT,R™) be a decreasing penalization function such that 1. > 0, . has compact support [0, 3.], and
with the properties

Be —0ase—0, (4.14)
1:(0) — 00 as € — 0, (4.15)
Ye(x1) = 0ase — 0, Va; >0. (4.16)

A simple example of such function is given by
Ve (21) = e H(max(1 — e 921,0))? 1y, (4.17)

with ¢ > 0. Note that . is decreasing, has compact support and verifies assumptions (4.14)—(4.16), with
B = €. We will see in Proposition 4.1 that the choice of 1. is conditioned by the shape of the domain. Then
we consider the problem with Robin boundary conditions

—Auz . =0 in (4.18)
uze =1 on K, (4.19)
Opuz.e + Ve(21)uge = —1 on 0N\ K. (4.20)

The function us . is a penalization of usy in the sense that us . — uz as e — 0in H(Q) if 9. is properly chosen.
The following proposition ensures the H'-convergence of us . to the desired function. It may be noticed that
an explicit choice of function 1. providing the convergence is given in the statement of this proposition.
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Proposition 4.1. Let Q be an open bounded domain. Then for 1. given by (4.17), there exists a unique solution
to (4.18)—(4.20) which satisfies

Uz e — uz in HY(Q) ase— 0. (4.21)
Proof. In the sequel, ¢ will denote a generic positive constant which may change its value throughout the proof

and does not depend on the parameter €.
We shall prove that the difference

Ve = U2 — U2 ¢

converges to zero in H'(£2). The remainder v. satisfies, according to (4.6)—(4.9) and (4.18)—(4.20)

—Av. =0 in §, (4.22)

ve=0 on K, (4.23)

Onve + 1 (0)ve =1+ dpus on L, (4.24)
Onve + e (x1)ve = e(x1)ugs onT. (4.25)

Multiplying by v. on both sides of (4.22), integrating on € and using Green’s formula, we end up with

/Q|Vva|2+/m(va)2¢a Z/Fweuzva-f—/L(l-i-@nug)va. (4.26)

Since v, = 0 on K we may apply Poincaré’s theorem and (4.26) implies
Vl[vlF ) < ¢ (Ilbeuall 2@ [0l L2y + 111+ Onusl| 2oy vl 2 (1)) - (4.27)
According to the trace theorem and Sobolev’s imbedding theorem, we have
lvell L2y < ellvell ey < ellvellmr(ay,
[vell2(ry < ellvellgrrzry < cllvellm(a)-
Hence, according to (4.27), we get
lvell 51 ) < cllbeunl| L2y + cll1 + OnuallL2(L)- (4.28)
Now we prove that [[¢:uz|z2ry — 0 as € — 0. We may assume that the system of Cartesian coordinates
(O, x1,x2) is such that the origin O is one of the points 4; or As and that I" is locally above the z1-axis; see

Figure 4. Since 2 is convex, there exist 6 > 0 and two constants « > 0 and g such that for all z; € (0,4), T is
the graph of a convex function f of 1. For our choice of 1., since supp 1. = [0, 5], we have the estimate

letia 2y = / ($euz)?
/BE
< 12 (0) / (u2)* /T T Flan)? das.
0

According to [12,21] and our previous remarks in Section 4.1, we have us = /7 cos(6/2) + o, with us, € H2(Q),
and (r,0) are the polar coordinates defined previously with origin 0. Thus there exists a constant ¢ such that

lua] < ey/rcos(6/2)
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o

>
Ai T
FIGURE 4. T is locally the graph of a convex function, with a tangent to the xzo-axis.

in a neighborhood of 0 with 6 € (0,7/2). Indeed, u is H? therefore C'' in a neighborhood of 0 and then has

an expansion of the form: us = csr + o(r), as r — 0. Note that r = /2% + 22 and thus r = /2% + f(21)?2
on I'. Then

B 1/2
sl 2y < ctbe(0) </ (V7 cos(6/2))*y/T+ f’(w1)2dm>

8. 1/2
< e (0) (/ \/(x%+f(w1)2)(1+f'(w1)2)dx1> .

The function f is convex and f(0) = 0, thus f’ > 0 for € small enough. Since the boundary T' is tangent to the
(Ox9) axis, we have

f'(x1) — o0 asxy — 0T,

r1 = o(f(z1)) asx; — 0F.
Thus, for € > 0 small enough

8. 1/2
f(@1) f (1) dx1>

1/2

[YeuallL2(ry < cb<(0) (

0
<ethe(0) (f(B2)%) "7 = ep=(0) f(B2).-
Since f(x1) — 0 as z1 — 0, we may choose 1. (0) and 3. in order to obtain 1.(0)f(8:) — 0 as e — 0 and
[Yeuzl|L2qry — 0  ase — 0. (4.29)

Then, in view of (4.28), we may deduce that ||v:|| 1) is bounded for the appropriate choice of ¢.. Consequently,
lve | 2(ry and ||lve| p2(z) are also bounded. Using (4.26), we may also write

veOlledltaey = [ @< [ e
L 80
< peuz|| L2y Jvell L2y + 1|1+ Onuzall L2y llvell L2 (1) (4.30)
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Since 1 (0) — oo as € — 0 and all terms in (4.30) are bounded, we necessarily have
vellz2(y — 0 as e — 0.

Finally going back to (4.27) and using the previous results, we obtain
lvell 1 () — 0 as e — 0,

and this proves uz . — ug as € — 0, in HY(Q). O

The following theorem gives a mathematical justification of the numerical scheme implemented in Section 6
to find the solution of the free Bernoulli problem (F), based on the use of a penalized functional J. defined by

J(Q) = /Q(UQ,E —uq)?, (4.31)

where wu; is the solution of (4.1)-(4.3) and us ¢ is the solution of (4.18)—(4.20).

Theorem 4.1. One has
lim inf Q)—J(Q)) =0.
lim inf (J(€2) — J(©)) = 0
Proof. The main ingredient of this proof is the result stated in Proposition 4.1. Indeed, this proposition yields
in particular the convergence of us . to us in L?(£2), when  is a fixed element of O. It follows immediately
that
J(Q) — J(Q), ase — 0.

Let us denote by * the solution of the free Bernoulli problem (F). Then, we obviously have

i < J(QF).
Jnf Je(Q) < J:(27)

Then, going to the limit as ¢ — 0 yields

0< ili%éréfo J(Q) < ElLI% J(Q) =J(Q) =0. O
Remark 4.1. Theorem 4.1 does not imply the existence of solutions for the problem inf{J.(2), 2 € O} and
the following questions remain open: (i) existence of a minimizer * for this problem, (ii) compactness of (%)
for an appropriate topology of domains. These problems appear difficult since to solve it, we probably need to
establish a Sverak-like theorem for the Laplacian with Robin boundary conditions and some counter examples
(see e.g. [5]) suggest that this is in general not true.

Nevertheless, if (i) and (ii) are true, Theorem 4.1 implies the convergence as ¢ — 0, of QF to Q*, the solution
of (1.1)—(1.4).

5. SHAPE DERIVATIVE FOR THE PENALIZED BERNOULLI PROBLEM

In order to stay in the class of domains O, the speed V should satisfy

V(iz)=0 VzeK, (5.1)
V(z)-n(z) <0 VYxelL.

Condition (5.1) will be taken into account in the algorithm, and (5.2) will be guaranteed by our optimization
algorithm. We have the following result for the shape derivative d.J.(£2; V) of J.(£2):
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Theorem 5.1. The shape derivative dJ.(2; V) of J. at Q in the direction V is given by

dJE(Q; V) = / (Vpl -Vuy + Vps - VU275 + poH + (U1 — u2,5)2) V -ndl,
I

+/ (Vp1 . VU1 — Vpg . VUQ’E) V. TldL,
L

where H is the mean curvature of I' and p1, p2 are given by (5.12)—(5.13) and (5.14)—(5.16), respectively.

Proof. According to [6,15,27], the shape derivative of .J; is given by

A.(0: V) = /QZ(ul )y — ) + /m(u1 g )PV e, (5.3)

where u} and uf, _ are the so-called shape derivatives of uy and ug, respectively, and solve

—Au} =0 inQ, (5.4)

up =0 on K, (5.5)

u) = —0pu1V -n on 0N\ K, (5.6)

—Auy =0 inQ, (5.7)

uy, =0 on K, (5.8)

Uy, = —OpugV -n on L, (5.9)

Onusy . + heusy . = dive(V - nVrug ) = HV -n — hO0pua .V -n on T, (5.10)

where H denotes the mean curvature of I'; and Vr is the tangential gradient on I' defined by
Vru = Vu — (Opu)n.

Note that uy and uj . both vanish on K, indeed, K is fixed due to (5.1) which follows from the definition of
our problem and of the class O. Further we will also need

Onuly . = dive(V - nVrpuse) = HV -n onT, (5.11)
which is obtained in the same way as (5.10). We introduce the adjoint states p; and po

—Ap; = 2(u; —uge) in €, ( )
p1 =0 on 99, ( )
—Apy = 2(u1 —ug,) in (5.14)
p2=0 on LUK, ( )
Onp2 =0 onT. ( )
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Note that p; and ps actually depend on ¢ although this is not apparent in the notation for the sake of readability.
Using the adjoint states, we are able to compute

/2(u17uQ,E)u’1 = /*prll
Q Q
= /*Aulﬂllf/ anplull — P10y
Q 29
OO\K

_ / Onp1 OV - 1.
OO\ K

Observing that Vp; = dppin and Vuy = dyuin on 9Q \ K due to (4.3) and (5.13) we obtain

/ 2(uy — ug e )ujde = / Vp1 - VuV - n. (5.17)
Q OO\K

For the other domain integral in (5.3) we get

/2(U1*U2,5)U’2,5 = /*Apzulz,a
Q Q
- / A o / (Onpatdy . — padutd.).
Q oN

At this point we make use of (5.7)-(5.11) and we get
/ 2(uy — u276)u’276 = /pg(divr(V -nVrpug.) —HV -n)dl + / Onp20nus,V - n dL.
Q r L
Applying classical tangential calculus to the above equation (see [27], Prop. 2.57, for instance) we have

/ 2(uy — ’U/275)’U/27€ = — /(Vrpg -Vrug V-n—pyHV -n)dl + / Onp2Onua V -n dL
Q r L

— /(Vpg -Vug .V -n—psHV -n)dl' + / Vpe - Vug .V -n dL,
r L

and the proof is complete. O

6. NUMERICAL SCHEME

6.1. Parameterization versus level set method

For the numerical realization of shape optimization problems, the main issue is the representation of the
moving shape 2. Several different techniques are available: for our purpose, the most appropriate methods
would be parameterization and the level set method. In the parameterization method for two-dimensional
problems, curves are typically represented as splines given by control points & = ({1, &2.), k = 0,...,m with
m € IN*. The coordinates of these control points then become the shape design variables. In the level set
method, the boundary of the domain in RY is implicitly given by the zero level set of a function in RV*1.
Parameterization methods are the easiest to implement if the topology of the domain 2 does not change
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in the course of iterations, whereas the level set method is more technical to implement but thanks to the
implicit representation, it allows to handle easily topological changes of the domain, such as the creation of
holes or the merging of two connected components.

For instance, in [4,22], the level set method is used to solve Bernoulli free boundary problem where the
number of connected components is not known beforehand. In our case, we are solving the free boundary
problem (F) in the class O of convex domains, thus the domains only have one connected component and the
topology is known. In this case it is better to opt for the parameterization method which is easier to implement
and lighter in terms of computations.

The free boundary I' C 91 is represented with the help of a Bezier curve of degree m € IN*. Let

x(s) = (z1(s),22(s)), s€][0,1]
be a parametric representation of the open curve I' and let

& = (&6, 62k), k=0,...,m

be a set of m + 1 control points such that the parameterization of I" satisfies

2(s) = (21(s),22(5)) = Y Br.m(s)ék, (6.1)
k=0

where
my k m—k
Bim(s) = (k)s (I—9g)m™ ", (6.2)
and (72) are the binomial coefficients. The geometric features such as the unit tangent 7(s), unit normal n(s)

and curvature H(s) are easily obtained from the representation (6.1). Indeed we have
7(s) = 2'(s)/]' (s)], (6.3)

with

2'(s) =Y Bio (). (6.4)

k=0
The coefficients By, (s) are derived from (6.2)
m — m— m—k—
B,g,m(s) = <k) [ksk 11 —5s) k]l{kzl} + (k —m)st(1 —s)m=* lll{kgm_l}] ) (6.5)

Since n(s) - 7(s) = 0, we deduce the expression for the unit normal n(s)

o ZZI:O Bllc,m (S)gé'

n(s) = 7= , (6.6)
Yokto Blem ()85
with & = (&2, —&1,). The curvature H(s) is obtained with the help of formula
7'(s) = H(s)n(s) (6.7)

Thus we take
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Remark 6.1. According to (6.3), (6.4) and (6.5), we obtain

& =&
T(O) - |§1 o £0|7 T(l)

_ Em — &m—1 . (6.9)
|£m - §m71|

Thus, in order to create a curve which is tangent to the axis {z1 = 0}, we need to take £y,& and &,,—1,&m, on

{Il = 0}

6.2. Algorithm

For the numerical algorithm we use a gradient projection method in order to deal with the geometric constraint
QC IRf ; see the textbooks [20,25] for details on the method. A solution for dealing with the shape optimization
problems with a convexity constraint is to parameterize the boundary using a support function w. If one uses
a polar coordinates representation (r, ) for the domains, namely

Q= {(r,@) €1[0,00) x R; 7 < @}

where w is a positive and 27-periodic function, then €2, is convex if and only if w” +w > 0; see [23] for details.
However, in our case, the convexity constraint for (2 is not implemented (i.e. we relax this constraint) for the
sake of simplicity, but the convexity property is observed at every iteration and in particular for the optimal
domain if the initial domain is convex. Moreover, Theorem 6.6.2 of [15] may be easily generalized in our case
and guarantees the convexity of the solution of the free boundary problem (F) even if the convexity hypothesis
were not contained in the set O.

We will denote by a superscript (1) an object at iteration [. The algorithm is as follows: we are looking for
an update of the design variable & of the type

WD — pe + ade®), (6.10)

where P stands for the projection on the set of constraints and « is the steplength which has to be determined
by an appropriate linesearch. In our case, the constraint is Q2 C ]Rf , which implies the constraint

x1(s) >0, Vsel0,1]. (6.11)

In view of (6.1), it is difficult to directly interpret the constraint (6.11) for individual control points &,. We
choose therefore to impose the stronger constraint

x>0, Vke{l,...,m} (6.12)

for the control points. Constraint (6.12) is stronger than (6.11), indeed, on one hand there might exist a & such
that & < 0 while (6.11) is still satisfied, but on the other hand, condition (6.12) implies (6.11). However, in
our case, the tips 2(0) and z(1) of T' are moving and the constraint should not be active for the points of I on
the optimal domain. With (6.12) we only guarantee that the domain stays feasible, i.e. Q € ]Rf for all iterates.
In view of Remark 6.1, we also impose

&0=81=8&m-1=&m=0
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in order to preserve the tangent to the axis {x1 = 0} at the tips of I". Therefore, for k =0, ..., m, 5,&” is updated
using,

ﬁzl) = max ( 4 Ozd«fl o O) (6.13)

él;l) — (l )+ ad£2 (6.14)

de) = dell) = (6.15)
A5l 1 = dg), = (6.16)

The link between the perturbation field V' and the step d¢y is directly established using (6.1), and we obtain

$)) = Bl (s)déx. (6.17)
=0
Thus, with a shape derivative given by
dJ. (V) = VJ:.(2)V(x) - n(z)dl(z) (6.18)
a9

as in Theorem 5.1, we obtain using (6.17) and (6.18)

dJ(; V) = /0 VI (z(5))V (2(s)) - n(s)|2'(s)| ds

-/ Y (a(s)

- ];)dg’“ '/0 VJe(2(8))Br,m(s)n(s)|z'(s)| ds.

> Bk,m(s)dgk] -n(s)|2’(s)] ds
k=0

Thus, a descent direction for the algorithm is given by

/ VJe(2(8))Br,m (s)n(s)|z’(s)| ds, (6.19)

and the update is then performed according to (6.13)—(6.16). The step « is determined by a line search in the
spirit of the gradient projection algorithm [20]: a step is validated if we observe a sufficient decrease of the
shape functional J. measured by

2
(I+1) _ (l)

)

Jo(QY) — )<-T> |k
k=1

where |- | denotes the Euclidean distance. The line search consists in finding the smallest integer a (the smallest
possible being a = 0) such that
a = pun®,
where p and 1 < 1 are user-defined parameters. To stop the algorithm, we use the following stopping criterion:
we stop when
60 — 6 < el - 67,
where 7, is a user-defined parameter.
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FIGURE 5. Solutions u; (top left), us . (top right), p1 (bottom left), pe (bottom right) in the
optimal domain.

7. NUMERICAL RESULTS

For the numerical resolution we take m = 40 control points . We discretize the interval [0,1] for the
parameterization z(s) using 400 points. The domain K is chosen as

K= {0} X [05 — I€1,0.5 + Hl],
with k1 &~ 0.129. The initial domain L is chosen as
L= {O} X [05 — Ko,0.5 — Kl] U [05 + k1,0.5 4 KQ],

with ko ~ 0.233. We use the Matlab PDE toolbox to produce a grid in 2 and solve u1, u2 ¢, p1, p2 using finite
elements. The geometric quantities such as tangent, normal and curvature are computed using (6.3)—(6.4), (6.6)
and (6.8), respectively. We initialize the points & by placing them evenly on a half-circle of center {0} x {0.5}
and radius 0.3, except for the two first £y, &1 and two last points &,,—1, &y, which have to lay on the axis {z1 = 0}
as mentioned earlier. We choose 1 = 10, 7 = 0.5 for the line search and 7,, = 5 x 10~ for the stopping criterion.
For the penalization we use (4.17) and choose e = 107! and ¢ = 4.

The algorithm terminated after 220 iterations. The results are given in Figures 5 to 7. In Figure 5, the two
states u1 and ug . as well as the two adjoint states p; and p» are plotted. The difference between u; and wus
in the final domain Qgya is plotted in Figure 6, along with the residual J.(92) given by (4.31). In Figure 7,
the initial and final boundaries are plotted in blue and red, respectively, while the set of control points of the
curve I' is plotted in green. We observe that the optimal domain is symmetric as expected from Section 3.1.



ON A BERNOULLI PROBLEM WITH GEOMETRIC CONSTRAINTS 179

0.05 10™ L L L L L L L L L L
20 40 60 80 100 120 140 160 180 200 220

FIGURE 6. Difference u; — ug in the optimal domain (left), residual J. (right).
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FIGURE 7. Final boundary I" (red), initial boundary I' (blue), control points (green). (Figure
in color available online at www.esaim-cocv.org.)

The optimal set Lgpa is given by
Lenar = {0} x [0.5 — k£;,0.5 — k1] U [0.5 + k1,0.5 + k5]
with xf; = 0.2342. The value of J. on the initial domain is
Je(Qnitial) ~ 2.6 x 1072,
and the value of J. on the final domain is
Jo(Qfinal) ~ 3.3 x 1078,

as may be seen in Figure 6. Therefore, the shape functional .J. has been significantly decreased and is close to
its global optimum.
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